1
|
Ou QL, Chang YL, Liu JH, Yan HX, Chen LZ, Guo DY, Zhang SF. Mapping the intellectual structure and landscape of colorectal cancer immunotherapy: A bibliometric analysis. Hum Vaccin Immunother 2024; 20:2323861. [PMID: 38497584 PMCID: PMC10950274 DOI: 10.1080/21645515.2024.2323861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Immunotherapy, particularly immune checkpoint inhibitor (ICIs) therapy, stands as an innovative therapeutic approach currently garnering substantial attention in cancer treatment. It has become a focal point of numerous studies, showcasing significant potential in treating malignancies, including lung cancer and melanoma. The objective of this research is to analyze publications regarding immunotherapy for colorectal cancer (CRC), investigating their attributes and identifying the current areas of interest and cutting-edge advancements. We took into account the publications from 2002 to 2022 included in the Web of Science Core Collection. Bibliometric analysis and visualization were conducted using CiteSpace, VOSviewer, R-bibliometrix, and Microsoft Excel. The quantity of publications associated with this domain has been steadily rising over the years, encompassing 3753 articles and 1498 reviews originating from 573 countries and regions, involving 19,166 institutions, 1011 journals, and 32,301 authors. In this field, China, the United States, and Italy are the main countries that come forward for publishing. The journal with the greatest impact factor is CA-A Cancer Journal for Clinicians. Romain Cohen leads in the number of publications, while Le Dt stands out as the most influential author. The immune microenvironment and immune infiltration are emerging as key hotspots and future research directions in this domain. This research carries out an extensive bibliometric examination of immunotherapy for colorectal cancer, aiding researchers in understanding current focal points, investigating possible avenues for research, and recognizing forthcoming development trends.
Collapse
Affiliation(s)
- Qin Ling Ou
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- College of Integrated Traditional Chinese & Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Yong Long Chang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jin Hui Liu
- College of Integrated Traditional Chinese & Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Hai Xia Yan
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Zi Chen
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Duan Yang Guo
- College of Integrated Traditional Chinese & Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Si Fang Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Feng Y, Cheng Z, Gao J, Huang T, Wang J, Tang Q, Pu K, Liu C. Revolutionizing prognostic predictions in colorectal cancer: Macrophage‑driven transcriptional insights from single‑cell RNA sequencing and gene co‑expression network analysis. Oncol Lett 2024; 28:587. [PMID: 39411205 PMCID: PMC11474140 DOI: 10.3892/ol.2024.14721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Tumor-associated macrophages have become important biomarkers for cancer diagnosis, prognosis and therapy. The dynamic changes in macrophage subpopulations significantly impact the outcomes of cancer immunotherapy. Hence, identifying additional macrophage-related biomarkers is essential for enhancing prognostic predictions in colorectal cancer (CRC) immunotherapy. CRC single-cell RNA sequencing (scRNA-seq) data was obtained from the Gene Expression Omnibus (GEO) database. The data were processed, normalized and clustered using the 'Seurat' package. Cell types within each cluster were annotated using the 'SingleR' package. Weighted gene co-expression network analysis identified modules corresponding to specific cell types. A non-negative matrix factorization algorithm was employed to segregate different clusters based on the selected module. Differentially expressed genes (DEGs) were identified across various clusters and a prognostic model was constructed using lasso regression and Cox regression analyses. The robustness of the model was validated using The Cancer Genome Atlas (TCGA) database and GEO microarrays. Additionally, the prognosis, immune characteristics and response to immune checkpoint inhibitor (ICI) therapy were individually analyzed. The scRNA-seq data from GSE200997, consisting of 23 samples, were analyzed. Dimensionality reduction and cluster identification allowed the isolation of the primary myeloid cell subpopulations. The macrophage-related brown module was identified, which was further divided into two clusters. Using the DEGs from these clusters, a prognostic model was developed, comprising five macrophage-related genes. The robustness of the model was confirmed using microarray datasets GSE17536, GSE38832 and GSE39582, as well as TCGA cohort. Patients classified as high-risk by the present model exhibited poorer survival rates, lower tumor mutation burden, reduced microsatellite instability, lower tumor purity, more severe tumor immune dysfunction and exclusion, and less benefit from ICIs therapy compared with low-risk patients. The present prognostic model shows promise as a biomarker for risk stratification and predicting therapeutic efficacy in patients with CRC. However, further well-designed prospective studies are necessary to validate the findings.
Collapse
Affiliation(s)
- Yang Feng
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, P.R. China
- Department of Neurosurgery, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, P.R. China
| | - Zhuo Cheng
- Department of Gastroenterology, Dazhou Central Hospital, Dazhou, Sichuan 635000, P.R. China
| | - Jingyuan Gao
- Department of Immunology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Tao Huang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jun Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qian Tang
- Statesboro Office, Southeast Medical Group, Atlanta, GA 30022, USA
| | - Ke Pu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Chang Liu
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
3
|
Miller CD, Likasitwatanakul P, Toye E, Hwang JH, Antonarakis ES. Current uses and resistance mechanisms of enzalutamide in prostate cancer treatment. Expert Rev Anticancer Ther 2024; 24:1085-1100. [PMID: 39275993 PMCID: PMC11499039 DOI: 10.1080/14737140.2024.2405103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
INTRODUCTION Prostate cancer continues to be a major cause of morbidity and mortality for men worldwide. Enzalutamide, a second-generation non-steroidal antiandrogen that blocks androgen receptor (AR) transcriptional activity, is a treatment for biochemically recurrent, metastatic, castration-sensitive, and castration-resistant tumors. Unfortunately, most patients ultimately develop resistance to enzalutamide, making long-term treatment with this agent challenging. AREAS COVERED We performed a literature search of PubMed without date restrictions to investigate the literature surrounding enzalutamide and discuss the current uses of enzalutamide, proposed mechanisms driving resistance, and summarize current efforts to mitigate this resistance. EXPERT OPINION Enzalutamide is an effective prostate cancer therapy that is currently used in biochemically recurrent and metastatic disease and for both castration-sensitive and castration-resistant tumors. Unfortunately, resistance to enzalutamide occurs in each of these scenarios. In the clinical setting, enzalutamide-resistant tumors are either AR-driven or AR-indifferent. AR-dependent resistance mechanisms include genomic or epigenomic events that result in enhanced AR signaling. Tumors that do not require AR signaling instead may depend on alternative oncogenic pathways. There are numerous strategies to mitigate enzalutamide resistance, including concurrent use of PARP inhibitors or immune therapies. Additional work is required to uncover novel approaches to treat patients in the enzalutamide-resistant setting.
Collapse
Affiliation(s)
- Carly D. Miller
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
| | - Pornlada Likasitwatanakul
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
- Department of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Eamon Toye
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Justin H. Hwang
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
| | | |
Collapse
|
4
|
Li Y, Tan L, Chen N, Liu X, Liang F, Yao Y, Zhang X, Wu A. Neoadjuvant Immunotherapy Alone for Patients With Locally Advanced and Resectable Metastatic Colorectal Cancer of dMMR/MSI-H Status. Dis Colon Rectum 2024; 67:1413-1422. [PMID: 39260435 DOI: 10.1097/dcr.0000000000003290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
BACKGROUND The use of programmed death-1 blockade has a significant therapeutic effect in patients with mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. However, data on preoperative single-agent programmed death-1 blockade are rare. OBJECTIVE This study aims to evaluate the effectiveness and safety of preoperative programmed death-1 blockade as a conversion strategy in patients with locally advanced and resectable metastatic mismatch repair-deficient/microsatellite instability-high colorectal cancer. DESIGN This is a retrospective observational study. SETTINGS This study was conducted at a high-volume tertiary referral cancer center in China. PATIENTS Twenty-four patients of consecutive cases since 2020 to 2022 with mismatch repair-deficient/microsatellite instability-high colorectal cancer who received preoperative single-agent programmed death-1 blockade were retrospectively reviewed. These patients had either bulking tumors scheduled for multivisceral resection, a strong desire for organ preservation, or potentially resectable metastatic lesions. MAIN OUTCOME MEASURES Pathological complete response, clinical complete response, toxicity, R0 resection rate, and complications were evaluated. RESULTS Patients tolerated preoperative immunotherapy well. The R0 resection rate was 95.2%, and the pathological complete response rate was 47.6%. Three patients (12.5%) were evaluated as having a clinical complete response and then underwent "watch and wait." One-half of the patients with cT4b were spared multivisceral resection, whereas 60% (3/5) achieved pathological complete response. All 3 patients with liver metastases obtained complete response of all liver lesions after programmed death-1 blockade treatment. Grade III postoperative complications occurred in 2 patients. LIMITATIONS The limitations of this study are as follows: retrospective study, small sample size, and short follow-up. CONCLUSIONS Preoperative anti-programmed death-1 therapy alone as a conversion strategy in initially resected difficult mismatch repair-deficient/microsatellite instability-high colorectal cancer can achieve a high tumor complete response. The use of immunopreoperative therapy in patients with T4b colon cancer or low rectal cancer can reduce multivisceral resection and achieve high organ function preservation. See the Video Abstract . INMUNOTERAPIA NEOADYUVANTE SOLA PARA PACIENTES CON CNCER COLORRECTAL LOCALMENTE AVANZADO Y METASTSICO RESECABLE CON ESTADO DMMR/MSIH ANTECEDENTES:El uso del bloqueo de muerte programada-1 tiene un efecto terapéutico significativo en pacientes con cáncer colorrectal metastásico deficiente en reparación de desajustes/inestabilidad de microsatélites-alta (dMMR/MSI-H). Sin embargo, los datos sobre el bloqueo preoperatorio de muerte programada-1 con un solo agente son escasos.OBJETIVO:Este estudio tiene como objetivo evaluar la eficacia y seguridad del bloqueo preoperatorio de muerte programada-1 como estrategia de conversión en pacientes con cáncer colorrectal localmente avanzado y metastásico resecable con dMMR/MSI-H.DISEÑO:Este es un estudio observacional retrospectivo.ESCENARIO:Este estudio se realizó en un centro oncológico terciario de referencia de gran volumen en China.PACIENTES:Se revisaron retrospectivamente veinticuatro pacientes de casos consecutivos desde 2020-2022 con cáncer colorrectal y dMMR/MSI-H que recibieron bloqueo preoperatorio de muerte programada-1 con un solo agente. Estos pacientes tenían un tumor voluminoso programado para resección multivisceral, un fuerte deseo de preservación del órgano o lesiones metastásicas potencialmente resecables.PRINCIPALES MEDIDAS DE RESULTADO:Se evaluaron la respuesta patológica completa, la respuesta clínica completa, la toxicidad, la tasa de resección R0 y las complicaciones.RESULTADOS:Los pacientes toleraron bien la inmunoterapia preoperatoria. La tasa de resección R0 fue del 95,2% y la tasa de respuesta patológica completa fue del 47,6%. Tres pacientes (12,5%) fueron evaluados como respuesta clínica completa y luego sometidos a "observar y esperar". La mitad de los pacientes cT4b se salvaron de la resección multivisceral, mientras que el 60% (3/5) lograron una respuesta patológica completa. Los tres pacientes con metástasis hepáticas obtuvieron respuesta completa de todas las lesiones hepáticas después del tratamiento de bloqueo de muerte programada-1. En dos pacientes se produjeron complicaciones postoperatorias de grado III.LIMITACIONES:Las limitaciones de este estudio son las siguientes: estudio retrospectivo, tamaño de muestra pequeño y seguimiento corto.CONCLUSIONES:La terapia preoperatoria anti muerte programada-1 sola como estrategia de conversión en el cáncer colorrectal inicialmente difícil de resecar con dMMR/MSI-H puede lograr una alta respuesta completa tumoral. El uso de terapia inmunopreoperatoria en pacientes con cáncer de colon T4b o cáncer de recto bajo puede reducir la resección multivisceral y lograr una alta preservación de la función del órgano. (Traducción-Dr. Felipe Bellolio ).
