1
|
Zheng Y, Wang K, Ou Y, Hu X, Wang Z, Wang D, Li X, Ren S. Prognostic value of a baseline prognostic nutritional index for patients with prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis 2024; 27:604-613. [PMID: 37391595 DOI: 10.1038/s41391-023-00689-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND The prognostic nutritional index (PNI) integrates both nutritional and immune indicators and provides promising prognostic value for various malignancies. However, there is still no specific consensus relating to the precise relationship between the pretreatment PNI and the survival outcome of patients with prostate cancer (PCa). Here, we performed a meta-analysis to determine the prognostic significance of PNI for patients with PCa. METHODS We used the PubMed, EMBASE, Web of Science, Cochrane Library (CENTRAL), and CNKI databases to identify and retrieve eligible articles that were published in any language up to the 1st March 2023. Our analysis considered hazard ratios (HRs) and 95% confidence intervals (CIs) published in the included studies. Data synthesis and analysis were conducted using Stata 15.1 software. RESULTS A total of ten studies featuring 1631 cases were included in our quantitative analysis. Analysis showed that a low PNI at baseline was significantly associated with poor overall survival (OS) (HR: 2.16; 95% CI: 1.40-3.34; p = 0.01), progression-free survival (PFS) (HR: 2.17; 95% CI 1.63-2.89; p < 0.001). Owing to high levels of heterogeneity, we performed subgroup analysis based on disease staging, sample size, and cutoff value; we found that disease staging may have been the source of the heterogeneity. A low pretreatment PNI was associated with poor survival outcomes for both metastatic castration-resistant prostate cancer (mCRPC) patients and nonmetastatic castration-resistant prostate cancer (nmCRPC) patients. CONCLUSIONS A low pretreatment PNI was significantly correlated with a worse OS and PFS in patients with PCa. A low pretreatment PNI may act as a reliable and effective predictor for the prognosis of patients with PCa. Further well-designed studies should be performed to fully evaluate the prognostic performance of this novel indicator for PCa.
Collapse
Affiliation(s)
- Yang Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Robotic Minimally Invasive Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China
| | - Kai Wang
- Department of Acute Care Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China
| | - Yong Ou
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Robotic Minimally Invasive Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China
| | - Xu Hu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ziyan Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
- Laboratory of Ageing Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Dong Wang
- Robotic Minimally Invasive Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China.
| | - Xinglan Li
- Department of Pathology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China.
| | - Shangqing Ren
- Robotic Minimally Invasive Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
2
|
Jin W, Yang Q, Zhang Z, Li J. Olaparib-associated toxicity in cancer patients: a systematic review and meta-analysis. Eur J Clin Pharmacol 2024:10.1007/s00228-024-03771-w. [PMID: 39499282 DOI: 10.1007/s00228-024-03771-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/26/2024] [Indexed: 11/07/2024]
Abstract
PURPOSE To investigate the characteristics of olaparib-associated adverse events (AEs) in cancer patients. METHODS Databases were searched for phase II and III randomized controlled trials (RCTs) involving olaparib treatment up to March 2024. A systematic assessment was performed. RESULTS Twenty-seven RCTs involving 9542 patients were included. This meta-analysis indicates that olaparib could significantly increase the risk of developing any all-grade (RR, 1.08; 95% CI, 1.03-1.13; p = 0.001) and high-grade (RR, 1.45; 95% CI, 1.19-1.77; p = 0.0003) AEs in cancer patients. Olaparib could increase the risk of dose reduction (RR, 3.00; 95% CI, 1.59-5.70; p = 0.0007) and treatment discontinuation (RR, 2.00; 95% CI, 1.28-3.14; p = 0.002). Hematologic toxicities and gastrointestinal toxicities commonly occur in patients receiving olaparib. Anemia, nausea, and fatigue were the most frequent AEs, with olaparib increasing the risk of both all-grade and high-grade occurrences of these events. Patients with longer treatment durations tend to have a higher risk of anemia. Patients with urinary system tumors tend to have a higher risk of nausea, while those with breast cancer tend to have a higher risk of fatigue. Olaparib maintenance therapy may be associated with a higher risk of fatigue. Olaparib could increase other AEs such as diarrhea, vomiting, decreased appetite, dyspepsia, dysgeusia, dizziness, headache, back pain, urinary tract infection, dyspnea, and cough. CONCLUSION Olaparib-containing therapy could increase the occurrence of specific AEs in patients with cancer. Clinicians should be aware of these risks and conduct regular monitoring.
Collapse
Affiliation(s)
- Wenfang Jin
- College of Pharmacy, Southwest Minzu University, No.16, South 4th Section 1st Ring Road, Chengdu, 610225, Sichuan, PR China
| | - Qing Yang
- College of Pharmacy, Southwest Minzu University, No.16, South 4th Section 1st Ring Road, Chengdu, 610225, Sichuan, PR China
| | - Zhifeng Zhang
- College of Pharmacy, Southwest Minzu University, No.16, South 4th Section 1st Ring Road, Chengdu, 610225, Sichuan, PR China
| | - Jing Li
- College of Pharmacy, Southwest Minzu University, No.16, South 4th Section 1st Ring Road, Chengdu, 610225, Sichuan, PR China.
| |
Collapse
|
3
|
Xie J, Guo H, Dong B, Chen W, Jin C, Xu Q, Ding L, Liu W, Dong S, Zhao T, Yu Y, Guo C, Yao X, Peng B, Yang B. Olaparib Combined with Abiraterone versus Olaparib Monotherapy for Patients with Metastatic Castration-resistant Prostate Cancer Progressing after Abiraterone and Harboring DNA Damage Repair Deficiency: A Multicenter Real-world Study. Eur Urol Oncol 2024; 7:1088-1096. [PMID: 38458891 DOI: 10.1016/j.euo.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND AND OBJECTIVE Olaparib + abiraterone has a combined antitumor effect in metastatic castration-resistant prostate cancer (mCRPC), but the efficacy of this combination in patients with DNA damage repair (DDR)-deficient mCRPC progressing after abiraterone is unknown. Our aim was to compare the efficacy of olaparib + abiraterone versus olaparib monotherapy for patients with DDR-deficient mCRPC progressing after abiraterone. METHODS The study included 86 consecutive patients with DDR-deficient mCRPC progressing after abiraterone: 34 received olaparib + abiraterone, and 52 received olaparib monotherapy. DDR-deficient status was defined as the presence of a DDR gene with a pathogenic or likely pathogenic variant (DDR-PV), or with a variant of unknown significance (DDR-VUS). We assessed progression-free survival (PFS) and overall survival (OS) using the Kaplan-Meier method. Potential factors influencing PFS and OS were compared between the treatment arms using Cox proportional-hazards models. The prostate-specific antigen (PSA) response, the treatment effect across subgroups, and adverse events (AEs) were also evaluated. KEY FINDINGS AND LIMITATIONS Median follow-up was 9 mo. In the overall cohort, median PFS and OS were significantly longer in the combination arm than in the monotherapy arm (PFS: 6.0 vs 3.0 mo; hazard ratio [HR] 0.41, 95% confidence interval [CI] 0.25-0.67; p < 0.01; OS: 25.0 vs 12.0 mo; HR 0.30, 95% CI 0.14-0.67; p < 0.01). PSA responses were significantly higher following combination therapy versus monotherapy. Combination therapy had significantly better efficacy in the DDR-PV and DDR-VUS subgroups, and was an independent predictor of better PFS and OS. AE rates were acceptable. The retrospective nature, small sample size, and short follow-up are limitations. CONCLUSIONS Olaparib + abiraterone resulted in better PFS and OS than olaparib alone for patients with DDR-deficient mCRPC progressing after abiraterone. These results need to be confirmed by a large-scale prospective randomized controlled trial. PATIENT SUMMARY Our study shows that the drug combination of olaparib plus abiraterone improved survival over olaparib alone for patients who have mutations in genes affecting DNA repair and metastatic prostate cancer resistant to hormone therapy. The results provide evidence of a synergistic effect of the two drugs in these patients.
Collapse
Affiliation(s)
- Jun Xie
- Department of Urology, Shanghai Tenth People's Hospital, Shanghai Clinical College, Fifth Clinical Medical College, Anhui Medical University, Shanghai, China
| | - Hanxu Guo
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Chen
- Department of Urology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengqi Jin
- Department of Urology, School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Qiufan Xu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Li Ding
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wujianhong Liu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengrong Dong
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingting Zhao
- School of Life Sciences and Technology, Tongji University, Shanghai, China; Research Institute, GloriousMed Clinical Laboratory, Shanghai, China
| | - Yang Yu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Changcheng Guo
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Shanghai Clinical College, Fifth Clinical Medical College, Anhui Medical University, Shanghai, China; Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China; Department of Urology, School of Medicine, Anhui University of Science and Technology, Huainan, China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, Shanghai Clinical College, Fifth Clinical Medical College, Anhui Medical University, Shanghai, China; Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| | - Bin Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China; Department of Urology, School of Medicine, Anhui University of Science and Technology, Huainan, China.
| |
Collapse
|
4
|
Armstrong AJ, Taylor A, Haffner MC, Abida W, Bryce AH, Karsh LI, Tagawa ST, Twardowski P, Serritella AV, Lang JM. Germline and somatic testing for homologous repair deficiency in patients with prostate cancer (part 1 of 2). Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00901-4. [PMID: 39354185 DOI: 10.1038/s41391-024-00901-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/08/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND/OBJECTIVES Unfortunately, not all metastatic castration resistant prostate cancer (mCRPC) patients receive available life-prolonging systemic therapies, emphasizing the need to optimize mCRPC treatment selections. Better guidelines are necessary to determine genetic testing in prostate cancer. SUBJECTS/METHODS In this two-part expert opinion-based guide, we provide an expert consensus opinion on the utilization of germline and somatic testing to detect HRR alterations in patients with mCRPC. This guide was developed by a multidisciplinary expert panel that convened in 2023-2024, including representatives from medical oncology, urology, radiation oncology, pathology, medical genomics, and basic science. RESULTS/CONCLUSION We argue for the widespread adoption of germline testing in all patients with prostate cancer and for somatic mutations testing in patients at the time of recurrent/metastatic disease. In this first part, we review how genomic testing is performed. We also review how to overcome certain barriers to integrate genetic and biomarker testing into clinical practice.
Collapse
Affiliation(s)
- Andrew J Armstrong
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University Medical Center, Durham, NC, USA
| | - Amy Taylor
- University of Wisconsin, Madison, WI, USA
| | | | - Wassim Abida
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Ding L, Yang B, Yao X. Re: Fred Saad, Noel W. Clarke, Mototsugu Oya, et al. Olaparib plus Abiraterone Versus Placebo plus Abiraterone in Metastatic Castration-resistant Prostate Cancer (PROpel): Final Prespecified Overall Survival Results of a Randomised, Double-blind, Phase 3 Trial. Lancet Oncol 2023;24:1094-108. Eur Urol 2024; 86:e88-e89. [PMID: 38000965 DOI: 10.1016/j.eururo.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 11/26/2023]
Affiliation(s)
- Li Ding
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Bin Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Ma J, Qin X, Le W, Chen X, Wang X, Xu C. Identification of BBC3 as a novel indicator for predicting prostate cancer development and olaparib resistance. Discov Oncol 2024; 15:496. [PMID: 39331229 PMCID: PMC11436583 DOI: 10.1007/s12672-024-01373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Prostate cancer (PCa) is a commonly occurring malignancy in elderly men. Olaparib, a poly ADP-ribose polymerase inhibitor, is utilized in PCa treatment. However, patients often develop resistance to olaparib after a period of treatment. Genetic alterations may play a significant role in this resistance, but the specific genes involved remain unclear. This study collected RNA-sequence data from the Gene Expression Omnibus database on both olaparib-sensitive and -resistant PCa cells to identify genes crucial for resistance. Subsequently, the enriched pathways of these genes were analyzed, and a protein-protein interaction (PPI) network was constructed to identify hub genes. The effect of these hub genes on PCa occurrence, progression, and prognosis was assessed using data from The Cancer Genome Atlas and Chinese Prostate Cancer Genome and Epigenome Atlas databases. Finally, this study validated our findings in clinical PCa samples and cells. From the GSE189186 dataset, 50 upregulated genes and 2 downregulated genes were identified in olaparib-resistant C4-2B and LNCaP cells. Utilizing the PPI network, eight upregulated genes (BBC3, TP53I3, FDXR, DDB2, CDKN1A, GADD45A, ZMAT3, and SESN1) were identified as hub genes for olaparib-resistant PCa cells. Furthermore, some of these genes were central to PCa occurrence, with BBC3 also influencing progression and prognosis. Importantly, BBC3 expression was upregulated in clinical PCa samples and affected PCa cells sensitive to olaparib, suggesting its potential as a predictive marker for PCa development and olaparib resistance.
Collapse
Affiliation(s)
- Junjie Ma
- Department of Urology, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing, 314000, Zhejiang, China
| | - Xin Qin
- Department of Urology, School of Medicine, Tongji Hospital, Tongji University, 389 Xincun Road, Shanghai,, 6000065, China
| | - Wei Le
- Department of Urology, School of Medicine, Tongji Hospital, Tongji University, 389 Xincun Road, Shanghai,, 6000065, China
| | - Xi Chen
- Department of Urology, School of Medicine, Tongji Hospital, Tongji University, 389 Xincun Road, Shanghai,, 6000065, China
| | - Xiao Wang
- Department of Urology, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing, 314000, Zhejiang, China.
| | - Chengdang Xu
- Department of Urology, School of Medicine, Tongji Hospital, Tongji University, 389 Xincun Road, Shanghai,, 6000065, China.
| |
Collapse
|
7
|
Serritella AV, Taylor A, Haffner MC, Abida W, Bryce A, Karsh LI, Tagawa ST, Twardowski P, Armstrong AJ, Lang JM. Therapeutic implications of homologous repair deficiency testing in patients with prostate cancer (Part 2 of 2). Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00887-z. [PMID: 39333696 DOI: 10.1038/s41391-024-00887-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND/OBJECTIVES Unfortunately, not all metastatic castration-resistant prostate cancer (mCRPC) patients receive available life-prolonging systemic therapies, emphasizing the need to optimize mCRPC treatment selections. Better guidelines are necessary to determine genetic testing for prostate cancer. SUBJECTS/METHODS In this two-part expert opinion-based guide, we provide an expert consensus opinion on the utilization of germline and somatic testing to detect HRR alterations in patients with mCRPC. This guide was developed by a multidisciplinary expert panel that convened in 2023-2024, including representatives from medical oncology, urology, radiation oncology, pathology, medical genomics, and basic science. RESULTS/CONCLUSIONS In this second part, we highlight how genetic testing can lead to improved, life-prolonging mCRPC therapeutic strategies based on a review of the recent phase III trials and subsequent regulatory approvals for PARP inhibitors in mCRPC.
