1
|
Li-Leger E, Feichtinger R, Flibotte S, Holzkamp H, Schnabel R, Moerman DG. Identification of essential genes in Caenorhabditis elegans through whole genome sequencing of legacy mutant collections. G3-GENES GENOMES GENETICS 2021; 11:6373896. [PMID: 34550348 PMCID: PMC8664450 DOI: 10.1093/g3journal/jkab328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/27/2021] [Indexed: 01/23/2023]
Abstract
It has been estimated that 15%–30% of the ∼20,000 genes in C. elegans are essential, yet many of these genes remain to be identified or characterized. With the goal of identifying unknown essential genes, we performed whole-genome sequencing on complementation pairs from legacy collections of maternal-effect lethal and sterile mutants. This approach uncovered maternal genes required for embryonic development and genes with apparent sperm-specific functions. In total, 58 putative essential genes were identified on chromosomes III–V, of which 52 genes are represented by novel alleles in this collection. Of these 52 genes, 19 (40 alleles) were selected for further functional characterization. The terminal phenotypes of embryos were examined, revealing defects in cell division, morphogenesis, and osmotic integrity of the eggshell. Mating assays with wild-type males revealed previously unknown male-expressed genes required for fertilization and embryonic development. The result of this study is a catalog of mutant alleles in essential genes that will serve as a resource to guide further study toward a more complete understanding of this important model organism. As many genes and developmental pathways in C. elegans are conserved and essential genes are often linked to human disease, uncovering the function of these genes may also provide insight to further our understanding of human biology.
Collapse
Affiliation(s)
- Erica Li-Leger
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Richard Feichtinger
- Department of Developmental Genetics, Institute of Genetics, Technische Universität Braunschweig, 38106, Germany
| | - Stephane Flibotte
- UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, British Columbia, Canada
| | - Heinke Holzkamp
- Department of Developmental Genetics, Institute of Genetics, Technische Universität Braunschweig, 38106, Germany
| | - Ralf Schnabel
- Department of Developmental Genetics, Institute of Genetics, Technische Universität Braunschweig, 38106, Germany
| | - Donald G Moerman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
2
|
Abstract
Helminth parasitology is an important discipline, which poses often unique technical challenges. One challenge is that helminth parasites, particularly those in humans, are often difficult to obtain alive and in sufficient quantities for study; another is the challenge of studying these organisms in vitro – no helminth parasite life cycle has been fully recapitulated outside of a host. Arguably, the key issue retarding progress in helminth parasitology has been a lack of experimental tools and resources, certainly relative to the riches that have driven many parasitologists to adopt free-living model organisms as surrogate systems. In response to these needs, the past 10–12 years have seen the beginnings of helminth parasitology's journey into the ‘omics’ era, with the release of abundant sequencing resources, and the functional genomics tools with which to test biological hypotheses. To reflect this progress, the 2019 Autumn Symposium of the British Society for Parasitology was held in Queen's University Belfast on the topic of ‘post-genomic progress in helminth parasitology’. This issue presents examples of the current state of play in the field, while this editorial summarizes how genomic datasets and functional genomic tools have stimulated impressive recent progress in our understanding of parasite biology.
Collapse
|
3
|
Iqbal S, Fosu-Nyarko J, Jones MGK. Genomes of parasitic nematodes (Meloidogyne hapla, Meloidogyne incognita, Ascaris suum and Brugia malayi) have a reduced complement of small RNA interference pathway genes: knockdown can reduce host infectivity of M. incognita. Funct Integr Genomics 2016; 16:441-57. [PMID: 27126863 DOI: 10.1007/s10142-016-0495-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 12/15/2022]
Abstract
The discovery of RNA interference (RNAi) as an endogenous mechanism of gene regulation in a range of eukaryotes has resulted in its extensive use as a tool for functional genomic studies. It is important to study the mechanisms which underlie this phenomenon in different organisms, and in particular to understand details of the effectors that modulate its effectiveness. The aim of this study was to identify and compare genomic sequences encoding genes involved in the RNAi pathway of four parasitic nematodes: the plant parasites Meloidogyne hapla and Meloidogyne incognita and the animal parasites Ascaris suum and Brugia malayi because full genomic sequences were available-in relation to those of the model nematode Caenorhabditis elegans. The data generated was then used to identify some potential targets for control of the root knot nematode, M. incognita. Of the 84 RNAi pathway genes of C. elegans used as model in this study, there was a 42-53 % reduction in the number of effectors in the parasitic nematodes indicating substantial differences in the pathway between species. A gene each from six functional groups of the RNAi pathway of M. incognita was downregulated using in vitro RNAi, and depending on the gene (drh-3, tsn-1, rrf-1, xrn-2, mut-2 and alg-1), subsequent plant infection was reduced by up to 44 % and knockdown of some genes (i.e. drh-3, mut-2) also resulted in abnormal nematode development. The information generated here will contribute to defining targets for more robust nematode control using the RNAi technology.
Collapse
Affiliation(s)
- Sadia Iqbal
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia.
| | - John Fosu-Nyarko
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| | - Michael G K Jones
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| |
Collapse
|
4
|
Mohandas N, Hu M, Stroehlein AJ, Young ND, Sternberg PW, Lok JB, Gasser RB. Reconstruction of the insulin-like signalling pathway of Haemonchus contortus. Parasit Vectors 2016; 9:64. [PMID: 26842675 PMCID: PMC4741068 DOI: 10.1186/s13071-016-1341-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/26/2016] [Indexed: 01/13/2023] Open
Abstract
Background In the present study, we reconstructed the insulin/insulin-like growth factor 1 signalling (IIS) pathway for Haemonchus contortus, which is one of the most important eukaryotic pathogens of livestock worldwide and is related to the free-living nematode Caenorhabditis elegans. Methods We curated full-length open-reading frames from assembled transcripts, defined the complement of genes that encode proteins involved in this pathway and then investigated the transcription profiles of these genes for all key developmental stages of H. contortus. Results The core components of the IIS pathway are similar to their respective homologs in C. elegans. However, there is considerable variation in the numbers of isoforms between H. contortus and C. elegans and an absence of AKT-2 and DDL-2 homologs from H. contortus. Interestingly, DAF-16 has a single isoform in H. contortus compared with 12 in C. elegans, suggesting novel functional roles in the parasitic nematode. Some IIS proteins, such as DAF-18 and SGK-1, vary in their functional domains, indicating distinct roles from their homologs in C. elegans. Conclusions This study paves the way for the further characterization of key signalling pathways in other socioeconomically important parasites and should help understand the complex mechanisms involved in developmental processes. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1341-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Namitha Mohandas
- The University of Melbourne, Faculty of Veterinary and Agricultural Sciences, Parkville, VIC, Australia.
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Andreas J Stroehlein
- The University of Melbourne, Faculty of Veterinary and Agricultural Sciences, Parkville, VIC, Australia.
| | - Neil D Young
- The University of Melbourne, Faculty of Veterinary and Agricultural Sciences, Parkville, VIC, Australia.
| | - Paul W Sternberg
- HHMI, Division of Biology, California Institute of Technology, Pasadena, CA, USA.
| | - James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Robin B Gasser
- The University of Melbourne, Faculty of Veterinary and Agricultural Sciences, Parkville, VIC, Australia.