Collapse
Affiliation(s)
- Yingjie Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Unit III, Peking University Cancer Hospital and Institute, Beijing, China
| | - Luxin Tan
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, China
| | - Nan Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Unit III, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xinzhi Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Unit III, Peking University Cancer Hospital and Institute, Beijing, China
| | - Fei Liang
- Department of Biostatistics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunfeng Yao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Unit III, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaoyan Zhang
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, China
| | - Aiwen Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Unit III, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
5
|
Xu W, Yang Y, Yu Y, Wu L, Ma D, Li R, Yang L, Sun H. A multidimensional analysis of the impact of obesity on immune checkpoint inhibitor therapy efficacy. Cancer Cell Int 2024; 24:358. [PMID: 39472922 PMCID: PMC11523605 DOI: 10.1186/s12935-024-03532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/13/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Obesity is a well-known risk factor for developing malignant tumors and promoting tumor cell growth and spread. However, recent studies have shown that obese cancer patients, who typically have a worse prognosis than nonobese cancer patients, show a significant improvement in survival after receiving immune checkpoint inhibitor (ICI) therapy. This phenomenon is known as the "obesity paradox". However, this phenomenon is influenced by tumor type and sex. Therefore, this study aimed to explore the impact of obesity on immunotherapy efficacy from multiple perspectives, aiming to verify this paradox and provide new scientific evidence on the effect of obesity on ICI efficacy. METHODS This retrospective study evaluated the data of patients who received ICI therapy between June 2019 and August 2023. Automatic segmentation of skeletal muscle, subcutaneous fat, and visceral fat was performed using Slice-O-Matic software, and the corresponding skeletal muscle index (SMI), subcutaneous fat index (SFI) and visceral fat index (VFI) were calculated. The neutrophil-to-lymphocyte ratio (NLR) was determined by dividing the neutrophil count by the lymphocyte count. Univariate and multivariate Cox regression analyses were used to evaluate the correlation between body mass index (BMI), body composition parameters, and the NLR with overall survival (OS) and progression-free survival (PFS) in obese patients receiving ICI therapy. RESULTS We analyzed 219 patients with a median age of 60 years (IQR 53-69 years; 155 men and 64 women). Obese patients, particularly those with visceral fat accumulation, exhibited extended OS after ICI therapy (log-rank P = 0.027). Cox multivariate analysis revealed that the NLR (HR = 1.036; 95% CI: 0.996 to 1.078; P = 0.002) was independently associated with OS. Patients with a high NLR had worse OS than those with a low NLR. CONCLUSIONS This study corroborates the veracity of the "obesity paradox" under specific conditions and identifies NLR as an independent prognostic factor, with elevated NLR indicative of a poor prognosis.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yifan Yang
- Department of Interventional Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), 106 Zhongshan Second Rd, Guangzhou, 510080, Guangdong, China
| | - Yue Yu
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Lu Wu
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Dong Ma
- Department of Medical Oncology, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Rongrong Li
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Shantou University Medical College, Shantou University, Shantou, 515000, Guangdong, China
| | - Lu Yang
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Hengwen Sun
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Pham TMQ, Nguyen TN, Tran Nguyen BQ, Diem Tran TP, Diem Pham NM, Phuc Nguyen HT, Cuong Ho TK, Linh Nguyen DV, Nguyen HT, Tran DH, Tran TS, Pham TVN, Le MT, Vy Nguyen TT, Phan MD, Giang H, Nguyen HN, Tran LS. The T cell receptor β chain repertoire of tumor infiltrating lymphocytes improves neoantigen prediction and prioritization. eLife 2024; 13:RP94658. [PMID: 39466298 PMCID: PMC11517254 DOI: 10.7554/elife.94658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
In the realm of cancer immunotherapy, the meticulous selection of neoantigens plays a fundamental role in enhancing personalized treatments. Traditionally, this selection process has heavily relied on predicting the binding of peptides to human leukocyte antigens (pHLA). Nevertheless, this approach often overlooks the dynamic interaction between tumor cells and the immune system. In response to this limitation, we have developed an innovative prediction algorithm rooted in machine learning, integrating T cell receptor β chain (TCRβ) profiling data from colorectal cancer (CRC) patients for a more precise neoantigen prioritization. TCRβ sequencing was conducted to profile the TCR repertoire of tumor-infiltrating lymphocytes (TILs) from 28 CRC patients. The data unveiled both intra-tumor and inter-patient heterogeneity in the TCRβ repertoires of CRC patients, likely resulting from the stochastic utilization of V and J segments in response to neoantigens. Our novel combined model integrates pHLA binding information with pHLA-TCR binding to prioritize neoantigens, resulting in heightened specificity and sensitivity compared to models using individual features alone. The efficacy of our proposed model was corroborated through ELISpot assays on long peptides, performed on four CRC patients. These assays demonstrated that neoantigen candidates prioritized by our combined model outperformed predictions made by the established tool NetMHCpan. This comprehensive assessment underscores the significance of integrating pHLA binding with pHLA-TCR binding analysis for more effective immunotherapeutic strategies.
Collapse
MESH Headings
- Humans
- Lymphocytes, Tumor-Infiltrating/immunology
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/genetics
- Machine Learning
- Algorithms
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huu Thinh Nguyen
- University Medical Center Ho Chi Minh CityHo Chi Minh CityViet Nam
| | - Duc Huy Tran
- University Medical Center Ho Chi Minh CityHo Chi Minh CityViet Nam
| | - Thanh Sang Tran
- University Medical Center Ho Chi Minh CityHo Chi Minh CityViet Nam
| | | | - Minh Triet Le
- University Medical Center Ho Chi Minh CityHo Chi Minh CityViet Nam
| | | | | | - Hoa Giang
- Medical Genetics InstituteHo Chi Minh CityViet Nam
| | | | - Le Son Tran
- Medical Genetics InstituteHo Chi Minh CityViet Nam
| |
Collapse
|
7
|
Nayak RK, Aiello M, Maldonado LM, Clark TY, Buchwald ZS, Chang A. Impact of race, ethnicity, and social determinants on outcomes following immune checkpoint therapy. J Immunother Cancer 2024; 12:e010116. [PMID: 39461882 DOI: 10.1136/jitc-2024-010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/29/2024] Open
Abstract
Immune checkpoint blockade (ICB) therapies are one of the greatest advances in the history of cancer care and are now commonly used in the management of many different malignancies. However, much remains unknown about the factors that affect the efficacy and side effect profile of these agents. This review delves into the published literature that evaluates the intricate interplay between race, age, gender, and social determinants in shaping outcomes following ICB across solid tumors and hematologic malignancies. We examine the pivotal phase 2 and 3 trials to evaluate the demographics of participants and outcomes based on these variables, if reported. Most, but not all, trials reported some basic demographic information like age, sex, race, ethnicity, and/or geographic area for enrollment. Clinically relevant biological markers that could affect ICB outcomes such as obesity or markers of social determinants of health were largely not reported. Trials were generally representative for men and women based on expected prevalence for a given malignancy, but often under-represented non-white participants and rarely enrolled patients from the global south. Subgroup analyses were conducted in many ICB trials for solid malignancies, but rarely conducted for hematologic malignancies. These analyses largely showed similar qualitative benefit across subgroups, but adverse events were rarely reported by subgroup. This review adds to our understanding of the populations that these clinical trials have studied and highlight the urgent need to redouble our efforts at increasing the diversity of the population in future ICB trials.
Collapse
Affiliation(s)
- Rahul K Nayak
- Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Meili Aiello
- Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | | | - Tarralyn Y Clark
- Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Zachary S Buchwald
- Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Andres Chang
- Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Piercey O, Chantrill L, Hsu HC, Ma B, Price T, Tan IB, Teng HW, Tie J, Desai J. Expert consensus on the optimal management of BRAF V600E-mutant metastatic colorectal cancer in the Asia-Pacific region. Asia Pac J Clin Oncol 2024. [PMID: 39456063 DOI: 10.1111/ajco.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/14/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
The burden of colorectal cancer (CRC) is high in the Asia-Pacific region, and several countries in this region have among the highest and/or fastest growing rates of CRC in the world. A significant proportion of patients will present with or develop metastatic CRC (mCRC), and BRAFV600E-mutant mCRC represents a particularly aggressive phenotype that is less responsive to standard chemotherapies. In light of recent therapeutic advances, an Asia-Pacific expert consensus panel was convened to develop evidence-based recommendations for the diagnosis, treatment, and management of patients with BRAFV600E-mutant mCRC. The expert panel comprised nine medical oncologists from Australia, Hong Kong, Singapore, and Taiwan (the authors), who met to review current literature and develop eight consensus statements that describe the optimal management of BRAFV600E-mutant mCRC in the Asia-Pacific region. As agreed by the expert panel, the consensus statements recommend molecular testing at diagnosis to guide individualized treatment decisions, propose optimal treatment pathways according to microsatellite stability status, advocate for more frequent monitoring of BRAFV600E-mutant mCRC, and discuss local treatment strategies for oligometastatic disease. Together, these expert consensus statements are intended to optimize treatment and improve outcomes for patients with BRAFV600E-mutant mCRC in the Asia-Pacific region.
Collapse
Affiliation(s)
- Oliver Piercey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Lorraine Chantrill
- Illawarra Shoalhaven Local Health District, Illawarra, New South Wales, Australia
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Hung-Chih Hsu
- Division of Hematology Oncology, Chang Gung Memorial Hospital, New Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Brigette Ma
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Timothy Price
- The Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - Iain Beehuat Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Hao-Wei Teng
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jeanne Tie
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jayesh Desai
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Mneimneh AT, Darwiche N, Mehanna MM. Investigating the therapeutic promise of drug-repurposed-loaded nanocarriers: A pioneering strategy in advancing colorectal cancer treatment. Int J Pharm 2024; 664:124473. [PMID: 39025341 DOI: 10.1016/j.ijpharm.2024.124473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Globally, colorectal cancer is a major health problem that ranks in third place in terms of occurrence and second in terms of mortality worldwide. New cases increase annually, with the absence of effective therapies, especially for metastatic colorectal cancer, emphasizing the need for novel therapeutic approaches. Although conventional treatments are commonly used in oncotherapy, their success rate is low, which leads to the exploration of novel technologies. Recent efforts have focused on developing safe and efficient cancer nanocarriers. With their nanoscale properties, nanocarriers have the potential to utilize internal metabolic modifications amid cancer and healthy cells. Drug repurposing is an emerging strategy in cancer management as it is a faster, cheaper, and safer method than conventional drug development. However, most repurposed drugs are characterized by low-key pharmacokinetic characteristics, such as poor aqueous solubility, permeability, retention, and bioavailability. Nanoparticles formulations and delivery have expanded over the past few decades, creating opportunities for drug repurposing and promises as an advanced cancer modality. This review provides a concise and updated overview of colorectal cancer treatment regimens and their therapeutic limitations. Furthermore, the chemotherapeutic effect of various FDA-approved medications, including statins, non-steroidal anti-inflammatory drugs, antidiabetic and anthelmintic agents, and their significance in colorectal cancer management. Along with the role of various nanocarrier systems in achieving the desired therapeutic outcomes of employing these redefined drugs.
Collapse
Affiliation(s)
- Amina T Mneimneh
- Pharmaceutical Nanotechnology Research lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon.
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
10
|
Suarez-Carmona M, Halama N. Neoadjuvant combination immunotherapy in MSI/dMMR colorectal cancer. Trends Cancer 2024:S2405-8033(24)00225-5. [PMID: 39448335 DOI: 10.1016/j.trecan.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Neoadjuvant immune checkpoint inhibition (ICI) is a new approach to treat patients with colorectal cancer (CRC). The effects of combined neoadjuvant ICI in locally advanced, DNA mismatch repair (dMMR)-deficient/microsatellite instable (MSI) CRC were recently reported by de Gooyer et al. from the NICHE-3 trial. Further studies will determine whether these impressive pathological responses lead to long-term clinical benefit.
Collapse
Affiliation(s)
- Meggy Suarez-Carmona
- Department of Cancer Immunology & Cancer Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany; Helmholtz Institute for Translational Oncology (HI-TRON), Mainz, Germany
| | - Niels Halama
- Department of Cancer Immunology & Cancer Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany; Helmholtz Institute for Translational Oncology (HI-TRON), Mainz, Germany; University Cancer Center Mainz (UCT Mainz), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany; Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany.
| |
Collapse
|
11
|
Wang CW, Liu TC, Lai PJ, Muzakky H, Wang YC, Yu MH, Wu CH, Chao TK. Ensemble transformer-based multiple instance learning to predict pathological subtypes and tumor mutational burden from histopathological whole slide images of endometrial and colorectal cancer. Med Image Anal 2024; 99:103372. [PMID: 39461079 DOI: 10.1016/j.media.2024.103372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/30/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
In endometrial cancer (EC) and colorectal cancer (CRC), in addition to microsatellite instability, tumor mutational burden (TMB) has gradually gained attention as a genomic biomarker that can be used clinically to determine which patients may benefit from immune checkpoint inhibitors. High TMB is characterized by a large number of mutated genes, which encode aberrant tumor neoantigens, and implies a better response to immunotherapy. Hence, a part of EC and CRC patients associated with high TMB may have higher chances to receive immunotherapy. TMB measurement was mainly evaluated by whole-exome sequencing or next-generation sequencing, which was costly and difficult to be widely applied in all clinical cases. Therefore, an effective, efficient, low-cost and easily accessible tool is urgently needed to distinguish the TMB status of EC and CRC patients. In this study, we present a deep learning framework, namely Ensemble Transformer-based Multiple Instance Learning with Self-Supervised Learning Vision Transformer feature encoder (ETMIL-SSLViT), to predict pathological subtype and TMB status directly from the H&E stained whole slide images (WSIs) in EC and CRC patients, which is helpful for both pathological classification and cancer treatment planning. Our framework was evaluated on two different cancer cohorts, including an EC cohort with 918 histopathology WSIs from 529 patients and a CRC cohort with 1495 WSIs from 594 patients from The Cancer Genome Atlas. The experimental results show that the proposed methods achieved excellent performance and outperforming seven state-of-the-art (SOTA) methods in cancer subtype classification and TMB prediction on both cancer datasets. Fisher's exact test further validated that the associations between the predictions of the proposed models and the actual cancer subtype or TMB status are both extremely strong (p<0.001). These promising findings show the potential of our proposed methods to guide personalized treatment decisions by accurately predicting the EC and CRC subtype and the TMB status for effective immunotherapy planning for EC and CRC patients.
Collapse
Affiliation(s)
- Ching-Wei Wang
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Tzu-Chien Liu
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Po-Jen Lai
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Hikam Muzakky
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Yu-Chi Wang
- Department of Gynecology and Obstetrics, Tri-Service General Hospital, Taipei, 114202, Taiwan; Department of Gynecology and Obstetrics, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Mu-Hsien Yu
- Department of Gynecology and Obstetrics, Tri-Service General Hospital, Taipei, 114202, Taiwan; Department of Gynecology and Obstetrics, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Chia-Hua Wu
- Department of Pathology, Tri-Service General Hospital, Taipei, 114202, Taiwan
| | - Tai-Kuang Chao
- Department of Pathology, Tri-Service General Hospital, Taipei, 114202, Taiwan; Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, 11490, Taiwan.
| |
Collapse
|
12
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
13
|
Martínez-Pérez A, Granda-Díaz R, Aguilar-García C, Sordo-Bahamonde C, Gonzalez S. Deciphering LAG-3: unveiling molecular mechanisms and clinical advancements. Biomark Res 2024; 12:126. [PMID: 39425148 PMCID: PMC11487938 DOI: 10.1186/s40364-024-00671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Treatment based on immune checkpoint blockade has revolutionized cancer therapy. Despite the remarkable success achieved and the preclinical development of multiple checkpoint inhibitors targeting other checkpoints, only antibodies targeting the PD-1/PD-L1 axis and CTLA-4 have been approved for patient treatment, especially in solid tumors. Currently, with the approval of relatlimab, a LAG-3 blocking antibody, a third player, has been used in the fight against cancer. The endorsement of relatlimab marks a significant milestone in cancer immunotherapy, opening new avenues for combination therapies and enhancing treatment outcomes. However, the complex biology of LAG-3 may hinder its full development as a therapeutic alternative. In this review, we provide in-depth insight into the biology of LAG-3 and its current and future development in cancer treatment.
