1
|
Quan H, Guo Y, Li S, Jiang Y, Shen Q, He Y, Zhou X, Yuan X, Li J. Phospholipid Phosphatase 3 ( PLPP3) Induces Oxidative Stress to Accelerate Ovarian Aging in Pigs. Cells 2024; 13:1421. [PMID: 39272993 PMCID: PMC11394089 DOI: 10.3390/cells13171421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Ovarian aging results in reproductive disorders and infertility in mammals. Previous studies have reported that the ferroptosis and autophagy caused by oxidative stress may lead to ovarian aging, but the mechanisms remain unclear. In this study, we compared the morphological characteristics between the aged and young ovaries of pigs and found that the aged ovaries were larger in size and showed more corpora lutea. TUNEL assay further showed that the apoptosis level of granulosa cells (GCs) was relatively higher in the aged ovaries than those in young ovaries, as well as the expressions of autophagy-associated genes, e.g., p62, ATG7, ATG5, and BECN1, but that the expressions of oxidative stress and aging-associated genes, e.g., SOD1, SIRT1, and SIRT6, were significantly lower. Furthermore, the RNA-seq, Western blotting, and immunofluorescence suggested that phospholipid phosphatase 3 (PLPP3) protein was significantly upregulated in the aged ovaries. PLPP3 was likely to decrease the expressions of SIRT1 and SIRT6 to accelerate cellular senescence of porcine GCs, inhibit the expressions of SOD1, CAT, FSP1, FTH1, and SLC7A11 to exacerbate oxidative stress and ferroptosis, and arouse autophagy to retard the follicular development. In addition, two SNPs of PLPP3 promoter were significantly associated with the age at puberty. g.155798586 (T/T) and g.155798718 (C/C) notably facilitated the mRNA and protein level of PLPP3. In conclusion, PLPP3 might aggravate the oxidative stress of GCs to accelerate ovarian aging, and two molecular markers of PLPP3 were identified for ovarian aging in pigs. This work not only contributes to investigations on mechanisms for ovarian aging but also provides valuable molecular markers to postpone ovarian aging in populations.
Collapse
Affiliation(s)
- Hongyan Quan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Q.)
| | - Yixuan Guo
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Q.)
| | - Shuo Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Q.)
| | - Yao Jiang
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6150, Australia
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qingpeng Shen
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Q.)
| | - Yingting He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Q.)
| | - Xiaofeng Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Q.)
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Q.)
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.Q.)
| |
Collapse
|
2
|
Di Berardino C, Barceviciute U, Camerano Spelta Rapini C, Peserico A, Capacchietti G, Bernabò N, Russo V, Gatta V, Konstantinidou F, Donato M, Barboni B. High-fat diet-negative impact on female fertility: from mechanisms to protective actions of antioxidant matrices. Front Nutr 2024; 11:1415455. [PMID: 38915855 PMCID: PMC11194403 DOI: 10.3389/fnut.2024.1415455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction Excessive calorie intake poses a significant threat to female fertility, leading to hormonal imbalances and reproductive challenges. Overconsumption of unhealthy fats exacerbates ovarian dysfunction, with an overproduction of reactive oxygen species causing oxidative stress, impairing ovarian follicle development and leading to irregular ovulation and premature ovarian failure. Interest in biological matrices with high antioxidant properties to combat diet-related oxidative stress has grown, as they contain various bioactive factors crucial for neutralizing free radicals potentially preventing female reproductive health. This systematic review evaluates the female reproductive impact of biological matrices in mitigating oxidative damages induced by over calory habits and, in particular, high fat diets. Methods A comparative approach among mammalian models was utilized to interpret literature available data. This approach specifically investigates the antioxidant mechanisms of biological matrices on early and late ovarian folliculogenesis, under physiological and hormone-induced female reproductive cycle. Adhering to the PRISMA 2020 guidelines, only English-language publications from peer-reviewed international indexes were considered. Results The analysis of 121 publications meeting the inclusion criteria facilitated the identification of crucial components of biological matrices. These components, including carbocyclic sugars, phytonutrients, organosulfur compounds, and vitamins, were evaluated for their impact on ovarian follicle resilience, oocyte quality, and reproductive lifespan. The detrimental effects of oxidative stress on female fertility, particularly exacerbated by high saturated fat diets, are well-documented. In vivo studies across mammalian preclinical models have underscored the potential of antioxidants derived from biological matrices to mitigate diet-induced conditions. These antioxidants enhance steroidogenesis and ovarian follicle development, thereby improving oocyte quality. Additionally, discussions within these publications emphasized the clinical significance of these biological matrices, translating research findings into practical applications for female health. Conclusion Further research is essential to fully exploit the potential of these matrices in enhancing female reproduction and mitigating the effects of diets rich in fatty acids. This requires intensified in vitro studies and comprehensive collection of in vivo data before clinical trials. The promotion of ovarian resilience offers promising avenues for enhancing understanding and advancing female reproductive health world-wide.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Urte Barceviciute
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Nicola Bernabò
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Rome, Italy
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Marisa Donato
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
3
|
Zhao T, He M, Zhu Z, Zhang T, Zheng W, Qin S, Gao M, Wang W, Chen Z, Han J, Liu L, Zhou B, Wang H, Zhang H, Xia G, Wang J, Wang F, Wang C. P62 promotes FSH-induced antral follicle formation by directing degradation of ubiquitinated WT1. Cell Mol Life Sci 2024; 81:221. [PMID: 38763964 PMCID: PMC11102895 DOI: 10.1007/s00018-024-05251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
In females, the pathophysiological mechanism of poor ovarian response (POR) is not fully understood. Considering the expression level of p62 was significantly reduced in the granulosa cells (GCs) of POR patients, this study focused on identifying the role of the selective autophagy receptor p62 in conducting the effect of follicle-stimulating hormone (FSH) on antral follicles (AFs) formation in female mice. The results showed that p62 in GCs was FSH responsive and that its level increased to a peak and then decreased time-dependently either in ovaries or in GCs after gonadotropin induction in vivo. GC-specific deletion of p62 resulted in subfertility, a significantly reduced number of AFs and irregular estrous cycles, which were same as pathophysiological symptom of POR. By conducting mass spectrum analysis, we found the ubiquitination of proteins was decreased, and autophagic flux was blocked in GCs. Specifically, the level of nonubiquitinated Wilms tumor 1 homolog (WT1), a transcription factor and negative controller of GC differentiation, increased steadily. Co-IP results showed that p62 deletion increased the level of ubiquitin-specific peptidase 5 (USP5), which blocked the ubiquitination of WT1. Furthermore, a joint analysis of RNA-seq and the spatial transcriptome sequencing data showed the expression of steroid metabolic genes and FSH receptors pivotal for GCs differentiation decreased unanimously. Accordingly, the accumulation of WT1 in GCs deficient of p62 decreased steroid hormone levels and reduced FSH responsiveness, while the availability of p62 in GCs simultaneously ensured the degradation of WT1 through the ubiquitin‒proteasome system and autophagolysosomal system. Therefore, p62 in GCs participates in GC differentiation and AF formation in FSH induction by dynamically controlling the degradation of WT1. The findings of the study contributes to further study the pathology of POR.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Meina He
- College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Zijian Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tuo Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Wenying Zheng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shaogang Qin
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Meng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenji Wang
- School of Life Science, Taizhou University, Taizhou, 318000, China
| | - Ziqi Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jun Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Longping Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bo Zhou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian Province, 361005, China
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guoliang Xia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fengchao Wang
- Transgenic Animal Center, National Institute of Biological Sciences, Beijing, 102206, China
| | - Chao Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- China Agricultural University, No.2 Yuan Ming Yuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
4
|
Jin LY, Yu JE, Xu HY, Chen B, Yang Q, Liu Y, Guo MX, Zhou CL, Cheng Y, Pang HY, Wu HY, Sheng JZ, Huang HF. Overexpression of Pde4d in rat granulosa cells inhibits maturation and atresia of antral follicles to induce polycystic ovary. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166869. [PMID: 37673361 DOI: 10.1016/j.bbadis.2023.166869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Follicle dysplasia can cause polycystic ovary syndrome, which can lead to anovulatory infertility. This study explored gene(s) that may contribute to polycystic ovary syndrome. METHODS Three animal models of polycystic ovary syndrome were created by treating 3-week-old rats respectively with estradiol valerate, testosterone propionate, or constant illumination for 8 weeks. Granulosa cells from the three disease groups and from healthy controls were transcriptionally profiled to identify differentially expressed genes. The phosphodiesterase-4d (Pde4d) was screened as the most promising candidate pathogenic gene. The Pde4d was overexpressed in rats via intrabursal infection with recombinant lentivirus to see the effect of Pde4d on ovarian morphology. The potential roles of the candidate gene and interactors of the encoded protein were explored using polymerase chain reaction, western blotting, transfection and co-immunoprecipitation. RESULTS All three rat models of polycystic ovary syndrome showed polycystic ovary phenotype. Seven promising candidate genes were obtained by transcriptomics and verifications. Pde4d was further investigated because it could trigger downstream signaling pathways. The Pde4d overexpression in rat ovary induced cystic follicles. It inhibited follicle maturation through a mechanism involving inhibition of cAMP-PKA-CREB signaling. The Pde4d also inhibited phosphorylation of c-Jun N-terminal kinase to reduce apoptosis in the ovary, through a mechanism involving interaction of its poly-proline domain with the protein POSH. CONCLUSION Upregulation of Pde4d may contribute to polycystic ovary syndrome by impeding follicle maturation and preventing apoptotic atresia.