| |
Collapse
|
5
|
Molecular characterization of the Haemonchus contortus phosphoinositide-dependent protein kinase-1 gene (Hc-pdk-1). Parasit Vectors 2016; 9:65. [PMID: 26842781 PMCID: PMC4741024 DOI: 10.1186/s13071-016-1351-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/28/2016] [Indexed: 12/22/2022] Open
Abstract
Background Phosphoinositide-dependent protein kinase-1 (PDK-1), which functions downstream of phosphoinositide 3-kinase (AGE-1) and activates protein kinases of the AGC family, plays critical roles in regulating biology processes, such as metabolism, growth, development and survival. In the free-living nematode Caenorhabditis elegans, PDK-1 is a key component of the insulin-like signalling pathway, regulating the entry into and exit from dauer (arrested development). Although it is proposed that similar molecular mechanisms control the transition from the free-living to the parasitic stages of nematodes, nothing is known about PDK-1 in Haemonchus contortus, a socioeconomically important gastric nematode of ruminants. Methods Here, we isolated and characterized the pdk-1 gene (Hc-pdk-1) and its inferred product (Hc-PDK-1) from H. contortus. Using in vitro and in vivo methods, we then studied the transcriptional profiles of Hc-pdk-1 and anatomical gene expression patterns of Hc-PDK-1 in different developmental stages of C. elegans. Results In silico analysis of Hc-PDK-1 displayed conserved functional domains, such as protein kinase and pleckstrin homology (PH) domains and two predicted phosphorylation sites (Thr226/Tyr229), which are crucial for the phosphorylation of downstream signalling. The Hc-pdk-1 gene is transcribed in all of the main developmental stages of H. contortus, with its highest transcription in the infective third-stage larvae (iL3) compared with other stages. Transgene constructs, in which respective promoters were fused to the coding sequence for green fluorescent protein (GFP), were used to transform C. elegans, and to localize and compare the expression of Hc-pdk-1 and Ce-pdk-1. The expression of GFP under the control of the Hc-pdk-1 promoter was localized to the intestine, and head and tail neurons, contrasting somewhat the profile for the C. elegans ortholog, which is expressed in pharynx, intestine and head and tail neurons. Conclusions This is the first characterization of pdk-1/PDK-1 from a trichostrongyloid nematode. Taken together, the findings from this study provide a first glimpse of the involvement of Hc-pdk-1 in the insulin-like signalling pathway in H. contortus. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1351-6) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Ma GX, Zhou RQ, Song ZH, Zhu HH, Zhou ZY, Zeng YQ. Molecular mechanism of serine/threonine protein phosphatase 1 (PP1cα-PP1r7) in spermatogenesis of Toxocara canis. Acta Trop 2015; 149:148-54. [PMID: 26026715 DOI: 10.1016/j.actatropica.2015.05.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 01/21/2023]
Abstract
Toxocariasis is one of the most important, but neglected, zoonoses, which is mainly caused by Toxocara canis. To better understand the role of serine/threonine protein phosphatase 1 (PP1) in reproductive processes of male adult T. canis, differential expression analysis was used to reveal the profiles of PP1 catalytic subunit α (PP1cα) gene Tc-stp-1 and PP1 regulatory subunit 7 (PP1r7) gene TcM-1309. Indirect fluorescence immunocytochemistry was carried out to determine the subcellular distribution of PP1cα. Double-stranded RNA interference (RNAi) assays were employed to illustrate the function and mechanism of PP1cα in male adult reproduction. Real-time quantitative PCR (qPCR) showed transcriptional consistency of Tc-stp-1 and TcM-1309 in sperm-producing germline tissues and localization research showed cytoplasmic distribution of PP1cα in sf9 cells, which indicated relevant involvements of PP1cα and PP1r7 in spermatogenesis. Moreover, spatiotemporal transcriptional differences of Tc-stp-1 were determined by gene knockdown analysis, which revealed abnormal morphologies and blocked meiotic divisions of spermatocytes by phenotypic aberration scanning, thereby highlighting the crucial involvement of PP1cα in spermatogenesis. These results revealed a PP1cα-PP1r7 mechanism by which PP1 regulates kinetochore-microtubule interactions in spermatogenesis and provided important clues to identify novel drug or vaccine targets for toxocariasis control.
Collapse
Affiliation(s)
- Guang Xu Ma
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
| | - Rong Qiong Zhou
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China.
| | - Zhen Hui Song
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
| | - Hong Hong Zhu
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
| | - Zuo Yong Zhou
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
| | - Yuan Qin Zeng
- College of Life Sciences, Southwest University, Chongqing 402460, People's Republic of China
| |
Collapse
|
7
|
Exploring the role of two interacting phosphoinositide 3-kinases of Haemonchus contortus. Parasit Vectors 2014; 7:498. [PMID: 25388625 PMCID: PMC4233088 DOI: 10.1186/s13071-014-0498-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/21/2014] [Indexed: 12/04/2022] Open
Abstract
Background Phosphoinositide 3-kinases (PI3Ks) are relatively conserved and important intracellular lipid kinases involved in signalling and other biological pathways. In the free-living nematode Caenorhabditis elegans, the heterodimeric form of PI3K consists of catalytic (AGE-1) and regulatory (AAP-1) subunits. These subunits are key components of the insulin-like signalling pathway and play roles in the regulation of the entry into and exit from dauer. Although, in parasitic nematodes, similar components are proposed to regulate the transition from free-living or arrested stages to parasitic larvae, nothing is known about PI3Ks in relation to the transition of third-stage larvae (L3s) to parasitism in Haemonchus contortus. Methods An integrated molecular approach was used to investigate age-1 and aap-1 of H. contortus (Hc-age-1 and Hc-aap-1) in C. elegans. Results The two genes Hc-age-1 and Hc-aap-1 were transcribed in all life stages, with the highest levels in the egg, infective L3 and adult female of H. contortus. The expression of these genes was localized to the intestine, contrasting the pattern of their orthologues in C. elegans (where they are expressed in both head neurons and the intestine). The yeast two-hybrid analysis demonstrated that the adaptor-binding domain of Hc-AGE-1 interacted strongly with the Hc-AAP-1; however, this complex did not rescue the function of its orthologue in age-1-deficient C. elegans. Conclusions This is the first time that the PI3K-encoding genes have been characterized from a strongylid parasitic nematode. The findings provide insights into the role of the PI3K heterodimer represented by Hc-age-1 and Hc-aap-1 in the developmental biology of H. contortus. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0498-2) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Li F, Lok JB, Gasser RB, Korhonen PK, Sandeman MR, Shi D, Zhou R, Li X, Zhou Y, Zhao J, Hu M. Hc-daf-2 encodes an insulin-like receptor kinase in the barber's pole worm, Haemonchus contortus, and restores partial dauer regulation. Int J Parasitol 2014; 44:485-96. [PMID: 24727120 PMCID: PMC4516220 DOI: 10.1016/j.ijpara.2014.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/14/2014] [Accepted: 03/16/2014] [Indexed: 01/25/2023]
Abstract
Infective L3s (iL3s) of parasitic nematodes share common behavioural, morphological and developmental characteristics with the developmentally arrested (dauer) larvae of the free-living nematode Caenorhabditis elegans. It is proposed that similar molecular mechanisms regulate entry into or exit from the dauer stage in C. elegans, and the transition from free-living to parasitic forms of parasitic nematodes. In C. elegans, one of the key factors regulating the dauer transition is the insulin-like receptor (designated Ce-DAF-2) encoded by the gene Ce-daf-2. However, nothing is known about DAF-2 homologues in most parasitic nematodes. Here, using a PCR-based approach, we identified and characterised a gene (Hc-daf-2) and its inferred product (Hc-DAF-2) in Haemonchus contortus (a socioeconomically important parasitic nematode of ruminants). The sequence of Hc-DAF-2 displays significant sequence homology to insulin receptors (IR) in both vertebrates and invertebrates, and contains conserved structural domains. A sequence encoding an important proteolytic motif (RKRR) identified in the predicted peptide sequence of Hc-DAF-2 is consistent with that of the human IR, suggesting that it is involved in the formation of the IR complex. The Hc-daf-2 gene was transcribed in all life stages of H. contortus, with a significant up-regulation in the iL3 compared with other stages. To compare patterns of expression between Hc-daf-2 and Ce-daf-2, reporter constructs fusing the Ce-daf-2 or Hc-daf-2 promoter to sequence encoding GFP were microinjected into the N2 strain of C. elegans, and transgenic lines were established and examined. Both genes showed similar patterns of expression in amphidial (head) neurons, which relate to sensation and signal transduction. Further study by heterologous genetic complementation in a daf-2-deficient strain of C. elegans (CB1370) showed partial rescue of function by Hc-daf-2. Taken together, these findings provide a first insight into the roles of Hc-daf-2/Hc-DAF-2 in the biology and development of H. contortus, particularly in the transition to parasitism.
Collapse
Affiliation(s)
- Facai Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China
| | - James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Robin B Gasser
- Faculty of Veterinary Science, The University of Melbourne, Corner of Flemington Road and Park Drive, Parkville, Victoria 3010, Australia; Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 16-18 Kaiserswerther Street, Berlin 14195, Germany
| | - Pasi K Korhonen
- Faculty of Veterinary Science, The University of Melbourne, Corner of Flemington Road and Park Drive, Parkville, Victoria 3010, Australia
| | - Mark R Sandeman
- School of Applied Sciences and Engineering, Monash University, Northways Road, Churchill, Victoria 3842, Australia
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, Jiangsu, China
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China.
| |
Collapse
|
9
|
Lee SG, Jez JM. Nematode phospholipid metabolism: an example of closing the genome-structure-function circle. Trends Parasitol 2014; 30:241-50. [PMID: 24685202 DOI: 10.1016/j.pt.2014.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 01/03/2023]
Abstract
Parasitic nematodes that infect humans, animals, and plants cause health problems, livestock and agricultural losses, and economic damage worldwide and are important targets for drug development. The growing availability of nematode genomes supports the discovery of new pathways that differ from host organisms and are a starting point for structural and functional studies of novel antiparasitic targets. As an example of how genome data, structural biology, and biochemistry integrate into a research cycle targeting parasites, we summarize the discovery of the phosphobase methylation pathway for phospholipid synthesis in nematodes and compare the phosphoethanolamine methyltransferases (PMTs) from nematodes, plants, and Plasmodium. Crystallographic and biochemical studies of the PMTs in this pathway provide a foundation that guides the next steps that close the genome-structure-function circle.
