1
|
Yasui F, Munekata K, Fujiyuki T, Kuraishi T, Yamaji K, Honda T, Gomi S, Yoneda M, Sanada T, Ishii K, Sakoda Y, Kida H, Hattori S, Kai C, Kohara M. Single Dose of Attenuated Vaccinia Viruses Expressing H5 Hemagglutinin Affords Rapid and Long-Term Protection Against Lethal Infection with Highly Pathogenic Avian Influenza A H5N1 Virus in Mice and Monkeys. Vaccines (Basel) 2025; 13:74. [PMID: 39852853 PMCID: PMC11769126 DOI: 10.3390/vaccines13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES In preparation for a potential pandemic caused by the H5N1 highly pathogenic avian influenza (HPAI) virus, pre-pandemic vaccines against several viral clades have been developed and stocked worldwide. Although these vaccines are well tolerated, their immunogenicity and cross-reactivity with viruses of different clades can be improved. METHODS To address this aspect, we generated recombinant influenza vaccines against H5-subtype viruses using two different strains of highly attenuated vaccinia virus (VACV) vectors. RESULTS rLC16m8-mcl2.2 hemagglutinin (HA) and rLC16m8-mcl2.3.4 HA consisted of a recombinant LC16m8 vector encoding the HA protein from clade 2.2 or clade 2.3.4 viruses (respectively); rDIs-mcl2.2 HA consisted of a recombinant DIs vector encoding the HA protein from clade 2.2. A single dose of rLC16m8-mcl2.2 HA showed rapid (1 week after vaccination) and long-term protection (20 months post-vaccination) in mice against the HPAI H5N1 virus. Moreover, cynomolgus macaques immunized with rLC16m8-mcl2.2 HA exhibited long-term protection when challenged with a heterologous clade of the HPAI H5N1 virus. Although the DIs strain is unable to grow in most mammalian cells, rDIs-mcl2.2 HA also showed rapid and long-lasting effects against HPAI H5N1 virus infection. Notably, the protective efficacy of rDIs-mcl2.2 HA was comparable to that of rLC16m8-mcl2.2 HA. Furthermore, these vaccines protected animals previously immunized with VACVs from a lethal challenge with the HPAI H5N1 virus. CONCLUSIONS These results suggest that both rLC16m8-mcl2.2 HA and rDIs-mcl2.2 HA are effective in preventing HPAI H5N1 virus infection, and rDIs-mcl2.2 HA is a promising vaccine candidate against H5 HA-subtype viruses.
Collapse
Affiliation(s)
- Fumihiko Yasui
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Keisuke Munekata
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Tomoko Fujiyuki
- Infectious Disease Control Science, Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Takeshi Kuraishi
- Animal Laboratory of Injurious Animals, The Institute of Medical Science, The University of Tokyo, 802, Tean Sude, Setouchi-cho, Oshima-gun, Kagoshima 894-1531, Japan
| | - Kenzaburo Yamaji
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Tomoko Honda
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Sumiko Gomi
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Misako Yoneda
- Infectious Disease Control Science, Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Koji Ishii
- Center for Quality Management Systems, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| | - Hiroshi Kida
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Shosaku Hattori
- Animal Laboratory of Injurious Animals, The Institute of Medical Science, The University of Tokyo, 802, Tean Sude, Setouchi-cho, Oshima-gun, Kagoshima 894-1531, Japan
| | - Chieko Kai
- Infectious Disease Control Science, Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
2
|
Kennedy E, Hewson R, Dowall S. Recombinant Vaccine Production: Production of a Recombinant CCHF MVA Vaccine. Methods Mol Biol 2025; 2893:257-272. [PMID: 39671043 DOI: 10.1007/978-1-0716-4338-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
One of the key interventions against infection is immunization, including an increasing focus on development of vaccines against pathogenic bunyaviruses. Whilst different vaccine development approaches exist, recombinant viral vaccines have a strong safety record, are rapid to produce, are cost-effective, and have been demonstrated to be rolled out in response to outbreaks, including in low- and middle-income countries. One viral vector, modified Vaccinia Ankara (MVA), has been used to develop vaccine candidates against Crimean-Congo Haemorrhagic Fever (CCHF) virus through incorporation of the nucleoprotein (NP) and glycoprotein (GP) regions, with the former candidate having now progressed to being the first vaccine against CCHF virus to enter Phase 1 clinical trials. Herein, we report the method used to generate this MVA-based vaccine construct.
Collapse
Affiliation(s)
- Emma Kennedy
- United Kingdom Health Security Agency (UKHSA), Salisbury, Wiltshire, UK
| | - Roger Hewson
- United Kingdom Health Security Agency (UKHSA), Salisbury, Wiltshire, UK
| | - Stuart Dowall
- United Kingdom Health Security Agency (UKHSA), Salisbury, Wiltshire, UK.
| |
Collapse
|
3
|
Weskamm LM, Tarnow P, Harms C, Huchon M, Raadsen MP, Friedrich M, Rübenacker L, Grüttner C, Garcia MG, Koch T, Becker S, Sutter G, Lhomme E, Haagmans BL, Fathi A, Blois SM, Dahlke C, Richert L, Addo MM. Dissecting humoral immune responses to an MVA-vectored MERS-CoV vaccine in humans using a systems serology approach. iScience 2024; 27:110470. [PMID: 39148710 PMCID: PMC11325358 DOI: 10.1016/j.isci.2024.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024] Open
Abstract
Besides neutralizing antibodies, which are considered an important measure for vaccine immunogenicity, Fc-mediated antibody functions can contribute to antibody-mediated protection. They are strongly influenced by structural antibody properties such as subclass and Fc glycan composition. We here applied a systems serology approach to dissect humoral immune responses induced by MVA-MERS-S, an MVA-vectored vaccine against the Middle East respiratory syndrome coronavirus (MERS-CoV). Building on preceding studies reporting the safety and immunogenicity of MVA-MERS-S, our study highlights the potential of a late boost, administered one year after prime, to enhance both neutralizing and Fc-mediated antibody functionality compared to the primary vaccination series. Distinct characteristics were observed for antibodies specific to the MERS-CoV spike protein S1 and S2 subunits, regarding subclass and glycan compositions as well as Fc functionality. These findings highlight the benefit of a late homologous booster vaccination with MVA-MERS-S and may be of interest for the design of future coronavirus vaccines.