Collapse
Affiliation(s)
- Lu-Yang Jin
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Gynecology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia-En Yu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Hai-Yan Xu
- Reproductive Medicine Center, Ningbo First Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, China
| | - Bin Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Qian Yang
- International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ye Liu
- International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng-Xi Guo
- International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-Liang Zhou
- International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Cheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Hai-Yan Pang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Hai-Yan Wu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jian-Zhong Sheng
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - He-Feng Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200030, China.
| |
Collapse
|
5
|
Polonio AM, Medrano M, Chico-Sordo L, Córdova-Oriz I, Cozzolino M, Montans J, Herraiz S, Seli E, Pellicer A, García-Velasco JA, Varela E. Impaired telomere pathway and fertility in Senescence-Accelerated Mice Prone 8 females with reproductive senescence. Aging (Albany NY) 2023; 15:4600-4624. [PMID: 37338562 DOI: 10.18632/aging.204731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/04/2023] [Indexed: 06/21/2023]
Abstract
Ovarian aging is the main cause of infertility and telomere attrition is common to both aging and fertility disorders. Senescence-Accelerated Mouse Prone 8 (SAMP8) model has shortened lifespan and premature infertility, reflecting signs of reproductive senescence described in middle-aged women. Thus, our objective was to study SAMP8 female fertility and the telomere pathway at the point of reproductive senescence. The lifespan of SAMP8 and control mice was monitored. Telomere length (TL) was measured by in situ hybridization in blood and ovary. Telomerase activity (TA) was analyzed by telomere-repeat amplification protocol, and telomerase expression, by real-time quantitative PCR in ovaries from 7-month-old SAMP8 and controls. Ovarian follicles at different stages of maturation were evaluated by immunohistochemistry. Reproductive outcomes were analyzed after ovarian stimulation. Unpaired t-test or Mann-Whitney test were used to calculate p-values, depending on the variable distribution. Long-rank test was used to compare survival curves and Fisher's exact test was used in contingency tables. Median lifespan of SAMP8 females was reduced compared to SAMP8 males (p = 0.0138) and control females (p < 0.0001). In blood, 7-month-old SAMP8 females presented lower mean TL compared to age-matched controls (p = 0.041). Accordingly, the accumulation of short telomeres was higher in 7-month-old SAMP8 females (p = 0.0202). Ovarian TA was lower in 7-month-old SAMP8 females compared to controls. Similarly, telomerase expression was lower in the ovaries of 7-month-old SAMP8 females (p = 0.04). Globally, mean TL in ovaries and granulosa cells (GCs) were similar. However, the percentage of long telomeres in ovaries (p = 0.004) and GCs (p = 0.004) from 7-month-old SAMP8 females was lower compared to controls. In early-antral and antral follicles, mean TL of SAMP8 GCs was lower than in age-matched controls (p = 0.0156 for early-antral and p = 0.0037 for antral follicles). Middle-aged SAMP8 showed similar numbers of follicles than controls, although recovered oocytes after ovarian stimulation were lower (p = 0.0068). Fertilization rate in oocytes from SAMP8 was not impaired, but SAMP8 mice produced significantly more morphologically abnormal embryos than controls (27.03% in SAMP8 vs. 1.22% in controls; p < 0.001). Our findings suggest telomere dysfunction in SAMP8 females, at the time of reproductive senescence.
Collapse
Affiliation(s)
- Alba M Polonio
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Marta Medrano
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Lucía Chico-Sordo
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Isabel Córdova-Oriz
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | | | | | - Sonia Herraiz
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Emre Seli
- IVIRMA New Jersey, Basking Ridge, NJ 07920, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Heaven, CT 06510, USA
| | - Antonio Pellicer
- IVIRMA Rome, Rome, Italy
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - Juan A García-Velasco
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- IVIRMA Madrid, Madrid, Spain
- Department of Obstetrics and Gynecology, Rey Juan Carlos University, Madrid, Spain
| | - Elisa Varela
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Department of Obstetrics and Gynecology, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
6
|
Mastrorocco A, Cacopardo L, Temerario L, Martino NA, Tridente F, Rizzo A, Lacalandra GM, Robbe D, Carluccio A, Dell’Aquila ME. Investigating and Modelling an Engineered Millifluidic In Vitro Oocyte Maturation System Reproducing the Physiological Ovary Environment in the Sheep Model. Cells 2022; 11:cells11223611. [PMID: 36429039 PMCID: PMC9688735 DOI: 10.3390/cells11223611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/04/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
In conventional assisted reproductive technologies (ARTs), oocytes are in vitro cultured in static conditions. Instead, dynamic systems could better mimic the physiological in vivo environment. In this study, a millifluidic in vitro oocyte maturation (mIVM) system, in a transparent bioreactor integrated with 3D printed supports, was investigated and modeled thanks to computational fluid dynamic (CFD) and oxygen convection-reaction-diffusion (CRD) models. Cumulus-oocyte complexes (COCs) from slaughtered lambs were cultured for 24 h under static (controls) or dynamic IVM in absence (native) or presence of 3D-printed devices with different shapes and assembly modes, with/without alginate filling. Nuclear chromatin configuration, mitochondria distribution patterns, and activity of in vitro matured oocytes were assessed. The native dynamic mIVM significantly reduced the maturation rate compared to the static group (p < 0.001) and metaphase II (MII) oocytes showed impaired mitochondria distribution (p < 0.05) and activity (p < 0.001). When COCs were included in a combination of concave+ring support, particularly with alginate filling, oocyte maturation and mitochondria pattern were preserved, and bioenergetic/oxidative status was improved (p < 0.05) compared to controls. Results were supported by computational models demonstrating that, in mIVM in biocompatible inserts, COCs were protected from shear stresses while ensuring physiological oxygen diffusion replicating the one occurring in vivo from capillaries.
Collapse
Affiliation(s)
- Antonella Mastrorocco
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
- Correspondence:
| | - Ludovica Cacopardo
- Research Centre E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Letizia Temerario
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Nicola Antonio Martino
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Federico Tridente
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Annalisa Rizzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Str. Prov. Casamassima Km. 3, 70010 Valenzano, Italy
| | - Giovanni Michele Lacalandra
- Department of Veterinary Medicine, University of Bari Aldo Moro, Str. Prov. Casamassima Km. 3, 70010 Valenzano, Italy
| | - Domenico Robbe
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d’Accio, 64100 Teramo, Italy
| | - Augusto Carluccio
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d’Accio, 64100 Teramo, Italy
| | - Maria Elena Dell’Aquila
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| |
Collapse
|
7
|
Kart PÖ, Gürgen SG, Esenülkü G, Dilber B, Yıldız N, Yazar U, Sarsmaz HY, Topsakal AS, Kamaşak T, Arslan EA, Şahin S, Cansu A. An Investigation of the Effects of Chronic Zonisamide, Sultiam, Lacosamide, Clobazam, and Rufinamide Antiseizure Drugs on Foliculogenesis in Ovarian Tissue in Prepubertal Non-Epileptic Rats. Int J Dev Neurosci 2022; 82:436-446. [PMID: 35680420 DOI: 10.1002/jdn.10200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/07/2022] Open
Abstract
We aimed to determine the morphological and histological effects of zonisamide, sultiam, lacosamide, clobazam, and rufinamide on ovarian folliculogenesis in rats. Sixty female Wistar rats were equally divided into 6 experimental groups, including control group, zonisamide, sultiam, lacosamide, clobazam, and rufinamide were administered by gavage for 90 days. According to the daily vaginal smears of the rats in the proestrus and diester phases of the estrus cycle, their ovaries were removed and placed in the fixation solution. Immunohistochemical and apoptosis staining protocols were applied. The number of healthy follicles in the control group was found to be statistically significantly higher when compared to the antiseizure drug groups (p<0.001). The number of corpus luteum was found to be statistically significantly lower in the control group when compared with the anti-seizure drug groups (p<0.001). There was a significant difference in the number of TUNEL positive apoptotic follicles between the control and drug groups (p<0.001). There was a significant difference in the number of TUNEL positive apoptotic follicles between the control and drug groups (p<0.001). HSCORE, immunohistochemical EGF, IGF-1 and GDF-9 staining, a very strong immunoreaction was observed in the ovarian multilaminar primary follicle granulosa cells and oocytes in the control group (p<0.001), and an immunoreaction ranging from weak to medium was observed in the antiseizure drug groups. Long-term anti-seizure drug therapy with zonisamide, sultiam, lacosamide, clobazam, and rufinamide from prepubertal to adulthood causes apoptosis and disruption of folliculogenesis in the ovarian follicles of nonepileptic rats.
Collapse
Affiliation(s)
- Pınar Özkan Kart
- Pediatric Neurology Department, Karadeniz Technical University Faculty of Medicine, Trabzon
| | - Seren Gülşen Gürgen
- Department of Histology and Embryology, Celal Bayar University Faculty of Health Sciences, Manisa
| | - Gülnur Esenülkü
- Pediatric Neurology Department, Karadeniz Technical University Faculty of Medicine, Trabzon
| | - Beril Dilber
- Pediatric Neurology Department, Karadeniz Technical University Faculty of Medicine, Trabzon
| | - Nihal Yıldız
- Pediatric Neurology Department, Karadeniz Technical University Faculty of Medicine, Trabzon
| | - Uğur Yazar
- Department of Neurosurgery, Karadeniz Technical University Faculty of Medicine, Trabzon
| | - Hayrunnisa Yeşil Sarsmaz
- Department of Histology and Embryology, Celal Bayar University Faculty of Health Sciences, Manisa
| | - Ali Samet Topsakal
- Department of Neurosurgery, Karadeniz Technical University Faculty of Medicine, Trabzon
| | - Tülay Kamaşak
- Pediatric Neurology Department, Karadeniz Technical University Faculty of Medicine, Trabzon
| | - Elif Acar Arslan
- Pediatric Neurology Department, Karadeniz Technical University Faculty of Medicine, Trabzon
| | - Sevim Şahin
- Pediatric Neurology Department, Karadeniz Technical University Faculty of Medicine, Trabzon
| | - Ali Cansu
- Pediatric Neurology Department, Karadeniz Technical University Faculty of Medicine, Trabzon
| |
Collapse
|
8
|
Gao G, Hu S, Zhang K, Wang H, Xie Y, Zhang C, Wu R, Zhao X, Zhang H, Wang Q. Genome-Wide Gene Expression Profiles Reveal Distinct Molecular Characteristics of the Goose Granulosa Cells. Front Genet 2021; 12:786287. [PMID: 34992633 PMCID: PMC8725158 DOI: 10.3389/fgene.2021.786287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Granulosa cells (GCs) are decisive players in follicular development. In this study, the follicle tissues and GCs were isolated from the goose during the peak-laying period to perform hematoxylin-eosin staining and RNA-seq, respectively. Moreover, the dynamic mRNA and lncRNA expression profiles and mRNA-lncRNA network analysis were integrated to identify the important genes and lncRNAs. The morphological analysis showed that the size of the GCs did not significantly change, but the thickness of the granulosa layer cells differed significantly across the developmental stages. Subsequently, 14,286 mRNAs, 3,956 lncRNAs, and 1,329 TUCPs (transcripts with unknown coding potential) were detected in the GCs. We identified 37 common DEGs in the pre-hierarchical and hierarchical follicle stages, respectively, which might be critical for follicle development. Moreover, 3,089 significant time-course DEGs (Differentially expressed genes) and 13 core genes in 4 clusters were screened during goose GCs development. Finally, the network lncRNA G8399 with CADH5 and KLF2, and lncRNA G8399 with LARP6 and EOMES were found to be important for follicular development in GCs. Thus, the results would provide a rich resource for elucidating the reproductive biology of geese and accelerate the improvement of the egg-laying performance of geese.