Collapse
Affiliation(s)
- Soon Goo Lee
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO 63130, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO 63130, USA.
| |
Collapse
|
10
|
Laing R, Kikuchi T, Martinelli A, Tsai IJ, Beech RN, Redman E, Holroyd N, Bartley DJ, Beasley H, Britton C, Curran D, Devaney E, Gilabert A, Hunt M, Jackson F, Johnston SL, Kryukov I, Li K, Morrison AA, Reid AJ, Sargison N, Saunders GI, Wasmuth JD, Wolstenholme A, Berriman M, Gilleard JS, Cotton JA. The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol 2013; 14:R88. [PMID: 23985316 PMCID: PMC4054779 DOI: 10.1186/gb-2013-14-8-r88] [Citation(s) in RCA: 270] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/27/2013] [Accepted: 08/28/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The small ruminant parasite Haemonchus contortus is the most widely used parasitic nematode in drug discovery, vaccine development and anthelmintic resistance research. Its remarkable propensity to develop resistance threatens the viability of the sheep industry in many regions of the world and provides a cautionary example of the effect of mass drug administration to control parasitic nematodes. Its phylogenetic position makes it particularly well placed for comparison with the free-living nematode Caenorhabditis elegans and the most economically important parasites of livestock and humans. RESULTS Here we report the detailed analysis of a draft genome assembly and extensive transcriptomic dataset for H. contortus. This represents the first genome to be published for a strongylid nematode and the most extensive transcriptomic dataset for any parasitic nematode reported to date. We show a general pattern of conservation of genome structure and gene content between H. contortus and C. elegans, but also a dramatic expansion of important parasite gene families. We identify genes involved in parasite-specific pathways such as blood feeding, neurological function, and drug metabolism. In particular, we describe complete gene repertoires for known drug target families, providing the most comprehensive understanding yet of the action of several important anthelmintics. Also, we identify a set of genes enriched in the parasitic stages of the lifecycle and the parasite gut that provide a rich source of vaccine and drug target candidates. CONCLUSIONS The H. contortus genome and transcriptome provide an essential platform for postgenomic research in this and other important strongylid parasites.
Collapse
Affiliation(s)
- Roz Laing
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, Scotland, G61 1QH, UK
| | - Taisei Kikuchi
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Division of Parasitology, Department of Infectious Disease, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692 Japan
| | - Axel Martinelli
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Isheng J Tsai
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Division of Parasitology, Department of Infectious Disease, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692 Japan
| | - Robin N Beech
- Institute of Parasitology, Macdonald Campus, McGill University, 21,111 Lakeshore Road, Ste. Anne de Bellevue, Québec, Canada H9X 3V9
| | - Elizabeth Redman
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Faculty of Veterinary Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Nancy Holroyd
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - David J Bartley
- Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | - Helen Beasley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Collette Britton
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, Scotland, G61 1QH, UK
| | - David Curran
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Faculty of Veterinary Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Eileen Devaney
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, Scotland, G61 1QH, UK
| | - Aude Gilabert
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Faculty of Veterinary Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Martin Hunt
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Frank Jackson
- Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | - Stephanie L Johnston
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, Scotland, G61 1QH, UK
| | - Ivan Kryukov
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Faculty of Veterinary Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Keyu Li
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Faculty of Veterinary Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Alison A Morrison
- Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | - Adam J Reid
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Neil Sargison
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, Scotland, UK
| | - Gary I Saunders
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, Scotland, G61 1QH, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - James D Wasmuth
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Faculty of Veterinary Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Adrian Wolstenholme
- Department of Infectious Diseases and Center for Tropical and Emerging Global Disease, University of Georgia, Athens, Georgia 30602, USA
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Faculty of Veterinary Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - James A Cotton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
11
|
Stasiuk SJ, Scott MJ, Grant WN. Developmental plasticity and the evolution of parasitism in an unusual nematode, Parastrongyloides trichosuri. EvoDevo 2012; 3:1. [PMID: 22214222 PMCID: PMC3293006 DOI: 10.1186/2041-9139-3-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 01/03/2012] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Parasitism is an important life history strategy in many metazoan taxa. This is particularly true of the Phylum Nematoda, in which parasitism has evolved independently at least nine times. The apparent ease with which parasitism has evolved amongst nematodes may, in part, be due to a feature of nematode development acting as a pre-adaptation for the transition from a free-living to a parasitic life history. One candidate pre-adaptive feature for evolution in terrestrial nematodes is the dauer larva, a developmentally arrested morph formed in response to environmental signals. RESULTS We investigated the role of dauer development in the nematode, Parastrongyloides trichosuri, which has retained a complete free-living life cycle in addition to a life cycle as a mammalian gastrointestinal parasite. We show that the developmental switch between these life histories is sensitive to the same environmental cues as dauer arrest in free-living nematodes, including sensitivity to a chemical cue produced by the free-living stages. Furthermore, we show that genetic variation for the sensitivity of the cue(s) exists in natural populations of P. trichosuri, such that we derived inbred lines that were largely insensitive to the cue and other lines that were supersensitive to the cue. CONCLUSIONS For this parasitic clade, and perhaps more widely in the phylum, the evolution of parasitism co-opted the dauer switch of a free-living ancestor. This lends direct support to the hypothesis that the switch to developmental arrest in the dauer larva acted as a pre-adaptation for the evolution of parasitism, and suggests that the sensory transduction machinery downstream of the cue may have been similarly co-opted and modified.
Collapse
Affiliation(s)
- Susan J Stasiuk
- AgResearch Limited, Hopkirk Research Institute, Private Bag 11008, Palmerston North, New Zealand
- University of Calgary, Department of Comparative Biology and Experimental Medicine, Calgary, T2N 4N1 Alberta, Canada
| | - Maxwell J Scott
- North Carolina State University, Department of Genetics, Campus Box 7614 Raleigh, 27695-7614, USA
| | - Warwick N Grant
- AgResearch Limited, Hopkirk Research Institute, Private Bag 11008, Palmerston North, New Zealand
- La Trobe University, Genetics Department, Bundoora, 3086 Victoria, Australia
| |
Collapse
|
12
|
Zamanian M, Kimber MJ, McVeigh P, Carlson SA, Maule AG, Day TA. The repertoire of G protein-coupled receptors in the human parasite Schistosoma mansoni and the model organism Schmidtea mediterranea. BMC Genomics 2011; 12:596. [PMID: 22145649 PMCID: PMC3261222 DOI: 10.1186/1471-2164-12-596] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 12/06/2011] [Indexed: 12/31/2022] Open
Abstract
Background G protein-coupled receptors (GPCRs) constitute one of the largest groupings of eukaryotic proteins, and represent a particularly lucrative set of pharmaceutical targets. They play an important role in eukaryotic signal transduction and physiology, mediating cellular responses to a diverse range of extracellular stimuli. The phylum Platyhelminthes is of considerable medical and biological importance, housing major pathogens as well as established model organisms. The recent availability of genomic data for the human blood fluke Schistosoma mansoni and the model planarian Schmidtea mediterranea paves the way for the first comprehensive effort to identify and analyze GPCRs in this important phylum. Results Application of a novel transmembrane-oriented approach to receptor mining led to the discovery of 117 S. mansoni GPCRs, representing all of the major families; 105 Rhodopsin, 2 Glutamate, 3 Adhesion, 2 Secretin and 5 Frizzled. Similarly, 418 Rhodopsin, 9 Glutamate, 21 Adhesion, 1 Secretin and 11 Frizzled S. mediterranea receptors were identified. Among these, we report the identification of novel receptor groupings, including a large and highly-diverged Platyhelminth-specific Rhodopsin subfamily, a planarian-specific Adhesion-like family, and atypical Glutamate-like receptors. Phylogenetic analysis was carried out following extensive gene curation. Support vector machines (SVMs) were trained and used for ligand-based classification of full-length Rhodopsin GPCRs, complementing phylogenetic and homology-based classification. Conclusions Genome-wide investigation of GPCRs in two platyhelminth genomes reveals an extensive and complex receptor signaling repertoire with many unique features. This work provides important sequence and functional leads for understanding basic flatworm receptor biology, and sheds light on a lucrative set of anthelmintic drug targets.
Collapse
Affiliation(s)
- Mostafa Zamanian
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Gregory WF, Parkinson J. Caenorhabditis elegans-applications to nematode genomics. Comp Funct Genomics 2011; 4:194-202. [PMID: 18629128 PMCID: PMC2447415 DOI: 10.1002/cfg.260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Accepted: 01/30/2003] [Indexed: 11/06/2022] Open
Abstract
The complete genome sequence of the free-living nematode Caenorhabditis elegans was published 4 years ago. Since then, we have seen great strides in technologies that seek to exploit this data. Here we describe the application of some of these techniques and other advances that are helping us to understand about not only the biology of this important model organism but also the entire phylum Nematoda.