Collapse
Affiliation(s)
- Leonie M Weskamm
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Paulina Tarnow
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Charlotte Harms
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Glyco-HAM, a Cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Huchon
- University of Bordeaux, INSERM, INRIA, BPH, U1219, Sistm, Bordeaux, France
- Vaccine Research Institute, Creteil, France
| | - Matthijs P Raadsen
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Monika Friedrich
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Laura Rübenacker
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Cordula Grüttner
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Mariana G Garcia
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Glyco-HAM, a Cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Koch
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Antibiotic Stewardship Team, Pharmacy of the University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
- German Center for Infection Research, Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Infection Research, Partner Site München, Munich, Germany
| | - Edouard Lhomme
- University of Bordeaux, INSERM, INRIA, BPH, U1219, Sistm, Bordeaux, France
- Vaccine Research Institute, Creteil, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
| | - Bart L Haagmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anahita Fathi
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Division of Infectious Diseases, 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Glyco-HAM, a Cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Dahlke
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Laura Richert
- University of Bordeaux, INSERM, INRIA, BPH, U1219, Sistm, Bordeaux, France
- Vaccine Research Institute, Creteil, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
| | - Marylyn M Addo
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
4
|
Diaz-Cánova D, Moens U, Brinkmann A, Nitsche A, Okeke MI. Whole genome sequencing of recombinant viruses obtained from co-infection and superinfection of Vero cells with modified vaccinia virus ankara vectored influenza vaccine and a naturally occurring cowpox virus. Front Immunol 2024; 15:1277447. [PMID: 38633245 PMCID: PMC11021749 DOI: 10.3389/fimmu.2024.1277447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Modified vaccinia virus Ankara (MVA) has been widely tested in clinical trials as recombinant vector vaccine against infectious diseases and cancers in humans and animals. However, one biosafety concern about the use of MVA vectored vaccine is the potential for MVA to recombine with naturally occurring orthopoxviruses in cells and hosts in which it multiplies poorly and, therefore, producing viruses with mosaic genomes with altered genetic and phenotypic properties. We previously conducted co-infection and superinfection experiments with MVA vectored influenza vaccine (MVA-HANP) and a feline Cowpox virus (CPXV-No-F1) in Vero cells (that were semi-permissive to MVA infection) and showed that recombination occurred in both co-infected and superinfected cells. In this study, we selected the putative recombinant viruses and performed genomic characterization of these viruses. Some putative recombinant viruses displayed plaque morphology distinct of that of the parental viruses. Our analysis demonstrated that they had mosaic genomes of different lengths. The recombinant viruses, with a genome more similar to MVA-HANP (>50%), rescued deleted and/or fragmented genes in MVA and gained new host ranges genes. Our analysis also revealed that some MVA-HANP contained a partially deleted transgene expression cassette and one recombinant virus contained part of the transgene expression cassette similar to that incomplete MVA-HANP. The recombination in co-infected and superinfected Vero cells resulted in recombinant viruses with unpredictable biological and genetic properties as well as recovery of delete/fragmented genes in MVA and transfer of the transgene into replication competent CPXV. These results are relevant to hazard characterization and risk assessment of MVA vectored biologicals.
Collapse
Affiliation(s)
- Diana Diaz-Cánova
- Molecular Inflammation Research Group, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Annika Brinkmann
- WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Andreas Nitsche
- WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Malachy Ifeanyi Okeke
- Section of Biomedical Sciences, Department of Natural and Environmental Sciences, School of Arts and Sciences, American University of Nigeria, Yola, Nigeria
| |
Collapse
|
5
|
Raadsen MP, Dahlke C, Fathi A, Lamers MM, van den Doel P, Zaeck LM, van Royen ME, de Bruin E, Sikkema R, Koopmans M, van Gorp ECM, Sutter G, de Vries RD, Addo MM, Haagmans BL. Monkeypox Virus Cross-Neutralizing Antibodies in Clinical Trial Participants Vaccinated With Modified Vaccinia Virus Ankara Encoding Middle East Respiratory Syndrome-Coronavirus Spike Protein. J Infect Dis 2023; 228:586-590. [PMID: 36857443 PMCID: PMC10469103 DOI: 10.1093/infdis/jiad052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023] Open
Abstract
Modified vaccinia virus Ankara (MVA) is used as a vaccine against monkeypox virus and as a viral vaccine vector. MVA-MERS-S is a vaccine candidate against Middle East respiratory syndrome (MERS)-associated coronavirus. Here, we report that cross-reactive monkeypox virus neutralizing antibodies were detectable in only a single study participant after the first dose of MVA-MERS-S vaccine, in 3 of 10 after the second dose, and in 10 of 10 after the third dose.
Collapse
Affiliation(s)
| | - Christine Dahlke
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Anahita Fathi
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mart M Lamers
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Luca M Zaeck
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Erwin de Bruin
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Reina Sikkema
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Marion Koopmans
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Gerd Sutter
- Division of Virology, LMU University of Munich, Institute for Infectious Diseases and Zoonoses, Munich, Germany
- German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Rory D de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Marylyn M Addo
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bart L Haagmans
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Beicht J, Kubinski M, Zdora I, Puff C, Biermann J, Gerlach T, Baumgärtner W, Sutter G, Osterhaus ADME, Prajeeth CK, Rimmelzwaan GF. Induction of humoral and cell-mediated immunity to the NS1 protein of TBEV with recombinant Influenza virus and MVA affords partial protection against lethal TBEV infection in mice. Front Immunol 2023; 14:1177324. [PMID: 37483628 PMCID: PMC10360051 DOI: 10.3389/fimmu.2023.1177324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Tick-borne encephalitis virus (TBEV) is one of the most relevant tick-transmitted neurotropic arboviruses in Europe and Asia and the causative agent of tick-borne encephalitis (TBE). Annually more than 10,000 TBE cases are reported despite having vaccines available. In Europe, the vaccines FSME-IMMUN® and Encepur® based on formaldehyde-inactivated whole viruses are licensed. However, demanding vaccination schedules contribute to sub-optimal vaccination uptake and breakthrough infections have been reported repeatedly. Due to its immunogenic properties as well as its role in viral replication and disease pathogenesis, the non-structural protein 1 (NS1) of flaviviruses has become of interest for non-virion based flavivirus vaccine candidates in recent years. Methods Therefore, immunogenicity and protective efficacy of TBEV NS1 expressed by neuraminidase (NA)-deficient Influenza A virus (IAV) or Modified Vaccinia virus Ankara (MVA) vectors were investigated in this study. Results With these recombinant viral vectors TBEV NS1-specific antibody and T cell responses were induced. Upon heterologous prime/boost regimens partial protection against lethal TBEV challenge infection was afforded in mice. Discussion This supports the inclusion of NS1 as a vaccine component in next generation TBEV vaccines.