Collapse
Affiliation(s)
- Alejandra Martínez-Pérez
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Rocío Granda-Díaz
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Candelaria Aguilar-García
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Christian Sordo-Bahamonde
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| | - Segundo Gonzalez
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| |
Collapse
|
14
|
Saini KS, Somara S, Ko HC, Thatai P, Quintana A, Wallen ZD, Green MF, Mehrotra R, McGuigan S, Pang L, Das S, Yadav K, Neric D, Cantini L, Joshi C, Iwamoto K, Dubbewar S, Vidal L, Chico I, Severson E, Lorini L, Badve S, Bossi P. Biomarkers in head and neck squamous cell carcinoma: unraveling the path to precision immunotherapy. Front Oncol 2024; 14:1473706. [PMID: 39439946 PMCID: PMC11493772 DOI: 10.3389/fonc.2024.1473706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Recent strides in understanding the molecular underpinnings of head and neck cancers have sparked considerable interest in identifying precise biomarkers that can enhance prognostication and enable personalized treatment strategies. Immunotherapy has particularly revolutionized the therapeutic landscape for head and neck squamous cell carcinoma, offering new avenues for treatment. This review comprehensively examines the application and limitations of the established and emerging/novel biomarkers for head and neck squamous cell carcinoma. Established biomarkers, including well-characterized genetic mutations, protein expressions, and clinical factors, have been extensively studied and validated in clinical practice. Novel biomarkers identified through molecular analyses, including novel genetic alterations, immune-related markers, and molecular signatures, are currently being investigated and validated in preclinical and clinical settings. Biomarkers hold the potential to deepen our understanding of head and neck squamous cell carcinoma biology and guide therapeutic strategies. The evolving paradigm of predictive biomarkers facilitates the study of individual responses to specific treatments, including targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Kamal S. Saini
- Fortrea Inc., Durham, NC, United States
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | - Soma Das
- Fortrea Inc., Durham, NC, United States
| | - Kavita Yadav
- George Institute for Global Health, New Delhi, India
| | | | | | | | | | | | | | | | | | - Luigi Lorini
- Medical Oncology and Hematology Unit, IRCCS Humanitas Cancer Centre, Milan, Italy
| | - Sunil Badve
- Emory University, Atlanta, GA, United States
| | - Paolo Bossi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Cancer Centre, Milan, Italy
- Università degli Studi di Brescia, Brescia, Italy
| |
Collapse
|
15
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
16
|
González-Montero J, Rojas CI, Burotto M. Predictors of response to immunotherapy in colorectal cancer. Oncologist 2024; 29:824-832. [PMID: 38920285 PMCID: PMC11449076 DOI: 10.1093/oncolo/oyae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related deaths globally. While treatment advancements have improved survival rates, primarily through targeted therapies based on KRAS, NRAS, and BRAF mutations, personalized treatment strategies for CRC remain limited. Immunotherapy, mainly immune checkpoint blockade, has shown efficacy in various cancers but is effective in only a small subset of patients with CRC with deficient mismatch repair (dMMR) proteins or high microsatellite instability (MSI). Recent research has challenged the notion that CRC is immunologically inert, revealing subsets with high immunogenicity and diverse lymphocytic infiltration. Identifying precise biomarkers beyond dMMR and MSI is crucial to expanding immunotherapy benefits. Hence, exploration has extended to various biomarker sources, such as the tumor microenvironment, genomic markers, and gut microbiota. Recent studies have introduced a novel classification system, consensus molecular subtypes, that aids in identifying patients with CRC with an immunogenic profile. These findings underscore the necessity of moving beyond single biomarkers and toward a comprehensive understanding of the immunological landscape in CRC, facilitating the development of more effective, personalized therapies.
Collapse
Affiliation(s)
- Jaime González-Montero
- Bradford Hill Clinical Research Center, Santiago 8420383, Chile
- Basic and Clinical Oncology Department, University of Chile, Santiago 838045, Chile
| | - Carlos I Rojas
- Bradford Hill Clinical Research Center, Santiago 8420383, Chile
| | | |
Collapse
|
17
|
Yu L, Zhang Y, Wang D, Li L, Zhang R, Li J. Harmonizing tumor mutational burden analysis: Insights from a multicenter study using in silico reference data sets in clinical whole-exome sequencing (WES). Am J Clin Pathol 2024; 162:408-419. [PMID: 38733635 DOI: 10.1093/ajcp/aqae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/13/2024] [Indexed: 05/13/2024] Open
Abstract
OBJECTIVES Tumor mutational burden (TMB) is a significant biomarker for predicting immune checkpoint inhibitor response, but the clinical performance of whole-exome sequencing (WES)-based TMB estimation has received less attention compared to panel-based methods. This study aimed to assess the reliability and comparability of WES-based TMB analysis among laboratories under routine testing conditions. METHODS A multicenter study was conducted involving 24 laboratories in China using in silico reference data sets. The accuracy and comparability of TMB estimation were evaluated using matched tumor-normal data sets. Factors such as accuracy of variant calls, limit of detection (LOD) of WES test, size of regions of interest (ROIs) used for TMB calculation, and TMB cutoff points were analyzed. RESULTS The laboratories consistently underestimated the expected TMB scores in matched tumor-normal samples, with only 50% falling within the ±30% TMB interval. Samples with low TMB score (<2.5) received the consensus interpretation. Accuracy of variant calls, LOD of the WES test, ROI, and TMB cutoff points were important factors causing interlaboratory deviations. CONCLUSIONS This study highlights real-world challenges in WES-based TMB analysis that need to be improved and optimized. This research will aid in the selection of more reasonable analytical procedures to minimize potential methodologic biases in estimating TMB in clinical exome sequencing tests. Harmonizing TMB estimation in clinical testing conditions is crucial for accurately evaluating patients' response to immunotherapy.
Collapse
Affiliation(s)
- Lijia Yu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Yuanfeng Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Duo Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Lin Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| |
Collapse
|
18
|
Zhou C, Jiang J, Xiang X, Liu H, Wu G, Zeng R, Lu T, Zhang M, Shen Y, Hong M, Zhang J. Preclinical investigations and a first-in-human phase 1a trial of JS007, a novel anti-CTLA-4 antibody, in patients with advanced solid tumors. Exp Hematol Oncol 2024; 13:98. [PMID: 39354625 PMCID: PMC11443874 DOI: 10.1186/s40164-024-00567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/21/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Blocking cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) shows substantial antitumor efficacy. Here, we report the preclinical data and outcomes of a first-in-human phase 1a trial of JS007, a novel anti-CTLA-4 antibody, in advanced solid tumors. METHODS In preclinical studies, both in vitro characteristics and in vivo characteristics of JS007 were investigated. The clinical trial included a dose escalation phase and a dose expansion phase. Eligible patients with previously treated advanced solid tumors were enrolled. In the dose escalation phase, JS007 was administered intravenously every 3 weeks at doses of 0.03, 0.3, 1, 3, and 10 mg/kg. Then, 3 and 10 mg/kg were chosen for the dose expansion phase. The primary endpoints included the maximum tolerated dose (MTD) of JS007 based on dose-limiting toxicities (DLTs) and safety. RESULTS JS007 could effectively bind to CTLA-4 and induce an immune response in vitro. Potent in vivo antitumor activity of JS007 was observed. Increased T cell infiltration and T regulatory (Treg) cell depletion in tumor microenvironment of cancer cell xenografts were detected after treated with JS007. Pharmacological analysis in experimental animals showed a dose-proportional increase in exposure. In the clinical trial, a total of 28 patients were treated with JS007 across 5 dose levels. No DLTs occurred. The MTD did not reach at the highest dose tested (10 mg/kg). Twenty-three (82.1%) patients experienced at least one treatment-related adverse event (TRAE). The incidence of Grade ≥ 3 TRAEs was 28.6% (8/28) with alanine aminotransferase increase (7.1%, 2/28) being the most frequently reported TRAE. No severe immune-related adverse event (irAE) occurred. Pharmacological profiles of JS007 in patients were similar to those in animal models. Serum concentration of JS007 showed a dose-dependent escalation, and the half-life of JS007 was 9.4 ~ 12.2 days. Treatment-induced anti-drug antibody was detected in 2 patients. The disease control rate was 50% (14/28), and the median overall survival was 14.7 months. CONCLUSIONS JS007 preliminarily demonstrates good tolerance and encouraging antitumor activity in patients with previously treated advanced solid tumors. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT05049265 (Sep 20, 2021).
Collapse
Affiliation(s)
- Chenfei Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojun Xiang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guowu Wu
- Department of Medical Oncology, Cancer Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Ruichao Zeng
- Shanghai Junshi Biosciences Co., Ltd, Shanghai, China
| | - Tong Lu
- Shanghai Junshi Biosciences Co., Ltd, Shanghai, China
| | - Mengqi Zhang
- Shanghai Junshi Biosciences Co., Ltd, Shanghai, China
| | - Yuteng Shen
- Shanghai Junshi Biosciences Co., Ltd, Shanghai, China
| | - Min Hong
- Shanghai Junshi Biosciences Co., Ltd, Shanghai, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Hamid MA, Pammer LM, Lentner TK, Doleschal B, Gruber R, Kocher F, Gasser E, Jöbstl A, Seeber A, Amann A. Immunotherapy for Microsatellite-Stable Metastatic Colorectal Cancer: Can we close the Gap between Potential and Practice? Curr Oncol Rep 2024; 26:1258-1270. [PMID: 39080202 PMCID: PMC11480176 DOI: 10.1007/s11912-024-01583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 10/17/2024]
Abstract
PURPOSE OF REVIEW This review will explore various strategies to rendering MSS mCRCs susceptible to ICI. Moreover, we will provide an overview of potential biomarkers that may aid to better patient selection, and discuss ongoing efforts in this area of research. RECENT FINDINGS Colorectal cancer (CRC) ranks among the top three most common cancers worldwide. While significant advances in treatment strategies have improved the prognosis for patients in the early stages of the disease, treatment options for metastatic CRC (mCRC) remain limited. Although immune checkpoint inhibitors (ICI) have revolutionized the treatment of several malignancies, its efficacy in mCRC is largely confined to patients exhibiting a high microsatellite instability status (MSI-H). However, the vast majority of mCRC patients do not exhibit a MSI-H, but are microsatellite stable (MSS). In these patients ICIs are largely ineffective. So far, ICIs do not play a crucial role in patients with MSS mCRC, despite the promising data for inducing long-term remissions in other tumour entities. For this reason, novel treatment strategies are needed to overcome the primary resistance upon ICI in patients with MSS.
Collapse
Affiliation(s)
- Marwa Abdel Hamid
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Lorenz M Pammer
- Department of Gastroenterology and Hepatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Theresa K Lentner
- Clinical Department for Internal Medicine, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Bernhard Doleschal
- Department of Internal Medicine I for Hematology With Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Rebecca Gruber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Florian Kocher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Elisabeth Gasser
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Jöbstl
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Arno Amann
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
20
|
Vink-Börger E, den Bakker M, Voorham R, van Nederveen F, Nagtegaal I. Mismatch repair deficiency: how reliable is the two-antibody approach? A national real-life study. Histopathology 2024; 85:639-648. [PMID: 38859771 DOI: 10.1111/his.15236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
AIMS Traditionally, mismatch repair (MMR) status is determined by a panel of four antibodies (MLH1, PMS2, MSH2, MSH6). If all proteins are retained, cases are MMR proficient (pMMR), while loss of one or more proteins is indicative of MMR deficiency (dMMR). This approach has been challenged in favour of a two-antibody approach, using PMS2 and MSH6 as a first screening. Their retainment is deemed sufficient to declare cases pMMR. In this study we aim to verify the validity of the two-antibody approach. METHODS AND RESULTS We performed a nationwide study in colorectal cancer (CRC) and endometrial cancer (EC) diagnosed between 2016 and 2023, including 47,657 patients to evaluate the two-antibody approach. In 0.17% and 0.4% of cases of CRC and EC, respectively, dMMR cases would be missed with the two-antibody approach. Subgroup analyses pointed towards slightly increased miss rates in younger patients (under the age of 50 years) in both groups and identified special subtypes (signet ring cell carcinoma, medullary carcinoma, and mucinous carcinoma in CRC and clear cell carcinoma in EC) with increased miss rates. For these specific subgroups, a low threshold should be used for further testing. In case of ambiguous or heterogeneous staining patterns, four antibodies should be used. CONCLUSION In general, the application of a two-antibody MMR testing strategy does not lead to considerable failure of dMMR identification and saves costs.
Collapse
Affiliation(s)
| | | | | | | | - Iris Nagtegaal
- Department of Pathology, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Segal NH, Tie J, Kopetz S, Ducreux M, Chen E, Dienstmann R, Hollebecque A, Reilley MJ, Elez E, Cosaert J, Cain J, Soo-Hoo Y, Hewson N, Cooper ZA, Kumar R, Tabernero J. COLUMBIA-1: a randomised study of durvalumab plus oleclumab in combination with chemotherapy and bevacizumab in metastatic microsatellite-stable colorectal cancer. Br J Cancer 2024; 131:1005-1013. [PMID: 39048638 PMCID: PMC11405658 DOI: 10.1038/s41416-024-02796-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND To determine whether the addition of durvalumab (anti-PD-L1) and oleclumab (anti-CD73) to standard-of-care treatment (FOLFOX and bevacizumab) enhances the anti-tumour effect in patients with metastatic colorectal cancer (mCRC). METHODS COLUMBIA-1 (NCT04068610) was a Phase Ib (feasibility; Part 1)/Phase II (randomised; Part 2) trial in patients with treatment-naïve microsatellite stable mCRC. Patients in Part 2 were randomised to receive standard-of-care (control arm) or standard-of-care plus durvalumab and oleclumab (experimental arm). Primary objectives included safety and efficacy. RESULTS Seven patients were enrolled in Part 1 and 52 in Part 2 (n = 26 in each arm). Grade ≥3 treatment-emergent adverse events (TEAE) occurred in 80.8% and 65.4% of patients in the control and experimental arms of Part 2, respectively, with 26.9% and 46.3% experiencing serious TEAEs. The confirmed objective response rate (ORR) was numerically higher in the experimental arm compared with the control arm (61.5% [95% confidence interval (CI), 40.6-79.8] vs 46.2% [95% CI, 26.6-66.6]) but did not meet the statistically significant threshold in either arm. CONCLUSION The safety profile of FOLFOX and bevacizumab in combination with durvalumab and oleclumab was manageable; however, the efficacy results do not warrant further development of this combination in patients with microsatellite stable mCRC. REGISTRATION NCT04068610.
