1
|
Brauer NR, Kempen AL, Hernandez D, Sintim HO. Non-kinase off-target inhibitory activities of clinically-relevant kinase inhibitors. Eur J Med Chem 2024; 275:116540. [PMID: 38852338 PMCID: PMC11243610 DOI: 10.1016/j.ejmech.2024.116540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024]
Abstract
Protein kinases are responsible for a myriad of cellular functions, such as cell cycle, apoptosis, and proliferation. Because of this, kinases make excellent targets for therapeutics. During the process to identify clinical kinase inhibitor candidates, kinase selectivity profiles of lead inhibitors are typically obtained. Such kinome selectivity screening could identify crucial kinase anti-targets that might contribute to drug toxicity and/or reveal additional kinase targets that potentially contribute to the efficacy of the compound via kinase polypharmacology. In addition to kinome panel screening, practitioners also obtain the inhibition profiles of a few non-kinase targets, such as ion-channels and select GPCR targets to identify compounds that might possess potential liabilities. Often ignored is the possibility that identified kinase inhibitors might also inhibit or bind to the other proteins (greater than 20,000) in the cell that are not kinases, which may be relevant to toxicity or even additional mode of drug action. This review highlights various inhibitors, which have been approved by the FDA or are currently undergoing clinical trials, that also inhibit other non-kinase targets. The binding poses of the drugs in the binding sites of the target kinases and off-targets are analyzed to understand if the same features of the compounds are critical for the polypharmacology.
Collapse
Affiliation(s)
- Nickolas R Brauer
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Allison L Kempen
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Delmis Hernandez
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Herman O Sintim
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA; Purdue Institute for Drug Discovery, 720 Clinic Drive, West Lafayette, IN, 47907, USA; Purdue Institute for Cancer Research, 201 S. University St., West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Gener-Ricos G, Rodriguez-Sevilla JJ, Urrutia S, Bataller A, Bazinet A, Garcia-Manero G. Advances in the management of higher-risk myelodysplastic syndromes: future prospects. Leuk Lymphoma 2024; 65:1233-1244. [PMID: 38712556 DOI: 10.1080/10428194.2024.2344061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
Higher-risk myelodysplastic syndromes (HR-MDS) are defined using a number of prognostic scoring systems that include the degree of cytopenias, percentage of blasts, cytogenetic alterations, and more recently genomic data. HR-MDS encompasses characteristics such as progressive cytopenias, increased bone marrow blasts, unfavorable cytogenetics, and an adverse mutational profile. Survival is generally poor, and patients require therapy to improve outcomes. Hypomethylating agents (HMAs), such as azacitidine, decitabine, and more recently, oral decitabine/cedazuridine, are the only approved therapies for HR-MDS. These are often continued until loss of response, progression, or unacceptable toxicity. Combinations including an HMA plus other drugs have been investigated but have not demonstrated better outcomes compared to single-agent HMA. Moreover, in a disease of high genomic complexity such as HR-MDS, therapy targeting specific genomic abnormalities is of interest. This review will examine the biological underpinnings of HR-MDS, its therapeutic landscape in the frontline and relapsed settings, as well as the impact of hematopoietic stem cell transplantation, the only known curative intervention for this disease.
Collapse
Affiliation(s)
- Georgina Gener-Ricos
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Samuel Urrutia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alex Bataller
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandre Bazinet
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
3
|
Rawat V, DeLear P, Prashanth P, Ozgurses ME, Tebeje A, Burns PA, Conger KO, Solís C, Hasnain Y, Novikova A, Endress JE, González-Sánchez P, Dong W, Stephanopoulos G, DeNicola GM, Harris IS, Sept D, Mason FM, Coloff JL. Drug screening in human physiologic medium identifies uric acid as an inhibitor of rigosertib efficacy. JCI Insight 2024; 9:e174329. [PMID: 38815134 PMCID: PMC11383364 DOI: 10.1172/jci.insight.174329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/29/2024] [Indexed: 06/01/2024] Open
Abstract
The nonphysiological nutrient levels found in traditional culture media have been shown to affect numerous aspects of cancer cell physiology, including how cells respond to certain therapeutic agents. Here, we comprehensively evaluated how physiological nutrient levels affect therapeutic response by performing drug screening in human plasma-like medium. We observed dramatic nutrient-dependent changes in sensitivity to a variety of FDA-approved and clinically trialed compounds, including rigosertib, an experimental cancer therapeutic that recently failed in phase III clinical trials. Mechanistically, we found that the ability of rigosertib to destabilize microtubules is strongly inhibited by the purine metabolism end product uric acid, which is uniquely abundant in humans relative to traditional in vitro and in vivo cancer models. These results demonstrate the broad and dramatic effects nutrient levels can have on drug response and how incorporation of human-specific physiological nutrient medium might help identify compounds whose efficacy could be influenced in humans.
Collapse
Affiliation(s)
- Vipin Rawat
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Patrick DeLear
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Prarthana Prashanth
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Mete Emir Ozgurses
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Anteneh Tebeje
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Philippa A Burns
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Kelly O Conger
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Christopher Solís
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Yasir Hasnain
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Anna Novikova
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | | | | | - Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Greg Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gina M DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Isaac S Harris
- Department of Biomedical Genetics, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Frank M Mason
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jonathan L Coloff
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
4
|
Karel D, Valburg C, Woddor N, Nava VE, Aggarwal A. Myelodysplastic Neoplasms (MDS): The Current and Future Treatment Landscape. Curr Oncol 2024; 31:1971-1993. [PMID: 38668051 PMCID: PMC11049094 DOI: 10.3390/curroncol31040148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Myelodysplastic neoplasms (MDS) are a heterogenous clonal disorder of hemopoietic stem cells characterized by cytomorphologic dysplasia, ineffective hematopoiesis, peripheral cytopenias and risk of progression to acute myeloid leukemia (AML). Our understanding of this disease has continued to evolve over the last century. More recently, prognostication and treatment have been determined by cytogenetic and molecular data. Specific genetic abnormalities, such as deletion of the long arm of chromosome 5 (del(5q)), TP53 inactivation and SF3B1 mutation, are increasingly associated with disease phenotype and outcome, as reflected in the recently updated fifth edition of the World Health Organization Classification of Hematolymphoid Tumors (WHO5) and the International Consensus Classification 2022 (ICC 2022) classification systems. Treatment of lower-risk MDS is primarily symptom directed to ameliorate cytopenias. Higher-risk disease warrants disease-directed therapy at diagnosis; however, the only possible cure is an allogenic bone marrow transplant. Novel treatments aimed at rational molecular and cellular pathway targets have yielded a number of candidate drugs over recent years; however few new approvals have been granted. With ongoing research, we hope to increasingly offer our MDS patients tailored therapeutic approaches, ultimately decreasing morbidity and mortality.
Collapse
Affiliation(s)
- Daniel Karel
- Department of Hematology/Medical Oncology, The George Washington University, Washington, DC 20037, USA; (C.V.); (A.A.)
| | - Claire Valburg
- Department of Hematology/Medical Oncology, The George Washington University, Washington, DC 20037, USA; (C.V.); (A.A.)
| | - Navitha Woddor
- Department of Pathology, The George Washington University, Washington, DC 20037, USA; (N.W.); (V.E.N.)
| | - Victor E. Nava
- Department of Pathology, The George Washington University, Washington, DC 20037, USA; (N.W.); (V.E.N.)
- Department of Pathology, Washington DC VA Medical Center, Washington, DC 20422, USA
| | - Anita Aggarwal
- Department of Hematology/Medical Oncology, The George Washington University, Washington, DC 20037, USA; (C.V.); (A.A.)
- Department of Hematology/Medical Oncology, Washington DC VA Medical Center, Washington, DC 20422, USA
| |
Collapse
|
5
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
6
|
Williams KB, Larsson AT, Keller BJ, Chaney KE, Williams RL, Bhunia MM, Draper GM, Jubenville TA, Rathe SK, Moertel CL, Ratner N, Largaespada DA. Pharmacogenomic synthetic lethal screens reveal hidden vulnerabilities and new therapeutic approaches for treatment of NF1-associated tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.585959. [PMID: 38585724 PMCID: PMC10996510 DOI: 10.1101/2024.03.25.585959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Neurofibromatosis Type 1 (NF1) is a common cancer predisposition syndrome, caused by heterozygous loss of function mutations in the tumor suppressor gene NF1. Individuals with NF1 develop benign tumors of the peripheral nervous system (neurofibromas), originating from the Schwann cell linage after somatic loss of the wild type NF1 allele, some of which progress further to malignant peripheral nerve sheath tumors (MPNST). There is only one FDA approved targeted therapy for symptomatic plexiform neurofibromas and none approved for MPNST. The genetic basis of NF1 syndrome makes associated tumors ideal for using synthetic drug sensitivity approaches to uncover therapeutic vulnerabilities. We developed a drug discovery pipeline to identify therapeutics for NF1-related tumors using isogeneic pairs of NF1-proficient and deficient immortalized human Schwann cells. We utilized these in a large-scale high throughput screen (HTS) for drugs that preferentially kill NF1-deficient cells, through which we identified 23 compounds capable of killing NF1-deficient Schwann cells with selectivity. Multiple hits from this screen clustered into classes defined by method of action. Four clinically interesting drugs from these classes were tested in vivo using both a genetically engineered mouse model of high-grade peripheral nerve sheath tumors and human MPNST xenografts. All drugs tested showed single agent efficacy in these models as well as significant synergy when used in combination with the MEK inhibitor selumetinib. This HTS platform yielded novel therapeutically relevant compounds for the treatment of NF1-associated tumors and can serve as a tool to rapidly evaluate new compounds and combinations in the future.
Collapse
Affiliation(s)
- Kyle B Williams
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex T Larsson
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bryant J Keller
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katherine E Chaney
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
| | - Rory L Williams
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Minu M Bhunia
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA
| | - Garrett M Draper
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tyler A Jubenville
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sue K Rathe
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher L Moertel
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nancy Ratner
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
| | - David A Largaespada
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
7
|
Merz AMA, Platzbecker U. Beyond the horizon: emerging therapeutic approaches in myelodysplastic neoplasms. Exp Hematol 2024; 130:104130. [PMID: 38036096 DOI: 10.1016/j.exphem.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Management of myelodysplastic neoplasms (MDS) requires a personalized approach, with a focus on improving quality of life and extending lifespan. The International Prognostic Scoring System-Revised and the molecular International Prognostic Scoring System are key tools for risk stratification and management of MDS. They provide a framework for predicting survival and the risk of transformation to acute myeloid leukemia. However, a major challenge in MDS management remains the limited therapeutic options available, especially after the failure of first-line therapies. In lower-risk MDS, the failure of erythropoietin-stimulating agents often leaves few alternatives, although in higher-risk MDS, the prognosis after hypomethylating agent failure is dismal. This highlights the urgent need for novel, more personalized therapeutic approaches. In this review, we discuss emerging novel therapeutic approaches in the treatment of MDS. Several new therapeutic targets are currently being evaluated, offering hope for improved management of MDS in the future.