Collapse
Affiliation(s)
- Jana Beicht
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jeannine Biermann
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Thomas Gerlach
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Chittappen Kandiyil Prajeeth
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
7
|
Kalodimou G, Jany S, Freudenstein A, Schwarz JH, Limpinsel L, Rohde C, Kupke A, Becker S, Volz A, Tscherne A, Sutter G. Short- and Long-Interval Prime-Boost Vaccination with the Candidate Vaccines MVA-SARS-2-ST and MVA-SARS-2-S Induces Comparable Humoral and Cell-Mediated Immunity in Mice. Viruses 2023; 15:v15051180. [PMID: 37243266 DOI: 10.3390/v15051180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The COVID-19 pandemic caused significant human health and economic consequences. Due to the ability of SARS-CoV-2 to spread rapidly and to cause severe disease and mortality in certain population groups, vaccines are essential for controlling the pandemic in the future. Several licensed vaccines have shown improved protection against SARS-CoV-2 after extended-interval prime-boost immunizations in humans. Therefore, in this study, we aimed to compare the immunogenicity of our two Modified Vaccinia virus Ankara (MVA) based COVID-19 candidate vaccines MVA-SARS-2-S and MVA-SARS-2-ST after short- and long-interval prime-boost immunization schedules in mice. We immunized BALB/c mice using 21-day (short-interval) or 56-day (long-interval) prime-boost vaccination protocols and analyzed spike (S)-specific CD8 T cell immunity and humoral immunity. The two schedules induced robust CD8 T cell responses with no significant differences in their magnitude. Furthermore, both candidate vaccines induced comparable levels of total S, and S2-specific IgG binding antibodies. However, MVA-SARS-2-ST consistently elicited higher amounts of S1-, S receptor binding domain (RBD), and SARS-CoV-2 neutralizing antibodies in both vaccination protocols. Overall, we found very comparable immune responses following short- or long-interval immunization. Thus, our results suggest that the chosen time intervals may not be suitable to observe potential differences in antigen-specific immunity when testing different prime-boost intervals with our candidate vaccines in the mouse model. Despite this, our data clearly showed that MVA-SARS-2-ST induced superior humoral immune responses relative to MVA-SARS-2-S after both immunization schedules.
Collapse
Affiliation(s)
- Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 85764 Oberschleißheim, Germany
| | - Sylvia Jany
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
| | - Astrid Freudenstein
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
| | - Jan Hendrik Schwarz
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
| | - Leonard Limpinsel
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
| | - Cornelius Rohde
- Institute of Virology, Philipps University of Marburg, 35043 Marburg, Germany
- German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, 35043 Marburg, Germany
| | - Alexandra Kupke
- Institute of Virology, Philipps University of Marburg, 35043 Marburg, Germany
- German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, 35043 Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University of Marburg, 35043 Marburg, Germany
- German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, 35043 Marburg, Germany
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30559 Hannover, Germany
| | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 85764 Oberschleißheim, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 85764 Oberschleißheim, Germany
| |
Collapse
|
8
|
Zaeck LM, Lamers MM, Verstrepen BE, Bestebroer TM, van Royen ME, Götz H, Shamier MC, van Leeuwen LPM, Schmitz KS, Alblas K, van Efferen S, Bogers S, Scherbeijn S, Rimmelzwaan GF, van Gorp ECM, Koopmans MPG, Haagmans BL, GeurtsvanKessel CH, de Vries RD. Low levels of monkeypox virus-neutralizing antibodies after MVA-BN vaccination in healthy individuals. Nat Med 2023; 29:270-278. [PMID: 36257333 PMCID: PMC9873555 DOI: 10.1038/s41591-022-02090-w] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/13/2022] [Indexed: 02/01/2023]
Abstract
In July 2022, the ongoing monkeypox (MPX) outbreak was declared a public health emergency of international concern. Modified vaccinia Ankara-Bavarian Nordic (MVA-BN, also known as Imvamune, JYNNEOS or Imvanex) is a third-generation smallpox vaccine that is authorized and in use as a vaccine against MPX. To date, there are no data showing MPX virus (MPXV)-neutralizing antibodies in vaccinated individuals nor vaccine efficacy against MPX. Here we show that MPXV-neutralizing antibodies can be detected after MPXV infection and after historic smallpox vaccination. However, a two-shot MVA-BN immunization series in non-primed individuals yields relatively low levels of MPXV-neutralizing antibodies. Dose-sparing of an MVA-based influenza vaccine leads to lower MPXV-neutralizing antibody levels, whereas a third vaccination with the same MVA-based vaccine significantly boosts the antibody response. As the role of MPXV-neutralizing antibodies as a correlate of protection against disease and transmissibility is currently unclear, we conclude that cohort studies following vaccinated individuals are necessary to assess vaccine efficacy in at-risk populations.
Collapse
Affiliation(s)
- Luca M. Zaeck
- grid.5645.2000000040459992XDepartment of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mart M. Lamers
- grid.5645.2000000040459992XDepartment of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Babs E. Verstrepen
- grid.5645.2000000040459992XDepartment of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Theo M. Bestebroer
- grid.5645.2000000040459992XDepartment of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Martin E. van Royen
- grid.5645.2000000040459992XDepartment of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Hannelore Götz
- grid.491204.a0000 0004 0459 9540Department Infectious Disease Control, Municipal Public Health Service Rotterdam–Rijnmond (GGD Rotterdam), Rotterdam, Netherlands
| | - Marc C. Shamier
- grid.5645.2000000040459992XDepartment of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Leanne P. M. van Leeuwen
- grid.5645.2000000040459992XDepartment of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Katharina S. Schmitz
- grid.5645.2000000040459992XDepartment of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Kimberley Alblas
- grid.5645.2000000040459992XDepartment of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Suzanne van Efferen
- grid.5645.2000000040459992XDepartment of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Susanne Bogers
- grid.5645.2000000040459992XDepartment of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sandra Scherbeijn
- grid.5645.2000000040459992XDepartment of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Guus F. Rimmelzwaan
- grid.412970.90000 0001 0126 6191Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Eric C. M. van Gorp
- grid.5645.2000000040459992XDepartment of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Marion P. G. Koopmans
- grid.5645.2000000040459992XDepartment of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bart L. Haagmans
- grid.5645.2000000040459992XDepartment of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Corine H. GeurtsvanKessel
- grid.5645.2000000040459992XDepartment of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Rory D. de Vries
- grid.5645.2000000040459992XDepartment of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
9
|
Kubinski M, Beicht J, Zdora I, Biermann J, Puff C, Gerlach T, Tscherne A, Baumgärtner W, Osterhaus ADME, Sutter G, Prajeeth CK, Rimmelzwaan GF. A recombinant Modified Vaccinia virus Ankara expressing prME of tick-borne encephalitis virus affords mice full protection against TBEV infection. Front Immunol 2023; 14:1182963. [PMID: 37153588 PMCID: PMC10160477 DOI: 10.3389/fimmu.2023.1182963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Tick-borne encephalitis virus (TBEV) is an important human pathogen that can cause a serious disease involving the central nervous system (tick-borne encephalitis, TBE). Although approved inactivated vaccines are available, the number of TBE cases is rising, and breakthrough infections in fully vaccinated subjects have been reported in recent years. Methods In the present study, we generated and characterized a recombinant Modified Vaccinia virus Ankara (MVA) for the delivery of the pre-membrane (prM) and envelope (E) proteins of TBEV (MVA-prME). Results MVA-prME was tested in mice in comparison with a licensed vaccine FSME-IMMUN® and proved to be highly immunogenic and afforded full protection against challenge infection with TBEV. Discussion Our data indicate that MVA-prME holds promise as an improved next-generation vaccine for the prevention of TBE.