Collapse
Affiliation(s)
- Guangliang Gao
- Chongqing Academy of Animal Sciences, Chongqing, China
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
- *Correspondence: Guangliang Gao, ; Hongmei Zhang, ; Qigui Wang,
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Keshan Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Haiwei Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Youhui Xie
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Changlian Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Rui Wu
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Xianzhi Zhao
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Hongmei Zhang
- Department of Cardiovascular Ultrasound and Non-invasive Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu, China
- *Correspondence: Guangliang Gao, ; Hongmei Zhang, ; Qigui Wang,
| | - Qigui Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
- *Correspondence: Guangliang Gao, ; Hongmei Zhang, ; Qigui Wang,
| |
Collapse
|
9
|
Zhang Y, Gong S, Su Y, Yao M, Liu X, Gong Z, Sui H, Luo M. Follicular development in livestock: Influencing factors and underlying mechanisms. Anim Sci J 2021; 92:e13657. [PMID: 34796578 DOI: 10.1111/asj.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/23/2021] [Accepted: 10/26/2021] [Indexed: 12/01/2022]
Abstract
Livestock farming development has become increasingly important in recent years. It not only provides us with meat nutrition and pet feeding but also increases the economic value by providing numerous employment opportunities, which improves our life quality. The livestock farming development depends on successful animal reproduction. As a vital process in animal reproduction, folliculogenesis and its influencing factors as well as their underlying mechanisms need to be understood thoroughly. This review is aimed at summarizing the factors such as cellular processes, gene regulation, noncoding RNAs and other endocrine or paracrine regulatory factors that affect follicular development, and their underlying mechanisms of action in livestock in order to provide novel insights for future studies. The above factors were found as significant determinants influencing the follicular development in livestock through various signaling pathways.
Collapse
Affiliation(s)
- Yanjun Zhang
- College of Animal Science and Veterinary, Shandong Agricultural University, Tai'an, China.,Jiaxiang County Animal Husbandry and Veterinary Bureau, Jining, China
| | - Shuai Gong
- College of Animal Science and Veterinary, Shandong Agricultural University, Tai'an, China
| | - Yanping Su
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Minhua Yao
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Xiaocui Liu
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Zhaoqing Gong
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Hongshu Sui
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Mingjiu Luo
- College of Animal Science and Veterinary, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
10
|
Li D, Chen J, Guo J, Li L, Cai G, Chen S, Huang J, Yang H, Zhuang Y, Wang F, Wang X. A phosphorylation of RIPK3 kinase initiates an intracellular apoptotic pathway that promotes prostaglandin 2α-induced corpus luteum regression. eLife 2021; 10:e67409. [PMID: 34029184 PMCID: PMC8143796 DOI: 10.7554/elife.67409] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Receptor-interacting serine/threonine-protein kinase 3 (RIPK3) normally signals to necroptosis by phosphorylating MLKL. We report here that when the cellular RIPK3 chaperone Hsp90/CDC37 level is low, RIPK3 also signals to apoptosis. The apoptotic function of RIPK3 requires phosphorylation of the serine 165/threonine 166 sites on its kinase activation loop, resulting in inactivation of RIPK3 kinase activity while gaining the ability to recruit RIPK1, FADD, and caspase-8 to form a cytosolic caspase-activating complex, thereby triggering apoptosis. We found that PGF2α induces RIPK3 expression in luteal granulosa cells in the ovary to cause luteal regression through this RIPK3-mediated apoptosis pathway. Mice carrying homozygous phosphorylation-resistant RIPK3 S165A/T166A knockin mutations failed to respond to PGF2α but retained pro-necroptotic function, whereas mice with phospho-mimicking S165D/T166E homozygous knock-in mutation underwent spontaneous apoptosis in multiple RIPK3-expressing tissues and died shortly after birth. Thus, RIPK3 signals to either necroptosis or apoptosis depending on its serine 165/threonine 166 phosphorylation status.
Collapse
Affiliation(s)
- Dianrong Li
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua UniversityBeijingChina
| | - Jie Chen
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua UniversityBeijingChina
| | - Jia Guo
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua UniversityBeijingChina
| | - Lin Li
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua UniversityBeijingChina
| | - Gaihong Cai
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua UniversityBeijingChina
| | - She Chen
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua UniversityBeijingChina
| | - Jia Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
| | - Yinhua Zhuang
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua UniversityBeijingChina
| | - Fengchao Wang
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua UniversityBeijingChina
| | - Xiaodong Wang
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua UniversityBeijingChina
| |
Collapse
|
11
|
Zhang C, Shen J, Kong S, Zhang M, Zhang Q, Zhou J, Zhen X, Kang N, Jiang Y, Ding L, Sun H, Yan G. MicroRNA-181a promotes follicular granulosa cell apoptosis via sphingosine-1-phosphate receptor 1 expression downregulation†. Biol Reprod 2020; 101:975-985. [PMID: 31359035 DOI: 10.1093/biolre/ioz135] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/25/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress induces granulosa cell (GC) apoptosis and subsequent follicular atresia. Since our previous studies indicate that microRNA-181a (miR-181a) expression is increased in GCs undergoing apoptosis, the present study was designed to define the relationship between exposure to oxidative stressors in GCs and changes in miR-181a expression and function. To achieve this, we employed an H2O2-induced in vitro model and a 3-nitropropionic acid-induced in vivo model of ovarian oxidative stress. We demonstrated that in vitro miR-181a overexpression promoted GC apoptosis in a dose-dependent manner; sphingosine-1-phosphate (S1P) significantly reversed both H2O2-induced and miR-181a-induced apoptosis in GCs. Moreover, we identified sphingosine-1-phosphate receptor 1 (S1PR1), a critical receptor of S1P, as a novel target of miR-181a in GCs. MicroRNA-181a induced GC apoptosis by repressing S1PR1 expression in vitro. Importantly, increased miR-181a expression and decreased S1PR1 expression were detected in the in vivo ovarian oxidative stress model by Western blot analysis and immunohistochemistry. Furthermore, we found similar expression patterns of miR-181a and S1PR1 in GCs from patients with premature ovarian insufficiency. In conclusion, our results suggest that miR-181a directly suppresses expression of S1PR1, which has critical roles in mediating oxidative stress-induced GC apoptosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Chunxue Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jingtao Shen
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Shuangbo Kong
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Mei Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Qun Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jidong Zhou
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xin Zhen
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Nannan Kang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yue Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Lijun Ding
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Haixiang Sun
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.,State Key Laboratory of Pharmaceutical Biotechnology, Department of Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Guijun Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Kinnear HM, Tomaszewski CE, Chang FL, Moravek MB, Xu M, Padmanabhan V, Shikanov A. The ovarian stroma as a new frontier. Reproduction 2020; 160:R25-R39. [PMID: 32716007 PMCID: PMC7453977 DOI: 10.1530/rep-19-0501] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Historically, research in ovarian biology has focused on folliculogenesis, but recently the ovarian stroma has become an exciting new frontier for research, holding critical keys to understanding complex ovarian dynamics. Ovarian follicles, which are the functional units of the ovary, comprise the ovarian parenchyma, while the ovarian stroma thus refers to the inverse or the components of the ovary that are not ovarian follicles. The ovarian stroma includes more general components such as immune cells, blood vessels, nerves, and lymphatic vessels, as well as ovary-specific components including ovarian surface epithelium, tunica albuginea, intraovarian rete ovarii, hilar cells, stem cells, and a majority of incompletely characterized stromal cells including the fibroblast-like, spindle-shaped, and interstitial cells. The stroma also includes ovarian extracellular matrix components. This review combines foundational and emerging scholarship regarding the structures and roles of the different components of the ovarian stroma in normal physiology. This is followed by a discussion of key areas for further research regarding the ovarian stroma, including elucidating theca cell origins, understanding stromal cell hormone production and responsiveness, investigating pathological conditions such as polycystic ovary syndrome (PCOS), developing artificial ovary technology, and using technological advances to further delineate the multiple stromal cell types.