Collapse
Affiliation(s)
- Almuth Maria Anni Merz
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University Hospital of Leipzig, University of Leipzig Faculty of Medicine Leipzig, Germany.
| | - Uwe Platzbecker
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University Hospital of Leipzig, University of Leipzig Faculty of Medicine Leipzig, Germany.
| |
Collapse
|
8
|
Merz AMA, Sébert M, Sonntag J, Kubasch AS, Platzbecker U, Adès L. Phase to phase: Navigating drug combinations with hypomethylating agents in higher-risk MDS trials for optimal outcomes. Cancer Treat Rev 2024; 123:102673. [PMID: 38176221 DOI: 10.1016/j.ctrv.2023.102673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
Recent developments in high-risk Myelodysplastic Neoplasms (HR MDS) treatment are confronted with challenges in study design due to evolving drug combinations with Hypomethylating Agents (HMAs). The shift from the International Prognostic Scoring System (IPSS) to its molecular revision (IPSS-M) has notably influenced research and clinical practice. Introducing concepts like the MDS/AML overlap complicate classifications and including chronic myelomonocytic leukemia (CMML) in MDS studies introduces another layer of complexity. The International Consortium for MDS emphasizes aligning HR MDS criteria with the 2022 ELN criteria for AML. Differences in advancements between AML and MDS treatments and hematological toxicity in HR MDS underline the importance of detailed trial designs. Effective therapeutic strategies require accurate reporting of adverse events, highlighting the need for clarity in criteria like the Common Terminology Criteria for Adverse Events (CTCAE). We provide an overview on negative clinical trials in HR MDS, analyze possible reasons and explore possibilities to optimize future clinical trials in this challenging patient population.
Collapse
Affiliation(s)
- Almuth Maria Anni Merz
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University Hospital of Leipzig, Leipzig, Germany
| | - Marie Sébert
- Service Hématologie Séniors, Hôpital Saint-Louis (AP-HP), Paris Cité University and INSERM U944, Paris, France
| | - Jan Sonntag
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University Hospital of Leipzig, Leipzig, Germany
| | - Anne Sophie Kubasch
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University Hospital of Leipzig, Leipzig, Germany
| | - Uwe Platzbecker
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University Hospital of Leipzig, Leipzig, Germany.
| | - Lionel Adès
- Service Hématologie Séniors, Hôpital Saint-Louis (AP-HP), Paris Cité University and INSERM U944, Paris, France.
| |
Collapse
|
9
|
Bewersdorf JP, Shallis RM, Sharon E, Park S, Ramaswamy R, Roe CE, Irish JM, Caldwell A, Wei W, Yacoub A, Madanat YF, Zeidner JF, Altman JK, Odenike O, Yerrabothala S, Kovacsovics T, Podoltsev NA, Halene S, Little RF, Piekarz R, Gore SD, Kim TK, Zeidan AM. A multicenter phase Ib trial of the histone deacetylase inhibitor entinostat in combination with pembrolizumab in patients with myelodysplastic syndromes/neoplasms or acute myeloid leukemia refractory to hypomethylating agents. Ann Hematol 2024; 103:105-116. [PMID: 38036712 DOI: 10.1007/s00277-023-05552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Patients with myelodysplastic syndromes/neoplasms (MDS) or acute myeloid leukemia (AML) with hypomethylating agent failure have a poor prognosis. Myeloid-derived suppressor cells (MDSCs) can contribute to MDS progression and mediate resistance to anti-PD1 therapy. As histone deacetylase inhibitors (HDACi) decrease MDSCs in preclinical models, we conducted an investigator-initiated, NCI-Cancer Therapy Evaluation Program-sponsored, multicenter, dose escalation, and expansion phase Ib trial (NCT02936752) of the HDACi entinostat and the anti-PD1 antibody pembrolizumab. Twenty-eight patients (25 MDS and 3 AML) were enrolled. During dose escalation (n=13 patients), there was one dose-limiting toxicity (DLT) on dose level (DL) 1 (G5 pneumonia/bronchoalveolar hemorrhage) and two DLTs at DL 2 (G3 pharyngeal mucositis and G3 anorexia). Per the 3 + 3 dose escalation design, DL 1 (entinostat 8 mg PO days 1 and 15 + pembrolizumab 200 mg IV day 1 every 21 days) was expanded and another 15 patients were enrolled. Hematologic adverse events (AEs) were common. The most common non-hematologic ≥G3 AEs were infection (32%), hypoxia/respiratory failure (11%), and dyspnea (11%). There were no protocol-defined responses among the 28 patients enrolled. Two patients achieved a marrow complete remission (mCR). Using a systems immunology approach with mass cytometry and machine learning analysis, mCR patients had increased classical monocytes and macrophages but there was no significant change of MDSCs. In conclusion, combining entinostat with pembrolizumab in patients with advanced MDS and AML was associated with limited clinical efficacy and substantial toxicity. Absence of an effect on MDSCs could be a potential explanation for the limited efficacy of this combination. ClinicalTrial.gov Identifier: NCT02936752.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, CT, USA.
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Rory M Shallis
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Elad Sharon
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| | - Silvia Park
- Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rahul Ramaswamy
- Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caroline E Roe
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University, Nashville, TN, USA
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University, Nashville, TN, USA
| | - Anne Caldwell
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Wei Wei
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Abdulraheem Yacoub
- The Division of Hematologic Malignancies and Cellular Therapeutics (HMCT), The University of Kansas Cancer Center, Westwood, KS, USA
| | - Yazan F Madanat
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joshua F Zeidner
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jessica K Altman
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | | | | | | | - Nikolai A Podoltsev
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Richard F Little
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| | - Richard Piekarz
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| | - Steven D Gore
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| | - Tae Kon Kim
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, CT, USA.
- Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Center for Immunobiology, Vanderbilt University, Nashville, TN, USA.
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, CT, USA.
- Hematology Section, Department of Internal Medicine, Yale School of Medicine, Yale University, 333 Cedar Street, PO Box 208028, New Haven, CT, 06520-8028, USA.
| |
Collapse
|
10
|
Zhou X, Fu D, Yang H, Le C, Lu Y, Wei J, Tang Y, Zhang J, Yuan Y, Ding K, Xiao Q. Rigosertib promotes anti-tumor immunity via autophagic degradation of PD-L1 in colorectal cancer cells. Cancer Lett 2023; 577:216422. [PMID: 37805162 DOI: 10.1016/j.canlet.2023.216422] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Rigosertib (RGS) is a benzyl styryl sulfone which exhibits impressive cytotoxicity in cancer cells. However, its modulating effect on tumor immune microenvironment remains elusive. In our experiments, compared with immunodeficient mouse model, increased tumor growth arrest and robust anti-tumor immunity were observed in RGS-treated colorectal cancer (CRC) isograft tumors in immunocompetent mice. Intriguingly, RGS markedly down-regulated programmed cell death ligand 1 (PD-L1) expression in both vivo and in vitro. Meanwhile, RGS increased autophagic vacuole number in CRC cells as seen by transmission electron microscopy and immunofluorescence. Moreover, increased LC3-II level and tandem-mRFP- GFP- LC3 labeled vacuole accumulation demonstrated RGS-induced autophagic flux. Mechanistically, it is the activation of AMP-activated protein kinase-UNC-51-like kinase 1 (AMPK-ULK1) axis, rather than the canonical mTOR signaling pathway, that plays a pivotal role in RGS-induced autophagy. AMPK-ULK1 dependent autophagy inhibition, by either short interfering RNA or chemical inhibitors, blocked RGS-induced PD-L1 degradation. Finally, RGS exhibited synergistic anti-tumor activity with cytotoxic T-lymphocyte-associated protein 4 monoclonal antibody in the CRC isograft model. Furthermore, apart from the immunomodulatory effect, we also confirmed the direct cytotoxicity of RGS in inducing mitochondria-related apoptosis. Altogether, considering its PD-L1 inhibitory and cytotoxic effects, RGS could be a promising drug for CRC therapy.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Dongliang Fu
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hang Yang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chenqin Le
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yier Lu
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Jingsun Wei
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yang Tang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jiawei Zhang
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Qian Xiao
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
11
|
Ghorbanzadeh Neghab M, Jalili-Nik M, Soltani A, Afshari AR, Hassanian SM, Rafatpanah H, Rezaee SA, Sadeghnia HR, Ataei Azimi S, Mashkani B. Rigosertib is more potent than wortmannin and rapamycin against adult T-cell leukemia-lymphoma. Biofactors 2023; 49:1174-1188. [PMID: 37345860 DOI: 10.1002/biof.1985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023]
Abstract
Human T lymphotropic virus type 1 (HTLV-1) infection can cause adult T-cell lymphoblastic leukemia (ATLL), an incurable, chemotherapy-resistant malignancy. In a quest for new therapeutic targets, our study sought to determine the levels of AKT, mTOR, and PI3K in ATLL MT-2 cells, HTLV-1 infected NIH/3T3 cells (Inf-3T3), and HTLV-1 infected patients (Carrier, HAM/TSP, and ATLL). Furthermore, the effects of rigosertib, wortmannin, and rapamycin on the PI3K/Akt/mTOR pathway to inhibit the proliferation of ATLL cells were examined. The results showed that mRNA expression of Akt/PI3K/mTOR was down-regulated in carrier, HAM/TSP, and ATLL patients, as well as MT-2, and Inf-3T3 cells, compared to the healthy individuals and untreated MT-2 and Inf-3T3 as controls. However, western blotting revealed an increase in the phosphorylated and activated forms of AKT and mTOR. Treating the cells with rapamycin, wortmannin, and rigosertib decreased the phosphorylated forms of Akt and mTOR and restored their mRNA expression levels. Using these inhibitors also significantly boosted the expression of the pro-apoptotic genes, Bax/Bcl-2 ratio as well as the expression of the tumor suppressor gene p53 in the MT-2 and Inf-3T3cells. Rigosertib was more potent than wortmannin and rapamycin in inducing sub-G1 and G2-M cell cycle arrest, as well as late apoptosis in the Inf-3T3 and MT-2 cells. It also synergized the cytotoxic effects of vincristine. These findings demonstrate that HTLV-1 downregulation of the mRNA level may occur as a negative feedback response to increased PI3K-Akt-mTOR phosphorylation by HTLV-1. Therefore, using rigosertib alone or in combination with common chemotherapy drugs may be beneficial in ATLL patients.
Collapse
Affiliation(s)
| | - Mohammad Jalili-Nik
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R Sadeghnia
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Ataei Azimi
- Department of Hematology Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Baratali Mashkani
- Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Urrutia S, Chien KS, Li Z, Bataller A, Almanza E, Sasaki K, Montalban-Bravo G, Short NJ, Jabbour E, Kadia TM, Ravandi F, Borthakur G, Alvarado Y, Daver N, Kanagal-Shamanna R, Bueso-Ramos C, Pierce SA, Kantarjian H, Garcia-Manero G. Performance of IPSS-M in patients with myelodysplastic syndrome after hypomethylating agent failure. Am J Hematol 2023; 98:E281-E284. [PMID: 37515433 DOI: 10.1002/ajh.27043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Evaluation of IPSS-M and exploratory prognostic model for MDS at the time of HMA failure.