Collapse
Affiliation(s)
- William F Gregory
- Institute of Cell Animal and Population Biology Kings Buildings West Mains Rd Edinburgh EH9 3JT UK
| | | |
Collapse
|
14
|
Hulme SE, Whitesides GM. Die Chemie und der Wurm: Caenorhabditis elegans als Plattform für das Zusammenführen von chemischer und biologischer Forschung. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201005461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Hulme SE, Whitesides GM. Chemistry and the Worm: Caenorhabditis elegans as a Platform for Integrating Chemical and Biological Research. Angew Chem Int Ed Engl 2011; 50:4774-807. [DOI: 10.1002/anie.201005461] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Indexed: 12/15/2022]
|
16
|
Lee SG, Jez JM. The Phosphobase Methylation Pathway in Caernorhabditis elegans: A New Route to Phospholipids in Animals. CURRENT CHEMICAL BIOLOGY 2011; 5:183-188. [PMID: 34113540 PMCID: PMC8189325 DOI: 10.2174/2212796811105030183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parasitic nematodes are a major cause of human health problems with an estimated 1 billion people infected worldwide by these organisms. Identifying biochemical targets that differ between the parasite and host species is essential for finding effective new anti-parasitic molecules. The free-living nematode Caenorhabditis elegans is a powerful model system for experiments in genetics and developmental biology needed to achieve this goal; however, in-depth understanding of metabolic processes in this organism is limited as it still contains unexplored biochemical pathways. Eukaryotes. including nematodes and humans, share many similar metabolic pathways, which makes specific targeting of nematode parasites challenging. Recent studies suggest that C. elegans and other nematodes may use a plant-like pathway as the major biosynthetic route to phosphatidylcholine. In this pathway, a pair of phosphoethanolamine methyltransferases (PMT) catalyze the sequential methylation of phosphoethanolamine to phosphocholine, which can be incorporated into phosphatidylcholine. RNAi experiments demonstrate that both PMT are required for normal growth and development of C. elegans. Because the PMT are highly conserved across nematode parasites of humans, livestock, and plants, as well as in protozoan parasites, understanding how these enzymes function and the identification of inhibitors will aid in the development of new anti-parasite compounds of potential medical, veterinary, and agricultural value.
Collapse
Affiliation(s)
- Soon Goo Lee
- Department of Biology, Washington University, St. Louis, MO 63130
| | - Joseph M. Jez
- Department of Biology, Washington University, St. Louis, MO 63130
| |
Collapse
|
17
|
|
18
|
Cantacessi C, Zou FC, Hall RS, Zhong W, Jex AR, Campbell BE, Ranganathan S, Sternberg PW, Zhu XQ, Gasser RB. Bioinformatic analysis of abundant, gender-enriched transcripts of adult Ascaris suum (Nematoda) using a semi-automated workflow platform. Mol Cell Probes 2009; 23:205-17. [PMID: 19361552 DOI: 10.1016/j.mcp.2009.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/12/2009] [Accepted: 03/16/2009] [Indexed: 12/17/2022]
Abstract
Expressed sequence tag (EST) data representing transcripts with a high level of differential hybridization in suppressive-subtractive hybridization (SSH)-based microarray analysis between adult female and male Ascaris suum were subjected to detailed bioinformatic analysis. A total of 361 ESTs clustered into 209 sequences, of which 52 and 157 represented transcripts that were enriched in female and male A. suum, respectively. Thirty (57.7%) of the 'female' subset of 52 sequences had orthologues/homologues in other parasitic nematodes and/or Caenorhabditis elegans, 13 (25%) exclusively in other parasitic nematodes and nine (17.3%) had no match in any other organism for which sequence data are currently available; the C. elegans orthologues encoded molecules involved in reproduction as well as embryonic and gamete development, such as vitellogenins and chitin-binding proteins. Of the 'male' subset of 157 sequences, 73 (46.5%) had orthologues/homologues in other parasitic nematodes and/or C. elegans, 57 (37.5%) in other parasitic nematodes only, and 22 (14.5%) had no significant similarity match in any other organism; the C. elegans orthologues encoded predominantly major sperm proteins (MSPs), kinases and phosphatases, actins, myosins and an Ancylostoma secreted protein-like molecule. The findings of the present study should support further genomic investigations of A. suum.
Collapse
Affiliation(s)
- C Cantacessi
- Department of Veterinary Science, The University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Adhikari BN, Wall DH, Adams BJ. Desiccation survival in an Antarctic nematode: molecular analysis using expressed sequenced tags. BMC Genomics 2009; 10:69. [PMID: 19203352 PMCID: PMC2667540 DOI: 10.1186/1471-2164-10-69] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 02/09/2009] [Indexed: 11/10/2022] Open
Abstract
Background Nematodes are the dominant soil animals in Antarctic Dry Valleys and are capable of surviving desiccation and freezing in an anhydrobiotic state. Genes induced by desiccation stress have been successfully enumerated in nematodes; however we have little knowledge of gene regulation by Antarctic nematodes which can survive multiple environmental stresses. To address this problem we investigated the genetic responses of a nematode species, Plectus murrayi, that is capable of tolerating Antarctic environmental extremes, in particular desiccation and freezing. In this study, we provide the first insight into the desiccation induced transcriptome of an Antarctic nematode through cDNA library construction and suppressive subtractive hybridization. Results We obtained 2,486 expressed sequence tags (ESTs) from 2,586 clones derived from the cDNA library of desiccated P. murrayi. The 2,486 ESTs formed 1,387 putative unique transcripts of which 523 (38%) had matches in the model-nematode Caenorhabditis elegans, 107 (7%) in nematodes other than C. elegans, 153 (11%) in non-nematode organisms and 605 (44%) had no significant match to any sequences in the current databases. The 1,387 unique transcripts were functionally classified by using Gene Ontology (GO) hierarchy and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The results indicate that the transcriptome contains a group of transcripts from diverse functional areas. The subtractive library of desiccated nematodes showed 80 transcripts differentially expressed during desiccation stress, of which 28% were metabolism related, 19% were involved in environmental information processing, 28% involved in genetic information processing and 21% were novel transcripts. Expression profiling of 14 selected genes by quantitative Real-time PCR showed 9 genes significantly up-regulated, 3 down-regulated and 2 continuously expressed in response to desiccation. Conclusion The establishment of a desiccation EST collection for Plectus murrayi, a useful model in assessing the structural, physiological, biochemical and genetic aspects of multiple stress tolerance, is an important step in understanding the genome level response of this nematode to desiccation stress. The type of transcript analysis performed in this study sets the foundation for more detailed functional and genome level analyses of the genes involved in desiccation tolerance in nematodes.
Collapse
Affiliation(s)
- Bishwo N Adhikari
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA.
| | | | | |
Collapse
|
20
|
Ford L, Zhang J, Liu J, Hashmi S, Fuhrman JA, Oksov Y, Lustigman S. Functional analysis of the cathepsin-like cysteine protease genes in adult Brugia malayi using RNA interference. PLoS Negl Trop Dis 2009; 3:e377. [PMID: 19190745 PMCID: PMC2634747 DOI: 10.1371/journal.pntd.0000377] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 01/13/2009] [Indexed: 12/05/2022] Open
Abstract
Background Cathepsin-like enzymes have been identified as potential targets for drug or vaccine development in many parasites, as their functions appear to be essential in a variety of important biological processes within the host, such as molting, cuticle remodeling, embryogenesis, feeding and immune evasion. Functional analysis of Caenorhabditis elegans cathepsin L (Ce-cpl-1) and cathepsin Z (Ce-cpz-1) has established that both genes are required for early embryogenesis, with Ce-cpl-1 having a role in regulating in part the processing of yolk proteins. Ce-cpz-1 also has an important role during molting. Methods and Findings RNA interference assays have allowed us to verify whether the functions of the orthologous filarial genes in Brugia malayi adult female worms are similar. Treatment of B. malayi adult female worms with Bm-cpl-1, Bm-cpl-5, which belong to group Ia of the filarial cpl gene family, or Bm-cpz-1 dsRNA resulted in decreased numbers of secreted microfilariae in vitro. In addition, analysis of the intrauterine progeny of the Bm-cpl-5 or Bm-cpl Pro dsRNA- and siRNA-treated worms revealed a clear disruption in the process of embryogenesis resulting in structural abnormalities in embryos and a varied differential development of embryonic stages. Conclusions Our studies suggest that these filarial cathepsin-like cysteine proteases are likely to be functional orthologs of the C. elegans genes. This functional conservation may thus allow for a more thorough investigation of their distinct functions and their development as potential drug targets. Filarial nematodes are an important group of human pathogens, causing lymphatic filariasis and onchocerciasis, and infecting around 150 million people throughout the tropics with more than 1.5 billion at risk of infection. Control of filariasis currently relies on mass drug administration (MDA) programs using drugs which principally target the microfilarial life-cycle stage. These control programs are facing major challenges, including the absence of a drug with macrofilaricidal or permanent sterilizing activity, and the possibility of the development of drug-resistance against the drugs available. Cysteine proteases are essential enzymes which play important roles in a wide range of cellular processes, and the cathepsin-like cysteine proteases have been identified as potential targets for drug or vaccine development in many parasites. Here we have studied the function of several of the cathepsin-like enzymes in the filarial nematode, B. malayi, and demonstrate that these cysteine proteases are involved in the development of embryos, show similar functions to their counterparts in C. elegans, and therefore, provide an important target for future drug development targeted to eliminate filariasis.