Collapse
Affiliation(s)
- Hadrian M Kinnear
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Claire E Tomaszewski
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Faith L Chang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Molly B Moravek
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Reproductive Endocrinology and Infertility, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Min Xu
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Reproductive Endocrinology and Infertility, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vasantha Padmanabhan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ariella Shikanov
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
ATILGAN R, PALA Ş, KULOĞLU T, ŞANLI C, YAVUZKIR Ş, ÖZKAN ZS. Comparison of the efficacy between bilateral proximal tubal occlusion and total salpingectomy on ovarian reserve and the cholinergic system: an experimental study. Turk J Med Sci 2020; 50:1097-1105. [PMID: 32394684 PMCID: PMC7379445 DOI: 10.3906/sag-2002-179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/10/2020] [Indexed: 01/11/2023] Open
Abstract
Background and aim To compare the effects of bilateral proximal tubal occlusion and bilateral total salpingectomy on ovarian reserve and the cholinergic system via rat experiment. Materials and methods Twenty-one adult female rats were randomly divided into the following three groups:G1 (n = 7), sham group;G2 (n = 7), bilateral total salpingectomy group; and G3 (n = 7), bilateral proximal tubal occlusion group. Four weeks later, the abdomen of the rats was opened. The right ovarian tissues were stored in 10% formaldehyde, whereas the left ovarian tissues were stored at –80 °C in aluminum foil. Serum samples were evaluated for antimullerian hormone. The right ovary was used for histological and immunoreactive examination, and the left ovary was used for tissue MDA analysis. Tissue samples were analyzed for MDA levels with spectrophotometric measurement, apoptosis with TUNEL staining, fibrosis score with Mason trichrome staining, ovarian reserve with HE staining, and cholinergic receptor muscarinic 1 (CHRM1) level with immunoreactivity method. Results Compared to G1 and G3, the number of corpus luteum with secondary follicles was significantly lower in G2, whereas the number of ovarian cysts and fibrosis and apoptosis scores increased significantly. The CHRM1 immunoreactivity was significantly lower in G2 than in G1 and G3. Conclusions Compared to the bilateral proximal tubal occlusion performed by using bipolar cautery, bilateral total salpingectomy in rats leads to a significant damage in ovarian histopathology and the cholinergic system.
Collapse
Affiliation(s)
- Remzi ATILGAN
- Department of Obstetrics and Gynecology, School of Medicine, Fırat University, ElazığTurkey
| | - Şehmus PALA
- Department of Obstetrics and Gynecology, School of Medicine, Fırat University, ElazığTurkey
| | - Tuncay KULOĞLU
- Department of Histology and Embryology, School of Medicine, Fırat University, ElazığTurkey
| | - Cengiz ŞANLI
- Department of Obstetrics and Gynecology, School of Medicine, Fırat University, ElazığTurkey
| | - Şeyda YAVUZKIR
- Department of Obstetrics and Gynecology, School of Medicine, Fırat University, ElazığTurkey
| | - Zehra Sema ÖZKAN
- Department of Obstetrics and Gynecology, School of Medicine, Kırıkkale University, KırıkkaleTurkey
| |
Collapse
|
14
|
Zi XD, Hu L, Lu JY, Liu S, Zheng YC. Comparison of the sequences and expression levels of genes related to follicular development and atresia between prolific and nonprolific goat breeds. Vet Med Sci 2019; 6:187-195. [PMID: 31782269 PMCID: PMC7196674 DOI: 10.1002/vms3.225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/01/2019] [Accepted: 11/03/2019] [Indexed: 12/17/2022] Open
Abstract
This study investigated the variations of the nucleotide sequences and ovarian expression levels of genes related to follicular development and atresia in prolific Jintang black goats and nonprolific Tibetan goats. Eight genes, FSHB, LHB, FSHR, LHCGR, ESR2, B4GANT2, BCL2 and BAX, were examined using reverse transcription‐polymerase chain reaction and quantitative real‐time PCR. The results showed that the nucleotide and deduced amino acid sequences of the LHB and BAX genes were not different, but there was one base change in the FSHR genes between the two breeds. There was one base change in the FSHB gene, which resulted in one amino acid substitution; there were nine base changes in the LHCGR gene, which resulted in five amino acid substitutions; and there were six base changes in the B4GANT2 gene, which resulted in four amino acid substitutions. The expression levels of the FSHR, LHCGR, ESR2, B4GANT2, BCL2 and BAX genes in the ovaries were not different between the two breeds. The plasma concentrations of FSH were not different, but the plasma concentrations of LH, P4 and E2 were lower in prolific Jintang black goats than in nonprolific Tibetan goats (P ˂ 0.05) at 40 hr after removal of the Controlled Internal Drug Release Devices. These results provide some foundations elucidating the endocrine and molecular mechanisms controlling ovulation rate in goats, but these need to be further verified.
Collapse
Affiliation(s)
- Xiang-Dong Zi
- Key-Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China.,Key Laboratory of Conservation & Utilization of Qinghai-Tibetan Plateau Animal Genetic Resources of Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Liang Hu
- Key-Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Jian-Yuan Lu
- Key-Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Shuang Liu
- Key-Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Yu-Cai Zheng
- Key Laboratory of Conservation & Utilization of Qinghai-Tibetan Plateau Animal Genetic Resources of Ministry of Education, Southwest Minzu University, Chengdu, China
| |
Collapse
|
15
|
Polysaccharides of Fructus corni Improve Ovarian Function in Mice with Aging-Associated Perimenopause Symptoms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2089586. [PMID: 31346338 PMCID: PMC6620845 DOI: 10.1155/2019/2089586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/14/2019] [Accepted: 05/26/2019] [Indexed: 12/12/2022]
Abstract
Objective Perimenopause symptoms have an extremely high incidence in aging women. Development of new strategies to improve perimenopause symptoms is important topic in clinical context. Increasing studies have shown that the polysaccharides of Fructus corni (PFC) have many pharmacological activities including antiaging effects. Here, we evaluated the effects of PFC on the ovarian function in natural aging-associated perimenopause symptoms in mice. Methods Natural aging mice (16-month old) were orally administrated with PFC at 1.11 g/kg daily for 24 days with none-treated young mice (3-month old) as control. Blood samples were collected for measurements of serum levels of estradiol, progesterone, luteinizing hormone (LH), and follicle stimulating hormone (FSH). Ovaries were isolated for histopathological and molecular exanimations. Results We found that the aging mice had decreased number of growing follicles and corpus luteum in ovary, but treatment with PFC restored their amounts. Measurement of hormones showed that there were low serum levels of estradiol and progesterone but high levels of LH and FSH in aging mice; however PFC restored estradiol and progesterone levels but reduced LH and FSH levels. Immunohistochemical analysis with ovarian tissues also revealed that the expression of inhibin and insulin-like growth factor 1 was reduced in the ovary of aging mice but was restored by PFC. These data indicated that PFC regulated ovarian function-associated hormone levels in aging mice. Furthermore, there was reduced expression of antiapoptotic protein Bcl-2 and increased expression of proapoptotic molecules Bax and cleaved-caspase-3 in the ovary of aging mice. However, treatment with PFC upregulated Bcl-2 and downregulated Bax and cleaved-caspase-3, suggesting that PFC inhibited apoptosis of granulosa cells in the ovary of aging mice. Conclusion PFC improved the ovarian function in mice, which had high potential to be developed as a safe and effective therapeutic remedy for aging-associated perimenopause symptoms.
Collapse
|
16
|
Zhou J, Peng X, Mei S. Autophagy in Ovarian Follicular Development and Atresia. Int J Biol Sci 2019; 15:726-737. [PMID: 30906205 PMCID: PMC6429023 DOI: 10.7150/ijbs.30369] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/15/2018] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a mechanism that exists in all eukaryotes under a variety of physiological and pathological conditions. In the mammalian ovaries, less than 1% of follicles ovulate, whereas the remaining 99% undergo follicular atresia. Autophagy and apoptosis have been previously found to be involved in the regulation of both primordial follicular development as well as atresia. The relationship between autophagy, follicular development, and atresia have been summarized in this review with the aim to obtain a more comprehensive understanding of the role played by autophagy in follicular development and atresia.
Collapse
Affiliation(s)
- Jiawei Zhou
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.,Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Xianwen Peng
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.,Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Shuqi Mei
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.,Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| |
Collapse
|
17
|
Teeli AS, Leszczyński P, Krishnaswamy N, Ogawa H, Tsuchiya M, Śmiech M, Skarzynski D, Taniguchi H. Possible Mechanisms for Maintenance and Regression of Corpus Luteum Through the Ubiquitin-Proteasome and Autophagy System Regulated by Transcriptional Factors. Front Endocrinol (Lausanne) 2019; 10:748. [PMID: 31803139 PMCID: PMC6877548 DOI: 10.3389/fendo.2019.00748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
The corpus luteum (CL) is an important tissue of the female reproductive process which is established through ovulation of the mature follicle. Pulsatile release of prostaglandin F2α from the uterus leads to the regression of luteal cells and restarts the estrous cycle in most non-primate species. The rapid functional regression of the CL, which coincides with decrease of progesterone production, is followed by its structural regression. Although we now have a better understanding of how the CL is triggered to undergo programmed cell death, the precise mechanisms governing CL protein degradation in a very short period of luteolysis remains unknown. In this context, activation of ubiquitin-proteasome pathway (UPP), unfolded protein response (UPR) and autophagy are potential subcellular mechanisms involved. The ubiquitin-proteasome pathway (UPP) maintains tissue homeostasis in the face of both internal and external stressors. The UPP also controls physiological processes in many gonadal cells. Emerging evidence suggests that UPP dysfunction is involved in male and female reproductive tract dysfunction. Autophagy is activated when cells are exposed to different types of stressors such as hypoxia, starvation, and oxidative stress. While emerging evidence points to an important role for the UPP and autophagy in the CL, the key underlying transcriptional mechanisms have not been well-documented. In this review, we propose how CL regression may be governed by the ubiquitin-proteasome and autophagy pathways. We will further consider potential transcription factors which may regulate these events in the CL.