Collapse
Affiliation(s)
| | - Amy Taylor
- University of Wisconsin, Madison, WI, USA
| | | | - Wassim Abida
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | - Andrew J Armstrong
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
8
|
Oudard S, Timsit MO, Maillet D, Mouillet G, Campedel L, Colomba É, Dourthe LM, Eymard JC, Gobert A, Jamet C, Joly C, Serrate C, Ploussard G. [Metastatic castration-resistant prostate cancer and PARP inhibitors: From tumor genomics to new therapeutic combinations]. Bull Cancer 2024:S0007-4551(24)00254-6. [PMID: 39232886 DOI: 10.1016/j.bulcan.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 09/06/2024]
Abstract
Castration-resistant metastatic prostate cancer remains lethal and a therapeutic challenge. Current strategies are geared towards the personalization of treatments based on the identification of relevant molecular targets, including genomic alterations involved in tumoral processes. Among these novel targeted therapies, poly-ADP-ribose polymerase inhibitors (PARPi), by blocking the action of enzymes involved in deoxyribonucleic acid (DNA) repair, induce the destruction of cells carrying defects in homologous recombination repair, often associated with alterations in genes involved in this mechanism. Thus, determining the presence of a molecular anomaly, particularly alterations in the BRCA1/2 genes, is a prerequisite for initiating PARPi monotherapy. In patients with metastatic castration-resistant prostate cancer , around 20-30 % carry this type of mutation. In this population, single-agent studies have demonstrated PARPi ability to prolong overall survival, and to improve symptom control, including pain. Other studies are underway to assess their effectiveness in combination with other therapies, and it already appears that association with new-generation hormone therapy can further prolong radiological progression-free survival, regardless of the mutation status of the genes involved in DNA repair, indicating a synergistic action between PARPi and new-generation hormone therapy.
Collapse
Affiliation(s)
- Stéphane Oudard
- Hôpital Européen Georges-Pompidou, service de cancérologie médicale, Paris, France.
| | - Marc-Olivier Timsit
- Université de Paris, service urologie, cancérologie génito-urinaire et transplantation rénale, Paris, France; Hôpital Necker-Enfants malades, service d'urologie, Paris, France
| | - Denis Maillet
- Hospices civils de Lyon (IC-HCL), Institut de cancérologie, service d'oncologie médicale, Lyon, France; Faculté de médecine Jacques-Lisfranc, Saint-Étienne, France
| | | | - Luca Campedel
- Université Clermont-Auvergne, CHU de Gabriel-Montpied, service d'oncologie, Clermont-Ferrand, France
| | - Émeline Colomba
- Université Paris-Saclay, Institut Gustave Roussy, service de médecine oncologique, Villejuif, France
| | | | | | - Aurélien Gobert
- Centre hospitalier privé Saint-Grégoire, ICRB, Rennes, France
| | - Claire Jamet
- Centre hospitalier Saint-Louis, service d'oncologie médicale, La Rochelle, France
| | - Charlotte Joly
- Hôpital Henri-Mondor, service d'oncologie, Créteil, France
| | - Camille Serrate
- Groupe hospitalier Diaconesses Croix Saint-Simon, service d'oncologie médicale, Paris, France
| | - Guillaume Ploussard
- IUCT Oncopôle Toulouse, service d'urologie, Toulouse, France; Clinique La Croix du Sud, UROSUD, Toulouse, France
| |
Collapse
|
9
|
Kostos L, Tran B, Azad AA. Combination of PARP Inhibitors and Androgen Receptor Pathway Inhibitors in Metastatic Castration-Resistant Prostate Cancer. Drugs 2024; 84:1093-1109. [PMID: 39060912 PMCID: PMC11438617 DOI: 10.1007/s40265-024-02071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Despite recent advances in the treatment of metastatic prostate cancer, progression to a castration-resistant state remains inevitable for most and prognosis is limited. Genetic testing for homologous recombination repair pathway alterations is recommended for all patients with advanced prostate cancer given that a mutation is present in up to 25% of cases. Poly(ADP-ribose) polymerase (PARPis) are now approved for use in patients with metastatic castration-resistant prostate cancer who have progressed on an androgen receptor pathway inhibitor (ARPI) and harbour a germline or somatic homologous recombination repair mutation. Preclinical data support a synergistic effect with an ARPI and PARPi, and various ARPI-PARPi combinations have therefore been explored in phase III clinical trials. Despite heterogeneous findings, a clear hierarchy of benefit is evident, with patients harbouring a BRCA mutation deriving the greatest magnitude of benefit, followed by any homologous recombination repair mutation. The benefit in homologous recombination repair-proficient cohort is less clear, and questions remain about whether ARPI-PARPi combination therapy should be offered to patients without a homologous recombination repair mutation. With ARPIs now considered standard-of-care for metastatic hormone-sensitive prostate cancer, ARPI-PARPi combination therapy is currently being explored earlier in the treatment paradigm. The purpose of this review is to discuss the rationale behind ARPI-PARPi combination therapy, summarise the results of key clinical trials, and discuss clinical considerations and future perspectives.
Collapse
Affiliation(s)
- Louise Kostos
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Ben Tran
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Arun A Azad
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
10
|
Hantusch B, Kenner L, Stanulović VS, Hoogenkamp M, Brown G. Targeting Androgen, Thyroid Hormone, and Vitamin A and D Receptors to Treat Prostate Cancer. Int J Mol Sci 2024; 25:9245. [PMID: 39273194 PMCID: PMC11394715 DOI: 10.3390/ijms25179245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The nuclear hormone family of receptors regulates gene expression. The androgen receptor (AR), upon ligand binding and homodimerization, shuttles from the cytosol into the nucleus to activate gene expression. Thyroid hormone receptors (TRs), retinoic acid receptors (RARs), and the vitamin D receptor (VDR) are present in the nucleus bound to chromatin as a heterodimer with the retinoid X receptors (RXRs) and repress gene expression. Ligand binding leads to transcription activation. The hormonal ligands for these receptors play crucial roles to ensure the proper conduct of very many tissues and exert effects on prostate cancer (PCa) cells. Androgens support PCa proliferation and androgen deprivation alone or with chemotherapy is the standard therapy for PCa. RARγ activation and 3,5,3'-triiodo-L-thyronine (T3) stimulation of TRβ support the growth of PCa cells. Ligand stimulation of VDR drives growth arrest, differentiation, and apoptosis of PCa cells. Often these receptors are explored as separate avenues to find treatments for PCa and other cancers. However, there is accumulating evidence to support receptor interactions and crosstalk of regulatory events whereby a better understanding might lead to new combinatorial treatments.
Collapse
Affiliation(s)
- Brigitte Hantusch
- Department of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, 1010 Vienna, Austria;
- Comprehensive Cancer Center, Medical University Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, 1010 Vienna, Austria;
- Comprehensive Cancer Center, Medical University Vienna, 1090 Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Christian Doppler Laboratory for Applied Metabolomics, Medical University Vienna, 1090 Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| | - Vesna S. Stanulović
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (V.S.S.); (M.H.)
| | - Maarten Hoogenkamp
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (V.S.S.); (M.H.)
| | - Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
11
|
Saad F. Should Only Patients with BRCA Mutation Be Treated with a Combination of an Androgen Receptor Pathway Inhibitor and a PARP Inhibitor for Metastatic Castration-resistant Prostate Cancer? The Answer Is No. Eur Urol Focus 2024:S2405-4569(24)00153-6. [PMID: 39155209 DOI: 10.1016/j.euf.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Abstract
Patients who benefit the most from combinations of an androgen receptor pathway inhibitor and a PARP inhibitor are those with a BRCA mutation, but there are certainly patients without BRCA mutations who will benefit from this treatment strategy.
Collapse
Affiliation(s)
- Fred Saad
- Department of Surgery, University of Montreal Hospital Center, Montreal, Canada.
| |
Collapse
|
12
|
Casanova-Salas I, Aguilar D, Cordoba-Terreros S, Agundez L, Brandariz J, Herranz N, Mas A, Gonzalez M, Morales-Barrera R, Sierra A, Soriano-Navarro M, Cresta P, Mir G, Simonetti S, Rodrigues G, Arce-Gallego S, Delgado-Serrano L, Agustí I, Castellano-Sanz E, Mast R, de Albert M, Celma A, Santamaria A, Gonzalez L, Castro N, Suanes MDM, Hernández-Losa J, Nonell L, Peinado H, Carles J, Mateo J. Circulating tumor extracellular vesicles to monitor metastatic prostate cancer genomics and transcriptomic evolution. Cancer Cell 2024; 42:1301-1312.e7. [PMID: 38981440 DOI: 10.1016/j.ccell.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/11/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024]
Abstract
Extracellular vesicles (EVs) secreted by tumors are abundant in plasma, but their potential for interrogating the molecular features of tumors through multi-omic profiling remains widely unexplored. Genomic and transcriptomic profiling of circulating EV-DNA and EV-RNA isolated from in vitro and in vivo models of metastatic prostate cancer (mPC) reveal a high contribution of tumor material to EV-loaded DNA/RNA, validating the findings in two cohorts of longitudinal plasma samples collected from patients during androgen receptor signaling inhibitor (ARSI) or taxane-based therapy. EV-DNA genomic features recapitulate matched-patient biopsies and circulating tumor DNA (ctDNA) and associate with clinical progression. We develop a novel approach to enable transcriptomic profiling of EV-RNA (RExCuE). We report how the transcriptome of circulating EVs is enriched for tumor-associated transcripts, captures certain patient and tumor features, and reflects on-therapy tumor adaptation changes. Altogether, we show that EV profiling enables longitudinal transcriptomic and genomic profiling of mPC in liquid biopsy.
Collapse
Affiliation(s)
- Irene Casanova-Salas
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Daniel Aguilar
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sarai Cordoba-Terreros
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Laura Agundez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Julian Brandariz
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Nicolas Herranz
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Alba Mas
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Macarena Gonzalez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Rafael Morales-Barrera
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Alexandre Sierra
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Pablo Cresta
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Gisela Mir
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sara Simonetti
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Gonçalo Rodrigues
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sara Arce-Gallego
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Luisa Delgado-Serrano
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Irene Agustí
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Elena Castellano-Sanz
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Richard Mast
- Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Ana Celma
- Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Anna Santamaria
- Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lucila Gonzalez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Natalia Castro
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Maria Del Mar Suanes
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Javier Hernández-Losa
- Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lara Nonell
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Hector Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Joan Carles
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Joaquin Mateo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain.
| |
Collapse
|
13
|
Dai MF, Wang X, Xin WX, Kong SS, Xu WB, Ding HY, Fang L. Safety and hematological toxicities of PARP inhibitors in patients with cancer: a systematic review of randomized controlled trials and a pharmacovigilance analysis. Expert Rev Anticancer Ther 2024; 24:613-622. [PMID: 38761169 DOI: 10.1080/14737140.2024.2357822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
INTRODUCTION This study aimed to estimate the toxicities of PARP inhibitors (PARPis), based on randomized controlled trials (RCTs) and the FDA Adverse Event Reporting System (FAERS) database. METHODS Four electronic databases were searched from inception to 16 April 2024, for RCTs of approved PARPis. The primary and secondary outcomes were grade 3-5 adverse events (AEs) and grade 3-5 hematological AE, respectively. We conducted network meta-analyses to calculate the relative risks (RRs) and 95% confidence intervals (CIs) of outcomes. A disproportionality analysis was conducted to estimate the signals of hematological AEs associated with PARPis from the FAERS database. RESULTS Overall, 27 RCTs involving 11,067 patients with cancer were included. Olaparib had the best safety profile for any grade 3-5 AEs and hematological AEs among four approved PARPis. Olaparib did not increase the risk of thrombocytopenia (RR: 1.48; 95%CI: 0.64-3.39), but other PARPis did. Furthermore 14,780 hematological AE reports associated with PARPis were identified in the FAERS database, and all PARPis were associated with strong hematological AE signals. Hematological AEs mainly occurred within the first 3 months (80.84%) after PARPi initiation. CONCLUSION Olaparib had the best safety profile among five PARPis. PARPi-associated hematological AEs mainly occurred within the first 3 months. REGISTRATION PROSPERO (CRD42022385274).
Collapse
Affiliation(s)
- Meng-Fei Dai
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xin Wang
- Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Xiu Xin
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Si-Si Kong
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wei-Ben Xu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Hai-Ying Ding
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Guida A, Mosillo C, Mammone G, Caserta C, Sirgiovanni G, Conteduca V, Bracarda S. The 5-WS of targeting DNA-damage repair (DDR) pathways in prostate cancer. Cancer Treat Rev 2024; 128:102766. [PMID: 38763054 DOI: 10.1016/j.ctrv.2024.102766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
DNA-damage repair (DDR) pathways alterations, a growing area of interest in oncology, are detected in about 20% of patient with prostate cancer and are associated with improved sensitivity to poly(ADP ribose) polymerases (PARP) inhibitors. In May 2020, the Food and Drug Administration (FDA) approved two PARP inhibitors (olaparib and rucaparib) for prostate cancer treatment. Moreover, germline aberrations in DDR pathways genes have also been related to familial or hereditary prostate cancer, requiring tailored health-care programs. These emerging scenarios are rapidly changing diagnostic, prognostic and therapeutic approaches in prostate cancer management. The aim of this review is to highlight the five W-points of DDR pathways in prostate cancer: why targeting DDR pathways in prostate cancer; what we should test for genomic profiling in prostate cancer; "where" testing genetic assessment in prostate cancer (germline or somatic, solid or liquid biopsy); when genetic testing is appropriate in prostate cancer; who could get benefit from PARP inhibitors; how improve patients outcome with combinations strategies.
Collapse
|
15
|
Zhu Q, Chen J, Liu H, Zhao J, Xu C, Sun G, Zeng H. The efficacy and safety of PARP inhibitors in mCRPC with HRR mutation in second-line treatment: a systematic review and bayesian network meta-analysis. BMC Cancer 2024; 24:706. [PMID: 38851712 PMCID: PMC11162002 DOI: 10.1186/s12885-024-12388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/15/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Poly (ADP- ribose) polymerase inhibitors (PARPi) has been increasingly adopted for metastatic castration-resistance prostate cancer (mCRPC) patients with homologous recombination repair deficiency (HRD). However, it is unclear which PARPi is optimal in mCRPC patients with HRD in 2nd -line setting. METHOD We conducted a systematic review of trials regarding PARPi- based therapies on mCRPC in 2nd -line setting and performed a Bayesian network meta-analysis (NMA). Radiographic progression-free survival (rPFS) was assessed as primary outcome. PSA response and adverse events (AEs) were evaluated as secondary outcomes. Subgroup analyses were performed according to specific genetic mutation. RESULTS Four RCTs comprised of 1024 patients (763 harbored homologous recombination repair (HRR) mutations) were identified for quantitative analysis. Regarding rPFS, olaparib monotherapy, rucaparib and cediranib plus olaparib showed significant improvement compared with ARAT. Olaparib plus cediranib had the highest surface under cumulative ranking curve (SUCRA) scores (87.5%) for rPFS, followed by rucaparib, olaparib and olaparib plus abiraterone acetate prednisone. For patients with BRCA 1/2 mutations, olaparib associated with the highest probability (98.1%) of improved rPFS. For patients with BRCA-2 mutations, olaparib and olaparib plus cediranib had similar efficacy. However, neither olaparib nor rucaparib showed significant superior effectiveness to androgen receptor-axis-targeted therapy (ARAT) in patients with ATM mutations. For safety, olaparib showed significantly lower ≥ 3 AE rate compared with cediranib plus olaparib (RR: 0.72, 95% CI: 0.51, 0.97), while olaparib plus cediranib was associated with the highest risk of all-grade AE. CONCLUSION PARPi-based therapy showed considerable efficacy for mCRPC patients with HRD in 2nd -line setting. However, patients should be treated accordingly based on their genetic background as well as the efficacy and safety of the selected regimen. TRIAL REGISTRATION CRD42023454079.