Collapse
Affiliation(s)
- Louise Ford
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America.
| | | | | | | | | | | | | |
Collapse
|
21
|
Cantacessi C, Loukas A, Campbell BE, Mulvenna J, Ong EK, Zhong W, Sternberg PW, Otranto D, Gasser RB. Exploring transcriptional conservation between Ancylostoma caninum and Haemonchus contortus by oligonucleotide microarray and bioinformatic analyses. Mol Cell Probes 2008; 23:1-9. [PMID: 18977290 DOI: 10.1016/j.mcp.2008.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 08/13/2008] [Accepted: 09/03/2008] [Indexed: 10/21/2022]
Abstract
In this study, we identified, using an established oligonucleotide microarray platform for the parasitic nematode Haemonchus contortus, transcripts that are 'conserved' between serum-activated and non-activated L3s of Ancylostoma caninum (aL3 and L3, respectively) and H. contortus by cross-species hybridization (CSH) at high stringency and conducted extensive bioinformatic analyses of the cross-hybridizing expressed sequence tags (ESTs). The microarray analysis revealed significant differential hybridization between aL3 and L3 for 32 molecules from A. caninum, of which 29 were shown to have homologues/orthologues in the free-living nematode Caenorhabditis elegans and/or A. caninum and the other three molecules had no homologues in current gene databases. 'Non-wildtype' RNAi phenotypes were recorded for 13 of the C. elegans homologues. A subset of 16 C. elegans homologues/orthologues (i.e. genes abce-1, act-2, C08H9.2, C55F2.1, calu-1, col-181, cpr-6, elo-2, asp-1, K07E3.4, rpn-2, sel-9, T28C12.4, hsb-1, Y57G11C.15 and ZK593.1) were predicted to interact genetically with a total of 156 (range 1-88) other genes. Gene ontology (GO) analysis of the interacting genes revealed that the most common subcategories were signal transduction (7%), intracellular protein transport and glycolysis (6.2%) within 'biological process'; nuclear (25.7%) and intracellular (19.8%) within 'cellular component'; and ATP-binding (14.4%) and protein-binding (8.4%) within 'molecular function'. The potential roles of key molecules in the two blood-feeding parasitic nematodes are discussed in relation to the known roles of their homologues/orthologues in C. elegans. The CSH approach used may provide a tool for the screening of genes conserved across a range of different taxa of parasites for which DNA microarray platforms are not available.
Collapse
Affiliation(s)
- C Cantacessi
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Genomic-bioinformatic analysis of transcripts enriched in the third-stage larva of the parasitic nematode Ascaris suum. PLoS Negl Trop Dis 2008; 2:e246. [PMID: 18560474 PMCID: PMC2398786 DOI: 10.1371/journal.pntd.0000246] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 05/13/2008] [Indexed: 11/24/2022] Open
Abstract
Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer). Using gene ontology (GO), 235 of these molecules were assigned to ‘biological process’ (n = 68), ‘cellular component’ (n = 50), or ‘molecular function’ (n = 117). Of the 91 clusters assembled, 56 molecules (61.5%) had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5%) had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors), and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein–protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50) to be involved in apoptosis and insulin signaling (2%), ATP synthesis (2%), carbon metabolism (6%), fatty acid biosynthesis (2%), gap junction (2%), glucose metabolism (6%), or porphyrin metabolism (2%), although 34 (68%) of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%), anchored (2%), and/or transmembrane (12%) proteins. Functionally, 17 (34%) of them were predicted to be associated with (non-wild-type) RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb) (13 types; 58.8%), larval arrest (Lva) (23.5%) and larval lethality (Lvl) (47%). A genetic interaction network was predicted for these 17 C. elegans orthologues, revealing highly significant interactions for nine molecules associated with embryonic and larval development (66.9%), information storage and processing (5.1%), cellular processing and signaling (15.2%), metabolism (6.1%), and unknown function (6.7%). The potential roles of these molecules in development are discussed in relation to the known roles of their homologues/orthologues in C. elegans and some other nematodes. The results of the present study provide a basis for future functional genomic studies to elucidate molecular aspects governing larval developmental processes in A. suum and/or the transition to parasitism. In the present study, we constructed a cDNA library enriched for molecules of the infective third-stage larva (L3) of Ascaris suum, the common roundworm of pigs. Using the method of suppressive-subtractive hybridization (SSH), we explored transcription of a subset of molecules by microarray analysis and conducted bioinformatic analyses to characterize these molecules, map them to biochemical pathways, and predict genetic interactions based on comparisons with Caenorhabditis elegans and/or other organisms. The results provide interesting insights into early molecular processes in A. suum. Approximately 60% of the L3-enriched molecules discovered had homologues in C. elegans. Probabilistic analyses suggested that a complex genetic network regulates or controls larval growth and development in A. suum L3s, some of which might be involved in or regulate the switch from the free-living to the parasitic stage. Functional studies of these molecules to elucidate developmental processes in Ascaris could assist in identifying new targets for intervention.
Collapse
|
23
|
Abstract
There is increasing interest in the use of the free-living nematode Caenorhabditis elegans as a tool for parasitic nematode research and there are now a number of compelling examples of its successful application. C. elegans has the potential to become a standard tool for molecular helminthology researchers, just as yeast is routinely used by molecular biologists to study vertebrate biology. However, in order to exploit C. elegans in a meaningful manner, we need a detailed understanding of the extent to which different aspects of C. elegans biology have been conserved with particular groups of parasitic nematodes. This review first considers the current state of knowledge regarding the conservation of genome organisation across the nematode phylum and then discusses some recent evolutionary development studies in free-living nematodes. The aim is to provide some important concepts that are relevant to the extrapolation of information from C. elegans to parasitic nematodes and also to the interpretation of experiments that use C. elegans as a surrogate expression system. In general, examples have been specifically chosen because they highlight the importance of careful experimentation and interpretation of data. Consequently, the focus is on the differences that have been found between nematode species rather than the similarities. Finally, there is a detailed discussion of the current status of C. elegans as a heterologous expression system to study parasite gene function and regulation using successful examples from the literature.
Collapse
Affiliation(s)
- J S Gilleard
- Department of Veterinary Parasitology, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Glasgow, UK.
| |
Collapse
|
24
|
In silico analysis of expressed sequence tags from Trichostrongylus vitrinus (Nematoda): comparison of the automated ESTExplorer workflow platform with conventional database searches. BMC Bioinformatics 2008; 9 Suppl 1:S10. [PMID: 18315841 PMCID: PMC2259411 DOI: 10.1186/1471-2105-9-s1-s10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background The analysis of expressed sequence tags (EST) offers a rapid and cost effective approach to elucidate the transcriptome of an organism, but requires several computational methods for assembly and annotation. Researchers frequently analyse each step manually, which is laborious and time consuming. We have recently developed ESTExplorer, a semi-automated computational workflow system, in order to achieve the rapid analysis of EST datasets. In this study, we evaluated EST data analysis for the parasitic nematode Trichostrongylus vitrinus (order Strongylida) using ESTExplorer, compared with database matching alone. Results We functionally annotated 1776 ESTs obtained via suppressive-subtractive hybridisation from T. vitrinus, an important parasitic trichostrongylid of small ruminants. Cluster and comparative genomic analyses of the transcripts using ESTExplorer indicated that 290 (41%) sequences had homologues in Caenorhabditis elegans, 329 (42%) in parasitic nematodes, 202 (28%) in organisms other than nematodes, and 218 (31%) had no significant match to any sequence in the current databases. Of the C. elegans homologues, 90 were associated with 'non-wildtype' double-stranded RNA interference (RNAi) phenotypes, including embryonic lethality, maternal sterility, sterile progeny, larval arrest and slow growth. We could functionally classify 267 (38%) sequences using the Gene Ontologies (GO) and establish pathway associations for 230 (33%) sequences using the Kyoto Encyclopedia of Genes and Genomes (KEGG). Further examination of this EST dataset revealed a number of signalling molecules, proteases, protease inhibitors, enzymes, ion channels and immune-related genes. In addition, we identified 40 putative secreted proteins that could represent potential candidates for developing novel anthelmintics or vaccines. We further compared the automated EST sequence annotations, using ESTExplorer, with database search results for individual T. vitrinus ESTs. ESTExplorer reliably and rapidly annotated 301 ESTs, with pathway and GO information, eliminating 60 low quality hits from database searches. Conclusion We evaluated the efficacy of ESTExplorer in analysing EST data, and demonstrate that computational tools can be used to accelerate the process of gene discovery in EST sequencing projects. The present study has elucidated sets of relatively conserved and potentially novel genes for biological investigation, and the annotated EST set provides further insight into the molecular biology of T. vitrinus, towards the identification of novel drug targets.