Collapse
Affiliation(s)
- Aamir S. Teeli
- Department of Experimental Embryology, The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Paweł Leszczyński
- Department of Experimental Embryology, The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | | | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Megumi Tsuchiya
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Magdalena Śmiech
- Department of Experimental Embryology, The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Dariusz Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
- *Correspondence: Hiroaki Taniguchi
| |
Collapse
|
18
|
Han Y, Zhang S, Wang Z, Zhang L, Zhang F, Sun F, Zhang H, Yuan Z, Zhang C, Weng Q. Toxicological effects of 3-methyl-4-nitrophenol on mouse ovarian and testicular cell proliferation, apoptosis and oocyte maturation. Reprod Toxicol 2018; 82:94-102. [DOI: 10.1016/j.reprotox.2018.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/02/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022]
|
19
|
Wang D, Di X, Wang J, Li M, Zhang D, Hou Y, Hu J, Zhang G, Zhang H, Sun M, Meng X, Sun B, Jiang C, Ma T, Su W. Increased Formation of Follicular Antrum in Aquaporin-8-Deficient Mice Is Due to Defective Proliferation and Migration, and Not Steroidogenesis of Granulosa Cells. Front Physiol 2018; 9:1193. [PMID: 30190683 PMCID: PMC6115504 DOI: 10.3389/fphys.2018.01193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/07/2018] [Indexed: 01/15/2023] Open
Abstract
Aquaporin-8 (AQP8) is a water channel protein expressed exclusively in granulosa cells (GCs) in mouse ovary. Our previous studies of AQP8-deficient (AQP8-/-) mice demonstrated that AQP8 participates in folliculogenesis, including in the formation of follicles, ovulation, and atresia. However, its physiological function in formation of the antral follicle is still largely unknown. In the present study, we observed significantly increased numbers of antral follicles in AQP8-/- ovaries as well as significantly increased follicular antrum formation in in vitro 3D culture of AQP8-/- follicles. Functional detection of AQP8-/- GCs indicated that cell proliferation is impaired with FSH treatment, and wound healing and Transwell migration are also impaired with or without FSH treatment, compared with that in WT. However, the biosynthesis of estradiol and progesterone as well as the mRNA levels of key steroidogenic enzyme genes (CYP19A1 and StAR) in AQP8-/- GCs did not change, even with addition of FSH and/or testosterone. In order to estimate the influence of the impaired proliferation and migration on the density of GC mass, preantral follicles were injected with FITC-dextran, which distributes only in the intercellular space, and analyzed by confocal microscopy. The micrographs showed significantly higher transmission of fluorescence in AQP8-/- follicles, suggesting increased intercellular space of GCs. Based on this evidence, we concluded that AQP8 deficiency leads to increased formation of follicular antra in vivo and in vitro, and the mechanism may be associated with increased intercellular space of GCs, which may be caused by defective proliferation and migration of GCs. This study may offer new insight into the molecular mechanisms of the formation of follicular antrum.
Collapse
Affiliation(s)
- Dejiang Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xiangjun Di
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Jie Wang
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Miao Li
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Di Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yaxin Hou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiao Hu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Ge Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - He Zhang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Meiyan Sun
- Department of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Xiangyu Meng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Tonghui Ma
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
20
|
Stringer JM, Swindells EOK, Zerafa N, Liew SH, Hutt KJ. Multidose 5-Fluorouracil is Highly Toxic to Growing Ovarian Follicles in Mice. Toxicol Sci 2018; 166:97-107. [DOI: 10.1093/toxsci/kfy189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jessica M Stringer
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Elyse O K Swindells
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Nadeen Zerafa
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Seng H Liew
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Karla J Hutt
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
21
|
Shah JS, Sabouni R, Cayton Vaught KC, Owen CM, Albertini DF, Segars JH. Biomechanics and mechanical signaling in the ovary: a systematic review. J Assist Reprod Genet 2018; 35:1135-1148. [PMID: 29691711 PMCID: PMC6063820 DOI: 10.1007/s10815-018-1180-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/05/2018] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Mammalian oogenesis and folliculogenesis share a dynamic connection that is critical for gamete development. For maintenance of quiescence or follicular activation, follicles must respond to soluble signals (growth factors and hormones) and physical stresses, including mechanical forces and osmotic shifts. Likewise, mechanical processes are involved in cortical tension and cell polarity in oocytes. Our objective was to examine the contribution and influence of biomechanical signaling in female mammalian gametogenesis. METHODS We performed a systematic review to assess and summarize the effects of mechanical signaling and mechanotransduction in oocyte maturation and folliculogenesis and to explore possible clinical applications. The review identified 2568 publications of which 122 met the inclusion criteria. RESULTS The integration of mechanical and cell signaling pathways in gametogenesis is complex. Follicular activation or quiescence are influenced by mechanical signaling through the Hippo and Akt pathways involving the yes-associated protein (YAP), transcriptional coactivator with PDZ-binding motif (TAZ), phosphatase and tensin homolog deleted from chromosome 10 (PTEN) gene, the mammalian target of rapamycin (mTOR), and forkhead box O3 (FOXO3) gene. CONCLUSIONS There is overwhelming evidence that mechanical signaling plays a crucial role in development of the ovary, follicle, and oocyte throughout gametogenesis. Emerging data suggest the complexities of mechanotransduction and the biomechanics of oocytes and follicles are integral to understanding of primary ovarian insufficiency, ovarian aging, polycystic ovary syndrome, and applications of fertility preservation.
Collapse
Affiliation(s)
- Jaimin S Shah
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Texas at Houston Health Science Center, Houston, TX, USA
| | - Reem Sabouni
- Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kamaria C Cayton Vaught
- Howard W. and Georgeanna Seegar Jones Division of Reproductive Sciences and Women's Health Research, Baltimore, MD, USA
| | - Carter M Owen
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - James H Segars
- Howard W. and Georgeanna Seegar Jones Division of Reproductive Sciences and Women's Health Research, Baltimore, MD, USA.
- Gynecology and Obstetrics, 720 Rutland Avenue/Ross 624, Baltimore, MD, 21205, USA.
| |
Collapse
|
22
|
Melo RMC, Martins YS, Luz RK, Rizzo E, Bazzoli N. PCNA and apoptosis during post-spawning ovarian remodeling in the teleost Oreochromis niloticus. Tissue Cell 2015; 47:541-9. [PMID: 26542933 DOI: 10.1016/j.tice.2015.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/22/2015] [Accepted: 10/07/2015] [Indexed: 01/06/2023]
Abstract
The balance between cell proliferation and apoptosis is crucial for tissue development and homeostasis. The present study investigated the contribution of proliferating cell nuclear antigen (PCNA) and apoptosis during ovarian remodeling after spawning in the Nile tilapia Oreochromis niloticus. Breeding females were kept in controlled conditions and ovary samples were collected weekly for TUNEL assay, immunohistochemistry for PCNA and caspase-3 and morphometric analysis. During the follicular growth, PCNA labeled mainly the nuclei of oocytes and follicular cells in a high proportion of follicles especially in primary growth, while a low occurrence of apoptosis in follicular and theca cells was detected. At 0-3 days post-spawning, post-ovulatory follicles showed no proliferative activity, however the follicular cells exhibited high rates of apoptosis. At 7-10 days, PCNA labeled the thecal cells in a low proportion of post-ovulatory follicles, which showed follicular cells with lower rates of apoptosis. PCNA labeled mainly the theca in the advanced and late stages of atretic follicles, while the follicular cells exhibited a significant increase of apoptosis along follicular atresia. We concluded that PCNA and apoptosis work cooperatively to ensuring the success of follicle development and maintaining of tissue homeostasis during follicular growth. PCNA and apoptosis are also essential mechanisms in the follicular regression during post-spawning ovarian recovery in the Nile tilapia.
Collapse
Affiliation(s)
- Rafael M C Melo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Yuri S Martins
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ronald K Luz
- Laboratório de Aquacultura, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elizete Rizzo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nilo Bazzoli
- Programa de Pós-graduação em Zoologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
23
|
Wang G, Yeung CK, Zhang JL, Hu XW, Ye YX, Yang YX, Li JC, Lee KKH, Yang X, Wang LJ. High salt intake negatively impacts ovarian follicle development. Ann Anat 2015; 200:79-87. [DOI: 10.1016/j.aanat.2015.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 12/23/2022]
|
24
|
Li J, Ye Y, Zhang R, Zhang L, Hu X, Han D, Chen J, He X, Wang G, Yang X, Wang L. Robo1/2 regulate follicle atresia through manipulating granulosa cell apoptosis in mice. Sci Rep 2015; 5:9720. [PMID: 25988316 PMCID: PMC4437031 DOI: 10.1038/srep09720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/17/2015] [Indexed: 12/12/2022] Open
Abstract
Secreted Slit proteins and their Roundabout (Robo) receptors act as a repulsive cue to prevent axons from migrating to inappropriate locations during the development of the nervous system. Slit/Robo has also been implicated in reproductive system development, but the molecular mechanism of the Slit/Robo pathway in the reproductive system remains poorly understood. Using a transgenic mouse model, we investigated the function of the Slit/Robo pathway on ovarian follicle development and atresia. We first demonstrated that more offspring were born to mice with a partial knockout of the Robo1/2 genes in mice. We next showed that Robo1 and Robo2 are strongly expressed in ovarian granulosa cells. Apoptosis in granulosa cells was reduced when Robo1/2 were partially knocked out, and this observation was further verified by in vitro Robo1/2 knockout experiments in mouse and human granulosa cells. We also found that ovarian angiogenesis was enhanced by a partial lack of Robo1/2 genes. In summary, our data suggest that the Slit/Robo pathway can impact follicle development and atresia by influencing granulosa cell apoptosis.