Collapse
Affiliation(s)
- Samuel Urrutia
- Division of Cancer Medicine, MD Anderson Cancer Center, Houston, Texas, USA
| | - Kelly S Chien
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas, USA
| | - Ziyi Li
- Department of Biostatistics, MD Anderson Cancer Center, Houston, Texas, USA
| | - Alex Bataller
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas, USA
| | - Emmanuel Almanza
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas, USA
| | - Koji Sasaki
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Nicholas J Short
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas, USA
| | - Elias Jabbour
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapan M Kadia
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas, USA
| | - Yesid Alvarado
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas, USA
| | - Naval Daver
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Carlos Bueso-Ramos
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Sherry A Pierce
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop Kantarjian
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
13
|
Milletti G, Colicchia V, Cecconi F. Cyclers' kinases in cell division: from molecules to cancer therapy. Cell Death Differ 2023; 30:2035-2052. [PMID: 37516809 PMCID: PMC10482880 DOI: 10.1038/s41418-023-01196-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Faithful eucaryotic cell division requires spatio-temporal orchestration of multiple sequential events. To ensure the dynamic nature of these molecular and morphological transitions, a swift modulation of key regulatory pathways is necessary. The molecular process that most certainly fits this description is phosphorylation, the post-translational modification provided by kinases, that is crucial to allowing the progression of the cell cycle and that culminates with the separation of two identical daughter cells. In detail, from the early stages of the interphase to the cytokinesis, each critical step of this process is tightly regulated by multiple families of kinases including the Cyclin-dependent kinases (CDKs), kinases of the Aurora, Polo, Wee1 families, and many others. While cell-cycle-related CDKs control the timing of the different phases, preventing replication machinery errors, the latter modulate the centrosome cycle and the spindle function, avoiding karyotypic abnormalities typical of chromosome instability. Such chromosomal abnormalities may result from replication stress (RS) and chromosome mis-segregation and are considered a hallmark of poor prognosis, therapeutic resistance, and metastasis in cancer patients. Here, we discuss recent advances in the understanding of how different families of kinases concur to govern cell cycle, preventing RS and mitotic infidelity. Additionally, considering the growing number of clinical trials targeting these molecules, we review to what extent and in which tumor context cell-cycle-related kinases inhibitors are worth exploiting as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Giacomo Milletti
- DNA Replication and Cancer Group, Danish Cancer Institute, 2100, Copenhagen, Denmark.
- Department of Pediatric Hematology and Oncology and of Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| | - Valeria Colicchia
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- IRBM S.p.A., Via Pontina Km 30.60, 00070, Pomezia, Italy
| | - Francesco Cecconi
- Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark.
- Università Cattolica del Sacro Cuore and Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
14
|
Rawat V, DeLear P, Prashanth P, Ozgurses ME, Tebeje A, Burns PA, Conger KO, Solís C, Hasnain Y, Novikova A, Endress JE, González-Sánchez P, Dong W, Stephanopoulos G, DeNicola GM, Harris IS, Sept D, Mason FM, Coloff JL. Drug screening in human physiologic medium identifies uric acid as an inhibitor of rigosertib efficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550731. [PMID: 37546939 PMCID: PMC10402161 DOI: 10.1101/2023.07.26.550731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The non-physiological nutrient levels found in traditional culture media have been shown to affect numerous aspects of cancer cell physiology, including how cells respond to certain therapeutic agents. Here, we comprehensively evaluated how physiological nutrient levels impact therapeutic response by performing drug screening in human plasma-like medium (HPLM). We observed dramatic nutrient-dependent changes in sensitivity to a variety of FDA-approved and clinically trialed compounds, including rigosertib, an experimental cancer therapeutic that has recently failed in phase 3 clinical trials. Mechanistically, we found that the ability of rigosertib to destabilize microtubules is strongly inhibited by the purine metabolism waste product uric acid, which is uniquely abundant in humans relative to traditional in vitro and in vivo cancer models. Structural modelling studies suggest that uric acid interacts with the tubulin-rigosertib complex and may act as an uncompetitive inhibitor of rigosertib. These results offer a possible explanation for the failure of rigosertib in clinical trials and demonstrate the utility of physiological media to achieve in vitro results that better represent human therapeutic responses.
Collapse
Affiliation(s)
- Vipin Rawat
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Patrick DeLear
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Prarthana Prashanth
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Mete Emir Ozgurses
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Anteneh Tebeje
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Philippa A. Burns
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Kelly O. Conger
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Christopher Solís
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL
| | - Yasir Hasnain
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Anna Novikova
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | | | | | - Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Greg Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL
| | - Isaac S. Harris
- Department of Biomedical Genetics, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Frank M. Mason
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan L. Coloff
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| |
Collapse
|
15
|
Gerke MB, Christodoulou I, Karantanos T. Definitions, Biology, and Current Therapeutic Landscape of Myelodysplastic/Myeloproliferative Neoplasms. Cancers (Basel) 2023; 15:3815. [PMID: 37568631 PMCID: PMC10417399 DOI: 10.3390/cancers15153815] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are hematological disorders characterized by both proliferative and dysplastic features. According to the 2022 International Consensus Classification (ICC), MDS/MPN consists of clonal monocytosis of undetermined significance (CMUS), chronic myelomonocytic leukemia (CMML), atypical chronic myeloid leukemia (aCML), MDS/MPN with SF3B1 mutation (MDS/MPN-T-SF3B1), MDS/MPN with ring sideroblasts and thrombocytosis not otherwise specified (MDS/MPN-RS-T-NOS), and MDS/MPN-NOS. These disorders exhibit a diverse range of genetic alterations involving various transcription factors (e.g., RUNX1), signaling molecules (e.g., NRAS, JAK2), splicing factors (e.g., SF3B, SRSF2), and epigenetic regulators (e.g., TET2, ASXL1, DNMT3A), as well as specific cytogenetic abnormalities (e.g., 8 trisomies, 7 deletions/monosomies). Clinical studies exploring therapeutic options for higher-risk MDS/MPN overlap syndromes mostly involve hypomethylating agents, but other treatments such as lenalidomide and targeted agents such as JAK inhibitors and inhibitors targeting PARP, histone deacetylases, and the Ras pathway are under investigation. While these treatment modalities can provide partial disease control, allogeneic bone marrow transplantation (allo-BMT) is the only potentially curative option for patients. Important prognostic factors correlating with outcomes after allo-BMT include comorbidities, splenomegaly, karyotype alterations, and the bone marrow blasts percentage at the time of transplantation. Future research is imperative to optimizing therapeutic strategies and enhancing patient outcomes in MDS/MPN neoplasms. In this review, we summarize MDS/MPN diagnostic criteria, biology, and current and future treatment options, including bone marrow transplantation.
Collapse
Affiliation(s)
- Margo B. Gerke
- School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Ilias Christodoulou
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | | |
Collapse
|
16
|
Sekeres MA, Kim N, DeZern AE, Norsworthy KJ, Garcia JS, de Claro RA, Theoret MR, Jen EY, Ehrlich LA, Zeidan AM, Komrokji RS. Considerations for Drug Development in Myelodysplastic Syndromes. Clin Cancer Res 2023; 29:2573-2579. [PMID: 36688922 PMCID: PMC10349686 DOI: 10.1158/1078-0432.ccr-22-3348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/07/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Myelodysplastic syndromes (MDS) have historically been challenging diseases for drug development due to their biology, preclinical modeling, and the affected patient population. In April 2022, the FDA convened a panel of regulators and academic experts in MDS to discuss approaches to improve MDS drug development. The panel reviewed challenges in MDS clinical trial design and endpoints and outlined considerations for future trial design in MDS to facilitate drug development to meaningfully meet patient needs. Challenges for defining clinical benefit in patients with MDS include cumbersome response criteria, standardized transfusion thresholds, and application and validation of patient reported outcome instruments. Clinical trials should reflect the biology of disease evolution, the advanced age of patients with MDS, and how patients are treated in real-world settings to maximize the likelihood of identifying active drugs. In patients with lower-risk disease, response criteria for anemic patients should be based on baseline transfusion dependency, improvement in symptoms, and quality of life. For higher-risk patients with MDS, trials should include guidance to prevent dose reductions or delays that could limit efficacy, specify minimal durations of treatment (in the absence of toxicity or progression), and have endpoints focused on overall survival and durable responses. MDS trials should be designed from the outset to allow the practicable application of new therapies in this high-needs population, with drugs that can be administered and tolerated in community settings, and with endpoints that meaningfully improve patients' lives over existing therapies.
Collapse
Affiliation(s)
- Mikkael A. Sekeres
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Nina Kim
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Kelly J. Norsworthy
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD
| | | | - R. Angelo de Claro
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD
| | - Marc R. Theoret
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, MD
| | - Emily Y. Jen
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD
| | - Lori A. Ehrlich
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD
| | - Amer M. Zeidan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, and Yale Cancer Center, Yale University, New Haven, CT
| | | |
Collapse
|
17
|
Stempel JM, Xie Z, Bewersdorf JP, Stahl M, Zeidan AM. Evolution of Therapeutic Benefit Measurement Criteria in Myelodysplastic Syndromes/Neoplasms. Cancer J 2023; 29:203-211. [PMID: 37195777 DOI: 10.1097/ppo.0000000000000666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
ABSTRACT Myelodysplastic syndromes/neoplasms (MDS) are heterogeneous, clonal myeloid neoplasms characterized by ineffective hematopoiesis, progressive cytopenias, and an increased risk of progression to acute myeloid leukemia. The diversity in disease severity, morphology, and genetic landscape challenges not only novel drug development but also therapeutic response assessment. The MDS International Working Group (IWG) response criteria were first published in the year 2000 focusing on measures of blast burden reduction and hematologic recovery. Despite revision of the IWG criteria in 2006, correlation between IWG-defined responses and patient-focused outcomes, including long-term benefits, remains limited and has potentially contributed to failures of several phase III clinical trials. Several IWG 2006 criteria also lacked clear definitions leading to problems in practical applications and interobserver and intraobserver consistency of response reporting. Although the 2018 revision addressed lower-risk MDS, the most recent update in 2023 redefined responses for higher-risk MDS and has set out to provide clear definitions to enhance consistency while focusing on clinically meaningful outcomes and patient-centered responses. In this review, we analyze the evolution of the MDS response criteria, limitations, and areas of improvement.
Collapse
Affiliation(s)
- Jessica M Stempel
- From the Department of Internal Medicine, Hematology Section, Yale School of Medicine, New Haven, CT
| | - Zhuoer Xie
- Department of Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Jan Philipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Harvard University, Boston, MA
| | - Amer M Zeidan
- From the Department of Internal Medicine, Hematology Section, Yale School of Medicine, New Haven, CT
| |
Collapse
|
18
|
Monfort-Vengut A, de Cárcer G. Lights and Shadows on the Cancer Multi-Target Inhibitor Rigosertib (ON-01910.Na). Pharmaceutics 2023; 15:pharmaceutics15041232. [PMID: 37111716 PMCID: PMC10145883 DOI: 10.3390/pharmaceutics15041232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Rigosertib (ON-01910.Na) is a small-molecule member of the novel synthetic benzyl-styryl-sulfonate family. It is currently in phase III clinical trials for several myelodysplastic syndromes and leukemias and is therefore close to clinical translation. The clinical progress of rigosertib has been hampered by a lack of understanding of its mechanism of action, as it is currently considered a multi-target inhibitor. Rigosertib was first described as an inhibitor of the mitotic master regulator Polo-like kinase 1 (Plk1). However, in recent years, some studies have shown that rigosertib may also interact with the PI3K/Akt pathway, act as a Ras-Raf binding mimetic (altering the Ras signaling pathway), as a microtubule destabilizing agent, or as an activator of a stress-induced phospho-regulatory circuit that ultimately hyperphosphorylates and inactivates Ras signaling effectors. Understanding the mechanism of action of rigosertib has potential clinical implications worth exploring, as it may help to tailor cancer therapies and improve patient outcomes.
Collapse
Affiliation(s)
- Ana Monfort-Vengut
- Cell Cycle and Cancer Biomarkers Group, Instituto de Investigaciones Biomédicas Alberto Sols (IIBM) CSIC-UAM, 28029 Madrid, Spain
| | - Guillermo de Cárcer
- Cell Cycle and Cancer Biomarkers Group, Instituto de Investigaciones Biomédicas Alberto Sols (IIBM) CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
19
|
Awada H, Gurnari C, Xie Z, Bewersdorf JP, Zeidan AM. What's Next after Hypomethylating Agents Failure in Myeloid Neoplasms? A Rational Approach. Cancers (Basel) 2023; 15:2248. [PMID: 37190176 PMCID: PMC10137017 DOI: 10.3390/cancers15082248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Hypomethylating agents (HMA) such as azacitidine and decitabine are a mainstay in the current management of patients with myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukemia (AML) as either single agents or in multidrug combinations. Resistance to HMA is not uncommon, and it can result due to several tumor cellular adaptations. Several clinical and genomic factors have been identified as predictors of HMA resistance. However, the management of MDS/AML patients after the failure of HMA remains challenging in the absence of standardized guidelines. Indeed, this is an area of active research with several potential therapeutic agents currently under development, some of which have demonstrated therapeutic potential in early clinical trials, especially in cases with particular mutational characteristics. Here, we review the latest findings and give a rational approach for such a challenging scenario.