Collapse
|
25
|
Kumar S, Chaudhary K, Foster JM, Novelli JF, Zhang Y, Wang S, Spiro D, Ghedin E, Carlow CKS. Mining predicted essential genes of Brugia malayi for nematode drug targets. PLoS One 2007; 2:e1189. [PMID: 18000556 PMCID: PMC2063515 DOI: 10.1371/journal.pone.0001189] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 10/25/2007] [Indexed: 12/02/2022] Open
Abstract
We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Parasitology, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Kshitiz Chaudhary
- Division of Parasitology, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Jeremy M. Foster
- Division of Parasitology, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Jacopo F. Novelli
- Division of Parasitology, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Yinhua Zhang
- Division of Parasitology, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Shiliang Wang
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - David Spiro
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Elodie Ghedin
- The Institute for Genomic Research, Rockville, Maryland, United States of America
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Clotilde K. S. Carlow
- Division of Parasitology, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Gasser RB, Cottee P, Nisbet AJ, Ruttkowski B, Ranganathan S, Joachim A. Oesophagostomum dentatum: potential as a model for genomic studies of strongylid nematodes, with biotechnological prospects. Biotechnol Adv 2007; 25:281-93. [PMID: 17350211 DOI: 10.1016/j.biotechadv.2007.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Revised: 01/17/2007] [Accepted: 01/23/2007] [Indexed: 01/12/2023]
Abstract
There are substantial gaps in the knowledge of the molecular processes of development and reproduction in parasitic nematodes, despite the fact that understanding such processes could lead to novel ways of treating and controlling parasitic diseases, through blocking or disrupting key biological pathways. Biotechnological advances through large-scale sequencing projects, approaches for the analysis of differential gene and protein expression and functional genomics (e.g., double-stranded RNA interference) now provide opportunities to investigate the molecular basis of developmental processes in some parasitic nematodes. The porcine nodule worm, Oesophagostomum dentatum (order Strongylida), may provide a platform for testing the function of genes from this and related nematodes, given that this species can be grown and maintained in culture in vitro for periods longer than other nematodes of the same order. In this article, we review relevant biological, biochemical and molecular biological and genomic information about O. dentatum and propose that the O. dentatum - pig system provides an attractive model for exploring molecular developmental and reproductive processes in strongylid nematodes, leading toward new intervention methods and biotechnological outcomes.
Collapse
Affiliation(s)
- Robin B Gasser
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
27
|
Nikolaou S, Gasser RB. Extending from PARs in Caenorhabditis elegans to homologues in Haemonchus contortus and other parasitic nematodes. Parasitology 2006; 134:461-82. [PMID: 17107637 DOI: 10.1017/s0031182006001727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 08/23/2006] [Accepted: 10/02/2006] [Indexed: 11/05/2022]
Abstract
Signal transduction molecules play key roles in the regulation of developmental processes, such as morphogenesis, organogenesis and cell differentiation in all organisms. They are organized into 'pathways' that represent a coordinated network of cell-surface receptors and intracellular molecules, being involved in sensing environmental stimuli and transducing signals to regulate or modulate cellular processes, such as gene expression and cytoskeletal dynamics. A particularly important group of molecules implicated in the regulation of the cytoskeleton for the establishment and maintenance of cell polarity is the PAR proteins (derived from partition defective in asymmetric cell division). The present article reviews salient aspects of PAR proteins involved in the early embryonic development and morphogenesis of the free-living nematode Caenorhabditis elegans and some other organisms, with an emphasis on the molecule PAR-1. Recent advances in the knowledge and understanding of PAR-1 homologues from the economically important parasitic nematode, Haemonchus contortus, of small ruminants is summarized and discussed in the context of exploring avenues for future research in this area for parasitic nematodes.
Collapse
Affiliation(s)
- S Nikolaou
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | | |
Collapse
|
28
|
Moser JM, Freitas T, Arasu P, Gibson G. Gene expression profiles associated with the transition to parasitism in Ancylostoma caninum larvae. Mol Biochem Parasitol 2005; 143:39-48. [PMID: 15979737 DOI: 10.1016/j.molbiopara.2005.04.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2004] [Revised: 04/24/2005] [Accepted: 04/25/2005] [Indexed: 11/29/2022]
Abstract
Ancylostoma caninum is a common canine parasite responsible for anemia and death in infected dogs. Gene expression profiling was used to investigate molecular differences between two different forms of the third larval stage (L3s): infective free-living larvae and in vitro serum-stimulated larvae that mimic the initial stages of parasitism of a host. We developed an A. caninum cDNA microarray consisting of 4191 EST clones, and used it to identify a set of 113 genes that are differentially regulated between infective and parasitic larval stages. Real-time RT-PCR was used to confirm the expression differences of a subset of the genes. Of the genes repressed upon serum stimulation, seven encode members of the 'Ancylostoma secreted protein' ASP family, while another transcript encoding a 24 kDa excretory protein with similarity to ASP was up-regulated in serum-stimulated L3s. This suggests that different members of a protein family that has important implications for the hookworm's parasitic lifestyle are regulated in a complementary manner in response to serum stimulation. Comparison of two strains of A. caninum from North Carolina and Maryland only identified a single gene, one of the members of the ASP family, that was differentially repressed upon serum stimulation.
Collapse
Affiliation(s)
- Jennifer M Moser
- Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
29
|
Coppel RL, Black CG. Parasite genomes. Int J Parasitol 2005; 35:465-79. [PMID: 15826640 DOI: 10.1016/j.ijpara.2005.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 02/24/2005] [Accepted: 02/24/2005] [Indexed: 01/01/2023]
Abstract
The availability of genome sequences and the associated transcriptome and proteome mapping projects has revolutionised research in the field of parasitology. As more parasite species are sequenced, comparative and phylogenetic comparisons are improving the quality of gene prediction and annotation. Genome sequences of parasites are also providing important data sets for understanding parasite biology and identifying new vaccine candidates and drug targets. We review some of the preliminary conclusions from examination of parasite genome sequences and discuss some of the bioinformatics approaches taken in this analysis.
Collapse
Affiliation(s)
- Ross L Coppel
- Department of Microbiology and the Victorian Bioinformatics Consortium, Monash University, Melbourne, Vic. 3800, Australia.
| | | |
Collapse
|
30
|
Abstract
Expressed sequence tag projects have currently produced over 400 000 partial gene sequences from more than 30 nematode species and the full genomic sequences of selected nematodes are being determined. In addition, functional analyses in the model nematode Caenorhabditis elegans have addressed the role of almost all genes predicted by the genome sequence. This recent explosion in the amount of available nematode DNA sequences, coupled with new gene function data, provides an unprecedented opportunity to identify pre-validated drug targets through efficient mining of nematode genomic databases. This article describes the various information sources available and strategies that can expedite this process.
Collapse
Affiliation(s)
- Jeremy M Foster
- Molecular Parasitology, New England Biolabs, 32 Tozer Road, Beverly, MA 01915, USA
| | | | | | | |
Collapse
|
31
|
Nisbet AJ, Gasser RB. Profiling of gender-specific gene expression for Trichostrongylus vitrinus (Nematoda: Strongylida) by microarray analysis of expressed sequence tag libraries constructed by suppressive-subtractive hybridisation. Int J Parasitol 2004; 34:633-43. [PMID: 15064128 DOI: 10.1016/j.ijpara.2003.12.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 12/09/2003] [Accepted: 12/10/2003] [Indexed: 11/23/2022]
Abstract
Gender-specific gene expression in Trichostrongylus vitrinus (order Strongylida) was investigated by constructing male- and female-specific gene archives using a suppressive-subtractive hybridisation approach, sequencing of expressed sequence tags from these archives, comparison with genes of Caenorhabditis elegans and other organisms, and expression profiling of a representative subset of 716 expressed sequence tags by microarray and macroarray analysis. Of these T. vitrinus expressed sequence tags, 391 had sequence homology to C. elegans genes. Of the remaining expressed sequence tags, 62 had homology to genes of other species of parasitic nematodes, and 263 expressed sequence tags had no significant homology. Expression profiling showed gender-specific expression for 561 of the 716 T. vitrinus expressed sequence tags. Male-specific protein kinases and protein phosphatases, major sperm proteins and enzymes involved in carbohydrate metabolism were abundant in the cDNA archive. Female-specific vitellogenins, heat-shock proteins and chaperonins were also highly represented. Genes involved in a number of cellular processes, such as ubiquitination and proteasome function, gene transcription, cell signalling, protein-protein interactions and chromatin assembly and function were also expressed in a gender-specific manner. The potential roles of these genes in gametogenesis, embryogenesis and reproduction in the parasitic nematode are discussed in relation to the known roles of their homologues in C. elegans.