Collapse
Affiliation(s)
- Neil H Segal
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Jeanne Tie
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | - Michel Ducreux
- Paris-Saclay University, Gustave Roussy Cancer Center, Villejuif, France
| | - Eric Chen
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Rodrigo Dienstmann
- Vall d'Hebron University Hospital and Institute of Oncology (VHIO), IOB-Quiron, Barcelona, Spain
- University of Vic-Central, University of Catalonia (UVic-UCC), Vic, Spain
- Oncoclínicas Precision Medicine, Oncoclínicas, São Paulo, Brazil
| | | | - Matthew J Reilley
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA, USA
| | - Elena Elez
- Vall d'Hebron University Hospital and Institute of Oncology (VHIO), IOB-Quiron, Barcelona, Spain
| | | | | | | | | | | | | | - Josep Tabernero
- Vall d'Hebron University Hospital and Institute of Oncology (VHIO), IOB-Quiron, Barcelona, Spain.
- University of Vic-Central, University of Catalonia (UVic-UCC), Vic, Spain.
| |
Collapse
|
22
|
Cai L, Chen A, Tang D. A new strategy for immunotherapy of microsatellite-stable (MSS)-type advanced colorectal cancer: Multi-pathway combination therapy with PD-1/PD-L1 inhibitors. Immunology 2024; 173:209-226. [PMID: 38517066 DOI: 10.1111/imm.13785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Colorectal cancer (CRC) is a frequent gastrointestinal malignancy with high rates of morbidity and mortality; 85% of these tumours are proficient mismatch repair (pMMR)-microsatellite instability-low (MSI-L)/microsatellite stable (MSS) CRC known as 'cold' tumours that are resistant to immunosuppressive drugs. Monotherapy with programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors is ineffective for treating MSS CRC, making immunotherapy for MSS CRC a bottleneck. Recent studies have found that the multi-pathway regimens combined with PD-1/PD-L1 inhibitors can enhance the efficacy of anti-PD-1/PD-L1 in MSS CRC by increasing the number of CD8+ T cells, upregulating PD-L1 expression and improving the tumour microenvironment. This paper reviews the research progress of PD-1/PD-L1 inhibitors in combination with cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) inhibitors, oncolytic virus, intestinal flora, antiangiogenic agents, chemotherapy, radiotherapy and epigenetic drugs for the treatment of pMMR-MSI-L/MSS CRC.
Collapse
Affiliation(s)
- Lingli Cai
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Anqi Chen
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
23
|
Zeverijn LJ, Geurts BS, Battaglia TW, van Berge Henegouwen JM, de Wit GF, Hoes LR, van der Wijngaart H, van der Noort V, Roepman P, de Leng WWJ, Jansen AML, Chalabi M, van Herpen CML, Devriese LA, Erdkamp FLG, Labots M, de Jonge MJA, Kerver ED, Bins AD, Leek LVM, Notohardjo JCL, van den Eertwegh AJM, Wessels LFA, Verheul HMW, Gelderblom H, van de Haar J, Voest EE. The Innate Immune Landscape of dMMR/MSI Cancers Predicts the Outcome of Nivolumab Treatment: Results from the Drug Rediscovery Protocol. Clin Cancer Res 2024; 30:4339-4351. [PMID: 39024037 DOI: 10.1158/1078-0432.ccr-24-0480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/24/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE The treatment efficacy of nivolumab was evaluated in patients with advanced, treatment-refractory solid mismatch repair deficiency/microsatellite-instable (dMMR/MSI) tumors, and in-depth biomarker analyses were performed to inform precision immunotherapy approaches. PATIENTS AND METHODS Patients with dMMR/MSI tumors who exhausted standard-of-care treatment options were enrolled in the Drug Rediscovery Protocol, a pan-cancer clinical trial that treats patients with cancer based on their tumor molecular profile with off-label anticancer drugs (NCT02925234). Patients received nivolumab (four cycles of 240 mg every 2 weeks, thereafter 480 mg every 4 weeks). The primary endpoint was clinical benefit (CB: objective response or stable disease ≥16 weeks). Whole-genome sequencing and RNA sequencing were performed on pretreatment tumor biopsies. RESULTS A total of 130 evaluable patients were enrolled with 16 different cancer types. CB was observed in 62% [95% confidence interval (CI), 53-70], with an objective response in 45% (95% CI, 36-54). After a median follow-up of 14.5 months (95% CI, 13-19), the median progression-free survival was 18 months (95% CI, 9-not reached), and the median overall survival was not reached. Whereas CB was not, or only weakly, associated with markers of adaptive immune cell infiltration, CB was strongly associated with expression of a broad set of innate immune receptors/ligands. This clearly contrasted findings in melanoma, in which markers of adaptive immunity dominated the biomarker landscape. CONCLUSIONS Nivolumab proved highly effective in advanced dMMR/MSI tumors. Expression of key innate immune receptors/ligands was the main predictor of a good treatment outcome, contrasting findings in melanoma and strengthening the rationale for tumor type-specific biomarkers for guiding immunotherapy.
Collapse
Affiliation(s)
- Laurien J Zeverijn
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Birgit S Geurts
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Thomas W Battaglia
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Gijs F de Wit
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Louisa R Hoes
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Hanneke van der Wijngaart
- Department of Medical Oncology, Department of Internal Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, the Netherlands
| | - Wendy W J de Leng
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Anne M L Jansen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Myriam Chalabi
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Carla M L van Herpen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lot A Devriese
- Division Beeld & Oncologie, Department of Medical Oncology, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Frans L G Erdkamp
- Department of Medical Oncology, Zuyderland Hospital, Sittard-Geleen, the Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Amsterdam University Medical Center, location VUMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Maja J A de Jonge
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Emile D Kerver
- Department of Medical Oncology, OLVG, Amsterdam, the Netherlands
| | - Adriaan D Bins
- Department of Medical Oncology, Amsterdam University Medical Center, location VUMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Lindsay V M Leek
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Jessica C L Notohardjo
- Department of Medical Oncology, Amsterdam University Medical Center, location VUMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Alfonsus J M van den Eertwegh
- Department of Medical Oncology, Amsterdam University Medical Center, location VUMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Lodewyk F A Wessels
- Oncode Institute, Utrecht, the Netherlands
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Joris van de Haar
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Emile E Voest
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, the Netherlands
| |
Collapse
|
24
|
El Beaino Z, Dupain C, Marret G, Paoletti X, Fuhrmann L, Martinat C, Allory Y, Halladjian M, Bièche I, Le Tourneau C, Kamal M, Vincent-Salomon A. Pan-cancer evaluation of tumor-infiltrating lymphocytes and programmed cell death protein ligand-1 in metastatic biopsies and matched primary tumors. J Pathol 2024; 264:186-196. [PMID: 39072750 DOI: 10.1002/path.6334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/22/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024]
Abstract
Tumor immunological characterization includes evaluation of tumor-infiltrating lymphocytes (TILs) and programmed cell death protein ligand-1 (PD-L1) expression. This study investigated TIL distribution, its prognostic value, and PD-L1 expression in metastatic and matched primary tumors (PTs). Specimens from 550 pan-cancer patients of the SHIVA01 trial (NCT01771458) with available metastatic biopsy and 111 matched PTs were evaluated for TILs and PD-L1. Combined positive score (CPS), tumor proportion score (TPS), and immune cell (IC) score were determined. TILs and PD-L1 were assessed according to PT organ of origin, histological subtype, and metastatic biopsy site. We found that TIL distribution in metastases did not vary according to PT organ of origin, histological subtype, or metastatic biopsy site, with a median of 10% (range: 0-70). TILs were decreased in metastases compared to PT (20% [5-60] versus 10% [0-40], p < 0.0001). CPS varied according to histological subtype (p = 0.02) and biopsy site (p < 0.02). TPS varied according to PT organ of origin (p = 0.003), histological subtype (p = 0.0004), and metastatic biopsy site (p = 0.00004). TPS was higher in metastases than in PT (p < 0.0001). TILs in metastases did not correlate with overall survival. In conclusion, metastases harbored fewer TILs than matched PT, regardless of PT organ of origin, histological subtype, and metastatic biopsy site. PD-L1 expression increased with disease progression. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Zakhia El Beaino
- Department of Pathology, Institut Curie, PSL Research University, Paris, France
| | - Célia Dupain
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - Grégoire Marret
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - Xavier Paoletti
- INSERM U900 Research Unit, Institut Curie, Saint-Cloud, France
- Department of Biostatistics, Institut Curie, Paris, France
| | - Laëtitia Fuhrmann
- Department of Pathology, Institut Curie, PSL Research University, Paris, France
| | - Charlotte Martinat
- Department of Pathology, Institut Curie, PSL Research University, Paris, France
| | - Yves Allory
- Department of Pathology, Institut Curie, Saint-Cloud, Versailles Saint-Quentin University, Paris-Saclay, France
| | - Maral Halladjian
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, Paris, France
- INSERM U1016 Research Unit, Paris, France
- Faculty of Pharmaceutical and Biological Sciences, Paris-Cité University, Paris, France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
- INSERM U900 Research Unit, Institut Curie, Saint-Cloud, France
- Paris-Saclay University, Paris, France
| | - Maud Kamal
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | | |
Collapse
|
25
|
Perremans P, Van Herpe F, Rasschaert G, Van Ongeval J, Decaestecker J, Topal B, Bislenghi G, Wolthuis A, Topal H, Deroose C, Van Cutsem E, Dekervel J. Salvage Surgery for Unifocal Progressive Metastatic Mismatch Repair-Deficient GI Cancer Responding to Immune Checkpoint Inhibition. JCO Precis Oncol 2024; 8:e2400176. [PMID: 39393035 DOI: 10.1200/po.24.00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/16/2024] [Accepted: 09/06/2024] [Indexed: 10/13/2024] Open
Abstract
Case series describing excellent outcomes for patients with dMMR GI cancer after resection of a single progressive lesion under immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Baki Topal
- University Hospital Gasthuisberg and University of Leuven (KUL), Leuven, Belgium
| | | | - Albert Wolthuis
- University Hospital Gasthuisberg and University of Leuven (KUL), Leuven, Belgium
| | - Halit Topal
- University Hospital Gasthuisberg, Leuven, Belgium
| | - Christophe Deroose
- University Hospital Gasthuisberg and University of Leuven (KUL), Leuven, Belgium
| | - Eric Van Cutsem
- University Hospital Gasthuisberg and University of Leuven (KUL), Leuven, Belgium
| | - Jeroen Dekervel
- University Hospital Gasthuisberg and University of Leuven (KUL), Leuven, Belgium
| |
Collapse
|
26
|
Ayala-de Miguel C, Jiménez-Castro J, Sánchez-Vegas A, Díaz-López S, Chaves-Conde M. Third-line treatment and beyond in metastatic colorectal cancer: What do we have and what can we expect? Crit Rev Oncol Hematol 2024; 202:104454. [PMID: 39043356 DOI: 10.1016/j.critrevonc.2024.104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024] Open
Abstract
Colorectal cancer remains the third most common cancer worldwide and the second cause of cancer-related death. Treatment advances and precision oncological medicine for these tumours have been stalled in comparison to those for other common tumours such as lung and breast cancer. However, the recent publication of the SUNLIGHT trial results with the trifluridine/tipiracil (TAS-102)-bevacizumab combination and the irruption of new molecular targets with guided treatments have opened new possibilities in third-line metastatic colorectal cancer management. Anti-EGFR rechallenge, anti-HER2 targeted therapies or the promising results of Pressurised Intraperitoneal Aerosol Chemotherapy (PIPAC), are some of the available options that may modify what is presumably third-line colorectal treatment. Hereby, we present the evidence of the different treatment options in third-line colorectal cancer and beyond, as well as the possibilities of sequencing them.
Collapse
Affiliation(s)
- Carlos Ayala-de Miguel
- Servicio Oncología Médica, Hospital Universitario Virgen de Valme, Ctra, de Cádiz Km 548,9, Seville C.P. 41014, Spain.
| | - Jerónimo Jiménez-Castro
- Servicio Oncología Médica, Hospital Universitario Virgen de Valme, Ctra, de Cádiz Km 548,9, Seville C.P. 41014, Spain.
| | - Adrián Sánchez-Vegas
- Servicio Oncología Médica, Hospital Universitario Virgen de Valme, Ctra, de Cádiz Km 548,9, Seville C.P. 41014, Spain.
| | - Sebastián Díaz-López
- Servicio Oncología Médica, Hospital Universitario Virgen de Valme, Ctra, de Cádiz Km 548,9, Seville C.P. 41014, Spain.
| | - Manuel Chaves-Conde
- Servicio Oncología Médica, Hospital Universitario Virgen de Valme, Ctra, de Cádiz Km 548,9, Seville C.P. 41014, Spain.
| |
Collapse
|
27
|
Smabers LP, Huismans MA, van Nieuwenhuijzen N, Minnema MC, Kranenburg O, Koopman M, Snippert HJG, May AM, Roodhart JML. Efficacy and safety in early-phase clinical trials for refractory colorectal cancer: A meta-analysis. Eur J Cancer 2024; 212:115059. [PMID: 39368225 DOI: 10.1016/j.ejca.2024.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/12/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Despite recent metastatic colorectal cancer (mCRC) therapeutic innovations a comprehensive synthesis of patient outcome and risk-benefit assessment of phase 1/2 trials is missing. The aim of this meta-analysis is to assess efficacy, safety, and trends over time for phase 1 and 2 mCRC trials by examining clinical benefit rate (CBR), overall response rate (ORR), grade 3 or higher adverse events (AE), and discontinuation due to AE. METHODS The PRISMA guidelines were followed. We searched PubMed and Embase for publications of phase 1/2 trials between 2010-2021. Trials reporting on new therapies for treatment-refractory mCRC were included. RESULTS The search strategy yielded 4175 unique reports, of which 258 publications were eligible. These publications report data of 277 unique treatment arms. Overall ORR was 6 %, CBR was 27 % in phase 1 % and 36 % in phase 2 trials. CBR increased from 23 % in 2010-2012 to 42 % in 2019-2021. Compared to 2010-2012, trials in 2019-2021 more often tested immunomodulators (4 % vs 23 %), included molecularly preselected populations (4 % vs 38 %) and younger patients (median age<60 44 % vs 66 %). Grade 3 + AE occurred in 35 % of patients, most frequently in trials investigating targeted treatments. CONCLUSIONS Treatment efficacy in phase 1/2 trials is modest but improved from 2010 to 2021. This improvement is accompanied by a shift towards testing in a younger, fitter, and more strictly molecularly preselected population, as well as an increased focus on targeted and immunotherapies.