Collapse
Affiliation(s)
- Jiangchao Li
- Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuxiang Ye
- Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Renli Zhang
- Reproductive Medicine Center, Guangdong General Hospital, Guangzhou 515006, China
| | - Lili Zhang
- Reproductive Medicine Center, Guangdong General Hospital, Guangzhou 515006, China
- Southern Medical University, Guangzhou 510515, China
| | - Xiwen Hu
- Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dong Han
- Reproductive Medicine Center, Guangdong General Hospital, Guangzhou 515006, China
| | - Jiayuan Chen
- Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaodong He
- Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guang Wang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Lijing Wang
- Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
25
|
Kit ligand decreases the incidence of apoptosis in cultured vitrified whole mouse ovaries. Reprod Biomed Online 2015; 30:493-503. [DOI: 10.1016/j.rbmo.2015.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 01/11/2015] [Accepted: 01/14/2015] [Indexed: 11/19/2022]
|
26
|
Hua J, Xu B, Yang Y, Ban R, Iqbal F, Cooke HJ, Zhang Y, Shi Q. Follicle Online: an integrated database of follicle assembly, development and ovulation. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav036. [PMID: 25931457 PMCID: PMC4414955 DOI: 10.1093/database/bav036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 03/31/2015] [Indexed: 11/16/2022]
Abstract
Folliculogenesis is an important part of ovarian function as it provides the oocytes for female reproductive life. Characterizing genes/proteins involved in folliculogenesis is fundamental for understanding the mechanisms associated with this biological function and to cure the diseases associated with folliculogenesis. A large number of genes/proteins associated with folliculogenesis have been identified from different species. However, no dedicated public resource is currently available for folliculogenesis-related genes/proteins that are validated by experiments. Here, we are reporting a database ‘Follicle Online’ that provides the experimentally validated gene/protein map of the folliculogenesis in a number of species. Follicle Online is a web-based database system for storing and retrieving folliculogenesis-related experimental data. It provides detailed information for 580 genes/proteins (from 23 model organisms, including Homo sapiens, Mus musculus, Rattus norvegicus, Mesocricetus auratus, Bos Taurus, Drosophila and Xenopus laevis) that have been reported to be involved in folliculogenesis, POF (premature ovarian failure) and PCOS (polycystic ovary syndrome). The literature was manually curated from more than 43 000 published articles (till 1 March 2014). The Follicle Online database is implemented in PHP + MySQL + JavaScript and this user-friendly web application provides access to the stored data. In summary, we have developed a centralized database that provides users with comprehensive information about genes/proteins involved in folliculogenesis. This database can be accessed freely and all the stored data can be viewed without any registration. Database URL:http://mcg.ustc.edu.cn/sdap1/follicle/index.php
Collapse
Affiliation(s)
- Juan Hua
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China, Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China, Department of Statistics, University of Kentucky, Lexington, KY 40506, USA, Collaborative Innovation Center of Genetics and Development, Fudan University, 2005 Songhu Road, Shanghai 200438, China, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China and Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, 60800, Pakistan Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China, Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China, Department of Statistics, University of Kentucky, Lexington, KY 40506, USA, Collaborative Innovation Center of Genetics and Development, Fudan University, 2005 Songhu Road, Shanghai 200438, China, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China and Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, 60800, Pakistan
| | - Bo Xu
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China, Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China, Department of Statistics, University of Kentucky, Lexington, KY 40506, USA, Collaborative Innovation Center of Genetics and Development, Fudan University, 2005 Songhu Road, Shanghai 200438, China, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China and Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, 60800, Pakistan Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China, Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China, Department of Statistics, University of Kentucky, Lexington, KY 40506, USA, Collaborative Innovation Center of Genetics and Development, Fudan University, 2005 Songhu Road, Shanghai 200438, China, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China and Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, 60800, Pakistan
| | - Yifan Yang
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China, Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China, Department of Statistics, University of Kentucky, Lexington, KY 40506, USA, Collaborative Innovation Center of Genetics and Development, Fudan University, 2005 Songhu Road, Shanghai 200438, China, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China and Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, 60800, Pakistan
| | - Rongjun Ban
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China, Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China, Department of Statistics, University of Kentucky, Lexington, KY 40506, USA, Collaborative Innovation Center of Genetics and Development, Fudan University, 2005 Songhu Road, Shanghai 200438, China, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China and Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, 60800, Pakistan
| | - Furhan Iqbal
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China, Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China, Department of Statistics, University of Kentucky, Lexington, KY 40506, USA, Collaborative Innovation Center of Genetics and Development, Fudan University, 2005 Songhu Road, Shanghai 200438, China, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China and Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, 60800, Pakistan Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China, Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China, Department of Statistics, University of Kentucky, Lexington, KY 40506, USA, Collaborative Innovation Center of Genetics and Development, Fudan University, 2005 Songhu Road, Shanghai 200438, China, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China and Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, 60800, Pakistan Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and
| | - Howard J Cooke
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China, Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China, Department of Statistics, University of Kentucky, Lexington, KY 40506, USA, Collaborative Innovation Center of Genetics and Development, Fudan University, 2005 Songhu Road, Shanghai 200438, China, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China and Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, 60800, Pakistan
| | - Yuanwei Zhang
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China, Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China, Department of Statistics, University of Kentucky, Lexington, KY 40506, USA, Collaborative Innovation Center of Genetics and Development, Fudan University, 2005 Songhu Road, Shanghai 200438, China, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China and Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, 60800, Pakistan Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China, Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China, Department of Statistics, University of Kentucky, Lexington, KY 40506, USA, Collaborative Innovation Center of Genetics and Development, Fudan University, 2005 Songhu Road, Shanghai 200438, China, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China and Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, 60800, Pakistan Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and
| | - Qinghua Shi
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China, Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China, Department of Statistics, University of Kentucky, Lexington, KY 40506, USA, Collaborative Innovation Center of Genetics and Development, Fudan University, 2005 Songhu Road, Shanghai 200438, China, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China and Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, 60800, Pakistan Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China, Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China, Department of Statistics, University of Kentucky, Lexington, KY 40506, USA, Collaborative Innovation Center of Genetics and Development, Fudan University, 2005 Songhu Road, Shanghai 200438, China, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China and Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, 60800, Pakistan Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and
| |
Collapse
|
27
|
Liew SH, Vaithiyanathan K, Hutt KJ. Taking control of the female fertile lifespan: a key role for Bcl-2 family proteins. Reprod Fertil Dev 2014; 28:864-871. [PMID: 25423414 DOI: 10.1071/rd14326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
Precisely how the length of the female fertile lifespan is regulated is poorly understood and it is likely to involve complex factors, one of which is follicle number. Indeed, the duration of female fertility appears to be intimately linked to the number of available oocytes, which are stored in the ovary as primordial follicles. There is mounting evidence implicating the intrinsic apoptosis pathway, which is controlled by members of the B-cell lymphoma-2 (BCL-2) family, as a key regulator of the number of primordial follicles established in the ovary at birth and maintained throughout reproductive life. Consequently, the pro- and anti-apoptotic BCL-2 family proteins are emerging as key determinants of the length of the female fertile lifespan. This review discusses the relationship between the intrinsic apoptosis pathway, follicle number and length of the female fertile lifespan.
Collapse
Affiliation(s)
- Seng H Liew
- MIMR-PHI Institute of Medical Research, Clayton, Vic. 3168, Australia
| | | | - Karla J Hutt
- MIMR-PHI Institute of Medical Research, Clayton, Vic. 3168, Australia
| |
Collapse
|
28
|
Liu B, Xu N, Man Y, Shen H, Avital I, Stojadinovic A, Liao DJ. Apoptosis in Living Animals Is Assisted by Scavenger Cells and Thus May Not Mainly Go through the Cytochrome C-Caspase Pathway. J Cancer 2013; 4:716-23. [PMID: 24312141 PMCID: PMC3842440 DOI: 10.7150/jca.7577] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/19/2013] [Indexed: 11/21/2022] Open
Abstract
Because billions of cells die every day in their bodies, animals have evolutionarily developed apoptosis to preserve the tissue environment from adverse effects of dead cells, a process achieved via phagocytosis of the cell corpses by professional or amateur phagocytes that are collectively referred to as scavengers. Hence, apoptosis is a merger of two procedures separately occurring inside the dying and the scavenger cells, respectively. The task of apoptosis research is to study how these death procedures occur without hurting the host tissues, and recruitment of in vitro system into the study must be justified for this purpose. Cells in culture have no motivation to preserve the environment, and their death does not involve corpse clearance by scavengers. Therefore, programmed cell death in culture should be redefined, for example as stress-induced cell death, to avoid many sources of confusions, since the word “apoptosis” had already been defined, prior to the era of cell culture, as a silent and beneficial cell suicide with corpse clearance as a distinctive hallmark. We should start over again on apoptosis research by determining whether different physiological apoptotic procedures in animals involve the cytochrome c-caspase pathway, since it has been established from cultured cells as a central mechanism of “apoptosis” but whether it overarches any physiological apoptotic procedure in animals is still unclear. Probably, cells in living animals are programmed to use scavengers to assist their apoptosis but cells in culture have no scavengers to help and thus need to go mainly through the cytochrome c-caspase pathway.
Collapse
Affiliation(s)
- Bingya Liu
- 1. Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | | | | | | | | | | | | |
Collapse
|
29
|
Rutkowski JM, Ihm JE, Lee ST, Kilarski WW, Greenwood VI, Pasquier MC, Quazzola A, Trono D, Hubbell JA, Swartz MA. VEGFR-3 neutralization inhibits ovarian lymphangiogenesis, follicle maturation, and murine pregnancy. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1596-1607. [PMID: 24036251 DOI: 10.1016/j.ajpath.2013.07.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 07/15/2013] [Accepted: 07/31/2013] [Indexed: 11/18/2022]
Abstract
Lymphatic vessels surround follicles within the ovary, but their roles in folliculogenesis and pregnancy, as well as the necessity of lymphangiogenesis in follicle maturation and health, are undefined. We used systemic delivery of mF4-31C1, a specific antagonist vascular endothelial growth factor receptor 3 (VEGFR-3) antibody to block lymphangiogenesis in mice. VEGFR-3 neutralization for 2 weeks before mating blocked ovarian lymphangiogenesis at all stages of follicle maturation, most notably around corpora lutea, without significantly affecting follicular blood angiogenesis. The numbers of oocytes ovulated, fertilized, and implanted in the uterus were normal in these mice; however, pregnancies were unsuccessful because of retarded fetal growth and miscarriage. Fewer patent secondary follicles were isolated from treated ovaries, and isolated blastocysts exhibited reduced cell densities. Embryos from VEGFR-3-neutralized dams developed normally when transferred to untreated surrogates. Conversely, normal embryos transferred into mF4-31C1-treated dams led to the same fetal deficiencies observed with in situ gestation. Although no significant changes were measured in uterine blood or lymphatic vascular densities, VEGFR-3 neutralization reduced serum and ovarian estradiol concentrations during gestation. VEGFR-3-mediated lymphangiogenesis thus appears to modulate the folliculogenic microenvironment and may be necessary for maintenance of hormone levels during pregnancy; both of these are novel roles for the lymphatic vasculature.