Collapse
Affiliation(s)
- Qiyu Zhu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Junru Chen
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Haoyang Liu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Jinge Zhao
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Chenhao Xu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Guangxi Sun
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China.
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
16
|
Yazgan SC, Akkus E, Yekeduz E, Urun Y. Thromboembolic risk in prostate cancer patients treated with PARP inhibitors: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2024; 198:104376. [PMID: 38685459 DOI: 10.1016/j.critrevonc.2024.104376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase inhibitors (PARPi) have been associated with thrombotic events, although the association with thrombosis risk in different cancers remains poorly defined. METHODS This meta-analysis included phase II and phase III clinical trials in which patients with metastatic prostate cancer were treated with PARPi either as monotherapy or in combination. The primary endpoints were the rates of thromboembolic events in prostate cancer patients. RESULTS A total of 2210 and 1662 patients with prostate cancer were compared in the PARP inhibitor and control groups, respectively. 96 (4.3 %) and 37 (2.2 %) patients had thrombosis in the PARPi and control groups, respectively. PARPi had a statistically significant increased risk of thrombosis in prostate cancer patients (Odds Ratio (OR)=1.98, 95 % CI: 1.06-3.70, P=0.030). CONCLUSION The heightened thrombotic risk associated with PARPi treatment in prostate cancer emphasizes the need for comprehensive management protocols to effectively reduce the risk and ensure safer outcomes.
Collapse
Affiliation(s)
- Sati Coskun Yazgan
- Department of Medical Oncology, Ankara University Faculty of Medicine, Ankara, Turkiye; Cancer Research Institute, Ankara University, Ankara, Turkiye
| | - Erman Akkus
- Department of Medical Oncology, Ankara University Faculty of Medicine, Ankara, Turkiye; Cancer Research Institute, Ankara University, Ankara, Turkiye
| | - Emre Yekeduz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yuksel Urun
- Department of Medical Oncology, Ankara University Faculty of Medicine, Ankara, Turkiye; Cancer Research Institute, Ankara University, Ankara, Turkiye.
| |
Collapse
|
17
|
Ceci F, Airò Farulla LS, Bonatto E, Evangelista L, Aliprandi M, Cecchi LG, Mattana F, Bertocchi A, DE Vincenzo F, Perrino M, Cordua N, Borea F, Zucali PA. New target therapies in prostate cancer: from radioligand therapy, to PARP-inhibitors and immunotherapy. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2024; 68:101-115. [PMID: 38860274 DOI: 10.23736/s1824-4785.24.03575-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Prostate cancer (PCa) remains a significant global health challenge, particularly in its advanced stages. Despite progress in early detection and treatment, PCa is the second most common cancer diagnosis among men. This review aims to provide an overview of current therapeutic approaches and innovations in PCa management, focusing on the latest advancements and ongoing challenges. We conducted a narrative review of clinical trials and research studies, focusing on PARP inhibitors (PARPis), phosphoinositide 3 kinase-protein kinase B inhibitors, immunotherapy, and radioligand therapies (RLTs). Data was sourced from major clinical trial databases and peer-reviewed journals. Androgen deprivation therapy and androgen-receptor pathway inhibitors remain foundational in managing castration-sensitive and early-stage castration-resistant PCa (CRPC). PARPi's, such as olaparib and rucaparib, have emerged as vital treatments for metastatic CRPC with homologous recombination repair gene mutations, highlighting the importance of personalized medicine. Immune checkpoint inhibitors (ICIs) have shown clinical benefit limited to specific subgroups of PCa, demonstrating significant improvement in efficacy in patients with microsatellite instability/mismatch repair or cyclin-dependent kinase 12 alteration, highlighting the importance of focusing ongoing research on identifying and characterizing these subgroups to maximize the clinical benefits of ICIs. RLTs have shown effectiveness in treating mCRPC. Different alpha emitters (like [225Ac]PSMA) and beta emitters compounds (like [177Lu]PSMA) impact treatment differently due to their energy transfer characteristics. Clinical trials like VISION and TheraP have demonstrated positive outcomes with RLT, particularly [177Lu]PSMA-617, leading to FDA approval. Ongoing trials and future perspectives explore the potential of [225Ac]PSMA, aiming to improve outcomes for patients with mCRPC. The landscape of PCa treatment is evolving, with significant advancements in both established and novel therapies. The combination of hormonal therapies, chemotherapy, PARPis, immunotherapy, and RLTs, guided by genetic and molecular insights, opens new possibilities for personalized treatment.
Collapse
Affiliation(s)
- Francesco Ceci
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lighea S Airò Farulla
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milan, Italy -
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Elena Bonatto
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Laura Evangelista
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Nuclear Medicine, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Marta Aliprandi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luigi G Cecchi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Francesco Mattana
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandro Bertocchi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Fabio DE Vincenzo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Matteo Perrino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Nadia Cordua
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Federica Borea
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Paolo A Zucali
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
18
|
Fan Y, Liu Z, Chen Y, He Z. Homologous Recombination Repair Gene Mutations in Prostate Cancer: Prevalence and Clinical Value. Adv Ther 2024; 41:2196-2216. [PMID: 38767824 PMCID: PMC11133173 DOI: 10.1007/s12325-024-02844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/12/2024] [Indexed: 05/22/2024]
Abstract
Despite advances in our understanding of the molecular landscape of prostate cancer and the development of novel biomarker-driven therapies, the prognosis of patients with metastatic prostate cancer that is resistant to conventional hormonal therapy remains poor. Data suggest that a significant proportion of patients with metastatic castration-resistant prostate cancer (mCRPC) have mutations in homologous recombination repair (HRR) genes and may benefit from poly(ADP-ribose) polymerase (PARP) inhibitors. However, the adoption of HRR gene mutation testing in prostate cancer remains low, meaning there is a missed opportunity to identify patients who may benefit from targeted therapy with PARP inhibition, with or without novel hormonal agents. Here, we review the current knowledge regarding the clinical significance of HRR gene mutations in prostate cancer and discuss the efficacy of PARP inhibition in patients with mCRPC. This comprehensive overview aims to increase the clinical implementation of HRR gene mutation testing and inform future efforts in personalized treatment of prostate cancer.
Collapse
Affiliation(s)
- Yu Fan
- Department of Urology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, China
| | - Zhenhua Liu
- Global Medical Affairs, MSD China, Shanghai, China
| | - Yuke Chen
- Department of Urology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, China
| | - Zhisong He
- Department of Urology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, China.
| |
Collapse
|
19
|
Teyssonneau D, Dariane C, Barret E, Beauval JB, Brureau L, Fiard G, Fromont G, Créhange G, Gauthé M, Ruffion A, Renard-Penna R, Mathieu R, Sargos P, Rouprêt M, Ploussard G, Roubaud G. PARP inhibitors in prostate cancers, is it time for combinations? Ther Adv Med Oncol 2024; 16:17588359241242959. [PMID: 38827177 PMCID: PMC11143875 DOI: 10.1177/17588359241242959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/13/2024] [Indexed: 06/04/2024] Open
Abstract
Despite several improvements in outcomes, metastatic prostate cancer remains deadly. Alterations in the homologous recombination repair (HRR) pathway are associated with more aggressive disease. Olaparib and rucaparib, two poly-ADP-ribose polymerase (PARP) inhibitors, have received approval from the authorities of several countries for their anti-tumoral effects in patients with metastatic castration-resistant prostate cancers harboring HRR gene alterations, in particular BRCA2. More recently, it has been hypothesized that new hormonal therapies (NHTs) and PARP inhibitors (PARPi) could have synergistic actions and act independently of HRR deficiency. This review proposes to discuss the advantages and disadvantages of PARPi used as monotherapy or in combination with NHTs and whether there is a need for molecular selection.
Collapse
Affiliation(s)
- Diego Teyssonneau
- Department of Medical Oncology, Institut Bergonié, 229 Cours de l’Argonne, Bordeaux 33000, France
| | - Charles Dariane
- Department of Urology, Hôpital Européen Georges-Pompidou, APHP, Paris University, U1151 Inserm-INEM, Necker, Paris, France
| | - Eric Barret
- Department of Urology, Institut Mutualiste Montsouris, Paris, France
| | - Jean-Baptiste Beauval
- Department of Urology, La Croix du Sud Hôpital, Quint Fonsegrives, France
- IUCT-O, Toulouse, France
| | - Laurent Brureau
- Department of Urology, CHU de Pointe-à-Pitre, University of Antilles, University of Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Pointe-à-Pitre, France
| | - Gaëlle Fiard
- Department of Urology, Grenoble Alpes University Hospital, Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | | | - Gilles Créhange
- Department of Radiation Oncology Curie Institute, Paris, France
| | - Mathieu Gauthé
- Department of Nuclear Medicine, Scintep, Grenoble, France
| | - Alain Ruffion
- Service d’Urologie Centre Hospitalier Lyon Sud, Hospices Civils de Lyon
- Equipe 2, Centre d’Innovation en Cancérologie de Lyon (EA 3738 CICLY), Faculté de Médecine Lyon Sud, Université Lyon 1, Lyon, France
| | | | - Romain Mathieu
- Department of Urology, University of Rennes, Rennes, France
- University of Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Rennes, France
| | - Paul Sargos
- Department of Radiotherapy, Institut Bergonié, Bordeaux, Aquitaine, France
| | - Morgan Rouprêt
- AP-HP, Urology, GRC 5 Predictive Onco-Uro, Pitie-Salpetriere Hospital, Sorbonne University, Paris, France
| | - Guillaume Ploussard
- Department of Urology, La Croix du Sud Hôpital, Quint Fonsegrives, France
- IUCT-O, Toulouse, France
| | - Guilhem Roubaud
- Department of Medical Oncology, Institut Bergonié, Bordeaux, Aquitaine, France
| |
Collapse
|
20
|
Hoshi S, Bilim V, Hoshi K, Ogawa Y, Kato T, Urano K, Yamada T, Sakagami R, Kudo T, Numahata K, Sasagawa I. Double Primary Cancer of the Prostate and Urothelial Cancer: A Single Institution Experience. J Pers Med 2024; 14:510. [PMID: 38793091 PMCID: PMC11121936 DOI: 10.3390/jpm14050510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Prostate cancer (PCa) ranks as the second most common cancer in Japanese males, while bladder cancer (BC) holds the tenth spot. Among double urological cancers, the incidence of synchronous or metachronous BC and PCa is the highest. Reports on upper urinary tract (UUT) urothelial cancer (UC) in PCa patients are limited. Here, we present three cases of metachronous PCa and BC, with subsequent diagnosis of ureteral and renal pelvic cancer during the course of the disease. In the follow-up of patients with urological cancers, it is important to be aware not only of the progression of the initial cancer but also the potential development of a second cancer.
Collapse
Affiliation(s)
- Senji Hoshi
- Department of Urology, Yamagata Tokushukai Hospital, Yamagata 990-0834, Japan; (S.H.); (K.H.); (I.S.)
| | - Vladimir Bilim
- Department of Urology, Kameda Daiichi Hospital, Niigata 950-0165, Japan
| | - Kiyotsugu Hoshi
- Department of Urology, Yamagata Tokushukai Hospital, Yamagata 990-0834, Japan; (S.H.); (K.H.); (I.S.)
| | - Yoshihiro Ogawa
- Sendai Radiation Oncology & Imaging Clinic, Sendai City 981-3121, Japan;
| | - Tomoyuki Kato
- Department of Urology, Yamagata City Hospital Saiseikan, Yamagata 990-8533, Japan;
| | - Kota Urano
- Department of Urology, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan; (K.U.); (T.Y.); (R.S.); (T.K.); (K.N.)
| | - Tomoya Yamada
- Department of Urology, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan; (K.U.); (T.Y.); (R.S.); (T.K.); (K.N.)
| | - Rie Sakagami
- Department of Urology, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan; (K.U.); (T.Y.); (R.S.); (T.K.); (K.N.)
| | - Takashi Kudo
- Department of Urology, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan; (K.U.); (T.Y.); (R.S.); (T.K.); (K.N.)
| | - Kenji Numahata
- Department of Urology, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan; (K.U.); (T.Y.); (R.S.); (T.K.); (K.N.)
| | - Isoji Sasagawa
- Department of Urology, Yamagata Tokushukai Hospital, Yamagata 990-0834, Japan; (S.H.); (K.H.); (I.S.)
| |
Collapse
|
21
|
Shi Y, Wang H, Golijanin B, Amin A, Lee J, Sikov M, Hyams E, Pareek G, Carneiro BA, Mega AE, Lagos GG, Wang L, Wang Z, Cheng L. Ductal, intraductal, and cribriform carcinoma of the prostate: Molecular characteristics and clinical management. Urol Oncol 2024; 42:144-154. [PMID: 38485644 DOI: 10.1016/j.urolonc.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 04/15/2024]
Abstract
Prostatic acinar adenocarcinoma accounts for approximately 95% of prostate cancer (CaP) cases. The remaining 5% of histologic subtypes of CaP are known to be more aggressive and have recently garnered substantial attention. These histologic subtypes - namely, prostatic ductal adenocarcinoma (PDA), intraductal carcinoma of the prostate (IDC-P), and cribriform carcinoma of the prostate (CC-P) - typically exhibit distinct growth characteristics, genomic features, and unique oncologic outcomes. For example, PTEN mutations, which cause uncontrolled cell growth, are frequently present in IDC-P and CC-P. Germline mutations in homologous DNA recombination repair (HRR) genes (e.g., BRCA1, BRCA2, ATM, PALB2, and CHEK2) are discovered in 40% of patients with IDC-P, while only 9% of patients without ductal involvement had a germline mutation. CC-P is associated with deletions in common tumor suppressor genes, including PTEN, TP53, NKX3-1, MAP3K7, RB1, and CHD1. Evidence suggests abiraterone may be superior to docetaxel as a first-line treatment for patients with IDC-P. To address these and other critical pathological attributes, this review examines the molecular pathology, genetics, treatments, and oncologic outcomes associated with CC-P, PDA, and IDC-P with the objective of creating a comprehensive resource with a centralized repository of information on PDA, IDC-P, and CC-P.