Collapse
Affiliation(s)
- Hussein Awada
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Zhuoer Xie
- Department of Hematology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jan Philipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Comprehensive Cancer Center, New York, NY 10065, USA
| | - Amer M. Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University and Yale Cancer Center, New Haven, CT 06511, USA
| |
Collapse
|
20
|
Rodriguez-Sevilla JJ, Adema V, Garcia-Manero G, Colla S. Emerging treatments for myelodysplastic syndromes: Biological rationales and clinical translation. Cell Rep Med 2023; 4:100940. [PMID: 36787738 PMCID: PMC9975331 DOI: 10.1016/j.xcrm.2023.100940] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 02/16/2023]
Abstract
Myelodysplastic syndromes (MDSs) are a heterogeneous group of clonal hematopoietic stem cell disorders characterized by myeloid dysplasia, peripheral blood cytopenias, and increased risk of progression to acute myeloid leukemia (AML). The standard of care for patients with MDS is hypomethylating agent (HMA)-based therapy; however, nearly 50% of patients have no response to the treatment. Patients with MDS in whom HMA therapy has failed have a dismal prognosis and no approved second-line therapy options, so enrollment in clinical trials of experimental agents represents these patients' only chance for improved outcomes. A better understanding of the molecular and biological mechanisms underpinning MDS pathogenesis has enabled the development of new agents that target molecular alterations, cell death regulators, signaling pathways, and immune regulatory proteins in MDS. Here, we review novel therapies for patients with MDS in whom HMA therapy has failed, with an emphasis on the biological rationale for these therapies' development.
Collapse
Affiliation(s)
| | - Vera Adema
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Aubrey BJ, Brunner AM. SOHO State of the Art and Next Questions: Treatment of Higher-Risk Myelodysplastic Syndromes. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:869-877. [PMID: 36030175 DOI: 10.1016/j.clml.2022.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 01/26/2023]
Abstract
Higher-risk myelodysplastic syndromes (MDS) carry a dismal prognosis with rapid disease progression, disease-related complications that impact quality of life, high risk of transformation to acute myeloid leukemia (AML), and poor long-term survival. Higher-risk disease is determined by a number of factors including the depth and type of cytopenias, percentage of myeloblasts occupying the bone marrow, cytogenetic abnormalities, and increasingly also by the presence of higher-risk molecular alterations. In addition to disease characteristics, a patient's performance status and degree of co-morbidity strongly influence treatment decisions and clinical outcomes. A critical first step in the management of patients with higher-risk MDS is evaluating eligibility for allogeneic hematopoietic stem cell transplant (HCT), which currently remains the only curative therapy, and is available to an ever-increasing number of patients. Outside of stem cell transplant, treatment with hypomethylating agent chemotherapy, azacitidine or decitabine, remains the cornerstone of therapy with improvements in overall survival and reduced transformation to AML; however, these approaches are palliative in nature and outcomes remain very poor overall. With a deepening understanding of disease pathophysiology has come a burgeoning array of novel targeted therapies that are currently in pre-clinical and early phase clinical trials offering hope for new treatment options for this malignancy.
Collapse
Affiliation(s)
- Brandon J Aubrey
- Harvard Medical School, Massachusetts General Hospital, Boston, MA
| | - Andrew M Brunner
- Harvard Medical School, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
22
|
Wei Y, Zheng H, Lockyer PP, Darbaniyan F, Li Z, Kanagal-Shamanna R, Soltysiak KA, Yang H, Ganan-Gomez I, Montalban-Bravo G, Chien KS, Do KA, Daver N, Garcia-Manero G. MDM2 antagonist improves therapeutic activity of azacitidine in myelodysplastic syndromes and chronic myelomonocytic leukemia. Leuk Lymphoma 2022; 63:3154-3164. [PMID: 36059252 PMCID: PMC10088064 DOI: 10.1080/10428194.2022.2116932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Failure of hypomethylation agent (HMA) treatments is an important issue in myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML). Recent studies indicated that function of wildtype TP53 positively impacts outcome of HMA treatments. We investigated the combination of the HMA azacitidine (AZA) with DS-3032b and DS-5272, novel antagonists of the TP53 negative regulator MDM2, in cellular and animal models of MDS and CMML. In TP53 wildtype myeloid cell line, combinational effects of DS-3032b or DS-5272 with AZA were observed. In Tet2-knockout mouse model of MDS and CMML, DS-5272 and AZA combination ameliorated disease-like phenotype. RNA-Seq analysis in mouse bone marrow hematopoietic stem and progenitors indicated that DS-5272 and AZA combination caused down-regulation of leukemia stem cell marker genes and activation of pathways of TP53 function and stability. These findings demonstrate that combining an MDM2 antagonist with AZA has potential to improve AZA treatment in TP53 wildtype MDS and CMML.
Collapse
Affiliation(s)
- Yue Wei
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Zheng
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Faezeh Darbaniyan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly A Soltysiak
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Yang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Irene Ganan-Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Kelly S Chien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
23
|
De Vos N, Hofmans M, Lammens T, De Wilde B, Van Roy N, De Moerloose B. Targeted therapy in juvenile myelomonocytic leukemia: Where are we now? Pediatr Blood Cancer 2022; 69:e29930. [PMID: 36094370 DOI: 10.1002/pbc.29930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/07/2022]
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare and aggressive clonal neoplasm of early childhood, classified as an overlap myeloproliferative/myelodysplastic neoplasm by the World Health Organization. In 90% of the patients with JMML, typical initiating mutations in the canonical Ras pathway genes NF1, PTPN11, NRAS, KRAS, and CBL can be identified. Hematopoietic stem cell transplantation (HSCT) currently is the established standard of care in most patients, although long-term survival is still only 50-60%. Given the limited therapeutic options and the important morbidity and mortality associated with HSCT, new therapeutic approaches are urgently needed. Hyperactivation of the Ras pathway as disease mechanism in JMML lends itself to the use of targeted therapy. Targeted therapy could play an important role in the future treatment of patients with JMML. This review presents a comprehensive overview of targeted therapies already developed and evaluated in vitro and in vivo in patients with JMML.
Collapse
Affiliation(s)
- Nele De Vos
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University, Ghent, Belgium
| | - Mattias Hofmans
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Tim Lammens
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bram De Wilde
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Nadine Van Roy
- Cancer Research Institute Ghent, Ghent, Belgium.,Center for Medical Genetics Ghent, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Barbara De Moerloose
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
24
|
Kontandreopoulou CN, Kalopisis K, Viniou NA, Diamantopoulos P. The genetics of myelodysplastic syndromes and the opportunities for tailored treatments. Front Oncol 2022; 12:989483. [PMID: 36338673 PMCID: PMC9630842 DOI: 10.3389/fonc.2022.989483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Genomic instability, microenvironmental aberrations, and somatic mutations contribute to the phenotype of myelodysplastic syndrome and the risk for transformation to AML. Genes involved in RNA splicing, DNA methylation, histone modification, the cohesin complex, transcription, DNA damage response pathway, signal transduction and other pathways constitute recurrent mutational targets in MDS. RNA-splicing and DNA methylation mutations seem to occur early and are reported as driver mutations in over 50% of MDS patients. The improved understanding of the molecular landscape of MDS has led to better disease and risk classification, leading to novel therapeutic opportunities. Based on these findings, novel agents are currently under preclinical and clinical development and expected to improve the clinical outcome of patients with MDS in the upcoming years. This review provides a comprehensive update of the normal gene function as well as the impact of mutations in the pathogenesis, deregulation, diagnosis, and prognosis of MDS, focuses on the most recent advances of the genetic basis of myelodysplastic syndromes and their clinical relevance, and the latest targeted therapeutic approaches including investigational and approved agents for MDS.
Collapse
|
25
|
Cassanello G, Pasquale R, Barcellini W, Fattizzo B. Novel Therapies for Unmet Clinical Needs in Myelodysplastic Syndromes. Cancers (Basel) 2022; 14:4941. [PMID: 36230864 PMCID: PMC9562187 DOI: 10.3390/cancers14194941] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a very heterogeneous disease, with extremely variable clinical features and outcomes. Current management relies on risk stratification based on IPSS and IPSS-R, which categorizes patients into low (LR-) and high-risk (HR-) MDS. Therapeutic strategies in LR-MDS patients mainly consist of erythropoiesis stimulating agents (ESAs), transfusion support, and luspatercept or lenalidomide for selected patients. Current unmet needs include the limited options available after treatment failure, and the consequent transfusion burden with several hospital admissions and poor quality of life. Therapeutic approaches in HR-MDS patients are aimed at changing the natural course of the disease and hypometylating agents (HMA) are the first choice. The only potentially curative treatment is allogeneic stem cell transplant (allo-HCT), restricted to a minority of young and fit candidates. Patients unfit for or those that relapse after the abovementioned options harbor an adverse prognosis, with limited overall survival and frequent leukemic evolution. Recent advances in genetic mutations and intracellular pathways that are relevant for MDS pathogenesis are improving disease risk stratification and highlighting therapeutic targets addressed by novel agents. Several drugs are under evaluation for LR and HR patients, which differ by their mechanism of action, reported efficacy, and phase of development. This review analyzes the current unmet clinical needs for MDS patients and provides a critical overview of the novel agents under development in this setting.
Collapse
Affiliation(s)
- Giulio Cassanello
- Department of Oncology and Oncohematology, University of Milan, 20122 Milan, Italy
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Raffaella Pasquale
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Wilma Barcellini
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Bruno Fattizzo
- Department of Oncology and Oncohematology, University of Milan, 20122 Milan, Italy
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
26
|
Darbaniyan F, Zheng H, Kanagal-Shamanna R, Lockyer P, Montalban-Bravo G, Estecio M, Lu Y, Soltysiak KA, Chien KS, Yang H, Sasaki K, Class C, Ganan-Gomez I, Do KA, Garcia-Manero G, Wei Y. Transcriptomic Signatures of Hypomethylating Agent Failure in Myelodysplastic Syndromes and Chronic Myelomonocytic Leukemia. Exp Hematol 2022; 115:44-53. [PMID: 36150563 DOI: 10.1016/j.exphem.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022]
Abstract
Hypomethylating agents (HMAs) are the standard of care for myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML). HMA treatment failure is a major clinical problem and its mechanisms are poorly characterized. We performed RNA sequencing in CD34+ bone marrow stem hematopoietic stem and progenitor cells (BM-HSPCs) from 51 patients with CMML and MDS before HMA treatment and compared transcriptomic signatures between responders and nonresponders. We observed very few genes with significant differential expression in HMA non-responders versus responders, and the commonly altered genes in non-responders to both azacitidine (AZA) and decitabine (DAC) treatments were immunoglobulin genes. Gene set analysis identified 78 biological pathways commonly altered in non-responders to both treatments. Among these, we determined that the γ-aminobutyric acid (GABA) receptor signaling significantly affected hematopoiesis in both human BM-HSPCs and mice, indicating that the transcriptomic signatures identified here could serve as candidate biomarkers and therapeutic targets for HMA failure in MDS and CMML.