Collapse
Affiliation(s)
- Joseph M Rutkowski
- Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Jong Eun Ihm
- Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Seung Tae Lee
- Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Witold W Kilarski
- Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Veronique I Greenwood
- Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Miriella C Pasquier
- Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandra Quazzola
- Global Health Institute, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Didier Trono
- Global Health Institute, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Jeffrey A Hubbell
- Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Melody A Swartz
- Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
30
|
Lin F, Li R, Pan ZX, Zhou B, Yu DB, Wang XG, Ma XS, Han J, Shen M, Liu HL. miR-26b promotes granulosa cell apoptosis by targeting ATM during follicular atresia in porcine ovary. PLoS One 2012; 7:e38640. [PMID: 22737216 PMCID: PMC3380909 DOI: 10.1371/journal.pone.0038640] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/08/2012] [Indexed: 01/01/2023] Open
Abstract
More than 99% of ovarian follicles undergo atresia in mammals, but the mechanism of follicular atresia remains to be elucidated. In this study, we explored microRNA (miRNA) regulation of follicular atresia in porcine ovary. A miRNA expression profile was constructed for healthy, early atretic, and progressively atretic follicles, and the differentially expressed miRNAs were selected and analyzed. We found that miR-26b, which was upregulated during follicular atresia, increased the number of DNA breaks and promoted granulosa cell apoptosis by targeting the ataxia telangiectasia mutated gene directly in vitro.
Collapse
Affiliation(s)
- Fei Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ran Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zeng xiang Pan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bo Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - De bing Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xu guang Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xue shan Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Han
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hong lin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
31
|
Rosenfeld H, Mylonas CC, Bridges CR, Heinisch G, Corriero A, Vassallo-Aguis R, Medina A, Belmonte A, Garcia A, De la Gándara F, Fauvel C, De Metrio G, Meiri-Ashkenazi I, Gordin H, Zohar Y. GnRHa-mediated stimulation of the reproductive endocrine axis in captive Atlantic bluefin tuna, Thunnus thynnus. Gen Comp Endocrinol 2012; 175:55-64. [PMID: 22015989 DOI: 10.1016/j.ygcen.2011.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 10/16/2022]
Abstract
A controlled-release implant loaded with GnRH agonist (GnRHa) was used to induce spawning in Atlantic bluefin tuna (Thunnus thynnus) during two consecutive reproductive seasons. The fish were implanted underwater and sampled between days 2 and 8 after treatment. At the time of GnRHa treatment, females were in full vitellogenesis and males in spermiation. There was a rapid burst of pituitary luteinizing hormone (LH) release at day 2 after treatment in GnRHa-treated fish, and circulating LH remained elevated up to day 8 after treatment. In contrast, control fish had significantly lower levels in the plasma, but higher LH content in the pituitary, as observed in many other cultured fishes that fail to undergo oocyte maturation, ovulation and spawning unless induced by an exogenous GnRHa. Plasma testosterone (T) and 17β-estradiol (E(2)) were elevated in response to the GnRHa treatment in females, while 11-ketotestosterone (11-KT) but not T was elevated in males. Even though oocyte maturation and ovulation did occur in GnRHa-induced fish, no significant elevations in 17,20β-dihydroxy-4-pregnen-3-one (17,20β-P) or 17,20β,21-trihydroxy-4-pregnen-3-one (20β-S), in either the free, conjugated or 5β-reduced,3α-hydroxylated forms was observed in fish sampled within 6 days after treatment. Interestingly, a significant peak in plasma free 17,20β-P levels occurred in both males and females at day 8 after treatment. Histological sections of the ovaries in these females contained oocytes at the migrating germinal vesicle stage, suggesting the role of this hormone as a maturation-inducing steroid in Atlantic bluefin tuna. In conclusion, the GnRHa implants activated effectively the reproductive endocrine axis in captive Atlantic bluefin tuna broodstocks, through stimulation of sustained elevations in plasma LH, which in turn evoked the synthesis and secretion of the relevant sex steroids leading to gamete maturation and release.
Collapse
Affiliation(s)
- H Rosenfeld
- Israel Oceanographic and Limnological Research, National Center for Mariculture, PO Box 1212, Eilat 88112, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dineva J, Vangelov I, Nikolov G, Gulenova D, Ivanova M. Atrial natriuretic peptide is an antiapoptotic factor for human granulosa luteinized cells with impact on the results of COH/IVF in women undergoing IVF program. J Obstet Gynaecol Res 2011; 37:511-9. [DOI: 10.1111/j.1447-0756.2010.01394.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Jääskeläinen M, Nieminen A, Pökkylä RM, Kauppinen M, Liakka A, Heikinheimo M, Vaskivuo TE, Klefström J, Tapanainen JS. Regulation of cell death in human fetal and adult ovaries--role of Bok and Bcl-X(L). Mol Cell Endocrinol 2010; 330:17-24. [PMID: 20673843 DOI: 10.1016/j.mce.2010.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/22/2010] [Accepted: 07/19/2010] [Indexed: 11/23/2022]
Abstract
Of eight million oocytes formed in fetal ovaries, only 400 are ovulated and the rest are degraded via apoptosis. Studies in rodents suggest an important role for Bok and Bcl-X(L) in ovarian apoptosis, but their expression patterns and roles in human ovaries are not well known. Protein expression of Bok and Bcl-X(L) as well as the death pathway effectors TNF and caspase-3 were determined in an important collection of samples consisting of human fetal and adult ovaries. A penetrant expression of Bok, Bcl-X(L), TNF and full length and cleaved caspase-3 were characterized in fetal ovaries, with specific patterns in oocytes and pre-granulosa/granulosa cells. Bok and Bcl-X(L) were detected also in adult ovaries. Lentiviral shRNA delivery demonstrated that loss of Bok markedly reduces vulnerability to apoptosis and, conversely, loss of Bcl-X(L) increases apoptosis in human granulosa tumour cell line. The results suggest important roles for Bok and Bcl-X(L) in human ovarian development, follicle maturation and apoptosis.
Collapse
|
34
|
Kolesarova A, Roychoudhury S, Slivkova J, Sirotkin A, Capcarova M, Massanyi P. In vitro study on the effects of lead and mercury on porcine ovarian granulosa cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2010; 45:320-331. [PMID: 20390873 DOI: 10.1080/10934520903467907] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The heavy metals lead (Pb) and mercury (Hg) pose potential risks to sustainability of environment and thus to our future generations. General objective of this in vitro study was to examine the secretory activity of porcine ovarian granulosa cells after Pb and Hg administration and to outline the potential intracellular mediators of its effects. For this purpose, release of insulin-like growth factor I (IGF-I) and steroid hormone progesterone (P(4)), expression of proliferation- related (cyclin B1) and apoptosis-related (caspase-3) peptides was examined in porcine ovarian granulosa cells after heavy metals administration. Obtained data indicate Pb-induced inhibition of IGF-I release at lower doses (0.063 mg/mL and 0.046 mg/mL) by ovarian granulosa cells. However, P(4) release was not influenced by Pb addition, while the expression of cyclin B1 and caspase-3 was induced by Pb addition. These results indicate that Pb can affect the pathway of proliferation and apoptosis of porcine ovarian granulosa cells through intracellular substances such as cyclin B1 and caspase-3. On the other hand, the P(4) release by ovarian granulosa cells of pregnant gilts was stimulated by experimental Pb administration at doses of 0.25 mg/mL and 0.063 mg/mL and experimental Hg administration at doses 0.25 mg/mL and 0.083 mg/mL. P(4) release by ovarian cells of pregnant gilts was not influenced by a combinatory dose of FSH (1.0 ng/mL) + Pb (0.083 mg/mL) + Hg (0.083 mg/mL) but it was inhibited by experimental administration of FSH (10 ng/mL) + Pb (0.25 ng/mL) + Hg (0.25 ng/mL). Possible involvement of heavy metals - Pb and Hg and pituitary hormone FSH, in the regulation of P(4) release by porcine ovarian granulosa cells of pregnant gilts was noted. Data obtained from in vitro studies suggest the dose dependent association of heavy metals administration with the hormonal release by porcine ovarian granulosa cells. This association also depended on pregnancy of the gilts.
Collapse
Affiliation(s)
- Adriana Kolesarova
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
35
|
Butts S, Riethman H, Ratcliffe S, Shaunik A, Coutifaris C, Barnhart K. Correlation of telomere length and telomerase activity with occult ovarian insufficiency. J Clin Endocrinol Metab 2009; 94:4835-43. [PMID: 19864453 PMCID: PMC2795650 DOI: 10.1210/jc.2008-2269] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Occult ovarian insufficiency is associated with infertility, impaired response to ovarian stimulation, and reduced live birth rates in women treated with assisted reproductive technologies. Although a decline in ovarian follicle number is expected with age, the proximate causes of occult ovarian insufficiency in young women remain poorly understood. Abnormalities in telomere length and telomerase activity in human granulosa cells may serve as molecular markers for this condition. METHODS A cross-sectional study was performed. Subjects (37 yr old or less) undergoing in vitro fertilization were classified as cases of occult ovarian insufficiency or controls with mechanical infertility (male or tubal factor). Granulosa cells were acquired at the time of oocyte retrieval to quantify telomere length and telomerase activity. RESULTS Fifty-four women were enrolled. Human granulosa cell telomerase activity was demonstrated, and lack of granulosa cell telomerase activity was associated with occult ovarian insufficiency (odds ratio, 11.0; 95% confidence interval, 1.3-495.6; P = 0.02). Telomeres were shorter in women with occult ovarian insufficiency than in controls (relative telomere/single copy gene ratio, 1.88 vs. 3.15; P = 0.039). CONCLUSIONS Aberrant telomere homeostasis is associated with occult ovarian insufficiency in young women. This finding is consistent with the presence of telomeric attenuation that has been shown in multiple age-related conditions.