Collapse
Affiliation(s)
- Lidwien P Smabers
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Laboratory of Translational Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten A Huismans
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Niels van Nieuwenhuijzen
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Monique C Minnema
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Onno Kranenburg
- Laboratory of Translational Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Miriam Koopman
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hugo J G Snippert
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Anne M May
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, Utrecht University, Utrecht, the Netherlands
| | - Jeanine M L Roodhart
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
28
|
Zhang MQ, Jin HY, Wang J, Shu L. Mechanism of immune checkpoint inhibitor resistance in colorectal cancer patients and its interventional strategies. Shijie Huaren Xiaohua Zazhi 2024; 32:645-651. [DOI: 10.11569/wcjd.v32.i9.645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 09/28/2024] Open
Abstract
The remarkable efficacy demonstrated by immune checkpoint inhibitors (ICIs) in melanoma treatment has driven their widespread use in the treatment of a variety of solid tumours, and they have now become one of the mainstays of oncology treatment, especially in the field of colorectal cancer, where they have demonstrated great potential. However, in long-term large-sample studies, it was found that the response to ICIs is low, and there are problems of primary and acquired resistance, which seriously affect their therapeutic effect. In this paper, we will review the mechanism of resistance to ICIs in patients with colorectal cancer and the progress in research of interventional strategies for ICI resistance, aiming to provide new ideas for the solution of the problem of clinical drug resistance to ICIs.
Collapse
Affiliation(s)
- Mei-Qi Zhang
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu Province, China
| | - Hei-Ying Jin
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu Province, China
| | - Jun Wang
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu Province, China
| | - Lei Shu
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu Province, China
| |
Collapse
|
29
|
González A, Badiola I, Fullaondo A, Rodríguez J, Odriozola A. Personalised medicine based on host genetics and microbiota applied to colorectal cancer. ADVANCES IN GENETICS 2024; 112:411-485. [PMID: 39396842 DOI: 10.1016/bs.adgen.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) ranks second in incidence and third in cancer mortality worldwide. This situation, together with the understanding of the heterogeneity of the disease, has highlighted the need to develop a more individualised approach to its prevention, diagnosis and treatment through personalised medicine. This approach aims to stratify patients according to risk, predict disease progression and determine the most appropriate treatment. It is essential to identify patients who may respond adequately to treatment and those who may be resistant to treatment to avoid unnecessary therapies and minimise adverse side effects. Current research is focused on identifying biomarkers such as specific mutated genes, the type of mutations and molecular profiles critical for the individualisation of CRC diagnosis, prognosis and treatment guidance. In addition, the study of the intestinal microbiota as biomarkers is being incorporated due to the growing scientific evidence supporting its influence on this disease. This article comprehensively addresses the use of current and emerging diagnostic, prognostic and predictive biomarkers in precision medicine against CRC. The effects of host genetics and gut microbiota composition on new approaches to treating this disease are discussed. How the gut microbiota could mitigate the side effects of treatment is reviewed. In addition, strategies to modulate the gut microbiota, such as dietary interventions, antibiotics, and transplantation of faecal microbiota and phages, are discussed to improve CRC prevention and treatment. These findings provide a solid foundation for future research and improving the care of CRC patients.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | | | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
30
|
Fakih M, Sandhu J, Li X, Wang C. Liver metastases and peritoneal metastases and response to checkpoint inhibitors in metastatic colorectal cancer with microsatellite instability. Oncologist 2024:oyae249. [PMID: 39321179 DOI: 10.1093/oncolo/oyae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND There have been conflicting reports on the predictive impact of metastatic disease sites on the response to checkpoint inhibitors (CPI) in microsatellite instability (MSI) metastatic colorectal cancers (mCRC). Recent studies have highlighted peritoneal metastases, ascites, and liver metastases as possible indicators of resistance to CPI. METHODS We performed a detailed analysis of high microsatellite instability (MSI-H) mCRC treated with programmed cell death (PD-1) or PD-1/cytotoxic T-lymphocyte-associated protein 4 CPI in a single center. Overall response rate (ORR), progression-free survival (PFS), overall survival (OS), and stable disease but with complete pathological response upon resection (SDcPR) were analyzed by the presence of liver metastases, peritoneal metastases, or absence of either. The impact of number and size of liver metastases on clinical outcomes were also interrogated. RESULTS Thirty-five patients with MSI mCRC were included in the analysis. Patients with peritoneal metastatic disease had lower ORR and shorter PFS compared to patients without liver and peritoneal metastases. Contrary to recent reports, ORR and ORR + SDcPR rates were high in patients with liver metastases, at 58% and 66%, respectively. In the liver metastases category, a better response rate was noted for patients with<5 lesions compared to patients with more than 5 lesions. Patients who responded had a higher median tumor mutation burden than patients with progressive disease. CONCLUSIONS In MSI mCRC, no single clinical characteristic was sufficient to preclude CPI response. Peritoneal metastatic disease was associated with numerically lower ORR and shorter PFS. In contrast, liver metastases do not predict poor outcome.
Collapse
Affiliation(s)
- Marwan Fakih
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Jaideep Sandhu
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Xiaochen Li
- Division of Biostatistics, Department of Computational and Quantitative Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Chongkai Wang
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| |
Collapse
|
31
|
Fadlallah H, El Masri J, Fakhereddine H, Youssef J, Chemaly C, Doughan S, Abou-Kheir W. Colorectal cancer: Recent advances in management and treatment. World J Clin Oncol 2024; 15:1136-1156. [PMID: 39351451 PMCID: PMC11438855 DOI: 10.5306/wjco.v15.i9.1136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/11/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, and the second most common cause of cancer-related death. In 2020, the estimated number of deaths due to CRC was approximately 930000, accounting for 10% of all cancer deaths worldwide. Accordingly, there is a vast amount of ongoing research aiming to find new and improved treatment modalities for CRC that can potentially increase survival and decrease overall morbidity and mortality. Current management strategies for CRC include surgical procedures for resectable cases, and radiotherapy, chemotherapy, and immunotherapy, in addition to their combination, for non-resectable tumors. Despite these options, CRC remains incurable in 50% of cases. Nonetheless, significant improvements in research techniques have allowed for treatment approaches for CRC to be frequently updated, leading to the availability of new drugs and therapeutic strategies. This review summarizes the most recent therapeutic approaches for CRC, with special emphasis on new strategies that are currently being studied and have great potential to improve the prognosis and lifespan of patients with CRC.
Collapse
Affiliation(s)
- Hiba Fadlallah
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jad El Masri
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hiam Fakhereddine
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Joe Youssef
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Chrystelle Chemaly
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
32
|
Xue D, Li N, Yang J, Men K, Li L, Jiang H, Zhao X, Zhang S. Sarcopenia predicts immune-related adverse events due to anti-PD-1/PD-L1 therapy in patients with advanced lung cancer. Front Oncol 2024; 14:1450020. [PMID: 39376979 PMCID: PMC11456396 DOI: 10.3389/fonc.2024.1450020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of a number of patients with advanced cancer, and while this has resulted in increased survival times, it has also led to the emergence of novel immune-related adverse events (irAEs). In individuals with advanced cancer, sarcopenia is a significant symptom of cachexia and is linked to poor nutritional status and increased mortality. The present study aimed to evaluate sarcopenia and other risk variables that can affect the emergence of irAEs in patients with lung cancer. Methods A single-center retrospective analysis of 129 patients with advanced lung cancer treated with programmed cell death protein-1 (PD-1)/programmed cell death ligand-1 (PD-L1) checkpoint inhibitors was conducted from August 2020 to August 2022. Data on baseline characteristics and adverse events of participants were collected. Computed tomography was used to determine the skeletal muscle index at the third lumbar vertebra (L3-SMI) and whether sarcopenia is present. Results The median age of all participants was 60 years old (range, 52-66 years), with men accounting for 68.9% of the total patient cohort. The present study showed that 44 (34%) participants presented with any degree of irAEs, and 79 (61.2%) patients presented with sarcopenia. There were no statistically significant differences in baseline characteristics, such as age and sex, between patients who presented with irAEs and those without irAEs. Using logistic regression analysis, individuals with sarcopenia were 2.635-times more likely to experience any grade of irAEs than those without sarcopenia. Discussion irAEs are prevalent side effects of PD-1/PD-L1 inhibitor therapy for patients with cancer. By diagnosing and treating sarcopenia early, it is possible to lower the potential risk of irAEs in patients with advanced cancer. Furthermore, sarcopenia can be utilized as a predictor of irAEs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuai Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
33
|
Mihaila RI, Gheorghe AS, Zob DL, Stanculeanu DL. The Importance of Predictive Biomarkers and Their Correlation with the Response to Immunotherapy in Solid Tumors-Impact on Clinical Practice. Biomedicines 2024; 12:2146. [PMID: 39335659 PMCID: PMC11429372 DOI: 10.3390/biomedicines12092146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Immunotherapy has changed the therapeutic approach for various solid tumors, especially lung tumors, malignant melanoma, renal and urogenital carcinomas, demonstrating significant antitumor activity, with tolerable safety profiles and durable responses. However, not all patients benefit from immunotherapy, underscoring the need for predictive biomarkers that can identify those most likely to respond to treatment. Methods: The integration of predictive biomarkers into clinical practice for immune checkpoint inhibitors (ICI) holds great promise for personalized cancer treatment. Programmed death ligand 1 (PD-L1) expression, tumor mutational burden (TMB), microsatellite instability (MSI), gene expression profiles and circulating tumor DNA (ctDNA) have shown potential in predicting ICI responses across various cancers. Results: Challenges such as standardization, validation, regulatory approval, and cost-effectiveness must be addressed to realize their full potential. Predictive biomarkers are crucial for optimizing the clinical use of ICIs in cancer therapy. Conclusions: While significant progress has been made, further research and collaboration among clinicians, researchers, and regulatory institutes are essential to overcome the challenges of clinical implementation. However, little is known about the relationship between local and systemic immune responses and the correlation with response to oncological therapies and patient survival.
Collapse
Affiliation(s)
- Raluca Ioana Mihaila
- Department of Oncology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Medical Oncology I, "Prof. Dr. Alexandru Trestioreanu", Institute of Oncology, 022328 Bucharest, Romania
| | - Adelina Silvana Gheorghe
- Department of Oncology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Medical Oncology I, "Prof. Dr. Alexandru Trestioreanu", Institute of Oncology, 022328 Bucharest, Romania
| | - Daniela Luminita Zob
- Department of Medical Oncology I, "Prof. Dr. Alexandru Trestioreanu", Institute of Oncology, 022328 Bucharest, Romania
| | - Dana Lucia Stanculeanu
- Department of Oncology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Medical Oncology I, "Prof. Dr. Alexandru Trestioreanu", Institute of Oncology, 022328 Bucharest, Romania
| |
Collapse
|
34
|
Chen K, Chen W, Yue R, Zhu D, Cui S, Zhang X, Jin Z, Xiao T. Evaluation of the efficacy and safety of first- and second-line immunotherapy in patients with metastatic colorectal cancer: a systematic review and network meta-analysis based on randomized controlled trials. Front Immunol 2024; 15:1439624. [PMID: 39359729 PMCID: PMC11444977 DOI: 10.3389/fimmu.2024.1439624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Background A multitude of randomized controlled trials (RCTs) conducted in both the initial and subsequent treatment settings for patients diagnosed with metastatic colorectal cancer (mCRC) have provided clinical evidence supporting the efficacy of immunotherapy with the use of immune checkpoint inhibitors (ICIs). In light of these findings, the U.S. Food and Drug Administration (FDA) has authorized the use of several ICIs in specific subpopulations of mCRC patients. Nevertheless, there remains a dearth of direct comparative RCTs evaluating various treatment options. Consequently, the most effective ICI therapeutic strategy for microsatellite-stable (MSS) subgroup and microsatellite instability (MSI) subgroup in the first- and second-line therapies remains undefined. To address this gap, the present study employs a Bayesian network meta-analysis to ascertain the most effective first- and second-line ICI therapeutic strategies. Methods A comprehensive literature search was conducted across multiple databases, including PubMed, EMBASE, Cochrane Library, and Web of Science, with the retrieval date ranging from the databases' inception to August 20, 2024. A total of 875 studies were identified, and seven were ultimately included in the analysis after a screening process. A systematic review and network meta-analysis were conducted on the basis of the search results. Results This comprehensive analysis, comprising seven RCTs, evaluated first-line and second-line immunotherapy regimens in 1,358 patients diagnosed with mCRC. The treatments under investigation consisted of five initial treatments, including three focusing on MSS patients and two on MSI patients, as well as two secondary immunotherapy regimens, both focusing on MSS patients. A total of 1051 individuals underwent first-line treatment, while 307 received second-line treatment. The application of ICIs proved to offer varying degrees clinical benefits when compared to standard-of-care therapy alone, both in two subgroups of the first and the second treatment phases. Of particular note is the performance of Nivolumab combination with ipilimumab, which demonstrated superior efficacy in improving progression-free survival (PFS) (HR=0.21; 95% CI, 0.13-0.34),. Moreover, the treatment demonstrated an optimal safety profile, with a relatively low risk of adverse events (OR = 0.33; 95% CI, 0.19-0.56), compared to other first-line treatment modalities for MSI subgroup. Regarding MSS subgroup, the improvement of PFS by Nivolumab plus standard-of-care (SOC) was relatively significant (HR = 0.74; 95% CI, 0.53-1.02). In the realm of second-line therapies for MSS subgroup, the administration of Atezolizumab plus SOC has proven to be an effective approach for prolonging PFS, exhibiting an HR of 0.66 (95% CI, 0.44-0.99). These findings underscore the clinical benefits and safety profiles of ICIs in the treatment of mCRC across various treatment lines. Conclusions The clinical application of ICIs in both first- and second-line treatment strategies for patients with mCRC yields substantial therapeutic benefits. A detailed assessment in this study indicates that first-line treatment with Nivolumab combination with ipilimumab may represent an efficacious and well-tolerated therapeutic approach for MSI subgroup. In terms of MSS subgroup in first-line therapy, Nivolumab plus SOC may be a relative superior choice. In the context of second-line therapy for MSS subgroup, it is evident that a combination of Atezolizumab and SOC represents a preferable option for enhancing PFS. Furthermore, it is noteworthy that other ICIs treatment regimens also exhibit great value in various aspects, with the potential to inform the development of future clinical treatment guidelines and provide a stronger rationale for the selection of ICIs in both first- and second-line therapeutic strategies for mCRC. Systematic review registration https://www.crd.york.ac.uk/prospero/#recordDetails, identifier CRD42024543400.