Collapse
Affiliation(s)
- Alasdair J Nisbet
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | | |
Collapse
|
32
|
Couthier A, Smith J, McGarr P, Craig B, Gilleard JS. Ectopic expression of a Haemonchus contortus GATA transcription factor in Caenorhabditis elegans reveals conserved function in spite of extensive sequence divergence. Mol Biochem Parasitol 2004; 133:241-53. [PMID: 14698436 DOI: 10.1016/j.molbiopara.2003.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Comparative analysis between Caenorhabditis elegans and other nematode species offers a powerful approach to study gene function. C. elegans also has great potential as a surrogate expression system to study the function of genes from parasitic nematode species where transgenic methodologies are unavailable. However there is little information on the extent to which the biology of C. elegans is conserved with other nematode species and very few parasitic nematode genes have yet been functionally expressed in C. elegans. We have identified and characterised a homologue of the C. elegans GATA transcription factor elt-2, a central regulator of endoderm development, from the parasitic nematode Haemonchus contortus. The H. contortus ELT-2 polypeptide is present in endoderm nuclei throughout embryonic and post-embryonic development, except for in the infective L3 stage, and our experiments reveal that the development of the H. contortus endodermal lineage is strikingly similar to that of C. elegans. Sequence conservation between the H. contortus and C. elegans ELT-2 polypeptides broadly reflects function since the major region of sequence identity corresponds to the DNA binding domain. However, the overall level of sequence identity is remarkably low with the only other major region of identity corresponding to an unusual zinc finger domain. In spite of this, ectopic expression of the H. contortus elt-2 gene in transgenic C. elegans is sufficient to activate a programme of endodermal differentiation demonstrating that function is highly conserved. This approach of ectopic expression using an inducible promoter provides an effective way in which to use C. elegans for the in vivo functional analysis of parasitic nematode genes.
Collapse
Affiliation(s)
- Annabelle Couthier
- Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Institute of Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | | | | | | | | |
Collapse
|
33
|
Tawill S, Le Goff L, Ali F, Blaxter M, Allen JE. Both free-living and parasitic nematodes induce a characteristic Th2 response that is dependent on the presence of intact glycans. Infect Immun 2004; 72:398-407. [PMID: 14688121 PMCID: PMC343992 DOI: 10.1128/iai.72.1.398-407.2004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with parasitic nematodes is characterized by the induction of a profound type 2 immune response. We have studied the role of glycans in the induction of the skewed type 2 response by antigens of the parasitic nematode Brugia malayi as well as the free-living nematode Caenorhabditis elegans. Lymph node cells from BALB/c mice immunized with soluble extracts of the two nematodes showed distinct antigen-specific proliferation and cytokine production; however, both nematodes induced antigen-specific interleukin 4 (IL-4) production, demonstrating that the induction of a biased type 2 response is not unique to parasitic nematodes. Sodium periodate-treated soluble extracts of both nematodes consistently induced significantly less IL-4 production than the respective mock-treated extracts, indicating that glycans play a critical role in the induction of the Th2 immune response by these nematodes. The glycan-dependent induction of the Th2-potentiating cytokine IL-4 occurs by 72 h postinoculation. Our data suggest that glycan determinants common to nematodes act as ligands, displaying distinct molecular patterns that trigger the immune system to launch a biased Th2 immune response upon exposure to these organisms or their products. Further, the similarity of our findings to those for Schistosoma mansoni egg antigen is striking considering the enormous phylogenetic distance between nematodes and trematodes. These data thus have important implications for how the mammalian host responds to widely divergent metazoan invaders and suggest that the powerful C. elegans model system can be used to address these questions.
Collapse
Affiliation(s)
- Salah Tawill
- Institute of Cell, Animal, and Population Biology, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
Nisbet AJ, Cottee P, Gasser RB. Molecular biology of reproduction and development in parasitic nematodes: progress and opportunities. Int J Parasitol 2004; 34:125-38. [PMID: 15037100 DOI: 10.1016/j.ijpara.2003.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 09/05/2003] [Accepted: 09/11/2003] [Indexed: 10/26/2022]
Abstract
Molecular biological research on the development and reproduction of parasites is of major significance for many fundamental and applied areas of medical and veterinary parasitology. Together with knowledge of parasite biology and epidemiology, the application of molecular tools and technologies provides unique opportunities for elucidating developmental and reproductive processes in helminths. This article focuses specifically on recent progress in studying the molecular mechanisms of development, sexual differentiation and reproduction in parasitic nematodes of socio-economic importance and comparative analyses, where appropriate, with the free-living nematode Caenorhabditis elegans. It also describes the implications of such work for understanding reproduction, tissue migration, hypobiosis, signal transduction and host-parasite interactions at the molecular level, and for seeking new means of parasite intervention.
Collapse
Affiliation(s)
- Alasdair J Nisbet
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | | | | |
Collapse
|
35
|
Hashmi S, Zhang J, Oksov Y, Lustigman S. The Caenorhabditis elegans Cathepsin Z-like Cysteine Protease, Ce-CPZ-1, Has a Multifunctional Role during the Worms' Development. J Biol Chem 2004; 279:6035-45. [PMID: 14630920 DOI: 10.1074/jbc.m312346200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have analyzed the expression and function of Cecpz-1, a Caenorhabditis elegans cathepsin Z-like cysteine protease gene, during development of the worm. The cpz-1 gene is expressed in various hypodermal cells of all developmental stages and is specifically expressed in the gonads and the pharynx of adult worms. Disruption of cpz-1 function by RNA interference or cpz-1(ok497) deletion mutant suggests that cpz-1 has a role in the molting pathways. The presence of the native CPZ-1 protein in the hypodermis/cuticle of larval and adult stages and along the length of the pharynx of adult worms, as well as the cyclic expression of the transcript during larval development, supports such function. We hypothesize that the CPZ-1 enzyme functions directly as a proteolytic enzyme degrading cuticular proteins before ecdysis and/or indirectly by processing other proteins such as proenzymes and/or other proteins that have an essential role during molting. Notably, an impressive level of the CPZ-1 native protein is present in both the new and the old cuticles during larval molting, in particular in the regions that are degraded prior to shedding and ecdysis. The similar localization of the related Onchocerca volvulus cathepsin Z protein suggests that the function of CPZ-1 during molting might be conserved in other nematodes. Based on the cpz-1 RNA interference and cpz-1 (ok497) deletion mutant phenotypes, it appears that cpz-1 have additional roles during morphogenesis. Deletion of cpz-1 coding sequence or inhibition of cpz-1 function by RNA interference also caused morphological defects in the head or tail region of larvae, improperly developed gonad in adult worms and embryonic lethality. The CPZ-1 native protein in these affected regions may have a role in the cuticular and the basement membrane extracellular matrix assembly process. The present findings have defined a critical role for cathepsin Z in nematode biology.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Base Sequence
- Caenorhabditis elegans/embryology
- Caenorhabditis elegans/enzymology
- Cathepsin K
- Cathepsins/chemistry
- DNA, Complementary/metabolism
- Gene Deletion
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Gonads/metabolism
- Microscopy, Fluorescence
- Microscopy, Immunoelectron
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Peptides/chemistry
- Pharynx/metabolism
- Phenotype
- Promoter Regions, Genetic
- RNA Interference
- RNA, Double-Stranded/chemistry
- RNA, Messenger/metabolism
- Recombinant Proteins/chemistry
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Time Factors
- Transgenes
Collapse
Affiliation(s)
- Sarwar Hashmi
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York 10021, USA.
| | | | | | | |
Collapse
|
36
|
Pellerone FI, Archer SK, Behm CA, Grant WN, Lacey MJ, Somerville AC. Trehalose metabolism genes in Caenorhabditis elegans and filarial nematodes. Int J Parasitol 2004; 33:1195-206. [PMID: 13678635 DOI: 10.1016/s0020-7519(03)00173-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The sugar trehalose is claimed to be important in the physiology of nematodes where it may function in sugar transport, energy storage and protection against environmental stresses. In this study we investigated the role of trehalose metabolism in nematodes, using Caenorhabditis elegans as a model, and also identified complementary DNA clones putatively encoding genes involved in trehalose pathways in filarial nematodes. In C. elegans two putative trehalose-6-phosphate synthase (tps) genes encode the enzymes that catalyse trehalose synthesis and five putative trehalase (tre) genes encode enzymes catalysing hydrolysis of the sugar. We showed by RT-PCR or Northern analysis that each of these genes is expressed as mRNA at all stages of the C. elegans life cycle. Database searches and sequencing of expressed sequence tag clones revealed that at least one tps gene and two tre genes are expressed in the filarial nematode Brugia malayi, while one tps gene and at least one tre gene were identified for Onchocerca volvulus. We used the feeding method of RNA interference in C. elegans to knock down temporarily the expression of each of the tps and tre genes. Semiquantitative RT-PCR analysis confirmed that expression of each gene was silenced by RNA interference. We did not observe an obvious phenotype for any of the genes silenced individually but gas-chromatographic analysis showed >90% decline in trehalose levels when both tps genes were targeted simultaneously. This decline in trehalose content did not affect viability or development of the nematodes.