Collapse
Affiliation(s)
- Yibo Shi
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Hanzhang Wang
- Department of Pathology and Laboratory Medicine, UConn Health, Farmington, CT
| | - Borivoj Golijanin
- Department of Surgery (Urology), Warren Alpert Medical School of Brown University, Minimally Invasive Urology Institute, Providence, RI, USA
| | - Ali Amin
- Department of Pathology and Laboratory Medicine, Department of Surgery (Urology), Brown University Warren Alpert Medical School, Lifespan Health, and the Legorreta Cancer Center at Brown University, Providence, RI, USA
| | - Joanne Lee
- Department of Pathology and Laboratory Medicine, Department of Surgery (Urology), Brown University Warren Alpert Medical School, Lifespan Health, and the Legorreta Cancer Center at Brown University, Providence, RI, USA
| | - Mark Sikov
- Department of Internal Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence RI
| | - Elias Hyams
- Department of Surgery (Urology), Warren Alpert Medical School of Brown University, Minimally Invasive Urology Institute, Providence, RI, USA
| | - Gyan Pareek
- Department of Surgery (Urology), Warren Alpert Medical School of Brown University, Minimally Invasive Urology Institute, Providence, RI, USA
| | - Benedito A Carneiro
- Division of Hematology and Oncology, The Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI
| | - Anthony E Mega
- Division of Hematology and Oncology, The Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI
| | - Galina G Lagos
- Division of Hematology and Oncology, The Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI
| | - Lisha Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Zhiping Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Department of Surgery (Urology), Brown University Warren Alpert Medical School, Lifespan Health, and the Legorreta Cancer Center at Brown University, Providence, RI, USA.
| |
Collapse
|
22
|
Yue W, Li X, Zhan X, Wang L, Ma J, Bi M, Wang Q, Gu X, Xie B, Liu T, Guo H, Zhu X, Song C, Qiao J, Li M. PARP inhibitors suppress tumours via centrosome error-induced senescence independent of DNA damage response. EBioMedicine 2024; 103:105129. [PMID: 38640836 PMCID: PMC11052917 DOI: 10.1016/j.ebiom.2024.105129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Poly(ADP-ribose) polymerase (PARP) inhibitors have emerged as promising chemotherapeutic drugs primarily against BRCA1/2-associated tumours, known as synthetic lethality. However, recent clinical trials reported patients' survival benefits from PARP inhibitor treatments, irrelevant to homologous recombination deficiency. Therefore, revealing the therapeutic mechanism of PARP inhibitors beyond DNA damage repair is urgently needed, which can facilitate precision medicine. METHODS A CRISPR-based knock-in technology was used to establish stable BRCA1 mutant cancer cells. The effects of PARP inhibitors on BRCA1 mutant cancer cells were evaluated by biochemical and cell biological experiments. Finally, we validated its in vivo effects in xenograft and patient-derived xenograft (PDX) tumour mice. FINDINGS In this study, we uncovered that the majority of clinical BRCA1 mutations in breast cancers were in and near the middle of the gene, rather than in essential regions for DNA damage repair. Representative mutations such as R1085I and E1222Q caused transient extra spindle poles during mitosis in cancer cells. PAR, which is synthesized by PARP2 but not PARP1 at mitotic centrosomes, clustered these transient extra poles, independent of DNA damage response. Common PARP inhibitors could effectively suppress PARP2-synthesized PAR and induce cell senescence by abrogating the correction of mitotic extra-pole error. INTERPRETATION Our findings uncover an alternative mechanism by which PARP inhibitors efficiently suppress tumours, thereby pointing to a potential new therapeutic strategy for centrosome error-related tumours. FUNDING Funded by National Natural Science Foundation of China (NSFC) (T2225006, 82272948, 82103106), Beijing Municipal Natural Science Foundation (Key program Z220011), and the National Clinical Key Specialty Construction Program, P. R. China (2023).
Collapse
Affiliation(s)
- Wei Yue
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xinyu Li
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiaolu Zhan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Lei Wang
- Centre for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Peking-Tsinghua Centre for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jihong Ma
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Meiyu Bi
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Qilong Wang
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiaoyang Gu
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Tong Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Hongyan Guo
- National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xin Zhu
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Chen Song
- Centre for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Peking-Tsinghua Centre for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Mo Li
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
23
|
Gong J, Kim DM, Freeman MR, Kim H, Ellis L, Smith B, Theodorescu D, Posadas E, Figlin R, Bhowmick N, Freedland SJ. Genetic and biological drivers of prostate cancer disparities in Black men. Nat Rev Urol 2024; 21:274-289. [PMID: 37964070 DOI: 10.1038/s41585-023-00828-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 11/16/2023]
Abstract
Black men with prostate cancer have historically had worse outcomes than white men with prostate cancer. The causes of this disparity in outcomes are multi-factorial, but a potential basis is that prostate cancers in Black men are biologically distinct from prostate cancers in white men. Evidence suggests that genetic and ancestral factors, molecular pathways involving androgen and non-androgen receptor signalling, inflammation, epigenetics, the tumour microenvironment and tumour metabolism are contributing factors to the racial disparities observed. Key genetic and molecular pathways linked to prostate cancer risk and aggressiveness have potential clinical relevance. Describing biological drivers of prostate cancer disparities could inform efforts to improve outcomes for Black men with prostate cancer.
Collapse
Affiliation(s)
- Jun Gong
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Daniel M Kim
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hyung Kim
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leigh Ellis
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bethany Smith
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edwin Posadas
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robert Figlin
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Neil Bhowmick
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen J Freedland
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Section of Urology, Durham VA Medical Center, Durham, NC, USA
| |
Collapse
|
24
|
Saad F, Armstrong AJ, Oya M, Vianna K, Özgüroğlu M, Gedye C, Buchschacher GL, Lee JY, Emmenegger U, Navratil J, Virizuela JA, Salazar A, Maillet D, Uemura H, Kim J, Oscroft E, Barker L, Degboe A, Clarke NW. Tolerability of Olaparib Combined with Abiraterone in Patients with Metastatic Castration-resistant Prostate Cancer: Further Results from the Phase 3 PROpel Trial. Eur Urol Oncol 2024:S2588-9311(24)00082-8. [PMID: 38582650 DOI: 10.1016/j.euo.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/14/2024] [Accepted: 03/11/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND The PROpel study (NCT03732820) demonstrated a statistically significant progression-free survival benefit with olaparib plus abiraterone versus placebo plus abiraterone in the first-line metastatic castration-resistant prostate cancer (mCRPC) setting, irrespective of homologous recombination repair mutation status. OBJECTIVE We report additional safety analyses from PROpel to increase clinical understanding of the adverse-event (AE) profiles of olaparib plus abiraterone versus placebo plus abiraterone. DESIGN, SETTING, AND PARTICIPANTS A randomised (1:1), double-blind, placebo-controlled trial was conducted at 126 centres in 17 countries (October 2018-January 2020). Patients had mCRPC and no prior systemic mCRPC treatment. INTERVENTION Olaparib (300 mg bid) or placebo with abiraterone (1000 mg od) plus prednisone/prednisolone (5 mg bid). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The data cut-off date was July 30, 2021. Safety was assessed by AE reporting (Common Terminology Criteria for Adverse Events v4.03) and analysed descriptively. RESULTS AND LIMITATIONS The most common AEs (all grades) for olaparib plus abiraterone versus placebo plus abiraterone were anaemia (46.0% vs 16.4%), nausea (28.1% vs 12.6%), and fatigue (27.9% vs 18.9%). Grade ≥3 anaemia occurred in 15.1% versus 3.3% of patients in the olaparib plus abiraterone versus placebo plus abiraterone arm. The incidences of the most common AEs for olaparib plus abiraterone peaked early, within 2 mo, and were managed typically by dose modifications or standard medical practice. Overall, 13.8% versus 7.8% of patients discontinued treatment with olaparib plus abiraterone versus placebo plus abiraterone because of an AE; 3.8% versus 0.8% of patients discontinued because of anaemia. More venous thromboembolism events were observed in the olaparib plus abiraterone arm (any grade, 7.3%; grade ≥3, 6.8%) than in the placebo plus abiraterone arm (any grade, 3.3%; grade ≥3, 2.0%), most commonly pulmonary embolism (6.5% vs 1.8% for olaparib plus abiraterone vs placebo plus abiraterone). CONCLUSIONS Olaparib plus abiraterone has a manageable and predictable safety profile. PATIENT SUMMARY The PROpel trial showed that in patients who had not received any previous treatment for metastatic castration-resistant prostate cancer, olaparib combined with abiraterone was more effective in delaying progression of the disease than abiraterone alone. Most side effects caused by combining olaparib with abiraterone could be managed with supportive care methods, by pausing olaparib administration for a short period of time and/or by reducing the dose of olaparib.
Collapse
Affiliation(s)
- Fred Saad
- Centre Hospitalier de l'Université de Montréal/CRCHUM, Université de Montréal, Montreal, QC, Canada.
| | - Andrew J Armstrong
- Duke Cancer Institute Center for Prostate and Urologic Cancer, Duke University, Durham, NC, USA
| | | | - Karina Vianna
- Centro Integrado de Oncologia de Curitiba, Curitiba, Brazil
| | - Mustafa Özgüroğlu
- Istanbul University Cerrahpaşa, Faculty of Medicine, Istanbul, Türkiye
| | - Craig Gedye
- Calvary Mater Newcastle, Waratah, NSW, Australia
| | | | - Ji Youl Lee
- The Catholic University of Korea Seoul St Mary's Hospital, Seoul, South Korea
| | | | - Jiri Navratil
- Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | | | | | - Denis Maillet
- Centre Hospitalier Lyon Sud, Pierre-Bénite, France; Faculté de Médecine Jacques Lisfranc, Saint-Etienne, France
| | - Hiroji Uemura
- Yokohama City University Medical Center, Kanagawa, Japan
| | - Jeri Kim
- Merck & Co., Inc., Rahway, NJ, USA
| | | | | | | | - Noel W Clarke
- The Christie and Salford Royal Hospital NHS Foundation Trusts, and University of Manchester, Manchester, UK
| |
Collapse
|
25
|
Messina C, Giunta EF, Signori A, Rebuzzi SE, Banna GL, Maniam A, Buti S, Cattrini C, Fornarini G, Bauckneht M, Greystoke A, Plummer R, Oing C, Rescigno P. Combining PARP Inhibitors and Androgen Receptor Signalling Inhibitors in Metastatic Prostate Cancer: A Quantitative Synthesis and Meta-analysis. Eur Urol Oncol 2024; 7:179-188. [PMID: 37574390 DOI: 10.1016/j.euo.2023.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
CONTEXT PARP inhibitors (PARPi) are established treatments for metastatic castration-resistant prostate cancer (mCRPC) with homologous recombination repair (HRR) deficiency after androgen receptor signalling inhibitor (ARSI) failure. New PARPi + ARSI combinations have been tested in all comers, although their clinical relevance in HRR-proficient tumours remains uncertain. OBJECTIVE To quantitatively synthesise evidence from randomised trials assessing the efficacy and safety of PARPi + ARSI combinations for first-line treatment of mCRPC. EVIDENCE ACQUISITION We searched the PubMed, EMBASE, SCOPUS, and Cochrane Library databases up to February 28, 2023. Randomised controlled trials (RCTs) comparing PARPi + ARSI versus placebo + ARSI for first-line treatment of mCRPC were eligible. Two reviewers independently performed screening and data extraction and assessed the risk of bias, while a third reviewer evaluated the eligibility criteria. EVIDENCE SYNTHESIS Overall, three phase 3 RCTs were included in the systematic review: PROPEL, MAGNITUDE, and TALAPRO-2. A total of 2601 patients with mCRPC were enrolled. Two of these trials (PROPEL and TALAPRO-2) assessed the radiographic progression-free survival benefit of PARPi + ARSI for first-line treatment of mCRPC, independent of HRR status. The pooled hazard ratio was 0.62 (95% confidence interval 0.53-0.72). The pooled hazard ratio for overall survival was 0.84 (95% confidence interval 0.72-0.98), indicating a 16% reduction in the risk of death among patients who received the combination. CONCLUSIONS Results from this meta-analysis support the use of ARSI + PARPi combinations in biomarker-unselected mCRPC. However, such combinations might be less clinically relevant in HRR-proficient cancers, especially considering the change in treatment landscape for mCRPC. PATIENT SUMMARY We looked at outcomes from trials testing combinations of two classes of drugs (PARP inhibitors and ARSI) in advanced prostate cancer. We found that these combinations seem to work regardless of gene mutations identified as biomarkers of response to PARP inhibitors when used on their own.
Collapse
Affiliation(s)
| | | | - Alessio Signori
- Section of Biostatistics, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Sara Elena Rebuzzi
- Medical Oncology Unit, Ospedale San Paolo, Savona, Italy; Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Giuseppe Luigi Banna
- Department of Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth, UK; Faculty of Science and Health, School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Akash Maniam
- Department of Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Sebastiano Buti
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlo Cattrini
- SCDU Oncologia, AOU Maggiore della Carità, Novara, Italy
| | - Giuseppe Fornarini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Bauckneht
- Section of Biostatistics, Department of Health Sciences, University of Genoa, Genoa, Italy; Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alastair Greystoke
- Translational and Clinical Research Institute, Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Ruth Plummer
- Translational and Clinical Research Institute, Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Christoph Oing
- Translational and Clinical Research Institute, Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK; Mildred Scheel Cancer Career Centre HaTriCS4, University Cancer Centre Hamburg, University Medical Centre Eppendorf, Hamburg, Germany
| | - Pasquale Rescigno
- Translational and Clinical Research Institute, Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK; Candiolo Cancer Institute FPO-IRCCS, Candiolo, Italy.
| |
Collapse
|
26
|
Kwon WA. PARP Inhibitors in the Treatment of Prostate Cancer: From Scientific Rationale to Clinical Development. World J Mens Health 2024; 42:290-303. [PMID: 37853532 PMCID: PMC10949026 DOI: 10.5534/wjmh.230177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 10/20/2023] Open
Abstract
Prostate cancer (PC) treatment has reached a milestone with the introduction of poly(ADP-ribose) polymerase (PARP) inhibitors. PARP inhibitors (PARPi) induce breaks in single-stranded and/or double-stranded DNA, resulting in synthetic lethality in cancer cells lacking functional homologous recombination genes. Around 20% to 25% of patients with metastatic castration-resistant prostate cancer harbor mutations in DNA damage repair genes, either somatic or germline. The success of PARPi in these patients has prompted studies exploring its potential in tumors classified as "BRCAness," which refers to tumors without germline BRCA1 or BRCA2 mutations. Additionally, there is a proposed connection between androgen receptor signaling and synthetic lethality of PARPi. The inclusion of genetic mutation tests in the treatment algorithm for PC is a significant step towards precision and personalized medicine, marking a first in the field. The objectives of this review encompass understanding the mechanism of action of PARPi in both monotherapy and combination therapy, exploring patient selection criteria, discussing pivotal studies that led to its approval, and offering future prospects. However, numerous unanswered questions remain, including the identification of the patient population that could benefit most from PARPi, determining whether to use PARPi as monotherapy or in combination, and finding the optimal timing of PARPi administration in advanced or localized disease. To address these questions, several ongoing clinical trials are being conducted.