Collapse
Affiliation(s)
- Faezeh Darbaniyan
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hong Zheng
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Pamela Lockyer
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Marcos Estecio
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, X
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, X
| | - Kelly A Soltysiak
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kelly S Chien
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hui Yang
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Koji Sasaki
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Caleb Class
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX; Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN
| | - Irene Ganan-Gomez
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kim-Anh Do
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Yue Wei
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
27
|
Lee S, Mohan S, Knupp J, Chamoun K, de Jonge A, Yang F, Baloglu E, Shah J, Kauffman MG, Shacham S, Bhatnagar B. Oral eltanexor treatment of patients with higher-risk myelodysplastic syndrome refractory to hypomethylating agents. J Hematol Oncol 2022; 15:103. [PMID: 35922861 PMCID: PMC9351096 DOI: 10.1186/s13045-022-01319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/07/2022] [Indexed: 12/04/2022] Open
Abstract
Patients with higher-risk myelodysplastic syndromes (MDS) refractory to hypomethylating agents (HMAs) have limited therapeutic options and an expected overall survival (OS) of 3–5 months. Eltanexor is an investigational oral selective inhibitor of nuclear export with low central nervous system penetrance and an acceptable tolerability profile. Preclinical studies suggest that myeloid malignancies are sensitive to nuclear export inhibition. Eltanexor exhibited efficacy in hematologic models, supporting exploration in a clinical trial. This phase 1/2 study (NCT02649790) assessed single-agent activity of eltanexor in patients with higher-risk MDS and 5–19% myeloblasts. Two starting doses of eltanexor were evaluated: 20 mg (n = 15), 10 mg (n = 5), both administered on days 1–5 each week of a 28-day cycle. Twenty patients with primary HMA-refractory MDS, with a median age of 77 years (range 62–89), and a median of two prior treatment regimens (range 1–4) were enrolled. Of these, 15 were evaluated for efficacy and 20 for safety. The overall response rate (ORR) was 53.3%, with seven patients (46.7%) achieving marrow complete remission (mCR) and one additional patient achieving hematologic improvement (HI). In the 10 mg group, three patients (60%) reached mCR and two (40%) stable disease (SD), while for 20 mg, four patients (40%) had mCR and two (20%) SD. A total of three patients (20%) had HI and became transfusion independent ≥ 8 weeks. Median OS for the efficacy-evaluable patients (n = 15) was 9.86 months (7.98, NE). Overall, the most frequently reported treatment-related adverse events were nausea (45%), diarrhea (35%), decreased appetite (35%), fatigue and neutropenia (both 30%). Single-agent oral eltanexor was active, safe, and well tolerated in patients with higher-risk, primary HMA-refractory MDS.
Collapse
Affiliation(s)
- Sangmin Lee
- Division of Hematology and Oncology, Weill Cornell Medicine, The New York Presbyterian Hospital, 520 East 70thStreet, Starr 341, New York, NY, 10021, USA. .,Janssen Research and Development, Spring House, PA, USA.
| | - Sanjay Mohan
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | - Fan Yang
- Karyopharm Therapeutics Inc, Newton, MA, USA
| | - Erkan Baloglu
- West Virginia University Cancer Institute, Wheeling Hospital, Wheeling, WV, USA
| | - Jatin Shah
- Karyopharm Therapeutics Inc, Newton, MA, USA
| | | | | | - Bhavana Bhatnagar
- West Virginia University Cancer Institute, Wheeling Hospital, Wheeling, WV, USA
| |
Collapse
|
28
|
Ueda Y, Usuki K, Fujita J, Matsumura I, Aotsuka N, Sekiguchi N, Nakazato T, Iwasaki H, Takahara‐Matsubara M, Sugimoto S, Goto M, Naoe T, Kizaki M, Miyazaki Y, Aakashi K. Phase 1/2 study evaluating the safety and efficacy of DSP-7888 dosing emulsion in myelodysplastic syndromes. Cancer Sci 2022; 113:1377-1392. [PMID: 34932235 PMCID: PMC8990724 DOI: 10.1111/cas.15245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 11/27/2022] Open
Abstract
DSP-7888 is an immunotherapeutic cancer vaccine derived from the Wilms' tumor gene 1 (WT1) protein. This phase 1/2 open-label study evaluated the safety and efficacy of DSP-7888 dosing emulsion in patients with myelodysplastic syndromes (MDS). DSP-7888 was administered intradermally (3.5 or 10.5 mg) every 2 weeks for 6 months and then every 2-4 weeks until lack of benefit. Twelve patients were treated in phase 1 (3.5 mg, n = 6; 10.5 mg, n = 6), with no dose-limiting toxicities reported. Thus, the 10.5 mg dose was selected as the recommended phase 2 dose, and 35 patients were treated in phase 2. Forty-seven patients received ≥1 dose of the study drug and comprised the safety analysis set. The most common adverse drug reaction (ADR) was injection site reactions (ISR; 91.5%). Grade 3 ISR were common (58.8%) in phase 1 but occurred less frequently in 2 (22.9%) following implementation of risk minimization strategies. Other common ADR were pyrexia (10.6%) and febrile neutropenia (8.5%). In the efficacy analysis set, comprising patients with higher-risk MDS after azacitidine failure in phases 1 and 2 (n = 42), the disease control rate was 19.0%, and the median overall survival (OS) was 8.6 (90% confidence interval [CI], 6.8-10.3) months. Median OS was 10.0 (90% CI, 7.6-11.4) months in patients with a WT1-specific immune response (IR; n = 33) versus 4.1 (90% CI, 2.3-8.1) months in those without a WT1-specific IR (n = 9; P = .0034). The acceptable safety and clinical activity findings observed support the continued development of DSP-7888 dosing emulsion.
Collapse
Affiliation(s)
- Yasunori Ueda
- Department of Hematology/OncologyKurashiki Central HospitalOkayamaJapan
| | - Kensuke Usuki
- Department of HematologyNTT Medical Center TokyoTokyoJapan
| | - Jiro Fujita
- Department of Hematology and OncologyOsaka University HospitalOsakaJapan
| | - Itaru Matsumura
- Department of Hematology and RheumatologyKindai University HospitalOsakaJapan
| | - Nobuyuki Aotsuka
- Department of Hematology OncologyJapanese Red Cross Narita HospitalChibaJapan
| | - Naohiro Sekiguchi
- Department of HematologyNational Hospital Organization Disaster Medical CenterTokyoJapan
| | - Tomonori Nakazato
- Department of HematologyYokohama Municipal Citizen’s HospitalKanagawaJapan
| | - Hiromi Iwasaki
- Department of HematologyNational Hospital Organization Kyushu Medical CenterFukuokaJapan
| | | | | | | | - Tomoki Naoe
- National Hospital Organization Nagoya Medical CenterAichiJapan
| | | | - Yasushi Miyazaki
- Department of HematologyAtomic Bomb Disease and Hibakusha Medicine UnitAtomic Bomb Disease InstituteNagasaki UniversityNagasakiJapan
| | - Koichi Aakashi
- Department of Medicine and Biosystemic Science Faculty of MedicineKyushu UniversityFukuokaJapan
| |
Collapse
|
29
|
Fan W, Ma H, Jin B. Expression of FOXM1 and PLK1 predicts prognosis of patients with hepatocellular carcinoma. Oncol Lett 2022; 23:146. [PMID: 35350587 PMCID: PMC8941521 DOI: 10.3892/ol.2022.13266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/16/2022] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequently encountered malignant tumor types and to improve its treatment, effective prognostic biomarkers are urgently required. Cell cycle dysregulation is a significant feature of cancer progression. The aim of the present study was to estimate the expression levels of forkhead box protein M1 (FOXM1) and polo-like kinase 1 (PLK1), both of which have essential roles in cell cycle regulation, and determine their prognostic value in HCC. To this end, FOXM1 and PLK1 expression levels were assessed in The Cancer Genome Atlas and International Cancer Genome Consortium Japan HCC cohorts, and the associations between their co-expression were determined via Pearson's correlation analysis. Furthermore, the overall survival and disease-free survival in these cohorts for different FOXM1 and PLK1 expression statuses were analyzed. In vitro knockdown experiments were also performed using Huh7 cells. The results obtained indicated overexpression of FOXM1 and PLK1 in HCC tumor tissues as well as a positive correlation between FOXM1 and PLK1 expression. The results also suggested that both FOXM1 and PLK1 are required for HCC cell proliferation. In addition, upregulation of FOXM1 and PLK1 was indicated to be associated with poor prognosis of patients with HCC. However, only their coordinated overexpression was identified as an independent prognostic factor for HCC.
Collapse
Affiliation(s)
- Weiqiang Fan
- Department of Organ Transplantation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Huan Ma
- Department of Organ Transplantation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bin Jin
- Department of Organ Transplantation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
30
|
Cook MR, Karp JE, Lai C. The spectrum of genetic mutations in myelodysplastic syndrome: Should we update prognostication? EJHAEM 2022; 3:301-313. [PMID: 35846202 PMCID: PMC9176033 DOI: 10.1002/jha2.317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 06/12/2023]
Abstract
The natural history of patients with myelodysplastic syndrome (MDS) is dependent upon the presence and magnitude of diverse genetic and molecular aberrations. The International Prognostic Scoring System (IPSS) and revised IPSS (IPSS-R) are the most widely used classification and prognostic systems; however, somatic mutations are not currently incorporated into these systems, despite evidence of their independent impact on prognosis. Our manuscript reviews prognostic information for TP53, EZH2, DNMT3A, ASXL1, RUNX1, SRSF2, CBL, IDH 1/2, TET2, BCOR, ETV6, GATA2, U2AF1, ZRSR2, RAS, STAG2, and SF3B1. Mutations in TP53, EZH2, ASXL1, DNMT3A, RUNX1, SRSF2, and CBL have extensive evidence for their negative impact on survival, whereas SF3B1 is the lone mutation carrying a favorable prognosis. We use the existing literature to propose the incorporation of somatic mutations into the IPSS-R. More data are needed to define the broad spectrum of other genetic lesions, as well as the impact of variant allele frequencies, class of mutation, and impact of multiple interactive genomic lesions. We postulate that the incorporation of these data into MDS prognostication systems will not only enhance our therapeutic decision making but lead to targeted treatment in an attempt to improve outcomes in this formidable disease.
Collapse
Affiliation(s)
- Michael R. Cook
- Division of Hematology and OncologyLombardi Comprehensive Cancer CenterGeorgetown University HospitalWashingtonDistrict of ColumbiaUSA
| | - Judith E. Karp
- Divison of Hematology and OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University HospitalBaltimoreMarylandUSA
| | - Catherine Lai
- Division of Hematology and OncologyLombardi Comprehensive Cancer CenterGeorgetown University HospitalWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
31
|
Analysis of 5-Azacytidine Resistance Models Reveals a Set of Targetable Pathways. Cells 2022; 11:cells11020223. [PMID: 35053339 PMCID: PMC8774143 DOI: 10.3390/cells11020223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 01/27/2023] Open
Abstract
The mechanisms by which myelodysplastic syndrome (MDS) cells resist the effects of hypomethylating agents (HMA) are currently the subject of intensive research. A better understanding of mechanisms by which the MDS cell becomes to tolerate HMA and progresses to acute myeloid leukemia (AML) requires the development of new cellular models. From MDS/AML cell lines we developed a model of 5-azacytidine (AZA) resistance whose stability was validated by a transplantation approach into immunocompromised mice. When investigating mRNA expression and DNA variants of the AZA resistant phenotype we observed deregulation of several cancer-related pathways including the phosphatidylinosito-3 kinase signaling. We have further shown that these pathways can be modulated by specific inhibitors that, while blocking the proliferation of AZA resistant cells, are unable to increase their sensitivity to AZA. Our data reveal a set of molecular mechanisms that can be targeted to expand therapeutic options during progression on AZA therapy.