Collapse
Affiliation(s)
- Kaiqi Chen
- School of Basic Medical, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Chen
- Department of Pharmacy, Emergency General Hospital, Beijing, China
| | - Rui Yue
- Department of Traditional Chinese Medicine, Chongqing Changhang Hospital, Chongqing, China
| | - Danping Zhu
- Department of Endocrinology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Shikui Cui
- Department of Endocrinology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xijian Zhang
- Department of Endocrinology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Zhao Jin
- School of Basic Medical, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tong Xiao
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Dong Y, Liu JJ, Zhou Y, Kang W, Li S, Cheung AHK, Hu Y, Liao R, Wong N, Wong CC, Ng SSM, Yu J. VSTM2A reverses immunosuppression in colorectal cancer by antagonizing the PD-L1/PD-1 interaction. Mol Ther 2024:S1525-0016(24)00608-7. [PMID: 39289872 DOI: 10.1016/j.ymthe.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024] Open
Abstract
Immunoglobulin (Ig) VSTM2A (V-set and transmembrane domain containing 2A) is a top-ranked secretory protein frequently silenced during colorectal carcinogenesis; however, its role in immune modulation remains largely unknown. Bioinformatic and immunohistochemistry analysis of human colorectal specimens and Vstm2a+/- knockout mice indicated that VSTM2A positively correlated with CD8a and immune infiltration in both physiological and pathological conditions. We then utilized liquid chromatography-mass spectrometry to pinpoint programmed death ligand 1 (PD-L1) as a membrane receptor of VSTM2A. A series of in vitro biochemistry assays further revealed the binding pattern and kinetics between VSTM2A and PD-L1 proteins through their IgV domains at a dissociation constant of 0.7-2.5 nM. Recombinant VSTM2A protein inhibited the PD-1/PD-L1 interaction and induced NFAT response element (RE) luciferase activity dose dependently. Furthermore, interleukin (IL)-2 production from DO11.10 T cells upon co-culture with mouse non-T splenocytes was upregulated in the presence of VSTM2A conditioned medium. Finally, tumor killing assay and ex vivo data from human peripheral blood mononuclear cells and autologous dendritic cell-T cell co-culture demonstrated that VSTM2A significantly enhanced immune activation via the release of granzyme B and interferon (IFN)-γ cytokines. In conclusion, our study demonstrates the tumor-extrinsic role of VSTM2A in sterically blocking the PD-L1/PD-1 interaction at a picomole to nanomole affinity, which leads to the enhanced anti-tumor effect of cytotoxic T cells.
Collapse
Affiliation(s)
- Yujuan Dong
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiaxun Jade Liu
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yunfei Zhou
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shanglin Li
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alvin H K Cheung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi Hu
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China; Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Rui Liao
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nathalie Wong
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Chun Wong
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Simon S M Ng
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
36
|
Iwata Y, Tanaka C, Ohno S, Suetsugu T, Tanaka H, Watanabe T, Komori S, Nagao N, Katayama M, Kawai M. Real-world outcomes of stage II and III colorectal cancers treated by postoperative adjuvant chemotherapy based on the mismatch repair status. Surg Today 2024:10.1007/s00595-024-02932-9. [PMID: 39249113 DOI: 10.1007/s00595-024-02932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024]
Abstract
PURPOSE In Japan, immunohistochemistry for mismatch repair (MMR) proteins targeted at stage II and III colorectal cancers (CRCs) has been covered by national insurance since October, 2022. This study aimed to clarify the long-term outcomes of patients with stage II and III CRCs receiving postoperative adjuvant chemotherapy based on their MMR status. METHODS The outcomes of 640 patients who underwent radical surgery for stage II and III CRCs were analyzed retrospectively. RESULTS Deficient MMR (dMMR) was diagnosed in 41 (13.3%) patients with stage II and 28 (9.1%) patients with stage III CRC. The overall survival and recurrence rates were not significantly different between the patients with stage II and those with stage III CRC. The risk factors for recurrence among those with stage II CRC were tumors on the left side, T4 disease, and the presence of BRAF wild type. The recurrence rates were lower in the stage II CRC patients with sporadic dMMR than in those with suspected Lynch syndrome (LS). The first site of recurrence was more frequently the peritoneum or distant lymph node in patients with dMMR. CONCLUSIONS Stage II CRC patients with sporadic dMMR were found to have a very good prognosis. On the other hand, peritoneal dissemination or distant lymph node metastasis tended to develop in patients with dMMR.
Collapse
Affiliation(s)
- Yoshinori Iwata
- Department of Surgery, Gifu Prefectural General Medical Center, Gifu, Japan.
| | - Chihiro Tanaka
- Department of Surgery, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Shinya Ohno
- Department of Surgery, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Tomonari Suetsugu
- Department of Surgery, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Hideharu Tanaka
- Department of Surgery, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Taku Watanabe
- Department of Surgery, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Shuji Komori
- Department of Surgery, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Narutoshi Nagao
- Department of Surgery, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Masaki Katayama
- Department of Pathology, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Masahiko Kawai
- Department of Surgery, Gifu Prefectural General Medical Center, Gifu, Japan
| |
Collapse
|
37
|
Liu M, Liu Q, Hu K, Dong Y, Sun X, Zou Z, Ji D, Liu T, Yu Y. Colorectal cancer with BRAF V600E mutation: Trends in immune checkpoint inhibitor treatment. Crit Rev Oncol Hematol 2024; 204:104497. [PMID: 39245296 DOI: 10.1016/j.critrevonc.2024.104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024] Open
Abstract
Colorectal cancer (CRC) with BRAF V600E mutation presents a formidable scientific and clinical challenge due to its aggressive nature and poor response to standard therapeutic approaches. BRAF V600E mutation-induced conspicuous activation of the MAPK pathway contributes to the relentless tumor progression. Nevertheless, the efficacy of multi-targeted MAPK pathway inhibition remains suboptimal in clinical practice. Patients with high microsatellite instability (MSI-H) have shown favorable results with immune checkpoint inhibitors (ICIs). The combination of the MAPK pathway inhibition with ICIs has recently emerged as a promising regimen to improve clinical outcomes in the microsatellite stable (MSS) subgroup of BRAF V600E-mutant metastatic CRC patients. In this review, we elucidate the unique tumor biology of BRAF V600E-mutant CRC, with a particular focus on the immune features underlying the rationale for ICI treatments in the MSI-H and MSS subpopulations, then highlight the trends in clinical trials of the ICI therapy for BRAF V600E-mutant metastatic CRC.
Collapse
Affiliation(s)
- Mengling Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qing Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Keshu Hu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu Dong
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xun Sun
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhiguo Zou
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Dingkun Ji
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yiyi Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
38
|
Tejwani V, Carroll T, Macartney T, Bandau S, Alabert C, Saredi G, Toth R, Rouse J. PROTAC-mediated conditional degradation of the WRN helicase as a potential strategy for selective killing of cancer cells with microsatellite instability. Sci Rep 2024; 14:20824. [PMID: 39242638 PMCID: PMC11379953 DOI: 10.1038/s41598-024-71160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
Multiple studies have demonstrated that cancer cells with microsatellite instability (MSI) are intolerant to loss of the Werner syndrome helicase (WRN), whereas microsatellite-stable (MSS) cancer cells are not. Therefore, WRN represents a promising new synthetic lethal target for developing drugs to treat cancers with MSI. Given the uncertainty of how effective inhibitors of WRN activity will prove in clinical trials, and the likelihood of tumours developing resistance to WRN inhibitors, alternative strategies for impeding WRN function are needed. Proteolysis-targeting chimeras (PROTACs) are heterobifunctional small molecules that target specific proteins for degradation. Here, we engineered the WRN locus so that the gene product is fused to a bromodomain (Bd)-tag, enabling conditional WRN degradation with the AGB-1 PROTAC specific for the Bd-tag. Our data revealed that WRN degradation is highly toxic in MSI but not MSS cell lines. In MSI cells, WRN degradation caused G2/M arrest, chromosome breakage and ATM kinase activation. We also describe a multi-colour cell-based platform for facile testing of selective toxicity in MSI versus MSS cell lines. Together, our data show that a degrader approach is a potentially powerful way of targeting WRN in MSI cancers and paves the way for the development of WRN-specific PROTAC compounds.
Collapse
Affiliation(s)
- Vikram Tejwani
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Thomas Carroll
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Susanne Bandau
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, DD1 5EH, UK
| | - Constance Alabert
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, DD1 5EH, UK
| | - Giulia Saredi
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
39
|
Geurts BS, Zeverijn LJ, Leek LVM, van Berge Henegouwen JM, Hoes LR, van der Wijngaart H, van der Noort V, van de Haar J, van Ommen-Nijhof A, Kok M, Roepman P, Jansen AML, de Leng WWJ, de Jonge MJA, Hoeben A, van Herpen CML, Westgeest HM, Wessels LFA, Verheul HMW, Gelderblom H, Voest EE. Efficacy of Pembrolizumab and Biomarker Analysis in Patients with WGS-Based Intermediate to High Tumor Mutational Load: Results from the Drug Rediscovery Protocol. Clin Cancer Res 2024; 30:3735-3746. [PMID: 38630551 DOI: 10.1158/1078-0432.ccr-24-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/25/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE To evaluate the efficacy of pembrolizumab across multiple cancer types harboring different levels of whole-genome sequencing-based tumor mutational load (TML; total of nonsynonymous mutations across the genome) in patients included in the Drug Rediscovery Protocol (NCT02925234). PATIENTS AND METHODS Patients with solid, treatment-refractory, microsatellite-stable tumors were enrolled in cohort A: breast cancer cohort harboring a TML of 140 to 290, cohort B: tumor-agnostic cohort harboring a TML of 140 to 290, and cohort C: tumor-agnostic cohort harboring a TML >290. Patients received pembrolizumab 200 mg every 3 weeks. The primary endpoint was clinical benefit [CB; objective response or stable disease (SD) ≥16 weeks]. Pretreatment tumor biopsies were obtained for whole-genome sequencing and RNA sequencing. RESULTS Seventy-two evaluable patients with 26 different histotypes were enrolled. The CB rate was 13% in cohort A [3/24 with partial response (PR)], 21% in cohort B (3/24 with SD; 2/24 with PR), and 42% in cohort C (4/24 with SD; 6/24 with PR). In cohort C, neoantigen burden estimates and expression of inflammation and innate immune biomarkers were significantly associated with CB. Similar associations were not identified in cohorts A and B. In cohort A, CB was significantly associated with mutations in the chromatin remodeling gene PBRM1, whereas in cohort B, CB was significantly associated with expression of MICA/MICB and butyrophilins. CB and clonal TML were not significantly associated. CONCLUSIONS Although pembrolizumab lacked activity in cohort A, cohorts B and C met the study's primary endpoint. Further research is warranted to refine the selection of patients with tumors harboring lower TMLs and may benefit from a focus on innate immunity. See related commentary by Hsu and Yen, p. 3652.
Collapse
Affiliation(s)
- Birgit S Geurts
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Laurien J Zeverijn
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Lindsay V M Leek
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Louisa R Hoes
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Hanneke van der Wijngaart
- Department of Medical Oncology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Internal Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | - Joris van de Haar
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Marleen Kok
- Department of Medical Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, the Netherlands
| | - Anne M L Jansen
- Department of Pathology, University Medical Cancer Center Utrecht, Utrecht, the Netherlands
| | - Wendy W J de Leng
- Department of Pathology, University Medical Cancer Center Utrecht, Utrecht, the Netherlands
| | - Maja J A de Jonge
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Internal Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Carla M L van Herpen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans M Westgeest
- Department of Internal Medicine, Amphia Hospital, Breda, the Netherlands
| | - Lodewyk F A Wessels
- Oncode Institute, Utrecht, the Netherlands
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Emile E Voest
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| |
Collapse
|
40
|
Jiang SS, Kang ZR, Chen YX, Fang JY. The gut microbiome modulate response to immunotherapy in cancer. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-023-2634-7. [PMID: 39235561 DOI: 10.1007/s11427-023-2634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/05/2024] [Indexed: 09/06/2024]
Abstract
Gut microbiota have been reported to play an important role in the occurrence and development of malignant tumors. Currently, clinical studies have identified specific gut microbiota and its metabolites associated with efficacy of immunotherapy in multiple types of cancers. Preclinical investigations have elucidated that gut microbiota modulate the antitumor immunity and affect the efficacy of cancer immunotherapy. Certain microbiota and its metabolites may favorably remodel the tumor microenvironment by engaging innate and/or adaptive immune cells. Understanding how the gut microbiome interacts with cancer immunotherapy opens new avenues for improving treatment strategies. Fecal microbial transplants, probiotics, dietary interventions, and other strategies targeting the microbiota have shown promise in preclinical studies to enhance the immunotherapy. Ongoing clinical trials are evaluating these approaches. This review presents the recent advancements in understanding the dynamic interplay among the host immunity, the microbiome, and cancer immunotherapy, as well as strategies for modulating the microbiome, with a view to translating into clinical applications.