Collapse
Affiliation(s)
- Samantha Butts
- Division of Infertility and Reproductive Endocrinology, University of Pennsylvania Medical School, 3701 Market Street, Suite 800, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | |
Collapse
|
36
|
The human corpus luteum: life cycle and function in natural cycles. Fertil Steril 2009; 92:1067-1079. [DOI: 10.1016/j.fertnstert.2008.07.1745] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 06/26/2008] [Accepted: 07/14/2008] [Indexed: 12/11/2022]
|
37
|
|
38
|
Mei J, Chen B, Yue H, Gui JF. Identification of a C1q family member associated with cortical granules and follicular cell apoptosis in Carassius auratus gibelio. Mol Cell Endocrinol 2008; 289:67-76. [PMID: 18407406 DOI: 10.1016/j.mce.2008.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/21/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
C1q family proteins with C1q domain have been reported in vertebrates, but their biological roles are currently unknown. In this study, a C1q-like factor, designated Carassius auratus gibelio ovary-specific C1q-like factor (CagOC1q-like), was identified as a cortical granules component. Immunofluorescence localization revealed that the C1q family member was specifically expressed in follicular epithelial cells, and associated with cortical granules in fully grown oocytes. Moreover, it was discharged to the perivitelline space and egg envelope upon fertilization. As it is the first identified C1q family member that is expressed in follicular cells that surround oocyte, CagOC1q-like was applied to detection of follicular cell apoptosis and deletion. The entire cytological process of follicular cell apoptosis and deletion was clearly seen from double visualizations of follicular cells with CagOC1q-like immunofluorescence and apoptotic follicular cells labeled by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) during oocyte maturation and ovulation.
Collapse
Affiliation(s)
- Jie Mei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | |
Collapse
|
39
|
Andreu-Vieyra C, Chen R, Matzuk MM. Conditional deletion of the retinoblastoma (Rb) gene in ovarian granulosa cells leads to premature ovarian failure. Mol Endocrinol 2008; 22:2141-61. [PMID: 18599617 DOI: 10.1210/me.2008-0033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The retinoblastoma protein (RB) regulates cell proliferation and survival by binding to the E2F family of transcription factors. Recent studies suggest that RB also regulates differentiation in a variety of cell types, including myocytes, neurons, adipocytes, and chondrocytes. Rb mutations have been found in ovarian cancer; however, the role of RB in normal and abnormal ovarian function remains unclear. To test the hypothesis that loss of Rb induces ovarian tumorigenesis, we generated an ovarian granulosa cell conditional knockout of Rb (Rb cKO) using the Cre/lox recombination system. Rb cKO females showed 100% survival and no ovarian tumor formation through 9 months of age, but they developed progressive infertility. Prepubertal Rb cKO females showed increased ovulation rates compared with controls, correlating with increased follicle recruitment, higher Fshr and Kitl mRNA levels, and lower anti-Müllerian hormone levels. In contrast, the ovulation rate of 6-wk-old females was similar to that of controls. Morphometric analysis of Rb cKO ovaries from 6-wk-old and older females showed increased follicular atresia and apoptosis. Rb cKO ovaries and preantral follicles had abnormal levels of known direct and indirect target genes of RB, including Rbl2/p130, E2f1, Ccne2, Myc, Fos, and Tgfb2. In addition, preantral follicles showed increased expression of the granulosa cell differentiation marker Inha, decreased levels of Foxl2 and Cyp19a1 aromatase, and abnormal expression of the nuclear receptors Nr5a1, Nr5a2, and Nr0b1. Taken together, our results suggest that RB is required for the temporal-specific pattern of expression of key genes involved in follicular development.
Collapse
|
40
|
Cansu A, Giray SG, Serdaroglu A, Erdogan D, Coskun ZK, Korucuoglu U, Biri AA. Effects of chronic treatment with valproate and oxcarbazepine on ovarian folliculogenesis in rats. Epilepsia 2008; 49:1192-201. [DOI: 10.1111/j.1528-1167.2008.01576.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Nagaosa K, Aikoshi I, Hasegawa Y, Nakanishi Y. Activator protein 1-mediated expression of monocyte chemoattractant protein 1 in cultured rat luteal cells. Mol Reprod Dev 2008; 75:1077-84. [DOI: 10.1002/mrd.20849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Santos HB, Sato Y, Moro L, Bazzoli N, Rizzo E. Relationship among follicular apoptosis, integrin β1 and collagen type IV during early ovarian regression in the teleost Prochilodus argenteus after induced spawning. Cell Tissue Res 2008; 332:159-70. [DOI: 10.1007/s00441-007-0540-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
|
43
|
Andreu-Vieyra C, Chen R, Matzuk MM. Effects of granulosa cell-specific deletion of Rb in Inha-alpha null female mice. Endocrinology 2007; 148:3837-49. [PMID: 17510234 DOI: 10.1210/en.2006-1590] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Our laboratory is interested in the gonadal growth regulatory properties of inhibins, members of the TGFbeta superfamily. We have previously shown that female mice lacking inhibins (Inha(-/-)) develop granulosa cell tumors and that concurrent loss of p27 accelerates tumor development. It has also been shown that the retinoblastoma protein RB regulates the G(1) to S phase transition of the cell cycle by controlling the activity of transcription factors and stabilizing the levels of the cell cycle inhibitor P27. Based on these data, we hypothesized that concurrent loss of Rb and inhibins in the ovary will exacerbate tumor formation. To test this hypothesis, we generated an ovarian granulosa cell conditional knockout (cKO) of Rb using the Cre/lox recombination system in the background of Inha(-/-) mice. Inha(-/-)/Rb cKO females show a modest increase in mortality rates compared with Inha(-/-) females. Although histologically similar to Inha(-/-) ovarian tumors, tumors from Inha(-/-)/Rb cKO females show increased number of mitotic figures and apoptotic rates. Interestingly, P27 levels are decreased in Inha(-/-)/Rb cKO ovarian tumors, likely due to the combined effect of Rb loss and increased Skp2 expression, which targets P27 to the proteosome. We propose that Rb loss may cause cell cycle delay or arrest, followed by apoptosis and that increases in p107 and p130 levels may compensate for Rb loss. These findings confirm the importance of P27 as a cell cycle regulator in granulosa cells and suggest functional compensation between RB-like proteins in ovarian tumorigenesis.
Collapse
Affiliation(s)
- Claudia Andreu-Vieyra
- Baylor College of Medicine, Department of Pathology, One Baylor Plaza, Smith Building S217, Houston, Texas 77030, USA
| | | | | |
Collapse
|
44
|
Rolaki A, Coukos G, Loutradis D, DeLisser HM, Coutifaris C, Makrigiannakis A. Luteogenic hormones act through a vascular endothelial growth factor-dependent mechanism to up-regulate alpha 5 beta 1 and alpha v beta 3 integrins, promoting the migration and survival of human luteinized granulosa cells. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1561-72. [PMID: 17456762 PMCID: PMC1854951 DOI: 10.2353/ajpath.2007.060926] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The formation of the corpus luteum (CL) is critical for the establishment of a successful pregnancy. After ovulation, the CL develops from the remnants of the ovulated ovarian follicle. This process, which involves varying cell-matrix interactions, is poorly characterized. To understand the role and potential regulation of cell-matrix interactions in the formation of the CL, we investigated the expression and activity of the matrix protein fibronectin (FN) and several of its integrin receptors on luteinized granulosa cells (GCs). In situ, FN and several FN-binding integrins were detected around luteinizing GCs during the early luteal phase, although expression declined in the late luteal phase. In vitro, GCs released FN, and stimulation of these cells with human chorionic gonadotropin increased the surface expression of FN, alpha(5)beta(1), and alpha(v)beta(3). Up-regulation of these proteins on GCs was reproduced by stimulation with vascular endothelial growth factor (VEGF) and was inhibited by anti-VEGF antibody. Lastly, expression of alpha(5)beta(1) and alpha(v)beta(3) mediated adhesion to FN, facilitated migration, and prevented apoptosis. These data suggest that in vivo luteogenic hormones, in part through a VEGF-dependent mechanism, stimulate selected integrin-matrix adhesive interactions that promote the motility and survival of GCs and thus contribute to the formation and preservation of the CL.
Collapse
Affiliation(s)
- Alexandra Rolaki
- Laboratory of Human Reproduction, Department of Obstetrics and Gynaecology, Medical School, University of Crete, Heraklion 71110, Greece
| | | | | | | | | | | |
Collapse
|
45
|
Forges T, Monnier-Barbarino P, Leheup B, Jouvet P. Pathophysiology of impaired ovarian function in galactosaemia. Hum Reprod Update 2006; 12:573-84. [PMID: 16835432 DOI: 10.1093/humupd/dml031] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Classical galactosaemia is an inherited inborn error of the major galactose assimilation pathway, caused by galactose-1-phosphate uridyltransferase (GALT) deficiency. Many GALT mutations have been described, with different clinical consequences. In severe forms, newborns present with a life-threatening, acute toxic syndrome that rapidly regresses under a galactose-restricted diet. However, long-term complications, particularly cognitive and motor abnormalities, as well as hypergonadotrophic hypogonadism in female patients are still unavoidable. The pathogenesis of galactose-induced ovarian toxicity remains unclear but probably involves galactose itself and its metabolites such as galactitol and UDP-galactose. Possible mechanisms of ovarian damage include direct toxicity of galactose and metabolites, deficient galactosylation of glycoproteins and glycolipids, oxidative stress and activation of apoptosis. As there is no aetiological treatment, clinical management of ovarian failure in galactosaemic patients principally relies on hormonal replacement therapy to induce pubertal development and to prevent bone loss and other consequences of estrogen deprivation. Further investigations will be necessary to better understand the metabolic flux of galactose through its biochemical pathways and the mechanisms of these secondary complications. The aim of this article is to present an extensive review on the pathogenesis and clinical management of galactose-induced premature ovarian failure.
Collapse
Affiliation(s)
- T Forges
- Department of Reproductive Medicine, Maternité Régionale Universitaire, Nancy Cedex, France.
| | | | | | | |
Collapse
|