Collapse
Affiliation(s)
- F I Pellerone
- School of Biochemistry & Molecular Biology, Faculty of Science, Australian National University, ACT 0200, Canberra, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
In light of recent growth in available DNA sequence information for a number of parasitic helminths, it is crucial that suitable gene manipulation technologies are developed to facilitate functional genomic studies in these organisms. In this review we discuss recent progress in the development of these technologies in nematode and platyhelminth parasites of medical and veterinary importance. Specifically, the current status of transient transfection, double-stranded RNA interference and antisense RNA as viable techniques for the manipulation of parasitic helminth gene expression is presented. In addition, the potential for the development of stable, or germ-line, transformation methods in these organisms is also discussed.
Collapse
Affiliation(s)
- Jon P Boyle
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, 2115 Observatory Drive, Madison, WI 53706, USA
| | | |
Collapse
|
38
|
Claerebout E, Knox DP, Vercruysse J. Current research and future prospects in the development of vaccines against gastrointestinal nematodes in cattle. Expert Rev Vaccines 2003; 2:147-57. [PMID: 12901605 DOI: 10.1586/14760584.2.1.147] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vaccination is being considered as the most feasible alternative for anthelmintic drugs to control gastrointestinal nematode infections in cattle. However, despite the identification of several candidate protective antigens, no vaccines against gastrointestinal nematode parasites are currently available. The main problems that hamper the development of nematode vaccines in ruminants are that vaccination with recombinant nematode proteins produced in bacterial or eukaryotic expression systems did not induce a protective immune response and no suitable antigen delivery system is available for presentation of protective worm antigens to the bovine mucosal immune system. The present review will focus on recent advances and remaining obstacles in vaccine development against gastrointestinal nematodes in cattle, in particular against the abomasal parasite Ostertagia ostertagi.
Collapse
Affiliation(s)
- Edwin Claerebout
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | |
Collapse
|
39
|
Kampkötter A, Volkmann TE, de Castro SH, Leiers B, Klotz LO, Johnson TE, Link CD, Henkle-Dührsen K. Functional analysis of the glutathione S-transferase 3 from Onchocerca volvulus (Ov-GST-3): a parasite GST confers increased resistance to oxidative stress in Caenorhabditis elegans. J Mol Biol 2003; 325:25-37. [PMID: 12473450 DOI: 10.1016/s0022-2836(02)01174-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study examined the genomic organisation of the coding region of the glutathione S-transferase 3 (Ov-GST-3) from the human parasitic nematode Onchocerca volvulus; alternative splicing leads to three different transcripts (Ov-GST-3/1; Ov-GST-3/2 and Ov-GST-3/3). Since the expression of Ov-GST-3 is inducible by oxidative stress, it is assumed that it is involved in the defense against reactive oxygen species (ROS) resulting from cellular metabolism. Furthermore, we suggest that Ov-GST-3 plays an important role in the protection of the parasite against ROS derived from the host's immune system. To experimentally investigate these speculations, we generated Caenorhabditis elegans lines transgenic for Ov-GST-3 (AK1) and examined their resistance to artificially generated ROS. The AK1 worms (extrachromosomal and integrated lines) were found to be much more resistant to internal (juglone) and external (hypoxanthine/xanthine oxidase) oxidative stress than wild-type C.elegans worms. RNA interference experiments targeted to the Ov-GST-3 transcripts resulted in decreased resistance, confirming that this effect is due to the transgenic expression of Ov-GST-3. These results clearly demonstrate that the Ov-GST-3 gene confers an increased resistance to oxidative stress. This study also shows the applicability of C.elegans as a model organism for the functional characterization of genes from (parasitic) nematode species which are not accessible to genetic manipulations.
Collapse
Affiliation(s)
- Andreas Kampkötter
- Institut für Genetik, Heinrich-Heine-Universitat, Universitätsstrasse 1, 40225 Dusseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The study of gene function in parasitic worms is technically demanding due to difficulties associated with life-cycle propagation and, hence, molecular genetics. Exploitation of the free-living nematode, Caenorhabditis elegans, coupled with recent major advances in molecular studies of parasitic nematodes, have opened up new avenues for understanding the biology of these parasites and present opportunities for novel strategies of therapeutic intervention and control.
Collapse
Affiliation(s)
- Darren R Brooks
- Faculty of Biological Sciences, University of Leeds, West Yorkshire, Leeds LS2 9JT, UK.
| | | |
Collapse
|
41
|
Affiliation(s)
- Ben M Dunn
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610-0245, USA.
| |
Collapse
|
42
|
Vervelde L, Van Leeuwen MAW, Kruidenier M, Kooyman FNJ, Huntley JF, Van Die I, Cornelissen AWCA. Protection studies with recombinant excretory/secretory proteins of Haemonchus contortus. Parasite Immunol 2002; 24:189-201. [PMID: 12010484 DOI: 10.1046/j.1365-3024.2002.00454.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The efficacy of two recombinant proteins of Haemonchus contortus was studied in both adult sheep and young lambs. These 15 and 24 kDa excretory/secretory proteins were given combined, either supplemented or not with a glycan-rich insect cell extract. In 9-month-old sheep (trial 1), faecal egg output and worm burden were reduced by 49% and 55%, respectively, after vaccination with rec15/24, and by 46% and 65% after vaccination with rec15/24 and glycan extract. No reduction in egg output or number of worms was found in young lambs using the above recombinant proteins plus glycan-rich extract (trial 2). When trial 1 was repeated (trial 3), the protection could not be reproduced, possibly due to differences in batches of recombinant proteins. In all sheep, independent of their age, rec15/24-specific immunoglobulin (Ig)G1 and IgA titres were present, but 9-month-old protected sheep had significantly higher IgA titres than the lambs. Addition of glycans resulted in lower rec15/24-specific IgG1 and IgA in 9-month-old sheep after challenge. This did not affect the level of protection. A significant negative correlation was found between IgA and worm numbers in protected sheep immunized with rec15/24 supplemented with glycans. Total IgE and rec15/24 specific IgE titres were low. The number of eosinophils, mast cells, sheep mast cell protease (SMCP)+ cells and IgA+ cells did not differ between the protected and unprotected sheep, but the lambs had significantly fewer mast cells independent of their immunization.
Collapse
Affiliation(s)
- L Vervelde
- Utrecht University, Faculty Veterinary Medicine, Department of Infectious Diseases and Immunology, Division of Parasitology and Tropical Veterinary Medicine, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
43
|
Hashmi S, Britton C, Liu J, Guiliano DB, Oksov Y, Lustigman S. Cathepsin L is essential for embryogenesis and development of Caenorhabditis elegans. J Biol Chem 2002; 277:3477-86. [PMID: 11707440 DOI: 10.1074/jbc.m106117200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine proteases play critical biological roles in both intracellular and extracellular processes. We characterized Ce-cpl-1, a Caenorhabditis elegans cathepsin L-like cysteine protease. RNA interference with Ce-cpl-1 activity resulted in embryonic lethality and a transient delayed growth of larvae to egg producing adults, suggesting an essential role for cpl-1 during embryogenesis, and most likely during post-embryonic development. Cpl-1 gene (Ce-cpl-1:lacZ) is widely expressed in the intestine and hypodermal cells of transgenic worms, while the fusion protein (Ce-CPL-1::GFP) was expressed in the hypodermis, pharynx, and gonad. The CPL-1 native protein accumulates in early to late stage embryos and becomes highly concentrated in gut cells during late embryonic development. CPL-1 is also present near the periphery of the eggshell as well as in the cuticle of larval stages suggesting that it may function not only in embryogenesis but also in further development of the worm. Although the precise role of Ce-CPL-1 during embryogenesis is not yet clear it could be involved in the processing of nutrients responsible for synthesis and/or in the degradation of eggshell. Moreover, an increase in the cpl-1 mRNA is seen in the intermolt period approximately 4 h prior to each molt. During this process Ce-CPL-1 may act as a proteolytic enzyme in the processing/degradation of cuticular or other proteins. Similar localization of a related cathepsin L in the filarial nematode Onchocerca volvulus, eggshell and cuticle, suggests that some of the Ce-CPL-1 function during development may be conserved in other parasitic nematodes.
Collapse
Affiliation(s)
- Sarwar Hashmi
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
44
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2002. [PMCID: PMC2447231 DOI: 10.1002/cfg.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|