Collapse
|
32
|
Shi M, Niu J, Niu X, Guo H, Bai Y, Shi J, Li W, Sun K, Chen Y, Shao F. Lin28A/CENPE Promoting the Proliferation and Chemoresistance of Acute Myeloid Leukemia. Front Oncol 2021; 11:763232. [PMID: 34868981 PMCID: PMC8632764 DOI: 10.3389/fonc.2021.763232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/22/2021] [Indexed: 01/04/2023] Open
Abstract
The prognosis of chemoresistant acute myeloid leukemia (AML) is still poor, mainly owing to the sustained proliferation ability of leukemic cells, while the microtubules have a major role in sustaining the continuity of cell cycle. In the present study, we have identified CENPE, a microtubular kinesin-like motor protein that is highly expressed in the peripheral blood of patients with chemoresistant AML. In our in vitro studies, knockdown of CENPE expression resulted in the suppression of proliferation of myeloid leukemia cells and reversal of cytarabine (Ara-C) chemoresistance. Furthermore, Lin28A, one of the RNA-binding oncogene proteins that increase cell proliferation and invasion and contribute to unfavorable treatment responses in certain malignancies, was found to be remarkably correlated with CENPE expression in chemoresistance AML. Overexpression of LIN28A promoted the proliferation and Ara-C chemoresistance of leukemic cells. RIP assay, RNA pull-down, and dual luciferase reporter analyses indicated that LIN28A bound specifically to the promoter region GGAGA of CENPE. In addition, the impacts of LIN28A on cell growth, apoptosis, cell cycle progression, and Ara-C chemoresistance were reverted by the knockdown of CENPE. Hence, Lin28A/CENPE has enhanced the proliferation and chemoresistance of AML, and therefore, it could be a prospective candidate for AML treatment.
Collapse
Affiliation(s)
- Mingyue Shi
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Junwei Niu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaona Niu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Honggang Guo
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Yanliang Bai
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Jie Shi
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Weiya Li
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Kai Sun
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Yuqing Chen
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
33
|
Iliaki S, Beyaert R, Afonina IS. Polo-like kinase 1 (PLK1) signaling in cancer and beyond. Biochem Pharmacol 2021; 193:114747. [PMID: 34454931 DOI: 10.1016/j.bcp.2021.114747] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
PLK1 is an evolutionary conserved Ser/Thr kinase that is best known for its role in cell cycle regulation and is expressed predominantly during the G2/S and M phase of the cell cycle. PLK1-mediated phosphorylation of specific substrates controls cell entry into mitosis, centrosome maturation, spindle assembly, sister chromatid cohesion and cytokinesis. In addition, a growing body of evidence describes additional roles of PLK1 beyond the cell cycle, more specifically in the DNA damage response, autophagy, apoptosis and cytokine signaling. PLK1 has an indisputable role in cancer as it controls several key transcription factors and promotes cell proliferation, transformation and epithelial-to-mesenchymal transition. Furthermore, deregulation of PLK1 results in chromosome instability and aneuploidy. PLK1 is overexpressed in many cancers, which is associated with poor prognosis, making PLK1 an attractive target for cancer treatment. Additionally, PLK1 is involved in immune and neurological disorders including Graft versus Host Disease, Huntington's disease and Alzheimer's disease. Unfortunately, newly developed small compound PLK1 inhibitors have only had limited success so far, due to low therapeutic response rates and toxicity. In this review we will highlight the current knowledge about the established roles of PLK1 in mitosis regulation and beyond. In addition, we will discuss its tumor promoting but also tumor suppressing capacities, as well as the available PLK1 inhibitors, elaborating on their efficacy and limitations.
Collapse
Affiliation(s)
- Styliani Iliaki
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Inna S Afonina
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
34
|
Kim N, Pavletic S, Norsworthy KJ. Meaningful response criteria for myelodysplastic syndromes. Br J Haematol 2021; 196:1137-1148. [PMID: 34628648 DOI: 10.1111/bjh.17838] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/13/2021] [Accepted: 09/02/2021] [Indexed: 01/11/2023]
Abstract
Standardizing response criteria for myelodysplastic syndromes (MDS), a clinically and biologically heterogeneous group of disorders, has been historically challenging. The International Working Group (IWG) response criteria, first proposed in 2000 and modified in 2006 and 2018, represent the best effort by a group of international experts to define a set of clinically meaningful end-points in MDS. These criteria have been adopted in many MDS clinical trials, allowing for comparisons of response across trials. However, clinical experience has also revealed some limitations of these criteria, and most of the end-points proposed by the IWG require further validation. In this review, we present a critical analysis of the current MDS response criteria from both a practical standpoint and based on currently available clinical trial data. Potential areas for improvement in the criteria are highlighted, which may be considered in future iterations of the response criteria.
Collapse
Affiliation(s)
- Nina Kim
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven Pavletic
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kelly J Norsworthy
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
35
|
Zhao G, Wang Q, Li S, Wang X. Resistance to Hypomethylating Agents in Myelodysplastic Syndrome and Acute Myeloid Leukemia From Clinical Data and Molecular Mechanism. Front Oncol 2021; 11:706030. [PMID: 34650913 PMCID: PMC8505973 DOI: 10.3389/fonc.2021.706030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
The nucleoside analogs decitabine (5-AZA-dC) and azacitidine (5-AZA) have been developed as targeted therapies to reverse DNA methylation in different cancer types, and they significantly improve the survival of patients who are not suitable for traditional intensive chemotherapies or other treatment regimens. However, approximately 50% of patients have a response to hypomethylating agents (HMAs), and many patients have no response originally or in the process of treatment. Even though new combination regimens have been tested to overcome the resistance to 5-AZA-dC or 5-AZA, only a small proportion of patients benefited from these strategies, and the outcome was very poor. However, the mechanisms of the resistance remain unknown. Some studies only partially described management after failure and the mechanisms of resistance. Herein, we will review the clinical and molecular signatures of the HMA response, alternative treatment after failure, and the causes of resistance in hematological malignancies.
Collapse
Affiliation(s)
| | | | | | - Xiaoqin Wang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Ma H, Nie C, Chen Y, Li J, Xie Y, Tang Z, Gao Y, Ai S, Mao Y, Sun Q, Lu R. Therapeutic Targeting PLK1 by ON-01910.Na Is Effective in Local Treatment of Retinoblastoma. Oncol Res 2021; 28:745-761. [PMID: 33573708 PMCID: PMC8420894 DOI: 10.3727/096504021x16130322409507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cell cycle deregulation is involved in the pathogenesis of many cancers and is often associated with protein kinase aberrations, including the polo-like kinase 1 (PLK1). We used retinoblastoma, an intraocular malignancy that lacks targeted therapy, as a disease model and set out to reveal targetability of PLK1 with a small molecular inhibitor ON-01910.Na. First, transcriptomic analysis on patient retinoblastoma tissues suggested that cell cycle progression was deregulated and confirmed that PLK1 pathway was upregulated. Next, antitumor activity of ON-01910.Na was investigated in both cellular and animal levels. Cytotoxicity induced by ON-01910.Na was tumor specific and dose dependent in retinoblastoma cells, while nontumor cells were minimally affected. In three-dimensional culture, ON-01910.Na demonstrated efficient drug penetrability with multilayer cell death. Posttreatment transcriptomic findings revealed that cell cycle arrest and MAPK cascade activation were induced following PLK1 inhibition and eventually resulted in apoptotic cell death. In Balb/c nude mice, a safe threshold of 0.8 nmol intravitreal dosage of ON-01910.Na was established for intraocular safety, which was demonstrated by structural integrity and functional preservation. Furthermore, intraocular and subcutaneous xenograft were significantly reduced with ON-01910.Na treatments. For the first time, we demonstrated targetability of PLK1 in retinoblastoma by efficiently causing cell cycle arrest and apoptosis. Our study is supportive that local treatment of ON-01910.Na may be a novel, effective modality benefiting patients with PLK1-aberrant tumors.
Collapse
Affiliation(s)
- Huan Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Cong Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Ying Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jinmiao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yanjie Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Zhixin Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yang Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Siming Ai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yuxiang Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Qian Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Rong Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
37
|
Marofi F, Rahman HS, Al-Obaidi ZMJ, Jalil AT, Abdelbasset WK, Suksatan W, Dorofeev AE, Shomali N, Chartrand MS, Pathak Y, Hassanzadeh A, Baradaran B, Ahmadi M, Saeedi H, Tahmasebi S, Jarahian M. Novel CAR T therapy is a ray of hope in the treatment of seriously ill AML patients. Stem Cell Res Ther 2021; 12:465. [PMID: 34412685 PMCID: PMC8377882 DOI: 10.1186/s13287-021-02420-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a serious, life-threatening, and hardly curable hematological malignancy that affects the myeloid cell progenies and challenges patients of all ages but mostly occurs in adults. Although several therapies are available including chemotherapy, allogeneic hematopoietic stem cell transplantation (alloHSCT), and receptor-antagonist drugs, the 5-year survival of patients is quietly disappointing, less than 30%. alloHSCT is the major curative approach for AML with promising results but the treatment has severe adverse effects such as graft-versus-host disease (GVHD). Therefore, as an alternative, more efficient and less harmful immunotherapy-based approaches such as the adoptive transferring T cell therapy are in development for the treatment of AML. As such, chimeric antigen receptor (CAR) T cells are engineered T cells which have been developed in recent years as a breakthrough in cancer therapy. Interestingly, CAR T cells are effective against both solid tumors and hematological cancers such as AML. Gradually, CAR T cell therapy found its way into cancer therapy and was widely used for the treatment of hematologic malignancies with successful results particularly with somewhat better results in hematological cancer in comparison to solid tumors. The AML is generally fatal, therapy-resistant, and sometimes refractory disease with a disappointing low survival rate and weak prognosis. The 5-year survival rate for AML is only about 30%. However, the survival rate seems to be age-dependent. Novel CAR T cell therapy is a light at the end of the tunnel. The CD19 is an important target antigen in AML and lymphoma and the CAR T cells are engineered to target the CD19. In addition, a lot of research goes on the discovery of novel target antigens with therapeutic efficacy and utilizable for generating CAR T cells against various types of cancers. In recent years, many pieces of research on screening and identification of novel AML antigen targets with the goal of generation of effective anti-cancer CAR T cells have led to new therapies with strong cytotoxicity against cancerous cells and impressive clinical outcomes. Also, more recently, an improved version of CAR T cells which were called modified or smartly reprogrammed CAR T cells has been designed with less unwelcome effects, less toxicity against normal cells, more safety, more specificity, longer persistence, and proliferation capability. The purpose of this review is to discuss and explain the most recent advances in CAR T cell-based therapies targeting AML antigens and review the results of preclinical and clinical trials. Moreover, we will criticize the clinical challenges, side effects, and the different strategies for CAR T cell therapy.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Chaq-Chaq Qularaise, Sulaimaniyah, Iraq
| | - Zaid Mahdi Jaber Al-Obaidi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Alkafeel, Najaf, 54001, Iraq.,Department of Chemistry and Biochemistry, College of Medicine, University of Kerbala, Karbala, 56001, Iraq
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia.,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | | | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yashwant Pathak
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Ali Hassanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy, No. 2, Floor 4 Unit (G401), 69120, Heidelberg, Germany.
| |
Collapse
|
38
|
Chien KS, Kim K, Nogueras-Gonzalez GM, Borthakur G, Naqvi K, Daver NG, Montalban-Bravo G, Cortes JE, DiNardo CD, Jabbour E, Alvarado Y, Andreeff M, Bose P, Jain N, Kadia TM, Huang X, Sheppard KB, Klingner-Winton C, Pierce SA, Dong XQ, Soltysiak KA, Kantarjian HM, Garcia-Manero G. Phase II study of azacitidine with pembrolizumab in patients with intermediate-1 or higher-risk myelodysplastic syndrome. Br J Haematol 2021; 195:378-387. [PMID: 34340254 DOI: 10.1111/bjh.17689] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 02/02/2023]
Abstract
Programmed cell death protein 1 (PD-1) and PD-ligand 1 (PD-L1) expression is upregulated in cluster of differentiation 34 (CD34)+ bone marrow cells from patients with myelodysplastic syndromes (MDS). Hypomethylating agent (HMA) treatment results in further increased expression of these immune checkpoints. We hypothesised that combining an anti-PD-1 antibody with HMAs may have efficacy in patients with MDS. To test this concept, we designed a phase II trial of the combination of azacitidine and pembrolizumab with two cohorts. In the 17 previously untreated patients, the overall response rate (ORR) was 76%, with a complete response (CR) rate of 18% and median overall survival (mOS) not reached after a median follow-up of 12·8 months. For the HMA-failure cohort (n = 20), the ORR was 25% and CR rate was 5%; with a median follow-up of 6·0 months, the mOS was 5·8 months. The most observed toxicities were pneumonia (32%), arthralgias (24%) and constipation (24%). Immune-related adverse events requiring corticosteroids were required in 43%. Overall, this phase II trial suggests that azacitidine and pembrolizumab is safe with manageable toxicities in patients with higher-risk MDS. This combined therapy may have anti-tumour activity in a subset of patients and merits further studies in the front-line setting.