Collapse
Affiliation(s)
- Whi-An Kwon
- Department of Urology, Myongji Hospital, Hanyang University College of Medicine, Goyang, Korea.
| |
Collapse
|
27
|
Ditonno F, Bianchi A, Malandra S, Porcaro AB, Fantinel E, Negrelli R, Ferro M, Milella M, Brunelli M, Autorino R, Cerruto MA, Veccia A, Antonelli A. PARP Inhibitors in Metastatic Prostate Cancer: A Comprehensive Systematic Review and Meta-analysis of Existing Evidence. Clin Genitourin Cancer 2024; 22:402-412.e17. [PMID: 38281877 DOI: 10.1016/j.clgc.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/05/2023] [Accepted: 12/16/2023] [Indexed: 01/30/2024]
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPi) represent an option in selected cases of metastatic castration-resistant prostate cancer (mCRPC). The aim of the present systematic review and meta-analysis is to evaluate the efficacy and safety of approved (Olaparib, Rucaparib) and investigational (Talazoparib, Niraparib, Veliparib) PARPi in mCRPC patients. Three databases were queried for studies analyzing oncological outcomes and adverse events of mCRPC patients receiving PARPi. Primary outcome was a PSA decline ≥ 50% from baseline. Secondary outcomes were objective response rate, progression-free survival (PFS), radiological PFS, overall survival (OS), conversion of circulating tumor cell count, and time to PSA progression. The number and rate of any grade adverse events (AEs), grade ≥ 3 AEs, and most common grade ≥ 3 AEs were registered. A subanalysis of outcomes per mutation type, prospective trials, and studies adopting combination therapies was performed. Overall, 31 studies were included in this systematic review, 28 of which are available for meta-analysis. The most frequently investigated drug was Olaparib. The most frequent mutation was BRCA2. A PSA decline rate of 43% (95% CI 0.32-0.54) was observed in the overall population. Mean OS was 15.9 (95% CI 12.9-19.0) months. In BRCA2 patients, PSA decline rate was 66% (95% CI 0.57-0.7) and OS 23.4 months (95% CI 22.8-24.1). Half of the patients suffered from grade 3 and 4 AEs (0.50 [95% CI 0.39-0.60]). Most common AEs were hematological, the most frequent being anemia (21.5%). PARP inhibitors represent a viable option for mCRPC patients. Current evidence suggests an increased effectiveness in homologous recombination repair (HRR) gene mutation carriers, especially BRCA2.
Collapse
Affiliation(s)
- Francesco Ditonno
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata (AOUI) Verona, Verona, Italy; Department of Urology, Rush University, Chicago, IL, USA
| | - Alberto Bianchi
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata (AOUI) Verona, Verona, Italy
| | - Sarah Malandra
- Department of Surgery, Dentistry, Pediatrics and Ginecology, University of Verona, Azienda Ospedaliera Universitaria Integrata (AOUI) Verona, Verona, Italy
| | - Antonio Benito Porcaro
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata (AOUI) Verona, Verona, Italy
| | - Emanuela Fantinel
- Section of Oncology, Department of Medicine, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Riccardo Negrelli
- Department of Radiology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Matteo Ferro
- Department of Urology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Matteo Brunelli
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Italy
| | | | - Maria Angela Cerruto
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata (AOUI) Verona, Verona, Italy
| | - Alessandro Veccia
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata (AOUI) Verona, Verona, Italy.
| | - Alessandro Antonelli
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata (AOUI) Verona, Verona, Italy
| |
Collapse
|
28
|
Zaman N, Kushwah AS, Badriprasad A, Chakraborty G. Unravelling the molecular basis of PARP inhibitor resistance in prostate cancer with homologous recombination repair deficiency. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:257-301. [PMID: 39396849 DOI: 10.1016/bs.ircmb.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Prostate cancer is a disease with heterogeneous characteristics, making its treatability and curability dependent on the cancer's stage. While prostate cancer is often indolent, some cases can be aggressive and evolve into metastatic castration-resistant prostate cancer (mCRPC), which is lethal. A significant subset of individuals with mCRPC exhibit germline and somatic variants in components of the DNA damage repair (DDR) pathway. Recently, PARP inhibitors (PARPi) have shown promise in treating mCRPC patients who carry deleterious alterations in BRCA2 and 13 other DDR genes that are important for the homologous recombination repair (HRR) pathway. These inhibitors function by trapping PARP, resulting in impaired PARP activity and increased DNA damage, ultimately leading to cell death through synthetic lethality. However, the response to these inhibitors only lasts for 3-4 months, after which the cancer becomes PARPi resistant. Cancer cells can develop resistance to PARPi through numerous mechanisms, such as secondary reversion mutations in DNA repair pathway genes, heightened drug efflux, loss of PARP expression, HRR reactivation, replication fork stability, and upregulation of Wnt/Catenin and ABCB1 pathways. Overcoming PARPi resistance is a critical and complex process, and there are two possible ways to sensitize the resistance. The first approach is to potentiate the PARPi agents through chemo/radiotherapy and combination therapy, while the second approach entails targeting different signaling pathways. This review article highlights the latest evidence on the resistance mechanism of PARPi in lethal prostate cancer and discusses additional therapeutic opportunities available for prostate cancer patients with DDR gene alterations who do not respond to PARPi.
Collapse
Affiliation(s)
- Nabila Zaman
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Atar Singh Kushwah
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anagha Badriprasad
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Goutam Chakraborty
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
29
|
Frei K, Schecher S, Daher T, Hörner N, Richter J, Hildebrand U, Schindeldecker M, Witzel HR, Tsaur I, Porubsky S, Gaida MM, Roth W, Tagscherer KE. Inhibition of the Cyclin K-CDK12 complex induces DNA damage and increases the effect of androgen deprivation therapy in prostate cancer. Int J Cancer 2024; 154:1082-1096. [PMID: 37916780 DOI: 10.1002/ijc.34778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
Androgen deprivation therapy (ADT) is the mainstay of the current first-line treatment concepts for patients with advanced prostate carcinoma (PCa). However, due to treatment failure and recurrence investigation of new targeted therapeutics is urgently needed. In this study, we investigated the suitability of the Cyclin K-CDK12 complex as a novel therapeutic approach in PCa using the new covalent CDK12/13 inhibitor THZ531. Here we show that THZ531 impairs cellular proliferation, induces apoptosis, and decreases the expression of selected DNA repair genes in PCa cell lines, which is associated with an increasing extent of DNA damage. Furthermore, combination of THZ531 and ADT leads to an increase in these anti-tumoral effects in androgen-sensitive PCa cells. The anti-proliferative and pro-apoptotic activity of THZ531 in combination with ADT was validated in an ex vivo PCa tissue culture model. In a retrospective immunohistochemical analysis of 300 clinical tissue samples we show that Cyclin K (CycK) but not CDK12 expression correlates with a more aggressive type of PCa. In conclusion, this study demonstrates the clinical relevance of the CycK-CDK12 complex as a promising target for combinational therapy with ADT in PCa and its importance as a prognostic biomarker for patients with PCa.
Collapse
Affiliation(s)
- Katharina Frei
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sabrina Schecher
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tamas Daher
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nina Hörner
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jutta Richter
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ute Hildebrand
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mario Schindeldecker
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Tissue Biobank of the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hagen R Witzel
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Porubsky
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias M Gaida
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katrin E Tagscherer
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
30
|
Tao Y, Lu J, Li L, Lu L, Fu B, Zhang J, Zhang S, Ma R, Ma J, Sun J, Fu S, Liu S, Wang Z. Raltitrexed induces apoptosis through activating ROS-mediated ER stress by impeding HSPA8 expression in prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119684. [PMID: 38301906 DOI: 10.1016/j.bbamcr.2024.119684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/31/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
Prostate cancer is the most common malignant tumor in males, which frequently develops into castration-resistant prostate cancer (CRPC). CRPC metastasis is the main reason for its high mortality rate. At present, it lacks effective treatment for patients with CRPC. Raltitrexed (RTX) has been shown to be effective in the treatment of colorectal cancer. However, the effect of RTX on prostate cancer and the underlying mechanism remain unknown. In the current study, we found that RTX could dose-dependently inhibit proliferation, migration, colony formation and induce apoptosis in DU145 and PC-3 cells. RTX also increased ROS generation in prostate cancer cells. Pretreatment with N-acetyl-L-cysteine (NAC) significantly prevented RTX-induced cell apoptosis and endoplasmic reticulum (ER) stress signaling activation in prostate cancer cells. Additionally, we found RTX-induced ROS generation and ER stress activation depended on the expression of heat shock protein family A member 8 (HSPA8). Over-expression of HSPA8 could alleviate RTX-induced cell apoptosis, ROS generation and ER stress signaling activation. Finally, our study also showed that RTX attenuated the tumor growth of prostate cancer in the DU145 xenograft model and significantly downregulated HSPA8 expression and activated ER stress signaling pathway in tumor tissues. Our study is the first to reveal that RTX induces prostate cancer cells apoptosis through inhibiting the expression of HSPA8 and further inducing ROS-mediated ER stress pathway action. This study suggests that RTX may be a novel promising candidate drug for prostate cancer therapy.
Collapse
Affiliation(s)
- Yan Tao
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China; The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China
| | - Jianzhong Lu
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China; The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China
| | - Lanlan Li
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China; The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China
| | - Lanpeng Lu
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China
| | - Beitang Fu
- The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi 830000, China
| | - Jing Zhang
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China; The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China
| | - Shuni Zhang
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China
| | - Ruicong Ma
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China
| | - Jialong Ma
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China
| | - Jiaping Sun
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China
| | - Shengjun Fu
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China; The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China.
| | - Shanhui Liu
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China; The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China.
| | - Zhiping Wang
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China; The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
31
|
Han JY, Seo YE, Kwon JH, Kim JH, Kim MG. Cardioprotective Effects of PARP Inhibitors: A Re-Analysis of a Meta-Analysis and a Real-Word Data Analysis Using the FAERS Database. J Clin Med 2024; 13:1218. [PMID: 38592677 PMCID: PMC10932277 DOI: 10.3390/jcm13051218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 04/10/2024] Open
Abstract
Objective: This study aimed to assess the potential of PARP inhibitors to prevent cardiotoxicity. Methods: First, a re-analysis and update of a previously published study was conducted. Additional searches were conducted of the PubMed and Cochrane Central Register of Controlled Trials databases on 2 June 2023. After the selection process, the pooled odds ratio (OR) for cardiac adverse events (AEs) was calculated. Second, the FAERS database was examined for 10 frequently co-administered anticancer agents. The reporting odds ratio (ROR) was calculated based on the occurrence of cardiac AEs depending on the co-administration of PARP inhibitors. Results: Seven studies were selected for the meta-analysis. Although not statistically significant, co-administration of PARP inhibitors with chemotherapy/bevacizumab decreased the risk of cardiac AEs (Peto OR = 0.61; p = 0.36), while co-administration with antiandrogens increased the risk of cardiac AEs (Peto OR = 1.83; p = 0.18). A total of 19 cases of cardiac AEs were reported with co-administration of PARP inhibitors in the FAERS database. Co-administration of PARP inhibitors with chemotherapy/bevacizumab significantly decreased the risk of cardiac AEs (ROR = 0.352; 95% confidence interval (CI), 0.194-0.637). On the other hand, for antiandrogens co-administered with PARP inhibitors, the ROR was 3.496 (95% CI, 1.539-7.942). The ROR for immune checkpoint inhibitors co-administered with PARP inhibitors was 0.606 (95% CI, 0.151-2.432), indicating a non-significant effect on cardiac AEs. Conclusion: This study reports that PARP inhibitors show cardioprotective effects when used with conventional anticancer agents.
Collapse
Affiliation(s)
- Ja-Young Han
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Young-Eun Seo
- Graduate School of Clinical Biohealth, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Jae-Hee Kwon
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jae Hyun Kim
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Myeong Gyu Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
32
|
Longoria O, Beije N, de Bono JS. PARP inhibitors for prostate cancer. Semin Oncol 2024; 51:25-35. [PMID: 37783649 DOI: 10.1053/j.seminoncol.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have transformed the treatment landscape for patients with metastatic castration-resistant prostate cancer (mCRPC) and alterations in DNA damage response genes. This has also led to widespread use of genomic testing in all patients with mCRPC. The current review will give an overview of (1) the current understanding of the interplay between DNA damage response and PARP enzymes; (2) the clinical landscape of PARP inhibitors, including the combination of PARP inhibitors with other agents such as androgen-receptor signaling agents; (3) biomarkers related to PARP inhibitor response and resistance; and (4) considerations for interpreting genomic testing results and treating patients with PARP inhibitors.