Collapse
Affiliation(s)
- Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jana Beicht
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hannover, Germany
| | - Jeannine Biermann
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Thomas Gerlach
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Alina Tscherne
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hannover, Germany
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Chittappen Kandiyil Prajeeth
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- *Correspondence: Guus F. Rimmelzwaan,
| |
Collapse
|
10
|
de Vries RD, Hoschler K, Rimmelzwaan GF. ADCC: An underappreciated correlate of cross-protection against influenza? Front Immunol 2023; 14:1130725. [PMID: 36911705 PMCID: PMC9992787 DOI: 10.3389/fimmu.2023.1130725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
In this short review, we summarized the results obtained with an assay to detect influenza virus-specific antibodies that mediate ADCC, which was developed and evaluated within the framework of the IMI-funded project "FLUCOP". HA-specific ADCC mediating antibodies were detected in serum samples from children and adults pre- and post-vaccination with monovalent, trivalent, or quadrivalent seasonal influenza vaccines, or following infection with H1N1pdm09 virus. Additionally, using chimeric influenza HA proteins, the presence of HA-stalk-specific ADCC mediating antibodies after vaccination and natural infection with H1N1pdm09 virus was demonstrated. With serum samples obtained from children that experienced a primary infection with an influenza B virus, we showed that primary infection induces HA-specific ADCC-mediating antibodies that cross-reacted with HA from influenza B viruses from the heterologous lineage. These cross-reactive antibodies were found to be directed to the HA stalk region. Antibodies directed to the influenza B virus HA head mediated low levels of ADCC. Finally, vaccination with a recombinant modified vaccinia virus Ankara expressing the HA gene of a clade 1 A(H5N1) highly pathogenic avian influenza virus led to the induction of ADCC-mediating antibodies, which cross-reacted with H5 viruses of antigenically distinct clades. Taken together, it is clear that virus-specific antibodies induced by infection or vaccination have immunological functionalities in addition to neutralization. These functionalities could contribute to protective immunity. The functional profiling of vaccine-induced antibodies may provide further insight into the effector functions of virus-specific antibodies and their contribution to virus-specific immunity.
Collapse
Affiliation(s)
- Rory D de Vries
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Katja Hoschler
- Virus Reference Department, Public Health England, London, United Kingdom
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
11
|
Meyer zu Natrup C, Tscherne A, Dahlke C, Ciurkiewicz M, Shin DL, Fathi A, Rohde C, Kalodimou G, Halwe S, Limpinsel L, Schwarz JH, Klug M, Esen M, Schneiderhan-Marra N, Dulovic A, Kupke A, Brosinski K, Clever S, Schünemann LM, Beythien G, Armando F, Mayer L, Weskamm ML, Jany S, Freudenstein A, Tuchel T, Baumgärtner W, Kremsner P, Fendel R, Addo MM, Becker S, Sutter G, Volz A. Stabilized recombinant SARS-CoV-2 spike antigen enhances vaccine immunogenicity and protective capacity. J Clin Invest 2022; 132:159895. [PMID: 36301637 PMCID: PMC9754005 DOI: 10.1172/jci159895] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
The SARS-CoV-2 spike (S) glycoprotein is synthesized as a large precursor protein and must be activated by proteolytic cleavage into S1 and S2. A recombinant modified vaccinia virus Ankara (MVA) expressing native, full-length S protein (MVA-SARS-2-S) is currently under investigation as a candidate vaccine in phase I clinical studies. Initial results from immunogenicity monitoring revealed induction of S-specific antibodies binding to S2, but low-level antibody responses to the S1 domain. Follow-up investigations of native S antigen synthesis in MVA-SARS-2-S-infected cells revealed limited levels of S1 protein on the cell surface. In contrast, we found superior S1 cell surface presentation upon infection with a recombinant MVA expressing a stabilized version of SARS-CoV-2 S protein with an inactivated S1/S2 cleavage site and K986P and V987P mutations (MVA-SARS-2-ST). When comparing immunogenicity of MVA vector vaccines, mice vaccinated with MVA-SARS-2-ST mounted substantial levels of broadly reactive anti-S antibodies that effectively neutralized different SARS-CoV-2 variants. Importantly, intramuscular MVA-SARS-2-ST immunization of hamsters and mice resulted in potent immune responses upon challenge infection and protected from disease and severe lung pathology. Our results suggest that MVA-SARS-2-ST represents an improved clinical candidate vaccine and that the presence of plasma membrane-bound S1 is highly beneficial to induce protective antibody levels.