Collapse
Affiliation(s)
- Kelly S Chien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kunhwa Kim
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kiran Naqvi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jorge E Cortes
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yesid Alvarado
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuelin Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kimberly B Sheppard
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cheri Klingner-Winton
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sherry A Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiao Qin Dong
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly A Soltysiak
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
39
|
Platzbecker U, Kubasch AS, Homer-Bouthiette C, Prebet T. Current challenges and unmet medical needs in myelodysplastic syndromes. Leukemia 2021; 35:2182-2198. [PMID: 34045662 PMCID: PMC8324480 DOI: 10.1038/s41375-021-01265-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 01/29/2023]
Abstract
Myelodysplastic syndromes (MDS) represent a heterogeneous group of myeloid neoplasms that are characterized by ineffective hematopoiesis, variable cytopenias, and a risk of progression to acute myeloid leukemia. Most patients with MDS are affected by anemia and anemia-related symptoms, which negatively impact their quality of life. While many patients with MDS have lower-risk disease and are managed by existing treatments, there currently is no clear standard of care for many patients. For patients with higher-risk disease, the treatment priority is changing the natural history of the disease by delaying disease progression to acute myeloid leukemia and improving overall survival. However, existing treatments for MDS are generally not curative and many patients experience relapse or resistance to first-line treatment. Thus, there remains an unmet need for new, more effective but tolerable strategies to manage MDS. Recent advances in molecular diagnostics have improved our understanding of the pathogenesis of MDS, and it is becoming clear that the diverse nature of genetic abnormalities that drive MDS demands a complex and personalized treatment approach. This review will discuss some of the challenges related to the current MDS treatment landscape, as well as new approaches currently in development.
Collapse
Affiliation(s)
- Uwe Platzbecker
- Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany.
- German MDS Study Group (D-MDS), Leipzig, Germany.
- The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany.
| | - Anne Sophie Kubasch
- Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
- German MDS Study Group (D-MDS), Leipzig, Germany
- The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany
| | | | | |
Collapse
|
40
|
Chung C. Targeting the Myeloid Lineages and the Immune Microenvironment in Myelodysplastic Syndromes: Novel and Evolving Therapeutic Strategies. Ann Pharmacother 2021; 56:475-487. [PMID: 34330162 DOI: 10.1177/10600280211036154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To discuss the recent and emerging data for novel targeted therapies in myelodysplastic syndromes (MDS). DATA SOURCES A literature search from January 2015 to June 2021 was performed using the key terms targeted therapies, myelodysplastic syndromes, DNA repair, erythroid differentiation therapy, epigenetic inhibitors, signal transduction inhibitors, and apoptosis-inducing agents. STUDY SELECTION AND DATA EXTRACTION Relevant clinical trials and articles in the English language were identified and reviewed. DATA SYNTHESIS MDS are a heterogeneous group of malignant blood disorders affecting the bone marrow (BM), ultimately leading to BM failure, acute leukemia, and death. Selection of treatment is influenced by the severity of symptoms, cytopenia, cytogenetics, prognostic category, medical fitness, and patient preferences. Although current therapies such as erythropoiesis stimulating agents (ESAs) and hypomethylating agents (HMAs) help improve anemia and reduce transfusion burden, limited treatment options exist when patients experience treatment failure to ESAs or HMA. Recent regulatory approval of luspatercept, which targets the erythroid differentiation pathway, represents a major therapeutic advance in the management of anemia in MDS patients who are refractory to ESAs. Many investigational targeted therapies that aim at the myeloid lineage signaling pathway and the immune microenvironment are in active development. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE This nonexhaustive review summarizes and describes the recent data for targeted therapies for MDS. CONCLUSION The development of novel and investigational therapeutic agents continues to contribute to an improved understanding of tumor biology. The precise therapeutic role and timing of these agents remain to be elucidated.
Collapse
|
41
|
Novais P, Silva PMA, Amorim I, Bousbaa H. Second-Generation Antimitotics in Cancer Clinical Trials. Pharmaceutics 2021; 13:1011. [PMID: 34371703 PMCID: PMC8309102 DOI: 10.3390/pharmaceutics13071011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Mitosis represents a promising target to block cancer cell proliferation. Classical antimitotics, mainly microtubule-targeting agents (MTAs), such as taxanes and vinca alkaloids, are amongst the most successful anticancer drugs. By disrupting microtubules, they activate the spindle assembly checkpoint (SAC), which induces a prolonged delay in mitosis, expected to induce cell death. However, resistance, toxicity, and slippage limit the MTA's effectiveness. With the desire to overcome some of the MTA's limitations, mitotic and SAC components have attracted great interest as promising microtubule-independent targets, leading to the so-called second-generation antimitotics (SGAs). The identification of inhibitors against most of these targets, and the promising outcomes achieved in preclinical assays, has sparked the interest of academia and industry. Many of these inhibitors have entered clinical trials; however, they exhibited limited efficacy as monotherapy, and failed to go beyond phase II trials. Combination therapies are emerging as promising strategies to give a second chance to these SGAs. Here, an updated view of the SGAs that reached clinical trials is here provided, together with future research directions, focusing on inhibitors that target the SAC components.
Collapse
Affiliation(s)
- Pedro Novais
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (P.N.); (P.M.A.S.)
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Patrícia M. A. Silva
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (P.N.); (P.M.A.S.)
| | - Isabel Amorim
- GreenUPorto (Sustainable Agrifood Production) Research Center, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal;
| | - Hassan Bousbaa
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (P.N.); (P.M.A.S.)
| |
Collapse
|
42
|
Stomper J, Rotondo JC, Greve G, Lübbert M. Hypomethylating agents (HMA) for the treatment of acute myeloid leukemia and myelodysplastic syndromes: mechanisms of resistance and novel HMA-based therapies. Leukemia 2021; 35:1873-1889. [PMID: 33958699 PMCID: PMC8257497 DOI: 10.1038/s41375-021-01218-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 02/03/2023]
Abstract
Aberrant DNA methylation plays a pivotal role in tumor development and progression. DNA hypomethylating agents (HMA) constitute a class of drugs which are able to reverse DNA methylation, thereby triggering the re-programming of tumor cells. The first-generation HMA azacitidine and decitabine have now been in standard clinical use for some time, offering a valuable alternative to previous treatments in acute myeloid leukemia and myelodysplastic syndromes, so far particularly in older, medically non-fit patients. However, the longer we use these drugs, the more we are confronted with the (almost inevitable) development of resistance. This review provides insights into the mode of action of HMA, mechanisms of resistance to this treatment, and strategies to overcome HMA resistance including next-generation HMA and HMA-based combination therapies.
Collapse
Affiliation(s)
- Julia Stomper
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - John Charles Rotondo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Gabriele Greve
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Research Consortium (DKTK), Freiburg, Germany
| | - Michael Lübbert
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Research Consortium (DKTK), Freiburg, Germany.
| |
Collapse
|
43
|
Komrokji R, Al Ali N, Padron E, Lancet J, Nazha A, Steensma D, DeZern A, Roboz G, Garcia-Manero G, Sekeres MA, Sallman D. What is the optimal time to initiate hypomethylating agents (HMAs) in higher risk myelodysplastic syndromes (MDSs)? Leuk Lymphoma 2021; 62:2762-2767. [PMID: 34114922 DOI: 10.1080/10428194.2021.1938028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Hypomethylating agents (HMAs) are the standard of care for higher risk MDS (HR-MDS) patients. The current dogma is to begin HMA therapy in all HR-MDS patients at the time of initial diagnosis. We investigated the impact of the timing of HMA initiation among HR-MDS patients presenting with adequate blood counts to discern the possible benefit of early treatment based solely on disease risk. We identified 320 HR-MDS patients with adequate hematopoiesis who were treated with HMA. The complete response rates were 21%, 26%, 23%, and 7% respectively for patients treated within 30, 31-60, 61-90, and more than 90 days from time of diagnosis (p=.046). The median OS from the date of diagnosis was 641, 550, 979, and 806 days, respectively (p=.2). A delay in initiating HMA therapy in HR-MDS patients with adequate blood counts is not associated with worsened outcomes.
Collapse
Affiliation(s)
- Rami Komrokji
- Malignant Hematology Department, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Najla Al Ali
- Malignant Hematology Department, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Eric Padron
- Malignant Hematology Department, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jeffrey Lancet
- Malignant Hematology Department, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Aziz Nazha
- Leukemia Program, Cleveland Clinic, Cleveland, OH, USA
| | | | - Amy DeZern
- Kimmel Cancer Center/Johns Hopkins University, Baltimore, MD, USA
| | - Gail Roboz
- Weill Cornell Medical College, New York, NY, USA
| | | | | | - David Sallman
- Malignant Hematology Department, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
44
|
Yan C, Saleh N, Yang J, Nebhan CA, Vilgelm AE, Reddy EP, Roland JT, Johnson DB, Chen SC, Shattuck-Brandt RL, Ayers GD, Richmond A. Novel induction of CD40 expression by tumor cells with RAS/RAF/PI3K pathway inhibition augments response to checkpoint blockade. Mol Cancer 2021; 20:85. [PMID: 34092233 PMCID: PMC8182921 DOI: 10.1186/s12943-021-01366-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND While immune checkpoint blockade (ICB) is the current first-line treatment for metastatic melanoma, it is effective for ~ 52% of patients and has dangerous side effects. The objective here was to identify the feasibility and mechanism of RAS/RAF/PI3K pathway inhibition in melanoma to sensitize tumors to ICB therapy. METHODS Rigosertib (RGS) is a non-ATP-competitive small molecule RAS mimetic. RGS monotherapy or in combination therapy with ICB were investigated using immunocompetent mouse models of BRAFwt and BRAFmut melanoma and analyzed in reference to patient data. RESULTS RGS treatment (300 mg/kg) was well tolerated in mice and resulted in ~ 50% inhibition of tumor growth as monotherapy and ~ 70% inhibition in combination with αPD1 + αCTLA4. RGS-induced tumor growth inhibition depends on CD40 upregulation in melanoma cells followed by immunogenic cell death, leading to enriched dendritic cells and activated T cells in the tumor microenvironment. The RGS-initiated tumor suppression was partially reversed by either knockdown of CD40 expression in melanoma cells or depletion of CD8+ cytotoxic T cells. Treatment with either dabrafenib and trametinib or with RGS, increased CD40+SOX10+ melanoma cells in the tumors of melanoma patients and patient-derived xenografts. High CD40 expression level correlates with beneficial T-cell responses and better survival in a TCGA dataset from melanoma patients. Expression of CD40 by melanoma cells is associated with therapeutic response to RAF/MEK inhibition and ICB. CONCLUSIONS Our data support the therapeutic use of RGS + αPD1 + αCTLA4 in RAS/RAF/PI3K pathway-activated melanomas and point to the need for clinical trials of RGS + ICB for melanoma patients who do not respond to ICB alone. TRIAL REGISTRATION NCT01205815 (Sept 17, 2010).