Collapse
Affiliation(s)
- Ossian Longoria
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Nick Beije
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Johann S de Bono
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.
| |
Collapse
|
33
|
Zhang Y, Huang Z, Li K, Xie G, Feng Y, Wang Z, Li N, Liu R, Ding Y, Wang J, Yang J, Jia Z. TrkA promotes MDM2-mediated AGPS ubiquitination and degradation to trigger prostate cancer progression. J Exp Clin Cancer Res 2024; 43:16. [PMID: 38200609 PMCID: PMC10782585 DOI: 10.1186/s13046-023-02920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND As a novel necrosis manner, ferroptosis has been increasingly reported to play a role in tumor progression and treatment, however, the specific mechanisms underlying its development in prostate cancer remain unclear. Growing evidence showed that peroxisome plays a key role in ferroptosis. Herein, we identified a novel mechanism for the involvement of ferroptosis in prostate cancer progression, which may provide a new strategy for clinical treatment of prostate cancer. METHODS Label-Free Mass spectrometry was used to screen and identify candidate proteins after ferroptosis inducer-ML210 treatment. Immunohistochemistry was undertaken to explore the protein expression of AGPS in prostate cancer tissues compared with normal tissues. Co-immunoprecipitation and GST pull-down were used to identify the directly binding of AGPS to MDM2 in vivo and in vitro. CCK8 assay and colony formation assay were used to illustrate the key role of AGPS in the progression of prostate cancer in vitro. The xenograft model was established to verify the key role of AGPS in the progression of prostate cancer in vivo. RESULTS AGPS protein expression was downregulated in prostate cancer tissues compared with normal tissues from the first affiliated hospital of Zhengzhou University dataset. Lower expression was correlated with poorer overall survival of patients compared to those with high expression of AGPS. In addition, AGPS can promote ferroptosis by modulating the function of peroxisome-resulting in the lower survival of prostate cancer cells. Furthermore, it was shown that AGPS can be ubiquitinated and degraded by the E3 ligase-MDM2 through the proteasomal pathway. Meanwhile, kinase TrkA can promote the combination of AGPS and MDM2 by phosphorylating AGPS at Y451 site. It was verified that kinase TrkA inhibitor-Larotrectinib can increase the susceptibility of prostate cancer cells to ferroptosis, which leads to the inhibition of prostate cancer proliferation to a great extent in vitro and in vivo. CONCLUSION Based on these findings, we proposed the combination of ferroptosis inducer and TrkA inhibitor to synergistically exert anti-tumor effects, which may provide a new strategy for the clinical treatment of prostate cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhenlin Huang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Keqiang Li
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, China
| | - Guoqing Xie
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, China
| | - Yuankang Feng
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zihao Wang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ningyang Li
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ruoyang Liu
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yinghui Ding
- Department of Otorhinolaryngology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jun Wang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Jinjian Yang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhankui Jia
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
34
|
Bourlon MT, Valdez P, Castro E. Development of PARP inhibitors in advanced prostate cancer. Ther Adv Med Oncol 2024; 16:17588359231221337. [PMID: 38205078 PMCID: PMC10777773 DOI: 10.1177/17588359231221337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
The relatively high prevalence of alterations in the homologous recombination repair (HRR) pathway described in advanced prostate cancer provides a unique opportunity to develop therapeutic strategies that take advantage of the decreased tumor ability to repair DNA damage. Poly ADP-ribose polymerase (PARP) inhibitors have been demonstrated to improve the outcomes of metastatic castration-resistant prostate cancer (mCRPC) patients with HRR defects, particularly in those with BRCA1/2 alterations. To expand the benefit of PARPi to patients without detectable HRR alterations, multiple studies are addressing potential synergies between PARP inhibition (PARPi) and androgen receptor pathway inhibitors (ARSi), radiation, radioligand therapy, chemotherapy, or immunotherapy, and these strategies are also being evaluated in the hormone-sensitive setting. In this review, we summarize the development of PARPi in prostate cancer, the potential synergies, and combinations being investigated as well as the future directions of PARPi for the management of the disease.
Collapse
Affiliation(s)
- Maria Teresa Bourlon
- Hemato-Oncology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Paola Valdez
- Hemato-Oncology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Elena Castro
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Av. Cordoba s/n, 28041, Madrid, Spain
| |
Collapse
|
35
|
Hong X, Zhang Y, Chi Z, Xu Q, Lin W, Huang Y, Lin T, Zhang Y. Efficacy and Safety of Programmed Death-1 (PD-1)/Programmed Death-Ligand 1 (PD-L1) Checkpoint Inhibitors in Patients With Metastatic Castration-resistant Prostate Cancer: A Systematic Review and Meta-analysis. Clin Oncol (R Coll Radiol) 2024; 36:e20-e30. [PMID: 37993317 DOI: 10.1016/j.clon.2023.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/14/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
AIMS The aim of this systematic review with meta-analysis was to evaluate the efficacy and safety of programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) checkpoint inhibitors in patients with metastatic castration-resistant prostate cancer (mCRPC). MATERIALS AND METHODS We searched PubMed, Embase and Cochrane Library until 1 July 2022 for mCRPC trials testing PD-1/PD-L1 checkpoint inhibitors. We measured the efficacy and safety using overall survival, progression-free survival (PFS), overall response rates (ORR), prostate-specific antigen (PSA) response rate or treatment-related adverse events (TRAEs). When possible, data were meta-analysed. RESULTS Thirteen studies involving 2533 participants were included in this meta-analysis. The pooled hazard ratio for overall survival was 0.81 (95% confidence interval 0.42-1.20, I2 = 80.3%, PHeterogeneity<0.001) and for PFS was 0.65 (95% confidence interval 0.38-0.92, I2 = 72.2%, PHeterogeneity = 0.013). Furthermore, better ORR (relative risk = 2.77, 95% confidence interval 1.25-6.13, I2 = 0%, PHeterogeneity = 0.699) was found in PD-L1-expressing tumours. However, no statistical trends between PD-L1 status on PSA response rate (relative risk = 0.79, 95% confidence interval 0.5-1.25, I2 = 0%, PHeterogeneity = 0.953) and tumour mutational burden on ORR (relative risk = 2.53, 95% confidence interval 0.49-13.12, I2 = 74.5%, PHeterogeneity = 0.02) were observed. The pooled proportions of TRAEs and ≥ grade 3 TRAEs were 85.1% (95% confidence interval = 71.7-98.5%) and 31.6% (95% confidence interval = 18.9-44.4%), respectively. CONCLUSIONS This meta-analysis showed that among selected populations of men with mCRPC, anti-PD-1/PD-L1 combination treatment may significantly increase the PFS benefits. However, overall survival in mCRPC warrants further testing.
Collapse
Affiliation(s)
- X Hong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Department of Urology, Shantou Central Hospital, Shantou, PR China
| | - Y Zhang
- Department of Urology, Shantou Central Hospital, Shantou, PR China
| | - Z Chi
- Department of Urology, Shantou Central Hospital, Shantou, PR China
| | - Q Xu
- Department of Urology, Shantou Central Hospital, Shantou, PR China
| | - W Lin
- Department of Urology, Shantou Central Hospital, Shantou, PR China
| | - Y Huang
- Department of Urology, Shantou Central Hospital, Shantou, PR China
| | - T Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China.
| | - Y Zhang
- Department of Urology, Shantou Central Hospital, Shantou, PR China.
| |
Collapse
|
36
|
Khan S, Baligar P, Tandon C, Nayyar J, Tandon S. Molecular heterogeneity in prostate cancer and the role of targeted therapy. Life Sci 2024; 336:122270. [PMID: 37979833 DOI: 10.1016/j.lfs.2023.122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Data collected from large-scale studies has shown that the incidence of prostate cancer globally is on the rise, which could be attributed to an overall increase in lifespan. So, the question is how has modern science with all its new technologies and clinical breakthroughs mitigated or managed this disease? The answer is not a simple one as prostate cancer exhibits various subtypes, each with its unique characteristics or signatures which creates challenges in treatment. To understand the complexity of prostate cancer these signatures must be deciphered. Molecular studies of prostate cancer samples have identified certain genetic and epigenetic alterations, which are instrumental in tumorigenesis. Some of these candidates include the androgen receptor (AR), various oncogenes, tumor suppressor genes, and the tumor microenvironment, which serve as major drivers that lead to cancer progression. These aberrant genes and their products can give an insight into prostate cancer development and progression by acting as potent markers to guide future therapeutic approaches. Thus, understanding the complexity of prostate cancer is crucial for targeting specific markers and tailoring treatments accordingly.
Collapse
Affiliation(s)
- Sabiha Khan
- Amity Institute of Molecular Medicine, Amity University Uttar Pradesh, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine, Amity University Uttar Pradesh, India
| | - Chanderdeep Tandon
- Amity School of Biological Sciences, Amity University Punjab, Mohali, India
| | - Jasamrit Nayyar
- Department of Chemistry, Goswami Ganesh Dutt Sanatan Dharam College, Chandigarh, India
| | - Simran Tandon
- Amity School of Health Sciences, Amity University Punjab, Mohali, India.
| |
Collapse
|
37
|
Maiorano BA, De Giorgi U, Verzoni E, Maiello E, Procopio G, Conteduca V, Di Maio M. Hematological Toxicity of PARP Inhibitors in Metastatic Prostate Cancer Patients with Mutations of BRCA or HRR Genes: A Systematic Review and Safety Meta-analysis. Target Oncol 2024; 19:1-11. [PMID: 37993604 PMCID: PMC10830661 DOI: 10.1007/s11523-023-01016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND PARP inhibitors (PARPis) are effective treatment options for patients with metastatic castration-resistant prostate cancer (mCRPC) as single agents or in combination with androgen receptor-targeted agents (ARTA). However, a clinically relevant adverse effect of these agents is hematological toxicity, a typical class adverse event (AE), which can lead to treatment modifications and discontinuations. OBJECTIVE We aimed to analyze the risk of hematological AEs, including anemia, neutropenia, and thrombocytopenia secondary to PARPi treatments in mCRPC. PATIENTS AND METHODS This systematic review and meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. We systematically searched the PubMed, EMBASE, and Cochrane databases, the American Society of Clinical Oncology (ASCO), and the European Society of Medical Oncology (ESMO) meeting abstracts for clinical trials concerning the use of PARPis, both as single agents and in combination, in patients with mCRPC. The search deadline was 30 June, 2023. We analyzed the pooled incidence of all grades of and ≥ G3 anemia, neutropenia, and thrombocytopenia. We subsequently calculated risk ratios (RRs) for all grades of and ≥ G3 AEs of PARPis versus non-PARPis from randomized clinical trials (RCTs). RESULTS Eleven phase 2/3 trials with olaparib, niraparib, rucaparib, and talazoparib administered as single agents or combined with ARTA were selected. Anemia was the most common all grades (38.6%) and ≥ G3 AE (24.9%). In the analysis of relative risk, six RCTs were included. The administration of PARPis significantly increased the risk of developing all grades of anemia (RR = 2.44), neutropenia (RR = 3.15), and thrombocytopenia (RR = 4.66) compared with non-PARPis. Similarly, a significant increase in the risk of ≥ G3 anemia (RR = 5.73) and thrombocytopenia (RR = 5.44), and a not significant increased risk of neutropenia (RR = 3.41), were detected. CONCLUSIONS In mCRPC, PARPis increase the risk of hematological toxicity compared with other treatments, both as single agents or combined with ARTA (high-quality evidence). Clinicians should be aware of this risk and the correct management, especially with the expected increased PARPis use in mCRPC.
Collapse
Affiliation(s)
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Elena Verzoni
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Evaristo Maiello
- Oncology Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Giuseppe Procopio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Vincenza Conteduca
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Massimo Di Maio
- Division of Medical Oncology, Department of Oncology, University of Turin, Turin, Italy
| |
Collapse
|
38
|
Calabrese M, Saporita I, Turco F, Gillessen S, Castro E, Vogl UM, Di Stefano RF, Carfì FM, Poletto S, Farinea G, Tucci M, Buttigliero C. Synthetic Lethality by Co-Inhibition of Androgen Receptor and Polyadenosine Diphosphate-Ribose in Metastatic Prostate Cancer. Int J Mol Sci 2023; 25:78. [PMID: 38203248 PMCID: PMC10779404 DOI: 10.3390/ijms25010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Androgen receptor pathway inhibitors (ARPI) and polyadenosine diphosphate-ribose inhibitors (PARPi) are part of the standard of care in patients with metastatic castration-resistant prostate cancer (mCRPC). There is biological evidence that the association of ARPI and PARPi could have a synergistic effect; therefore, several ongoing clinical trials are investigating the efficacy of this combination with preliminary results that are not perfectly concordant in identifying patients who can obtain the most benefit from this therapeutic option. The purpose of this review is to describe the PARPi mechanisms of action and to analyze the biological mechanisms behind the interplay between the androgen receptor and the PARPi system to better understand the rationale of the ARPI + PARPi combinations. Furthermore, we will summarize the preliminary results of the ongoing studies on these combinations, trying to understand in which patients to apply. Finally, we will discuss the clinical implications of this combination and its possible future perspectives.
Collapse
Affiliation(s)
- Mariangela Calabrese
- Department of Oncology, University of Turin, AOU San Luigi Gonzaga, 10043 Orbassano, Italy; (M.C.); (I.S.); (F.T.); (R.F.D.S.); (F.M.C.); (S.P.); (G.F.)
| | - Isabella Saporita
- Department of Oncology, University of Turin, AOU San Luigi Gonzaga, 10043 Orbassano, Italy; (M.C.); (I.S.); (F.T.); (R.F.D.S.); (F.M.C.); (S.P.); (G.F.)
| | - Fabio Turco
- Department of Oncology, University of Turin, AOU San Luigi Gonzaga, 10043 Orbassano, Italy; (M.C.); (I.S.); (F.T.); (R.F.D.S.); (F.M.C.); (S.P.); (G.F.)
- Ente Ospedaliero Cantonale—Istituto Oncologico della Svizzera Italiana, 6500 Bellinzona, Switzerland; (S.G.); (U.M.V.)
| | - Silke Gillessen
- Ente Ospedaliero Cantonale—Istituto Oncologico della Svizzera Italiana, 6500 Bellinzona, Switzerland; (S.G.); (U.M.V.)
- Department of Medical Oncology, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Elena Castro
- Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | - Ursula Maria Vogl
- Ente Ospedaliero Cantonale—Istituto Oncologico della Svizzera Italiana, 6500 Bellinzona, Switzerland; (S.G.); (U.M.V.)
| | - Rosario Francesco Di Stefano
- Department of Oncology, University of Turin, AOU San Luigi Gonzaga, 10043 Orbassano, Italy; (M.C.); (I.S.); (F.T.); (R.F.D.S.); (F.M.C.); (S.P.); (G.F.)
| | - Federica Maria Carfì
- Department of Oncology, University of Turin, AOU San Luigi Gonzaga, 10043 Orbassano, Italy; (M.C.); (I.S.); (F.T.); (R.F.D.S.); (F.M.C.); (S.P.); (G.F.)
| | - Stefano Poletto
- Department of Oncology, University of Turin, AOU San Luigi Gonzaga, 10043 Orbassano, Italy; (M.C.); (I.S.); (F.T.); (R.F.D.S.); (F.M.C.); (S.P.); (G.F.)
| | - Giovanni Farinea
- Department of Oncology, University of Turin, AOU San Luigi Gonzaga, 10043 Orbassano, Italy; (M.C.); (I.S.); (F.T.); (R.F.D.S.); (F.M.C.); (S.P.); (G.F.)
| | - Marcello Tucci
- Department of Medical Oncology, Cardinal Massaia Hospital, 14100 Asti, Italy;
| | - Consuelo Buttigliero
- Department of Oncology, University of Turin, AOU San Luigi Gonzaga, 10043 Orbassano, Italy; (M.C.); (I.S.); (F.T.); (R.F.D.S.); (F.M.C.); (S.P.); (G.F.)
| |
Collapse
|
39
|
Chao Z, Wang Z, Li L, Jiang Y, Tang Y, Wang Y, Hao X, Zhang C, Guo X, Yu W, Cheng F, Wang Z. Poly (ADP-ribose) Polymerase Inhibitors in Patients with Metastatic Castration-Resistant Prostate Cancer: A Meta-Analysis of Randomized Controlled Trials. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2198. [PMID: 38138301 PMCID: PMC10744677 DOI: 10.3390/medicina59122198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Context: Several recent randomized controlled trials (RCTs) have reported on the survival benefits of poly (ADP-ribose) polymerase inhibitors (PARPi) compared to standard-of-care (SOC) treatment (enzalutamide, abiraterone, or docetaxel) in patients with metastatic castration-resistant prostate cancer (mCRPC). However, there is a limited integrated analysis of high-quality evidence comparing the efficacy and safety of PARPi and SOC treatments in this context. Objective: This study aims to comprehensively analyze the survival benefits and adverse events associated with PARPi and SOC treatments through a head-to-head meta-analysis in mCRPC. Evidence acquisition: A systematic review search was conducted in PubMed, Embase, Clinical trials, and the Central Cochrane Registry in July 2023. RCTs were assessed following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. The systematic review was prospectively registered on PROSPERO (CRD42023441034). Evidence synthesis: A total of 8 studies, encompassing 2341 cases in the PARPi treatment arm and 1810 cases in the controlled arm, were included in the qualitative synthesis. The hazard ratio (HR) for radiographic progression-free survival (rPFS) and overall survival (OS) were 0.74 (95% CI, 0.61-0.90) and 0.89 (95% CI, 0.80-0.99), respectively, in the intention-to-treatment patients. For subgroup analysis, HRs for rPFS and OS in the BRCA-mutated subgroup were 0.39 (95% CI, 0.28-0.55) and 0.62 (95% CI, 0.38-0.99), while in the HRR-mutated subgroup, HR for rPFS was 0.57 (95% CI, 0.48-0.69) and for OS was 0.77 (95% CI, 0.64-0.93). The odds ratio (OR) for all grades of adverse events (AEs) and AEs with severity of at least grade 3 were 3.86 (95% CI, 2.53-5.90) and 2.30 (95% CI, 1.63-3.26), respectively. Conclusions: PARP inhibitors demonstrate greater effectiveness than SOC treatments in HRR/BRCA-positive patients with mCRPC. Further research is required to explore ways to reduce adverse event rates and investigate the efficacy of HRR/BRCA-negative patients.