Collapse
Affiliation(s)
| | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany.,German Center for Infection Research, partner site Munich, and
| | - Christine Dahlke
- partner site Hamburg-Lübeck-Borstel-Riems.,University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Dai-Lun Shin
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Anahita Fathi
- partner site Hamburg-Lübeck-Borstel-Riems.,University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany.,University Medical Center Hamburg-Eppendorf, Division of Infectious Diseases, Hamburg, Germany
| | - Cornelius Rohde
- German Center for Infection Research, partner site Gießen-Marburg-Langen.,Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany.,German Center for Infection Research, partner site Munich, and
| | - Sandro Halwe
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Leonard Limpinsel
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Jan H. Schwarz
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Martha Klug
- German Center for Infection Research, partner site Tübingen.,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Meral Esen
- German Center for Infection Research, partner site Tübingen.,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | - Alex Dulovic
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Alexandra Kupke
- German Center for Infection Research, partner site Gießen-Marburg-Langen.,Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Katrin Brosinski
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Sabrina Clever
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Lisa-Marie Schünemann
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Leonie Mayer
- partner site Hamburg-Lübeck-Borstel-Riems.,University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany.,University Medical Center Hamburg-Eppendorf, Division of Infectious Diseases, Hamburg, Germany
| | - Marie L. Weskamm
- partner site Hamburg-Lübeck-Borstel-Riems.,University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany.,University Medical Center Hamburg-Eppendorf, Division of Infectious Diseases, Hamburg, Germany
| | - Sylvia Jany
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Astrid Freudenstein
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Tamara Tuchel
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Peter Kremsner
- German Center for Infection Research, partner site Tübingen.,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambarene, Gabon
| | - Rolf Fendel
- German Center for Infection Research, partner site Tübingen.,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Marylyn M. Addo
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany.,German Center for Infection Research, partner site Tübingen
| | - Stephan Becker
- German Center for Infection Research, partner site Gießen-Marburg-Langen.,Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany.,German Center for Infection Research, partner site Munich, and
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany.,German Center for Infection Research, partner site Hanover-Braunschweig
| |
Collapse
|
12
|
Orlova OV, Glazkova DV, Bogoslovskaya EV, Shipulin GA, Yudin SM. Development of Modified Vaccinia Virus Ankara-Based Vaccines: Advantages and Applications. Vaccines (Basel) 2022; 10:vaccines10091516. [PMID: 36146594 PMCID: PMC9503770 DOI: 10.3390/vaccines10091516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is a promising viral vector for vaccine development. MVA is well studied and has been widely used for vaccination against smallpox in Germany. This review describes the history of the origin of the virus and its properties as a vaccine, including a high safety profile. In recent years, MVA has found its place as a vector for the creation of vaccines against various diseases. To date, a large number of vaccine candidates based on the MVA vector have already been developed, many of which have been tested in preclinical and clinical studies. We discuss data on the immunogenicity and efficacy of some of these vaccines.
Collapse
|
13
|
Fathi A, Dahlke C, Krähling V, Kupke A, Okba NMA, Raadsen MP, Heidepriem J, Müller MA, Paris G, Lassen S, Klüver M, Volz A, Koch T, Ly ML, Friedrich M, Fux R, Tscherne A, Kalodimou G, Schmiedel S, Corman VM, Hesterkamp T, Drosten C, Loeffler FF, Haagmans BL, Sutter G, Becker S, Addo MM. Increased neutralization and IgG epitope identification after MVA-MERS-S booster vaccination against Middle East respiratory syndrome. Nat Commun 2022; 13:4182. [PMID: 35853863 PMCID: PMC9295877 DOI: 10.1038/s41467-022-31557-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/22/2022] [Indexed: 12/01/2022] Open
Abstract
Vaccine development is essential for pandemic preparedness. We previously conducted a Phase 1 clinical trial of the vector vaccine candidate MVA-MERS-S against the Middle East respiratory syndrome coronavirus (MERS-CoV), expressing its full spike glycoprotein (MERS-CoV-S), as a homologous two-dose regimen (Days 0 and 28). Here, we evaluate the safety (primary objective) and immunogenicity (secondary and exploratory objectives: magnitude and characterization of vaccine-induced humoral responses) of a third vaccination with MVA-MERS-S in a subgroup of trial participants one year after primary immunization. MVA-MERS-S booster vaccination is safe and well-tolerated. Both binding and neutralizing anti-MERS-CoV antibody titers increase substantially in all participants and exceed maximum titers observed after primary immunization more than 10-fold. We identify four immunogenic IgG epitopes, located in the receptor-binding domain (RBD, n = 1) and the S2 subunit (n = 3) of MERS-CoV-S. The level of baseline anti-human coronavirus antibody titers does not impact the generation of anti-MERS-CoV antibody responses. Our data support the rationale of a booster vaccination with MVA-MERS-S and encourage further investigation in larger trials. Trial registration: Clinicaltrials.gov NCT03615911.
Collapse
Affiliation(s)
- Anahita Fathi
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
- Bernhard-Nocht-Institute for Tropical Medicine, Department for Clinical Immunology of Infectious Diseases, Hamburg, Germany
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf, First Department of Medicine, Division of Infectious Diseases, Hamburg, Germany
| | - Christine Dahlke
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
- Bernhard-Nocht-Institute for Tropical Medicine, Department for Clinical Immunology of Infectious Diseases, Hamburg, Germany
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Verena Krähling
- Philipps University Marburg, Institute of Virology, Marburg, Germany
- German Center for Infection Research, partner site Gießen-Marburg-Langen, Marburg, Germany
| | - Alexandra Kupke
- Philipps University Marburg, Institute of Virology, Marburg, Germany
- German Center for Infection Research, partner site Gießen-Marburg-Langen, Marburg, Germany
| | - Nisreen M A Okba
- Erasmus Medical Center, Department of Viroscience, Rotterdam, the Netherlands
| | - Matthijs P Raadsen
- Erasmus Medical Center, Department of Viroscience, Rotterdam, the Netherlands
| | - Jasmin Heidepriem
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Potsdam, Germany
| | - Marcel A Müller
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
- German Center for Infection Research, partner site Berlin, Berlin, Germany
| | - Grigori Paris
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Potsdam, Germany
| | - Susan Lassen
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
- Bernhard-Nocht-Institute for Tropical Medicine, Department for Clinical Immunology of Infectious Diseases, Hamburg, Germany
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Michael Klüver
- Philipps University Marburg, Institute of Virology, Marburg, Germany
- German Center for Infection Research, partner site Gießen-Marburg-Langen, Marburg, Germany
| | - Asisa Volz