Collapse
Affiliation(s)
- Chi Yan
- Department of Veterans Affairs, Tennessee Valley Healthcare System, 432 PRB, 2220 Pierce Ave, Nashville, TN, 37232, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nabil Saleh
- Department of Veterans Affairs, Tennessee Valley Healthcare System, 432 PRB, 2220 Pierce Ave, Nashville, TN, 37232, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jinming Yang
- Department of Veterans Affairs, Tennessee Valley Healthcare System, 432 PRB, 2220 Pierce Ave, Nashville, TN, 37232, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Caroline A Nebhan
- Department of Veterans Affairs, Tennessee Valley Healthcare System, 432 PRB, 2220 Pierce Ave, Nashville, TN, 37232, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna E Vilgelm
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - E Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph T Roland
- Departments of Surgery and Pediatrics and the Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Douglas B Johnson
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sheau-Chiann Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca L Shattuck-Brandt
- Department of Veterans Affairs, Tennessee Valley Healthcare System, 432 PRB, 2220 Pierce Ave, Nashville, TN, 37232, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gregory D Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ann Richmond
- Department of Veterans Affairs, Tennessee Valley Healthcare System, 432 PRB, 2220 Pierce Ave, Nashville, TN, 37232, USA. .,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
45
|
Palacios-Berraquero ML, Alfonso-Piérola A. Current Therapy of the Patients with MDS: Walking towards Personalized Therapy. J Clin Med 2021; 10:2107. [PMID: 34068316 PMCID: PMC8153316 DOI: 10.3390/jcm10102107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis, dysplasia and peripheral cytopenias. Nowadays, MDS therapy is selected based on risk. The goals of therapy are different in low-risk and high-risk patients. In low-risk MDS, the goal is to decrease transfusion needs and to increase the quality of life. Currently, available drugs for newly diagnosed low-risk MDS include growth factor support, lenalidomide and immunosuppressive therapy. Additionally, luspatercept has recently been added to treat patients with MDS with ring sideroblasts, who are not candidates or have lost the response to erythropoiesis-stimulating agents. Treatment of high-risk patients is aimed to improve survival. To date, the only currently approved treatments are hypomethylating agents and allogeneic stem cell transplantation. However, the future for MDS patients is promising. In recent years, we are witnessing the emergence of multiple treatment combinations based on hypomethylating agents (pevonedistat, magrolimab, eprenetapopt, venetoclax) that have proven to be effective in MDS, even those with high-risk factors. Furthermore, the approval in the US of an oral hypomethylating agent opens the door to exclusively oral combinations for these patients and their consequent impact on the quality of life of these patients. Relapsed and refractory patients remain an unmet clinical need. We need more drugs and clinical trials for this profile of patients who have a dismal prognosis.
Collapse
Affiliation(s)
| | - Ana Alfonso-Piérola
- Hematology and Hemotherapy Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
| |
Collapse
|
46
|
Nachtkamp K, Stark J, Kündgen A, Schroeder T, Strupp C, Strapatsas J, Schuler E, Kaivers J, Giagounidis A, Rautenberg C, Aul C, Runde V, Haas R, Kobbe G, Gattermann N, Germing U. Eligibility for clinical trials is unsatisfactory for patients with myelodysplastic syndromes, even at a tertiary referral center. Leuk Res 2021; 108:106611. [PMID: 33990002 DOI: 10.1016/j.leukres.2021.106611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/01/2022]
Abstract
Participation in clinical trials may allow patients with MDS to gain access to therapies not otherwise available. However, access is limited by strict inclusion and exclusion criteria, reflecting academic or regulatory questions addressed by the respective studies. We performed a simulation in order to estimate the average proportion of MDS patients eligible for participation in a clinical trial. The simulation drew upon 1809 patients in the Düsseldorf MDS Registry whose clinical data allowed eligibility screening for a wide range of clinical trials. This cohort was assumed to be alive and available for study participation. The simulation also posited that all MDS trials (n = 47) conducted in our center between 1987 and 2016 were open for recruitment. In addition, study activities in the year 2016 were analyzed to determine the proportion of patients eligible for at least one of the 9 MDS trials open at that time. On average, each clinical trial was suitable for about 18 % of patients in the simulation cohort. Conversely, 34 % of the patients were eligible for at least one of the 9 clinical studies in 2016. Inclusion/exclusion criteria of studies initiated by the pharmaceutical industry excluded more than twice the fraction of patients compared with investigator initiated trials (potential inclusion of 10 % vs. 21 %, respectively). Karyotype (average exclusion rate 58 %), comorbidities (40 %), and prior therapies (55 %) were the main reasons for exclusion. We suggest that in- and exclusion criteria should be less restrictive, in order to meet the needs of the real-life population of elderly MDS patients.
Collapse
Affiliation(s)
- Kathrin Nachtkamp
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Josefine Stark
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Andrea Kündgen
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Corinna Strupp
- Department of Oncology, Rheinland Klinikum Dormagen, Dr.-Geldmacher-Straße 20, 41540 Dormagen, Germany
| | - Judith Strapatsas
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Esther Schuler
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Jennifer Kaivers
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Aristoteles Giagounidis
- Department of Oncology and Hematology, VKKD Marienhospital Duesseldorf, Rochusstr. 2, 40479 Düsseldorf, Germany
| | - Christina Rautenberg
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Carlo Aul
- Department of Oncology and Hematology, VKKD Marienhospital Duesseldorf, Rochusstr. 2, 40479 Düsseldorf, Germany
| | - Volker Runde
- Department of Hematology and Oncology, Katholisches Karl-Leisner-Klinikum, Voßheider Str. 214, 47574 Goch, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Norbert Gattermann
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| |
Collapse
|
47
|
Current State and Challenges in Development of Targeted Therapies in Myelodysplastic Syndromes (MDS). HEMATO 2021. [DOI: 10.3390/hemato2020013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Myelodysplastic syndromes (MDS) encompass a variety of myeloid neoplasms characterized by ineffective hematopoiesis. The interaction of abnormal clonal hematopoiesis and changes in the bone marrow microenvironment propagate abnormal clones. Advances in next generation sequencing has identified over 100 somatic mutations, but despite deepened understanding of the genetics of MDS, therapeutic discoveries have remained limited. To date, only five drugs have been approved for MDS: Azacitidine, Decitabine, Lenalidomide, Luspatercept, and oral Decitabine with Cedazuridine. Current strategies for low-risk MDS continue to focus on symptomatic management and correction of cytopenias, while treatment for high-risk MDS focuses on delaying progression of disease and improving survival. In this review we discuss some of the challenges in developing pre-clinical models of MDS in which to test therapeutics, the advances that have been made, and promising novel therapeutics in the pipeline.
Collapse
|
48
|
Chang L, Ruiz P, Ito T, Sellers WR. Targeting pan-essential genes in cancer: Challenges and opportunities. Cancer Cell 2021; 39:466-479. [PMID: 33450197 PMCID: PMC8157671 DOI: 10.1016/j.ccell.2020.12.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
Despite remarkable successes in the clinic, cancer targeted therapy development remains challenging and the failure rate is disappointingly high. This problem is partly due to the misapplication of the targeted therapy paradigm to therapeutics targeting pan-essential genes, which can result in therapeutics whereby efficacy is attenuated by dose-limiting toxicity. Here we summarize the key features of successful chemotherapy and targeted therapy agents, and use case studies to outline recurrent challenges to drug development efforts targeting pan-essential genes. Finally, we suggest strategies to avoid previous pitfalls for ongoing and future development of pan-essential therapeutics.
Collapse
Affiliation(s)
- Liang Chang
- Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paloma Ruiz
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Takahiro Ito
- Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - William R Sellers
- Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
49
|
Bewersdorf JP, Zeidan AM. Management of patients with higher-risk myelodysplastic syndromes after failure of hypomethylating agents: What is on the horizon? Best Pract Res Clin Haematol 2021; 34:101245. [PMID: 33762100 DOI: 10.1016/j.beha.2021.101245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hypomethylating agents (HMA) azacitidine (AZA) and decitabine (DAC) are the standard of care for frontline treatment of patients with higher-risk myelodysplastic syndromes (MDS). As complete responses to HMAs are rare and typically not durable, HMA failure is a common clinical dilemma and associated with very short survival in most patients. Salvage therapies with various agents such as novel HMAs (guadecitabine, CC-486), and CTLA-4/PD1-type immune checkpoint inhibitors (ICPIs) have yielded mixed and only modest results at best in MDS patients with HMA failure. Thanks to advances in the understanding of the molecular and biologic pathogenesis of MDS, several novel targeted agents such as the BCL-2 inhibitor venetoclax, TP-53 refolding agent APR-246, IDH1/2 inhibitors, and novel ICPIs such as magrolimab and sabatolimab have been developed and demonstrated activity in combination with HMA in the frontline setting. However, clinical testing of these agents post HMA failure has been limited to date. Furthermore, the biology of HMA failure remains poorly defined which significantly limits rationale drug development. This highlights the importance of optimization of frontline therapy to avoid/delay HMA failure in addition to development of more effective salvage therapies.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
50
|
Grieselhuber NR, Mims AS. Novel Targeted Therapeutics in Acute Myeloid Leukemia: an Embarrassment of Riches. Curr Hematol Malig Rep 2021; 16:192-206. [PMID: 33738705 DOI: 10.1007/s11899-021-00621-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Acute myeloid leukemia (AML) is an aggressive malignancy of the bone marrow that has a poor prognosis with traditional cytotoxic chemotherapy, especially in elderly patients. In recent years, small molecule inhibitors targeting AML-associated IDH1, IDH2, and FLT3 mutations have been FDA approved. However, the majority of AML cases do not have a targetable mutation. A variety of novel agents targeting both previously untargetable mutations and general pathways in AML are currently being investigated. Herein, we review selected new targeted therapies currently in early-phase clinical investigation in AML. RECENT FINDINGS The DOT1L inhibitor pinometostat in KMT2A-rearranged AML, the menin inhibitors KO-539 and SYNDX-5613 in KMT2Ar and NPM1-mutated AML, and the mutant TP53 inhibitor APR-246 are examples of novel agents targeting specific mutations in AML. In addition, BET inhibitors, polo-like kinase inhibitors, and MDM2 inhibitors are promising new drug classes for AML which do not depend on the presence of a particular mutation. AML remains in incurable disease for many patients but advances in genomics, epigenetics, and drug discovery have led to the development of many potential novel therapeutic agents, many of which are being investigated in ongoing clinical trials. Additional studies will be necessary to determine how best to incorporate these novel agents into routine clinical treatment of AML.
Collapse
Affiliation(s)
- Nicole R Grieselhuber
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Alice S Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|