Collapse
Affiliation(s)
- Zheng Chao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.)
| | - Zefeng Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430030, China
| | - Le Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.)
| | - Yi Jiang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yunxing Tang
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing 100034, China
| | - Yanan Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.)
| | - Xiaodong Hao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.)
| | - Chunyu Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.)
| | - Xiangdong Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.)
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430030, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430030, China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.)
| |
Collapse
|
40
|
Yang J, Xiong X, Zheng W, Liao X, Xu H, Yang L, Wei Q. Combining Novel Hormonal Therapies with a Poly (ADP-Ribose) Polymerase Inhibitor for Metastatic Castration-Resistant Prostate Cancer: Emerging Evidence. Curr Oncol 2023; 30:10311-10324. [PMID: 38132385 PMCID: PMC10742907 DOI: 10.3390/curroncol30120751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
Preclinical and clinical studies have suggested potential synergies of combining poly (ADP-ribose) polymerase (PARP) inhibitors and novel hormonal therapies (NHT) for patients with metastatic castration-resistant prostate cancer (mCRPC). We systematically searched PubMed, ClinicalTrials.gov and ASCO-GU annual meeting abstracts up to March 2023 to identify potential phase III trials reporting the use of combining PARP inhibitors with NHT in the first-line setting for mCRPC. A total of four phase III trials met the criteria for subsequent review. Emerging data suggested that the radiographic progression-free survival (rPFS) was significantly longer in the PARP inhibitor combined with NHT group versus the placebo plus NHT group for the first-line setting of biomarker-unselected mCRPC patients, especially for patients with homologous recombination repair (HRR) mutation (HRR m), and with the greatest benefit for BRCA1/2 mutation (BRCA1/2 m) populations. Final overall survival (OS) data of the PROpel trial indicated a significant improvement in median OS for mCRPC patients with HRR m and BRCA1/2 m receiving olaparib + abiraterone. Prior taxane-based chemotherapy might not influence the efficacy of the combination. Compared with the current standard-of-care therapies, combining NHT with PARP inhibitors could achieve a significant survival benefit in the first-line setting for mCRPC patients with HRR and BRCA1/2 mutations.
Collapse
Affiliation(s)
| | | | | | | | | | - Lu Yang
- Department of Urology, Institute of Urology, Center of Biomedical Big Data and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, Center of Biomedical Big Data and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
41
|
Akbıyık I, Ürün Y. Determining magnitude of benefit from poly(ADP-ribose) polymerase inhibitors in prostate cancer. Future Oncol 2023; 19:2585-2591. [PMID: 38073492 DOI: 10.2217/fon-2023-0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
The treatment landscape for castration-resistant prostate cancer (mCRPC) is undergoing significant advancements, particularly with the emergence of poly(ADP-ribose) polymerase inhibitors and their recent US FDA authorizations. The combination of olaparib with abiraterone and prednisone/prednisolone has gained approval for mCRPC patients harboring confirmed BRCA mutations. Subsequently, talazoparib in combination with enzalutamide was approved for patients with mutations in homologous recombination repair genes. Nevertheless, emerging evidence suggests that these treatments may confer benefits irrespective of specific biomarkers. While the understanding of biomarkers in therapy selection for mCRPC is expanding, further data are warranted to provide comprehensive elucidation for guiding clinical practice.
Collapse
Affiliation(s)
- Ilgın Akbıyık
- Department of Medical Oncology, Ankara University School of Medicine, Ankara, Turkey
- Ankara University Cancer Research Institute, Ankara, Turkey
| | - Yüksel Ürün
- Department of Medical Oncology, Ankara University School of Medicine, Ankara, Turkey
- Ankara University Cancer Research Institute, Ankara, Turkey
| |
Collapse
|
42
|
Sayyid RK, Klaassen Z, Berlin A, Roy S, Brandão LR, Bernardino R, Chavarriaga J, Jiang DM, Spratt DE, Fleshner NE, Wallis CJD. Poly(adenosine diphosphate-ribose) polymerase inhibitor combinations in first-line metastatic castrate-resistant prostate cancer setting: a systematic review and meta-analysis. BJU Int 2023; 132:619-630. [PMID: 37461140 DOI: 10.1111/bju.16130] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
OBJECTIVES To compare radiographic progression-free survival (rPFS), overall survival (OS), and treatment-emergent adverse events (TEAEs) among patients with metastatic castrate-resistant prostate cancer (mCRPC) receiving a combination of first-line poly(adenosine diphosphate-ribose) polymerase inhibitors (PARPi) plus androgen receptor axis-targeted agents (ARAT) vs placebo/ARAT. MATERIALS AND METHODS We conducted a systematic review/meta-analysis of all published Phase III randomised controlled trials using EMBASE, MEDLINE, and Cochrane (inception until 6 June 2023). Published full-text manuscripts and conference abstracts were inclusion eligible. Study selection/data extraction were independently performed by two authors. The Cochrane Risk-of-Bias 2 Tool was used, and certainty of evidence assessed using the Grading of Recommendations, Assessment, Development, and Evaluations framework. Pooled hazard ratios (HRs) and relative risks, with corresponding confidence intervals (CIs), were generated using random-effects models. RESULTS Three trials were identified: PROpel, MAGNITUDE, and TALAPRO-2. Compared to placebo/ARAT, the PARPi/ARAT combination was associated with a 35% rPFS improvement in the overall cohort (HR 0.65, 95% CI 0.56-0.76), with 68%, 45%, and 26% improvements in the BReast CAncer gene 1/gene 2 (BRCA1/2)-mutated (BRCA1/2m; P < 0.001), homologous recombination repair-mutated (HRRm; P < 0.001), and non-HRRm cohorts (P = 0.003), respectively. OS data maturity ranged from 31% to 48%, with overall cohort OS data unavailable from MAGNITUDE. The PROpel/TALAPRO-2 pooled analysis demonstrated a 16% OS improvement in the overall cohort (HR 0.84, 95 CI 0.72-0.98; P = 0.02). OS in the HRRm (HR 0.76, 95% CI 0.61-0.95) and the BRCA1/2m cohorts (HR 0.53, 95% CI 0.18-1.56) were improved, with a higher effect magnitude compared to the overall cohort. This combination was associated with a 45% relative risk increase in Grade ≥3 TEAEs, including 6.22-fold for Grade ≥3 anaemia (31.9% vs 4.9%). CONCLUSIONS The addition of PARPi to ARAT in the first-line mCRPC setting is associated with rPFS benefits across subgroups, with the greatest magnitude of benefit in BRCA1/2m patients. OS benefits remain inconsistent irrespective of HRRm status, with significant increases in Grade ≥3 TEAEs, particularly anaemia. Currently, we suggest this combined approach be selectively offered to HRRm patients, preferentially BRCA1/2m.
Collapse
Affiliation(s)
- Rashid K Sayyid
- Division of Urologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Zachary Klaassen
- Section of Urology, Department of Surgery, Augusta University, Augusta, GA, USA
| | - Alejandro Berlin
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Soumyajit Roy
- Department of Radiation Oncology, Rush University Medical Center, Chicago, IL, USA
| | | | - Rui Bernardino
- Division of Urologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Julian Chavarriaga
- Division of Urologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Di Maria Jiang
- Division of Medical Oncology, Department of Medicine, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals, Case Western Reserve University, Cleveland, OH, USA
| | - Neil E Fleshner
- Division of Urologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Christopher J D Wallis
- Division of Urologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Surgery, Urology, Mount Sinai Health System, Toronto, ON, Canada
| |
Collapse
|
43
|
Warli SM, Velaro AJ, Firsty NN, Tala ZZ. Addition of Olaparib to the New Hormonal Agent Regimen for Metastatic Castration-Resistant Prostate Cancer: A Systematic Review and Meta-Analysis. World J Oncol 2023; 14:518-528. [PMID: 38022404 PMCID: PMC10681786 DOI: 10.14740/wjon1685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background The emergence of olaparib, a poly (adenosine diphosphate (ADP)-ribose) polymerase (PARP) inhibitor to treat metastatic castration-resistant prostate cancer (mCRPC), created a measurable clinical question on whether the agent positively influences the treatment outcomes and acceptable safety factors. The objective was to elaborate on the efficacy and safety of olaparib-added regimens in treating mCRPC patients as compared to the established guideline. Methods The literature search was performed on several scientific databases, e.g., PubMed, Cochrane, and ScienceDirect, by applying the Boolean Term method. Statistical and risk of bias (RoB) analyses were calculated through RevMan 5.4.1. to investigate our outcomes, i.e., progression-free survival (PFS) and overall survival (OS) with the reported adverse effects (AEs). These outcomes were presented in hazard ratio (HR) and risk ratio (RR). Results Three trials consisting of 1,325 individuals with comparable baseline characteristics were investigated. The meta-analysis showed that introducing olaparib into the regimens significantly improved the PFS (HR 0.59 (0.48 - 0.73); P < 0.05), which disclosed even better outcomes among mutated homologous recombinant repair (HRR) and ataxia-telangiectasia mutated (ATM) gene (HR 0.43 (0.30 - 0.62); P < 0.05) in 95% confidence interval (CI). Furthermore, similar outcomes were observed in OS analysis (HR 0.81 (0.67 - 0.99); P < 0.05), despite olaparib group disclosed higher AEs rate with insignificant difference in mortality rate. Conclusion The efficacy and safety of olaparib-added regimens in mCRPC patients need to be explored more extensively in trials because they are beneficial, particularly among HRR-mutated individuals.
Collapse
Affiliation(s)
- Syah Mirsya Warli
- Department of Urology, Universitas Sumatera Utara Hospital, Universitas Sumatera Utara, Medan, Indonesia
- Division of Urology, Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara-Haji Adam Malik General Hospital, Medan, Indonesia
| | - Adrian Joshua Velaro
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Naufal Nandita Firsty
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | | |
Collapse
|
44
|
Maiorano BA, Conteduca V, Catalano M, Antonuzzo L, Maiello E, De Giorgi U, Roviello G. Personalized medicine for metastatic prostate cancer: The paradigm of PARP inhibitors. Crit Rev Oncol Hematol 2023; 192:104157. [PMID: 37863403 DOI: 10.1016/j.critrevonc.2023.104157] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023] Open
Abstract
Despite remarkable progress in the last decade, metastatic prostate cancer (mPCa) remains incurable. The approval of PARP inhibitors (PARPis) represents a milestone in this field, which definitively enters the era of precision medicine, as mPCa is often enriched for defects of homologous recombination repair genes. PARPis are now used as single agents for patients with metastatic castration-resistant PCa. Moreover, combinations of PARPis plus androgen-receptor targeted agents and immune checkpoint inhibitors, and earlier applications of PARPis in the metastatic hormone-sensitive PCa are under evaluation, representing the possible upcoming applications of these agents. Mechanisms of sensitization and resistance have been only partially elucidated. In our review, we summarize the current clinical evidence regarding PARPis in mPCa and the future directions of these targeted agents.
Collapse
Affiliation(s)
- Brigida Anna Maiorano
- Oncology Unit, IRCCS Foundation Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy.
| | - Vincenza Conteduca
- Department of Medical and Surgical Sciences, Unit of Medical Oncology and Biomolecular Therapy, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Martina Catalano
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Lorenzo Antonuzzo
- Clinical Oncology Unit, and Medical Oncology Unit, Careggi University Hospital, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy, and Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Evaristo Maiello
- Oncology Unit, IRCCS Foundation Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Ugo De Giorgi
- Department of Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | |
Collapse
|
45
|
Iannantuono GM, Chandran E, Floudas CS, Choo-Wosoba H, Butera G, Roselli M, Gulley JL, Karzai F. Efficacy and safety of PARP inhibitors in metastatic castration-resistant prostate cancer: A systematic review and meta-analysis of clinical trials. Cancer Treat Rev 2023; 120:102623. [PMID: 37716332 PMCID: PMC10591840 DOI: 10.1016/j.ctrv.2023.102623] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
INTRODUCTION PARP inhibitors (PARPi) are a standard-of-care (SoC) treatment option for patients with metastatic castration-resistant prostate cancer (mCRPC). Several clinical trials have shown the potential of combining PARPi with other anticancer agents. Therefore, we conducted a systematic review and meta-analysis to comprehensively evaluate the efficacy and safety of PARPi in patients with metastatic prostate cancer. METHODS MEDLINE, Cochrane CENTRAL, EMBASE, CINAHL, and Web of Science were searched on March 22nd, 2023, for phase 2 or 3 clinical trials. Efficacy (progression-free survival [PFS], overall survival [OS], PSA decline >50% [PSA50], and objective response rate [ORR]) and safety outcomes were assessed in the included studies. RESULTS Seventeen clinical trials (PARPi monotherapy [n = 7], PARPi + androgen-receptor signaling inhibitors [ARSI] [n = 6], and PARPi + immune checkpoint inhibitors [ICI] [n = 4]) were included in the quantitative analyses. PARPi monotherapy improved radiographic PFS and OS over SoC in mCRPC patients with alterations in BRCA1 or BRCA2 genes but not in those with alterations in the ATM gene. Higher rates of PSA50 and ORR were reported in participants treated with PARPi + ARSI than in single-agent PARPi or PARPi + ICI. Although the rate of high-grade adverse events was similar across all groups, treatment discontinuation was higher in patients treated with PARPi-based combinations than PARPi monotherapy. CONCLUSION The efficacy of PARPi is not uniform across mCRPC patients with alterations in DNA damage repair genes, and optimal patient selection remains a clinical challenge. No unexpected safety signals for this class of agents emerged from this analysis.