- University of Veterinary Medicine Hanover, Institute of Virology, Hanover, Germany
- German Center for Infection Research, partner site Hanover-Brunswick, Hanover, Germany
| | - Till Koch
- Bernhard-Nocht-Institute for Tropical Medicine, Department for Clinical Immunology of Infectious Diseases, Hamburg, Germany
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf, First Department of Medicine, Division of Infectious Diseases, Hamburg, Germany
| | - My L Ly
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
- Bernhard-Nocht-Institute for Tropical Medicine, Department for Clinical Immunology of Infectious Diseases, Hamburg, Germany
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Monika Friedrich
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
- Bernhard-Nocht-Institute for Tropical Medicine, Department for Clinical Immunology of Infectious Diseases, Hamburg, Germany
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Robert Fux
- LMU University of Munich, Institute of Infectious Diseases and Zoonoses, Munich, Germany
- German Center for Infection Research, partner site Munich, Munich, Germany
| | - Alina Tscherne
- LMU University of Munich, Institute of Infectious Diseases and Zoonoses, Munich, Germany
- German Center for Infection Research, partner site Munich, Munich, Germany
| | - Georgia Kalodimou
- LMU University of Munich, Institute of Infectious Diseases and Zoonoses, Munich, Germany
- German Center for Infection Research, partner site Munich, Munich, Germany
| | - Stefan Schmiedel
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf, First Department of Medicine, Division of Infectious Diseases, Hamburg, Germany
| | - Victor M Corman
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
- German Center for Infection Research, partner site Berlin, Berlin, Germany
| | - Thomas Hesterkamp
- German Center for Infection Research, Translational Project Management Office, Brunswick, Germany
| | - Christian Drosten
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
- German Center for Infection Research, partner site Berlin, Berlin, Germany
| | - Felix F Loeffler
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Potsdam, Germany
| | - Bart L Haagmans
- Erasmus Medical Center, Department of Viroscience, Rotterdam, the Netherlands
| | - Gerd Sutter
- LMU University of Munich, Institute of Infectious Diseases and Zoonoses, Munich, Germany
- German Center for Infection Research, partner site Munich, Munich, Germany
| | - Stephan Becker
- Philipps University Marburg, Institute of Virology, Marburg, Germany
- German Center for Infection Research, partner site Gießen-Marburg-Langen, Marburg, Germany
| | - Marylyn M Addo
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany.
- Bernhard-Nocht-Institute for Tropical Medicine, Department for Clinical Immunology of Infectious Diseases, Hamburg, Germany.
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.
| |
Collapse
|
14
|
Weskamm LM, Fathi A, Raadsen MP, Mykytyn AZ, Koch T, Spohn M, Friedrich M, Haagmans BL, Becker S, Sutter G, Dahlke C, Addo MM. Persistence of MERS-CoV-spike-specific B cells and antibodies after late third immunization with the MVA-MERS-S vaccine. Cell Rep Med 2022; 3:100685. [PMID: 35858586 PMCID: PMC9295383 DOI: 10.1016/j.xcrm.2022.100685] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/25/2022] [Accepted: 06/16/2022] [Indexed: 04/08/2023]
Abstract
The Middle East respiratory syndrome (MERS) is a respiratory disease caused by MERS coronavirus (MERS-CoV). In follow up to a phase 1 trial, we perform a longitudinal analysis of immune responses following immunization with the modified vaccinia virus Ankara (MVA)-based vaccine MVA-MERS-S encoding the MERS-CoV-spike protein. Three homologous immunizations were administered on days 0 and 28 with a late booster vaccination at 12 ± 4 months. Antibody isotypes, subclasses, and neutralization capacity as well as T and B cell responses were monitored over a period of 3 years using standard and bead-based enzyme-linked immunosorbent assay (ELISA), 50% plaque-reduction neutralization test (PRNT50), enzyme-linked immunospot (ELISpot), and flow cytometry. The late booster immunization significantly increases the frequency and persistence of spike-specific B cells, binding immunoglobulin G1 (IgG1) and neutralizing antibodies but not T cell responses. Our data highlight the potential of a late boost to enhance long-term antibody and B cell immunity against MERS-CoV. Our findings on the MVA-MERS-S vaccine may be of relevance for coronavirus 2019 (COVID-19) vaccination strategies.
Collapse
Affiliation(s)
- Leonie M Weskamm
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany.
| | - Anahita Fathi
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany; First Department of Medicine, Division of Infectious Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Matthijs P Raadsen
- Department of Virology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Anna Z Mykytyn
- Department of Virology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Till Koch
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany; First Department of Medicine, Division of Infectious Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Spohn
- Research Institute Children's Cancer Centre Hamburg, Hamburg, Germany; Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Bioinformatics Core Unit, Hamburg University Medical Centre, Hamburg, Germany
| | - Monika Friedrich
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany
| | - Bart L Haagmans
- Department of Virology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Stephan Becker
- German Centre for Infection Research, Gießen-Marburg-Langen, Germany; Institute for Virology, Philipps University Marburg, Marburg, Germany
| | - Gerd Sutter
- German Centre for Infection Research, München, Germany; Division of Virology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Christine Dahlke
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany.
| | - Marylyn M Addo
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany; First Department of Medicine, Division of Infectious Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Kupke A, Volz A, Dietzel E, Freudenstein A, Schmidt J, Shams-Eldin H, Jany S, Sauerhering L, Krähling V, Gellhorn Serra M, Herden C, Eickmann M, Becker S, Sutter G. Protective CD8+ T Cell Response Induced by Modified Vaccinia Virus Ankara Delivering Ebola Virus Nucleoprotein. Vaccines (Basel) 2022; 10:vaccines10040533. [PMID: 35455282 PMCID: PMC9027530 DOI: 10.3390/vaccines10040533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
The urgent need for vaccines against Ebola virus (EBOV) was underscored by the large outbreak in West Africa (2014–2016). Since then, several promising vaccine candidates have been tested in pre-clinical and clinical studies. As a result, two vaccines were approved for human use in 2019/2020, of which one includes a heterologous adenovirus/Modified Vaccinia virus Ankara (MVA) prime-boost regimen. Here, we tested new vaccine candidates based on the recombinant MVA vector, encoding the EBOV nucleoprotein (MVA-EBOV-NP) or glycoprotein (MVA-EBOV-GP) for their efficacy after homologous prime-boost immunization in mice. Our aim was to investigate the role of each antigen in terms of efficacy and correlates of protection. Sera of mice vaccinated with MVA-EBOV-GP were virus-neutralizing and MVA-EBOV-NP immunization readily elicited interferon-γ-producing NP-specific CD8+ T cells. While mock-vaccinated mice succumbed to EBOV infection, all vaccinated mice survived and showed drastically decreased viral loads in sera and organs. In addition, MVA-EBOV-NP vaccinated mice became susceptible to lethal EBOV infection after depletion of CD8+ T cells prior to challenge. This study highlights the potential of MVA-based vaccines to elicit humoral immune responses as well as a strong and protective CD8+ T cell response and contributes to understanding the possible underlying mechanisms.