Collapse
Affiliation(s)
- Shan-Shan Jiang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Zi-Ran Kang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China.
| |
Collapse
|
41
|
Bessudo A, Haseeb AM, Reeves JA, Zhu X, Wong L, Giranda V, Suttner L, Liu F, Chatterjee M, Sharma S. Safety and Efficacy of Vicriviroc (MK-7690) in Combination With Pembrolizumab in Patients With Advanced or Metastatic Microsatellite Stable Colorectal Cancer. Clin Colorectal Cancer 2024; 23:285-294. [PMID: 38942693 DOI: 10.1016/j.clcc.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Pembrolizumab, a monoclonal antibody against PD-1, has shown limited efficacy in patients with microsatellite stable or mismatch repair proficient (MSS/pMMR) metastatic colorectal cancer (CRC). We evaluated vicriviroc (small-molecule C-C motif chemokine ligand 5 antagonist) plus pembrolizumab in patients with advanced or metastatic MSS/pMMR CRC. PATIENTS AND METHODS This open-label, phase 2 trial (NCT03631407) enrolled adults with histologically confirmed, locally advanced, unresectable or metastatic CRC that was MSS per local assessment. All patients had received previous treatment with standard therapies. Patients were randomized 1:1 to vicriviroc 150 mg orally once daily plus pembrolizumab 200 mg intravenously every 3 weeks or vicriviroc 250 mg orally once daily plus pembrolizumab 200 mg intravenously every 3 weeks for up to 35 cycles (2 years). Primary endpoints were the objective response rate (ORR) as assessed by the investigator per RECIST v1.1, dose-limiting toxicities (DLTs), adverse events (AEs), and discontinuations due to AEs. RESULTS Forty patients were enrolled and treated. ORR was 5% (95% CI, 0.1%-24.9%) in both treatment groups. There were no complete responses; 1 patient in each treatment group experienced a partial response. No patient in the vicriviroc 150 mg plus pembrolizumab group experienced a DLT. Two patients in the vicriviroc 250 mg plus pembrolizumab group experienced DLTs (1 grade 4 encephalopathy and 1 grade 4 pneumonitis). CONCLUSION The combination of vicriviroc at doses of 150 or 250 mg plus pembrolizumab 200 mg showed limited antitumor activity in patients with advanced or metastatic MSS/pMMR CRC. Toxicity with the combination was manageable.
Collapse
Affiliation(s)
- Alberto Bessudo
- California Cancer Associates for Research and Excellence, Encinitas, CA
| | | | - James A Reeves
- Florida Cancer Specialists and Research Institute/Sarah Cannon Research Institute, Fort Myers, FL
| | - Xiaofu Zhu
- Cross Cancer Institute, Edmonton, AB, Canada
| | - Lucas Wong
- Baylor College of Medicine, Houston, TX; Baylor Scott and White Health, Vasicek Cancer Treatment Center, Temple, TX
| | | | | | | | | | | |
Collapse
|
42
|
Li X, Xiang Y, Zhen Y, Yu Y. Neoadjuvant immunotherapy in a locally advanced colon cancer patient with MSI-H and suspected Lynch syndrome: A case report. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:1379-1383. [PMID: 38604219 DOI: 10.1055/a-2258-8565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Carrilizumab, a PD-1 inhibitor, has shown therapeutic effectiveness in patients with late-stage or metastatic solid tumors exhibiting DNA mismatch repair deficiency (dMMR) or microsatellite instability-high (MSI-H). dMMR/MSI-H cancer patients are known to be responsive to PD-1 inhibitors. However, the use of carrilizumab for preoperative immunotherapy in early, unresectable MSI-H/dMMR primary colon cancer lesions is relatively underexplored. We present the case of a 46-year-old male who sought medical attention at our institution due to a history of hematochezia for two weeks, right-sided abdominal pain for one week, and loose stools. Imaging indicated duodenal involvement, and a biopsy confirmed ascending colon adenocarcinoma with MSI-H status. Given that the patient's family exhibited a history of more than three confirmed cases of colorectal cancer spanning two generations, Lynch syndrome was considered. After four cycles of PD-1 antagonist immunotherapy with carrilizumab, the patient's symptoms resolved, and physical examination revealed no abdominal tenderness or palpable masses. Following radical colectomy, the primary tumor exhibited a pathological complete response. This case highlights the potential of preoperative neoadjuvant immunotherapy to improve staging accuracy and increase surgical resection rates in T4b MSI-H colon cancer patients without distant metastasis, suggesting a need for reconsideration of the treatment approach.
Collapse
Affiliation(s)
- Xiaoyun Li
- Department of Anorectal Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yining Xiang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yunhuan Zhen
- Department of Anorectal Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yong Yu
- Guiyang Public Health Clinical Center, Guiyang, China
| |
Collapse
|
43
|
Hulst L, Cappuyns S, Peeters F, Vulsteke F, Van Herpe F, Van Cutsem E, Dekervel J. Clinical and Molecular Variables Associated With Early Progression to Checkpoint Inhibitors in MSI-High Metastatic Colorectal Cancer: A Retrospective Cohort Study. Clin Colorectal Cancer 2024; 23:230-237.e1. [PMID: 39097473 DOI: 10.1016/j.clcc.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 02/29/2024] [Accepted: 06/30/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND About one third of patients with deficient mismatch repair/microsatellite instability-high metastatic colorectal cancer (dMMR/MSI-H mCRC) experience primary resistance or early progression on immune checkpoint inhibitors (ICI), while others benefit from exceptionally long-lasting responses. In this single-centre retrospective study, we aimed to identify variables associated with improved overall survival (OS) as well as early disease progression. METHODS All dMMR/MSI-H mCRC patients treated with ICI between 2014 and 2022 were included. Baseline patient demographics, tumour characteristics as well response and outcome data were recorded. OS was estimated using the Kaplan-Meier method. Uni- and multivariate cox regression analysis was used to identify parameters associated with improved OS. Clinicopathological factors associated with early progression (≤ 12 months after treatment initiation) were assessed using uni- and multivariate logistic regression analysis. RESULTS About 84 ICI-treated dMMR/MSI-H mCRC patients were included. Progressive disease occurred in 37 (44%) patients, but only in 11 (19%) patients with disease control at 12 months. Median OS was 80 months and improved outcome was associated with a lower neutrophile-to-lymphocyte ratio (NLR) (P = .004) and the presence of immune-related adverse events (irAEs) (P = .015). Early progression was associated with poor performance status (P = .036), a higher blood CRP level (P = .033) and absence of irAEs (P = .002). CONCLUSION Disease progression in ICI-treated dMMR/MSI-H mCRC rarely occurs in patients experiencing disease control for at least 12 months. Performance status, presence of immune-related adverse events, CRP levels, CEA levels and NLR can be helpful to identify those patients that may benefit from ICI treatment, guiding clinicians in therapeutic decisions.
Collapse
Affiliation(s)
- L Hulst
- Department of Gastro-enterology and Hepatology, Digestive Oncology, University Hospitals Leuven (UZ Leuven), Leuven, Belgium
| | - S Cappuyns
- Department of Gastro-enterology and Hepatology, Digestive Oncology, University Hospitals Leuven (UZ Leuven), Leuven, Belgium
| | - F Peeters
- Department of Gastro-enterology and Hepatology, Digestive Oncology, University Hospitals Leuven (UZ Leuven), Leuven, Belgium
| | - F Vulsteke
- Department of Gastro-enterology and Hepatology, Digestive Oncology, University Hospitals Leuven (UZ Leuven), Leuven, Belgium
| | - F Van Herpe
- Department of Gastro-enterology and Hepatology, Digestive Oncology, University Hospitals Leuven (UZ Leuven), Leuven, Belgium
| | - E Van Cutsem
- Department of Gastro-enterology and Hepatology, Digestive Oncology, University Hospitals Leuven (UZ Leuven), Leuven, Belgium
| | - J Dekervel
- Department of Gastro-enterology and Hepatology, Digestive Oncology, University Hospitals Leuven (UZ Leuven), Leuven, Belgium.
| |
Collapse
|
44
|
Zhang W, Xie Y, Liu Z, Zhang J, Ni B, Gao W, Xing W, Zhou Y, Si T. The aminophospholipid transporter, ATP8B3, as a potential biomarker and target for enhancing the therapeutic effect of PD-L1 blockade in colon adenocarcinoma. Genomics 2024; 116:110907. [PMID: 39074670 DOI: 10.1016/j.ygeno.2024.110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Colon adenocarcinoma (COAD) is a prevalent malignant tumor globally, contributing significantly to cancer-related mortality. COAD guidelines label MSI (Microsatellite instability) and MSS (Microsatellite stability) subtypes as global classification criteria and treatment strategy selection criteria for COAD. Various combination therapies involving PD-L1 inhibitors and adjuvant therapy to enhance anti-tumor efficacy. METHODS Datasets from single-cell RNA sequencing and bulk RNA sequencing in the TCGA and GEO databases were utilized to identify differentially expressed genes (DEGs). Furthermore, the correlation between ATP8B3 and PD-L1 was validated using siRNA, shRNA, and western blot analysis. Additionally, the association between ATP8B3 and immune checkpoint blockade (ICB) therapy was investigated through immune infiltration analysis and flow cytometry in both in vivo and in vitro assays. RESULTS In the COAD patient group, ATP8B3 significantly contributed to the establishment of an immunosuppressive microenvironment. Inhibiting ATP8B3 led to a reduction in PD-L1 expression in colon cancer cell lines. Additionally, ATP8B3 expression levels could serve as a potential guide for PD-L1 treatment in MSI-H COAD patients, with higher ATP8B3 expression associated with increased sensitivity to PD-L1 therapy. However, due to the lack of immuno-killer cells in the microenvironment of MSS subtypes, elevated ATP8B3 expression couldn't increase the sensitivity of MSS COAD patients to PD-L1 inhibitors. CONCLUSION Our research results support that Inhibiting ATP8B3 could enhance TIL (tumor-infiltrating lymphocyte) infiltration by reducing PD-L1 expression in MSI-H COAD, thereby serving as an effective strategy to improve PD-L1 blocker efficacy. The treatment strategy of combining ATP8B3 inhibitors and immunotherapy for MSI/MSS COAD patients will be the best choice.
Collapse
Affiliation(s)
- Weihao Zhang
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yongjie Xie
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 's Clinical Research Center for Cancer, Tianjin, China
| | - Ziyun Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 's Clinical Research Center for Cancer, Tianjin, China
| | - Jie Zhang
- Tianjin Medical University, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Bo Ni
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 's Clinical Research Center for Cancer, Tianjin, China
| | - Wei Gao
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Wenge Xing
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yaoyao Zhou
- Tianjin Medical University, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| | - Tongguo Si
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.
| |
Collapse
|
45
|
Zhang W, Tang Y, Wei L, Liu S, Wang W, Chi Y, Wang Y, Kang W, Huang W, Deng F, Li H, Ma H, Jiang L, Ding Z, Feng L, Li Y, Chen Y, Zhou H, Hu C, Jin J. Preoperative short-course radiotherapy followed by chemotherapy and PD-1 inhibitor administration for locally advanced rectal cancer: A study protocol of a randomized phase II/III trial (STELLAR II study). Colorectal Dis 2024; 26:1732-1740. [PMID: 39020518 DOI: 10.1111/codi.17090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Abstract
AIM For patients with locally advanced rectal cancer, previous STELLAR studies have shown that a new adjuvant treatment paradigm of short-course radiotherapy followed by neoadjuvant chemotherapy can achieve pathological complete response rates superior to those of standard care; however, the 3-year DFS is inferior to neoadjuvant concurrent radiotherapy. Recent studies have shown that immune checkpoint inhibitors may improve the prognosis of rectal cancer and have good synergy with radiotherapy. Therefore, neoadjuvant chemotherapy combined with immune checkpoint inhibitors after a short course of radiotherapy has the potential to further improve complete response rates and prognosis. METHOD The STELLAR II study is a multicentre, open label, two-arm randomized, phase II/III trial of short-course radiotherapy followed by neoadjuvant chemotherapy concurrent with immunotherapy for locally advanced rectal cancer. A total of 588 patients with locally advanced rectal cancer (LARC) will be randomly assigned to the experimental and control groups. The experimental group will receive short-course radiotherapy and neoadjuvant chemotherapy in combination with sindilizumab, while the control group will receive short-course radiotherapy and neoadjuvant chemotherapy. Both groups will subsequently receive either total rectal mesenteric resection or a watch & wait (W&W) strategy. The phase II primary endpoint is the complete remission rate, and the secondary endpoints include grade 3-4 adverse events, perioperative complications, R0 resection rate, overall survival, local recurrence rate, distant metastasis rate and quality of life score. A seamless phase II/III randomized controlled design will be used to investigate the effectiveness and safety of the TNT strategy with the addition of immunotherapy. The trial opened, and the first patient was recruited on 31 August 2022. Trial registration number and date of registration: ClinicalTrials.gov NCT05484024, 29 July 2022. DISCUSSION The STELLAR II trial will prospectively evaluate the efficacy of TNT treatment strategies that incorporate immune checkpoint inhibitors. The trial will yield important information to guide routine management of patients with local advanced rectal cancer.