Collapse
Affiliation(s)
- Giovanni Maria Iannantuono
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States; Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Elias Chandran
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Charalampos S Floudas
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Hyoyoung Choo-Wosoba
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Gisela Butera
- Division of Library Services, Office of Research Services, National Institutes of Health, Bethesda, MD, United States
| | - Mario Roselli
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - James L Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Fatima Karzai
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
46
|
Chen X, Pan Y, Wang Q, Ren C, Li M, Hao X, Xie L, Liu X. Comparative efficacy of olaparib in combination with or without novel antiandrogens for treating metastatic castration-resistant prostate cancer. Front Endocrinol (Lausanne) 2023; 14:1225033. [PMID: 38027160 PMCID: PMC10644304 DOI: 10.3389/fendo.2023.1225033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Studies using novel antiandrogens (NAA) in patients with metastatic castration-resistant prostate cancer (mCRPC) have shown overall survival benefit. As patients develop resistance to NAA therapy, the poly(ADP-ribose) polymerase inhibitor (PARPi) olaparib in combination with NAA may become a promising therapy. However the overall benefit of olaparib monotherapy or combination therapy still needs to be evaluated. Therefore, we performed a network meta-analysis to assess the efficacy and toxicity between olaparib, olaparib combined with abiraterone and NAA. Methods We searched PubMed, EMBASE, the Cochrane Library and American Society of Clinical Oncology (ASCO) University Meeting abstracts for randomized controlled trials reporting olaparib and NAA from 2010 up to March, 2023. Network meta-analysis using Stata 16.0 and R 4.4.2, hazard ratios (HR) with 95% confidence intervals (CI) were used to assess the results. Results Four trials reported olaparib, olaparib plus abiraterone and apalutamide plus abiraterone. radiographic progression-free survival (rPFS) was significantly lower in patients on apalutamide plus abiraterone compared to olaparib (HR, 1.43; 95% CI, 1.06-1.93). rPFS was similar for olaparib plus abiraterone and olaparib (HR, 1.35; 95% CI, 0.99-1.84); likewise, olaparib plus abiraterone and apalutamide plus abiraterone were similar (HR, 1.06; 95% CI, 0.83-1.35). In addition, there was no significant difference between the three interventions for OS. But olaparib has the highest probability of being a preferred treatment for improving rPFS and OS. Conclusion rPFS was in favor of olaparib compared with apalutamide plus abiraterone. But there were no difference between olaparib plus abiraterone and either olaparib or apalutamide plus abiraterone. Apalutamide plus abiraterone might be the most preferred intervention in cases where AEs are involved. Systematic review registration https://inplasy.com, identifier INPLASY2023100072.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
47
|
Armstrong AJ, Clarke N, Oya M, Procopio G, de Menezes J, Guedes JD, Ghatalia P, Nolè F, Din O, Spiegelhalder P, Mincik I, van Alphen R, Lumen N, Hosius C, Zhou D, Barker L, Dujka M, Saad F. Olaparib plus Abiraterone for Metastatic Castration-resistant Prostate Cancer: Pharmacokinetics Data from the PROpel Trial. Eur Urol Oncol 2023; 7:S2588-9311(23)00218-3. [PMID: 39492050 DOI: 10.1016/j.euo.2023.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2024]
Abstract
PROpel (NCT03732820) was a positive phase 3 trial that demonstrated a clinically significant improvement in radiographic progression-free survival with olaparib plus abiraterone versus placebo plus abiraterone in first-line metastatic castration-resistant prostate cancer. For a subset of PROpel patients, steady-state concentrations of olaparib, abiraterone, and Δ4-abiraterone were measured in blood samples collected before and at several time points after dose administration. The pharmacokinetics (PK) for each drug and metabolite were evaluated to determine whether any clinically relevant drug-drug interactions between olaparib and abiraterone occurred. The results demonstrate that steady-state PK parameters for olaparib and abiraterone in PROpel were comparable with those in monotherapy trials. Abiraterone steady-state exposures were similar between treatment arms. Δ4-Abiraterone had slightly lower steady-state exposures when abiraterone was administered in combination with olaparib. These results are consistent with a previous phase 2 study, supporting the conclusion that no clinically relevant PK-based drug-drug interactions occurred when olaparib and abiraterone were given in combination at their full monotherapy doses. PATIENT SUMMARY: When drugs are administered in combination, a key consideration is whether there are any interactions between the drugs that may affect their activity. We analyzed blood concentrations of olaparib and abiraterone in a subset of patients with prostate cancer from the PROpel trial to determine if there were interactions between these two drugs. We found that there was no significant effect on the profile of either drug when they were given together at the same doses used when each drug is given individually.
Collapse
Affiliation(s)
- Andrew J Armstrong
- Department of Medicine, Duke Cancer Institute Center for Prostate and Urologic Cancer, Duke University Medical Center, Durham, NC, USA.
| | - Noel Clarke
- Department of Surgery, The Christie Hospital, Manchester, UK
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Giuseppe Procopio
- Medical Oncology Department, IRCCS Fondazione Istituto Nazionale Tumori, Milan, Italy
| | | | - João Daniel Guedes
- Hospital de Base de São José do Rio Preto, CIP Centro Integrado de Pesquisa, São José do Rio Preto, Brazil
| | | | - Franco Nolè
- Medical Oncology Division for Urogenital and Head & Neck Tumours, European Institute of Oncology (EIO) IRCCS, Milan, Italy
| | - Omar Din
- Weston Park Cancer Centre, Sheffield, UK
| | | | | | - Robbert van Alphen
- Department of Internal Medicine, Elisabeth Tweesteden Hospital, Tilburg, The Netherlands
| | - Nicolaas Lumen
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | - Fred Saad
- Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| |
Collapse
|
48
|
Alameddine Z, Niazi MRK, Rajavel A, Behgal J, Keesari PR, Araji G, Mustafa A, Wei C, Jahangir A, Terjanian TO. A Meta-Analysis of Randomized Clinical Trials Assessing the Efficacy of PARP Inhibitors in Metastatic Castration-Resistant Prostate Cancer. Curr Oncol 2023; 30:9262-9275. [PMID: 37887569 PMCID: PMC10605202 DOI: 10.3390/curroncol30100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Prostate cancer ranks as the second most common malignancy in males. Prostate cancer progressing on androgen deprivation therapy (ADT) is castration-resistant prostate cancer (CRPC). Poly-ADP ribose polymerase (PARP) inhibitors (PARPis) have been at the forefront of the treatment of CRPC. We aim to better characterize the progression-free survival (PFS) and overall survival (OS) in metastatic CRPC patients treated with PARPis. A systemic review search was conducted using National Clinical Trial (NCT), PubMed, Embase, Scopus, and Central Cochrane Registry. The improvement in overall survival was statistically significant, favoring PARPis (hazard ratio (HR) 0.855; 95% confidence interval (CI) 0.752-0.974; p = 0.018). The improvement in progression-free survival was also statistically significant, with results favoring PARPis (HR 0.626; 95%CI 0.566-0.692; p = 0.000). In a subgroup analysis, similar results were observed where the efficacy of PARPis was evaluated in a subgroup of patients without homologous recombination repair (HRR) gene mutation, which showed improvement in PFS favoring PARPis (HR 0.747; 95%CI 0.0.637-0.877; p = 0.000). Our meta-analysis of seven RCTs showed that PARPis significantly increased PFS and OS when used with or without antihormonal agents like abiraterone or enzalutamide.
Collapse
Affiliation(s)
- Zakaria Alameddine
- Staten Island University Hospital, Staten Island, NY 10305, USA; (Z.A.); (M.R.K.N.); (A.R.); (J.B.); (P.R.K.); (G.A.); (A.M.); (C.W.)
| | - Muhammad Rafay Khan Niazi
- Staten Island University Hospital, Staten Island, NY 10305, USA; (Z.A.); (M.R.K.N.); (A.R.); (J.B.); (P.R.K.); (G.A.); (A.M.); (C.W.)
| | - Anisha Rajavel
- Staten Island University Hospital, Staten Island, NY 10305, USA; (Z.A.); (M.R.K.N.); (A.R.); (J.B.); (P.R.K.); (G.A.); (A.M.); (C.W.)
| | - Jai Behgal
- Staten Island University Hospital, Staten Island, NY 10305, USA; (Z.A.); (M.R.K.N.); (A.R.); (J.B.); (P.R.K.); (G.A.); (A.M.); (C.W.)
| | - Praneeth Reddy Keesari
- Staten Island University Hospital, Staten Island, NY 10305, USA; (Z.A.); (M.R.K.N.); (A.R.); (J.B.); (P.R.K.); (G.A.); (A.M.); (C.W.)
| | - Ghada Araji
- Staten Island University Hospital, Staten Island, NY 10305, USA; (Z.A.); (M.R.K.N.); (A.R.); (J.B.); (P.R.K.); (G.A.); (A.M.); (C.W.)
| | - Ahmad Mustafa
- Staten Island University Hospital, Staten Island, NY 10305, USA; (Z.A.); (M.R.K.N.); (A.R.); (J.B.); (P.R.K.); (G.A.); (A.M.); (C.W.)
| | - Chapman Wei
- Staten Island University Hospital, Staten Island, NY 10305, USA; (Z.A.); (M.R.K.N.); (A.R.); (J.B.); (P.R.K.); (G.A.); (A.M.); (C.W.)
| | - Abdullah Jahangir
- University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA;
| | - Terenig O Terjanian
- Staten Island University Hospital, Staten Island, NY 10305, USA; (Z.A.); (M.R.K.N.); (A.R.); (J.B.); (P.R.K.); (G.A.); (A.M.); (C.W.)
| |
Collapse
|
49
|
Bowling GC, Swargaloganathan P, Heintz C, Madan RA, Eldhose B, Dobi A, Chesnut GT. Hematological Toxicities with PARP Inhibitors in Prostate Cancer: A Systematic Review and Meta-Analysis of Phase II/III Randomized Controlled Trials. Cancers (Basel) 2023; 15:4904. [PMID: 37835597 PMCID: PMC10571760 DOI: 10.3390/cancers15194904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Poly ADP-ribose polymerase inhibitors (PARPis) are an important class of therapeutics for metastatic castration-resistant prostate cancer (mCRPC). Unlike hormone-based treatments for mCRPC, PARPis are not without drug-related hematological adverse events. OBJECTIVE To review the evidence on hematological toxicities, including anemia, thrombocytopenia, and neutropenia from PARPis in prostate cancer. STUDY METHODOLOGY A systematic review and meta-analysis using the PRISMA guidelines was performed for phase II and III randomized controlled trials (RCTs) of PARPis in prostate cancer. PubMed, Embase, and Ovid All EBM reviews-Cochrane were queried from inception to 9 June 2023. The Mantel-Haenszel method was used to report risk ratios (RR) and 95% confidence intervals (CI) for all-grade and high-grade anemia, thrombocytopenia, and neutropenia toxicities. RESULTS The systematic review retrieved eight phase II and III RCTs; specifically, eight were included in the anemia, five in the all-grade thrombocytopenia and neutropenia, and four in the high-grade thrombocytopenia and neutropenia outcomes. Compared to a placebo and/or other non-PARPi treatments, PARPi use was associated with an increased risk of all-grade anemia (RR, 3.37; 95% CI, 2.37-4.79; p < 0.00001), thrombocytopenia (RR, 4.54; 95% CI, 1.97-10.44; p = 0.0004), and neutropenia (RR, 3.11; 95% CI, 1.60-6.03; p = 0.0008). High-grade anemia (RR, 6.94; 95% CI, 4.06-11.86; p < 0.00001) and thrombocytopenia (RR, 5.52; 95% CI, 2.80-10.88; p < 0.00001) were also associated with an increased risk, while high-grade neutropenia (RR, 3.63; 95% CI, 0.77-17.23; p = 0.10) showed no significant association. Subgroup stratification analyses showed differences in various all-grade and high-grade toxicities. CONCLUSION PARPis were associated with an increased risk of hematological AEs. Future studies with more pooled RCTs will enhance this understanding and continue to inform patient-physician shared decision-making. Future studies may also have a role in improving the current management strategies for these AEs.
Collapse
Affiliation(s)
- Gartrell C. Bowling
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | | | - Carly Heintz
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Ravi A. Madan
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Binil Eldhose
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Gregory T. Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Urology Service, Walter Reed National Medical Center, Bethesda, MD 20814, USA
| |
Collapse
|
50
|
Luo Z, Zhu B, Xu H, Chen L, Song X, Wang Y, Wang R, Zheng J, Qiu Y, Yang J, Shi Y. Efficacy and safety of olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a systematic review and meta-analysis of randomized controlled trials. Front Oncol 2023; 13:1265276. [PMID: 37869079 PMCID: PMC10587563 DOI: 10.3389/fonc.2023.1265276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Background Olaparib has been proven for the treatment of metastatic castration-resistant prostate cancer (mCRPC). This meta-analysis aims to comprehensively evaluate the efficacy and safety of the combination of olaparib and abiraterone in patients with mCRPC. Methods The literature in PubMed, Embase, and Cochrane Library up until April 27, 2023, was systematically searched. In the studies included in this meta-analysis, olaparib combined with abiraterone was compared with abiraterone combined with placebo. Results Two randomized controlled trials involving a total of 938 patients were included. Analysis indicated that olaparib combined with abiraterone significantly prolonged radiographic progression-free survival (rPFS: relative risk [RR] 0.66, 95% confidence interval [CI] 0.55-0.79), time to secondary progression or death (PFS2: hazard ratio [HR] 0.72, 95% CI 0.56-0.93), time to first subsequent therapy or death (TFST: HR 0.75, 95% CI 0.63-0.89), time to second subsequent therapy or death (TSST: HR 0.73, 95% CI 0.58-0.93), and confirmed prostate-specific antigen (PSA) response (RR 1.14, 95% CI 1.05-1.24). However, no statistically significant differences were found in the overall survival (OS: HR 0.87 95% CI 0.70-1.09), objective response rate (ORR: RR 0.97, 95% CI 0.70-1.33), and incidence of total adverse events (RR 1.07, 95% CI 0.94-1.22). A notable detail that the combination of olaparib and abiraterone was associated with an increased incidence of high-grade anemia (RR 7.47, 95% CI 1.36-40.88). Conclusion Olaparib combined with abiraterone is effective for patients with mCRPC. However, combination therapy has treatment-related adverse events compared with monotherapy, and this could be improved in future treatment management. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023432287.
Collapse
Affiliation(s)
- Zhanyang Luo
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bukun Zhu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Xu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Lixin Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyun Song
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinzhou Zheng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunhua Qiu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianfeng Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Youyang Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|