Collapse
Affiliation(s)
- Alexandra Kupke
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- German Center for Infection Research, Partner Site Munich, 80539 Munich, Germany;
| | - Erik Dietzel
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Astrid Freudenstein
- Division of Virology, Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany; (A.F.); (S.J.)
| | - Jörg Schmidt
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Hosam Shams-Eldin
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
| | - Sylvia Jany
- Division of Virology, Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany; (A.F.); (S.J.)
| | - Lucie Sauerhering
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Verena Krähling
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Michelle Gellhorn Serra
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Markus Eickmann
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
- Correspondence:
| | - Gerd Sutter
- German Center for Infection Research, Partner Site Munich, 80539 Munich, Germany;
- Division of Virology, Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany; (A.F.); (S.J.)
| |
Collapse
|
16
|
Abstract
Prevention of emerging infections in children is a dynamic arena where substantial medical advances have enabled intervention and prevention of infection outbreaks. This article discusses 5 infections causing significant morbidity and mortality across Asia, Latin America, and Africa. Avian influenza and the Middle East respiratory syndrome are highly contagious zoonoses spread through aerosol and droplets, affecting predominantly Asia. Dengue infection and chikungunya are endemic mosquito-borne viruses in tropical regions across Asia, Latin America, and Africa. Ebola is a highly contagious virus spread through human-to-human contact. The latest information in clinical manifestations, infection, prevention control, chemoprophylaxis, vaccination, and public health measures is reviewed.
Collapse
Affiliation(s)
- Thanyawee Puthanakit
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, 9th Floor, Sor Kor Building, Rama 4 Road, Patumwan, Bangkok 10330, Thailand.
| | | | - Watsamon Jantarabenjakul
- Center of Excellence for Pediatric Infectious Diseases, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
17
|
Kok A, Fouchier RAM, Richard M. Cross-Reactivity Conferred by Homologous and Heterologous Prime-Boost A/H5 Influenza Vaccination Strategies in Humans: A Literature Review. Vaccines (Basel) 2021; 9:vaccines9121465. [PMID: 34960210 PMCID: PMC8708856 DOI: 10.3390/vaccines9121465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Avian influenza viruses from the A/H5 A/goose/Guangdong/1/1996 (GsGd) lineage pose a continuing threat to animal and human health. Since their emergence in 1997, these viruses have spread across multiple continents and have become enzootic in poultry. Additionally, over 800 cases of human infection with A/H5 GsGd viruses have been reported to date, which raises concerns about the potential for a new influenza virus pandemic. The continuous circulation of A/H5 GsGd viruses for over 20 years has resulted in the genetic and antigenic diversification of their hemagglutinin (HA) surface glycoprotein, which poses a serious challenge to pandemic preparedness and vaccine design. In the present article, clinical studies on A/H5 influenza vaccination strategies were reviewed to evaluate the breadth of antibody responses induced upon homologous and heterologous prime-boost vaccination strategies. Clinical data on immunological endpoints were extracted from studies and compiled into a dataset, which was used for the visualization and analysis of the height and breadth of humoral immune responses. Several aspects leading to high immunogenicity and/or cross-reactivity were identified, although the analysis was limited by the heterogeneity in study design and vaccine type used in the included studies. Consequently, crucial questions remain to be addressed in future studies on A/H5 GsGd vaccination strategies.
Collapse
|
18
|
Becker T, Elbahesh H, Reperant LA, Rimmelzwaan GF, Osterhaus ADME. Influenza Vaccines: Successes and Continuing Challenges. J Infect Dis 2021; 224:S405-S419. [PMID: 34590139 PMCID: PMC8482026 DOI: 10.1093/infdis/jiab269] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Influenza vaccines have been available for over 80 years. They have contributed to significant reductions in influenza morbidity and mortality. However, there have been limitations in their effectiveness, in part due to the continuous antigenic evolution of seasonal influenza viruses, but also due to the predominant use of embryonated chicken eggs for their production. The latter furthermore limits their worldwide production timelines and scale. Therefore today, alternative approaches for their design and production are increasingly pursued, with already licensed quadrivalent seasonal influenza vaccines produced in cell cultures, including based on a baculovirus expression system. Next-generation influenza vaccines aim at inducing broader and longer-lasting immune responses to overcome seasonal influenza virus antigenic drift and to timely address the emergence of a new pandemic influenza virus. Tailored approaches target mechanisms to improve vaccine-induced immune responses in individuals with a weakened immune system, in particular older adults.