Collapse
Affiliation(s)
- Wenjue Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Centre for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yuan Tang
- State Key Laboratory of Molecular Oncology, Department of Radiation Oncology, National Cancer Center/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lichun Wei
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Shixin Liu
- Department of Radiation Oncology, Jilin Provincial Cancer Hospital, Changchun, China
| | - Wenling Wang
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yihebali Chi
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Wang
- Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Wenyan Kang
- Department of Radiology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Wenting Huang
- Department of Pathology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
- State Key Laboratory of Molecular Oncology, Department of Pathology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feiyan Deng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Centre for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Haoyue Li
- State Key Laboratory of Molecular Oncology, Department of Radiation Oncology, National Cancer Center/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huiying Ma
- State Key Laboratory of Molecular Oncology, Department of Radiation Oncology, National Cancer Center/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - LiMing Jiang
- State Key Laboratory of Molecular Oncology, Department of Radiology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Ding
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Centre for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Lingling Feng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Centre for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yexiong Li
- State Key Laboratory of Molecular Oncology, Department of Radiation Oncology, National Cancer Center/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinggang Chen
- Department of Colorectal Surgery, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Haitao Zhou
- State Key Laboratory of Molecular Oncology, Department of Colorectal Surgery, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Hu
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Centre, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jing Jin
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Centre for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
- State Key Laboratory of Molecular Oncology, Department of Radiation Oncology, National Cancer Center/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Gallois C, Bergen ES, Auclin É, Pernot S, Higué J, Trouilloud I, Touchefeu Y, Turpin A, Mazard T, Sartore-Bianchi A, Prenen H, Alberti A, Pilla L, Cuissy S, Wookey V, Perret A, Melchior C, Artru P, Dubreuil O, Drouillard A, Doat S, Lavolé J, Basile D, Perkins G, Jary M, Stintzing S, Ros J, Tougeron D, Taieb J. Efficacy and safety of the combination of encorafenib/cetuximab with or without binimetinib in patients with BRAF V600E-mutated metastatic colorectal cancer: an AGEO real-world multicenter study. ESMO Open 2024; 9:103696. [PMID: 39255538 PMCID: PMC11415680 DOI: 10.1016/j.esmoop.2024.103696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The combination of encorafenib with cetuximab has become the standard of care in patients with BRAF V600E-mutated metastatic colorectal cancer (mCRC) after a prior systemic therapy. This study aims to describe the efficacy and safety of encorafenib/cetuximab +/- binimetinib in patients with BRAF V600E-mutated mCRC in a real-world setting. PATIENTS AND METHODS This retrospective study included patients with BRAF V600E-mutated mCRC who received this combination from January 2020 to June 2022 in 30 centers. RESULTS A total of 201 patients were included, with 55% of women, a median age of 62 years, and an Eastern Cooperative Oncology Group performance status (ECOG-PS) >1 in 20% of cases. The main tumor characteristics were 60% of right-sided primary tumor, 11% of microsatellite instability/mismatch repair deficient phenotype, and liver and peritoneum being the two main metastatic sites (57% and 51%). Encorafenib/cetuximab +/- binimetinib was prescribed in the first, second, third, and beyond third line in 4%, 56%, 29%, and 11%, respectively, of cases, with the encorafenib/cetuximab/binimetinib combination for 21 patients (10%). With encorafenib/cetuximab treatment, 21% of patients experienced grade ≥3 adverse events (AEs), with each type of grade ≥3 AE observed in <5% of patients. The objective response rate was 32.2% and the disease control rate (DCR) was 71.2%. The median progression-free survival (PFS) was 4.5 months [95% confidence interval (CI) 3.9-5.4 months] and the median overall survival (OS) was 9.2 months (95% CI 7.8-10.8 months). In multivariable analysis, factors associated with a shorter PFS were synchronous metastases [hazard ratio (HR) 1.66, P = 0.04] and ECOG-PS >1 (HR 1.88, P = 0.007), and those associated with a shorter OS were the same factors (HR 1.71, P = 0.03 and HR 2.36, P < 0.001, respectively) in addition to treatment beyond the second line (HR 1.74, P = 0.003) and high carcinoembryonic antigen level (HR 1.72, P = 0.003). CONCLUSION This real-world study showed that in patients with BRAF V600E-mutated mCRC treated with encorafenib/cetuximab +/- binimetinib, efficacy and safety data confirm those reported in the BEACON registration trial. The main poor prognostic factors for this treatment are synchronous metastases and ECOG-PS >1.
Collapse
Affiliation(s)
- C Gallois
- Department of Gastroenterology and Digestive Oncology, Paris-Cité University, Georges Pompidou European Hospital, SIRIC CARPEM, Paris, France
| | - E S Bergen
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - É Auclin
- Medical and Thoracic Oncology Department, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - S Pernot
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | - J Higué
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - I Trouilloud
- Department of Medical Oncology, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Y Touchefeu
- Digestive Oncology, Institut Des Maladies De l'Appareil Digestif, Centre Hospitalier Universitaire De Nantes, Nantes, France
| | - A Turpin
- Department of Medical Oncology, University Lille, Lille, France; UMR9020 CNRS, UMR-S1277 Inserm, Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, CHU Lille, Lille, France
| | - T Mazard
- Department of Medical Oncology, Montpellier Cancer Institute (ICM), Montpellier, France; Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University of Montpellier, Montpellier, France
| | - A Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano and Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - H Prenen
- University Hospital Antwerp, Edegem, Belgium
| | - A Alberti
- Medical Oncology, University of Brescia, ASST-Spedali Civili, Brescia, Italy
| | - L Pilla
- Department of Gastroenterology and Digestive Oncology, Paris-Cité University, Georges Pompidou European Hospital, SIRIC CARPEM, Paris, France
| | - S Cuissy
- Department of Hepatogastroenterology, Rouen University Hospital, Rouen, France
| | - V Wookey
- Department of Oncology, Mayo Clinic, Rochester, USA
| | - A Perret
- Department of Medical Oncology, Gustave Roussy Cancer Centre, Villejuif, France
| | - C Melchior
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - P Artru
- Hepatogastroenterology Department, Hôpital Jean-Mermoz, Lyon, France
| | - O Dubreuil
- Department of Digestive Oncology, Groupe hospitalier Diaconesses Croix Saint Simon, Paris, France
| | - A Drouillard
- Department of Hepato-Gastroenterology, Dijon Hospital, Dijon, France
| | - S Doat
- Department of Hepato-Gastroenterology, Pitié-Salpêtrière Hospital, Paris, France
| | - J Lavolé
- Department of Hepato-Gastroenterology, Begin Teaching Military Hospital, Saint-Mandé, France
| | - D Basile
- Department of Medical Oncology, San Giovanni di Dio Hospital, Crotone, Italy
| | - G Perkins
- Department of Gastroenterology, CHRU Pontchaillou, Rennes, France
| | - M Jary
- Department of Surgical and Medical Oncology, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - S Stintzing
- Department of Hematology, Oncology, and Cancer Immunology (CCM), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - J Ros
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - D Tougeron
- Department of Gastroenterology and Hepatology, Poitiers University Hospital, Poitiers, France
| | - J Taieb
- Department of Gastroenterology and Digestive Oncology, Paris-Cité University, Georges Pompidou European Hospital, SIRIC CARPEM, Paris, France.
| |
Collapse
|
47
|
Huang AL, He YZ, Yang Y, Pang M, Zheng GP, Wang HL. Exploring the potential of the TCR repertoire as a tumor biomarker (Review). Oncol Lett 2024; 28:413. [PMID: 38988449 PMCID: PMC11234811 DOI: 10.3892/ol.2024.14546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
T cells play an important role in adaptive immunity. Mature T cells specifically recognize antigens on major histocompatibility complex molecules through T-cell receptors (TCRs). As the TCR repertoire is highly diverse, its analysis is vital in the assessment of T cells. Advances in sequencing technology have provided convenient methods for further investigation of the TCR repertoire. In the present review, the TCR structure and the mechanisms by which TCRs function in tumor recognition are described. In addition, the potential value of the TCR repertoire in tumor diagnosis is reviewed. Furthermore, the role of the TCR repertoire in tumor immunotherapy is introduced, and the relationships between the TCR repertoire and the effects of different tumor immunotherapies are discussed. Based on the reviewed literature, it may be concluded that the TCR repertoire has the potential to serve as a biomarker for tumor prognosis. However, a wider range of cancer types and more diverse subjects require evaluation in future research to establish the TCR repertoire as a biomarker of tumor immunity.
Collapse
Affiliation(s)
- An-Li Huang
- Institute of Cancer Biology, Basic Medical Sciences Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
- The First Clinical Medical College, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Yan-Zhao He
- Institute of Cancer Biology, Basic Medical Sciences Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Yong Yang
- Institute of Cancer Biology, Basic Medical Sciences Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Min Pang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Province Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Guo-Ping Zheng
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales 2145, Australia
| | - Hai-Long Wang
- Institute of Cancer Biology, Basic Medical Sciences Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| |
Collapse
|
48
|
Li J. Clinical status and future prospects of neoadjuvant immunotherapy for localized mismatch repair-deficient cancers: a review. Int J Surg 2024; 110:5722-5732. [PMID: 38768473 PMCID: PMC11392202 DOI: 10.1097/js9.0000000000001680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Frameshift mutations accumulate in cancers related to mismatch repair deficiency (dMMR), which has the potential to produce various neoantigens, representing a distinct subset of cancers that respond considerably to immunotherapy. In recent years, robust evidence has supported the first-line application of immunotherapy for patients with metastatic dMMR cancers, which provoked extensive investigations of the feasibility and efficacy of immunotherapy in up-front settings, including neoadjuvant therapy. Several completed trials with small sample sizes suggested that neoadjuvant immunotherapy can achieve an impressively high complete response rate, for the first time offering the potential of systemic therapy to cure cancer without the need for surgical resection. However, a difficult dilemma emerges: clinicians are now facing a selection between the standard of care with good evidence for proficient MMR but suboptimal for dMMR cancers and the emerging immunotherapy with promising results but only based on a limited number of patients with shorter duration of follow-up. This review aims to provide a comprehensive summary of the biological rationale and clinical status of neoadjuvant immunotherapy in patients with dMMR cancers. Furthermore, I elaborate on particular issues that must be taken into consideration for further advancement in the field.
Collapse
Affiliation(s)
- Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, People's Republic of China
| |
Collapse
|
49
|
Cañellas-Socias A, Sancho E, Batlle E. Mechanisms of metastatic colorectal cancer. Nat Rev Gastroenterol Hepatol 2024; 21:609-625. [PMID: 38806657 DOI: 10.1038/s41575-024-00934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Despite extensive research and improvements in understanding colorectal cancer (CRC), its metastatic form continues to pose a substantial challenge, primarily owing to limited therapeutic options and a poor prognosis. This Review addresses the emerging focus on metastatic CRC (mCRC), which has historically been under-studied compared with primary CRC despite its lethality. We delve into two crucial aspects: the molecular and cellular determinants facilitating CRC metastasis and the principles guiding the evolution of metastatic disease. Initially, we examine the genetic alterations integral to CRC metastasis, connecting them to clinically marked characteristics of advanced CRC. Subsequently, we scrutinize the role of cellular heterogeneity and plasticity in metastatic spread and therapy resistance. Finally, we explore how the tumour microenvironment influences metastatic disease, emphasizing the effect of stromal gene programmes and the immune context. The ongoing research in these fields holds immense importance, as its future implications are projected to revolutionize the treatment of patients with mCRC, hopefully offering a promising outlook for their survival.
Collapse
Affiliation(s)
- Adrià Cañellas-Socias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
50
|
Men Q, Duan Y, Pei F, Yao Q, He W, Zhao Y, Shi L, Liu G, Huang J. PD-1 blockade combined with chemotherapy and bevacizumab in DNA mismatch repair-proficient/microsatellite stable colorectal liver metastases. J Gastrointest Oncol 2024; 15:1534-1544. [PMID: 39279968 PMCID: PMC11399864 DOI: 10.21037/jgo-23-940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/03/2024] [Indexed: 09/18/2024] Open
Abstract
Background Single-agent immunotherapy is less effective in patients with DNA mismatch repair-proficient/microsatellite stable (pMMR/MSS) metastatic colorectal cancer (mCRC). Whether pMMR/MSS mCRC patients benefit from combination immunotherapy remains unclear. This study aimed to evaluate the efficacy and safety of anti-programmed cell death protein 1 (PD-1) therapy combined with chemotherapy and bevacizumab in pMMR/MSS colorectal liver metastases (CRLM) patients. Methods A total of 12 patients with pMMR/MSS CRLM treated at The Sixth Affiliated Hospital of Sun Yat-sen University were enrolled. All patients were treated with at least 4 doses of PD-1 monoclonal antibody combined with chemotherapy and bevacizumab as neoadjuvant/adjuvant therapy. Results A total of 10 of the 12 patients received the combined therapies before primary tumor resection; the disease control rate (DCR) was 100% (10/10), and the objective response rate (ORR) was 70% (7/10). The ORR of liver metastases was 75% (9/12). Pathological complete response (pCR) was achieved in 1 primary tumor patient and 2 patients with hepatic lesions. A total of 5 patients underwent simultaneous resection of the primary tumor and liver metastases; 9 patients underwent microwave ablation for liver metastases. A total of 7 patients were assessed as having no evidence of disease (NED) with a median progression-free survival (PFS) interval of 9.2 (1.5-15.8) months after multimodality treatments for both primary and metastatic lesions. No severe immune-related adverse events (irAEs) and operational complications were observed. Conclusions PD-1 blockade combined with chemotherapy and bevacizumab might be safe and effective for patients with pMMR/MSS CRLM. This treatment strategy might lead to better tumor regression and a higher chance of achieving NED.
Collapse
Affiliation(s)
- Qianqian Men
- Graceland Medical Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yinghua Duan
- Department of Traditional Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fengyun Pei
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qijun Yao
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wan He
- Department of Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yandong Zhao
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lishuo Shi
- Clinical Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangjian Liu
- Department of Medical Ultrasonic, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
| |
Collapse
|