Collapse
Affiliation(s)
- Tanja Becker
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
19
|
Kulkarni R, Chen WC, Lee Y, Kao CF, Hu SL, Ma HH, Jan JT, Liao CC, Liang JJ, Ko HY, Sun CP, Lin YS, Wang YC, Wei SC, Lin YL, Ma C, Chao YC, Chou YC, Chang W. Vaccinia virus-based vaccines confer protective immunity against SARS-CoV-2 virus in Syrian hamsters. PLoS One 2021; 16:e0257191. [PMID: 34499677 PMCID: PMC8428573 DOI: 10.1371/journal.pone.0257191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 in humans is caused by Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that belongs to the beta family of coronaviruses. SARS-CoV-2 causes severe respiratory illness in 10-15% of infected individuals and mortality in 2-3%. Vaccines are urgently needed to prevent infection and to contain viral spread. Although several mRNA- and adenovirus-based vaccines are highly effective, their dependence on the "cold chain" transportation makes global vaccination a difficult task. In this context, a stable lyophilized vaccine may present certain advantages. Accordingly, establishing additional vaccine platforms remains vital to tackle SARS-CoV-2 and any future variants that may arise. Vaccinia virus (VACV) has been used to eradicate smallpox disease, and several attenuated viral strains with enhanced safety for human applications have been developed. We have generated two candidate SARS-CoV-2 vaccines based on two vaccinia viral strains, MVA and v-NY, that express full-length SARS-CoV-2 spike protein. Whereas MVA is growth-restricted in mammalian cells, the v-NY strain is replication-competent. We demonstrate that both candidate recombinant vaccines induce high titers of neutralizing antibodies in C57BL/6 mice vaccinated according to prime-boost regimens. Furthermore, our vaccination regimens generated TH1-biased immune responses in mice. Most importantly, prime-boost vaccination of a Syrian hamster infection model with MVA-S and v-NY-S protected the hamsters against SARS-CoV-2 infection, supporting that these two vaccines are promising candidates for future development. Finally, our vaccination regimens generated neutralizing antibodies that partially cross-neutralized SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Rakesh Kulkarni
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Ching Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ying Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Fei Kao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
| | - Hsiu-Hua Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Ying Ko
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yin-Shoiou Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Chiuan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Academi Sinica SPF Animal Facility, Academia Sinica, Taipei, Taiwan
| | - Sung-Chan Wei
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chan Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
| | - Wen Chang
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
20
|
Harbour JC, Lyski ZL, Schell JB, Thomas A, Messer WB, Slifka MK, Nolz JC. Cellular and Humoral Immune Responses in Mice Immunized with Vaccinia Virus Expressing the SARS-CoV-2 Spike Protein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2596-2604. [PMID: 33972374 PMCID: PMC8165000 DOI: 10.4049/jimmunol.2100054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/22/2021] [Indexed: 12/26/2022]
Abstract
The COVID-19 pandemic is a global health emergency, and the development of a successful vaccine will ultimately be required to prevent the continued spread and seasonal recurrence of this disease within the human population. However, very little is known about either the quality of the adaptive immune response or the viral Ag targets that will be necessary to prevent the spread of the infection. In this study, we generated recombinant Vaccinia virus expressing the full-length spike protein from SARS-CoV-2 (VacV-S) to evaluate the cellular and humoral immune response mounted against this viral Ag in mice. Both CD8+ and CD4+ T cells specific to the SARS-CoV-2 spike protein underwent robust expansion, contraction, and persisted for at least 40 d following a single immunization with VacV-S. Vaccination also caused the rapid emergence of spike-specific IgG-neutralizing Abs. Interestingly, both the cellular and humoral immune responses strongly targeted the S1 domain of spike following VacV-S immunization. Notably, immunization with VacV-expressing spike conjugated to the MHC class II invariant chain, a strategy previously reported by us and others to enhance the immunogenicity of antigenic peptides, did not promote stronger spike-specific T cell or Ab responses in vivo. Overall, these findings demonstrate that an immunization approach using VacV or attenuated versions of VacV expressing the native, full-length SARS-CoV-2 spike protein could be used for further vaccine development to prevent the spread of COVID-19.
Collapse
Affiliation(s)
- Jake C Harbour
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
| | - Zoe L Lyski
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
| | - John B Schell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR
| | - Archana Thomas
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR
| | - William B Messer
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
- Department of Medicine, Division of Infectious Diseases, Oregon Health & Science University, Portland, OR
- Program in Epidemiology, Oregon Health & Science University-Portland State University School of Public Health, Oregon Health & Science University, Portland, OR
| | - Mark K Slifka
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR
| | - Jeffrey C Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR;
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR; and
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR
| |
Collapse
|
21
|
B Carvalho S, Peixoto C, T Carrondo MJ, S Silva RJ. Downstream processing for influenza vaccines and candidates: An update. Biotechnol Bioeng 2021; 118:2845-2869. [PMID: 33913510 DOI: 10.1002/bit.27803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Seasonal and pandemic influenza outbreaks present severe health and economic burdens. To overcome limitations on influenza vaccines' availability and effectiveness, researchers chase universal vaccines providing broad, long-lasting protection against multiple influenza subtypes, and including pandemic ones. Novel influenza vaccine designs are under development, in clinical trials, or reaching the market, namely inactivated, or live-attenuated virus, virus-like particles, or recombinant antigens, searching for improved effectiveness; all these bring downstream processing (DSP) new challenges. Having to deal with new influenza strains, including pandemics, requires shorter development time, driving the development of faster bioprocesses. To cope with better upstream processes, new regulatory demands for quality and safety, and cost reduction requirements, new unit operations and integrated processes are increasing DSP efficiency for novel vaccine formats. This review covers recent advances in DSP strategies of different influenza vaccine formats. Focus is given to the improvements on relevant state-of-the-art unit operations, from harvest and clarification to purification steps, ending with sterile filtration and formulation. The development of more efficient unit operations to cope with biophysical properties of the new candidates is discussed: emphasis is given to the design of new stationary phases, 3D printing approaches, and continuous processing tools, such as continuous chromatography. The impact of the production platforms and vaccine designs on the downstream operations for the different influenza vaccine formats approved for this season are highlighted.
Collapse
Affiliation(s)
- Sofia B Carvalho
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Manuel J T Carrondo
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Ricardo J S Silva
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
22
|
Butkovich N, Li E, Ramirez A, Burkhardt AM, Wang SW. Advancements in protein nanoparticle vaccine platforms to combat infectious disease. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1681. [PMID: 33164326 PMCID: PMC8052270 DOI: 10.1002/wnan.1681] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
Infectious diseases are a major threat to global human health, yet prophylactic treatment options can be limited, as safe and efficacious vaccines exist only for a fraction of all diseases. Notably, devastating diseases such as acquired immunodeficiency syndrome (AIDS) and coronavirus disease of 2019 (COVID-19) currently do not have vaccine therapies. Conventional vaccine platforms, such as live attenuated vaccines and whole inactivated vaccines, can be difficult to manufacture, may cause severe side effects, and can potentially induce severe infection. Subunit vaccines carry far fewer safety concerns due to their inability to cause vaccine-based infections. The applicability of protein nanoparticles (NPs) as vaccine scaffolds is promising to prevent infectious diseases, and they have been explored for a number of viral, bacterial, fungal, and parasitic diseases. Many types of protein NPs exist, including self-assembling NPs, bacteriophage-derived NPs, plant virus-derived NPs, and human virus-based vectors, and these particular categories will be covered in this review. These vaccines can elicit strong humoral and cellular immune responses against specific pathogens, as well as provide protection against infection in a number of animal models. Furthermore, published clinical trials demonstrate the promise of applying these NP vaccine platforms, which include bacteriophage-derived NPs, in addition to multiple viral vectors that are currently used in the clinic. The continued investigations of protein NP vaccine platforms are critical to generate safer alternatives to current vaccines, advance vaccines for diseases that currently lack effective prophylactic therapies, and prepare for the rapid development of new vaccines against emerging infectious diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Nina Butkovich
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697 USA
| | - Enya Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697 USA
| | - Aaron Ramirez
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697 USA
| | - Amanda M. Burkhardt
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089 USA
| | - Szu-Wen Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697 USA
- Department of Biomedical Engineering, University of California, Irvine, CA 92697 USA
| |
Collapse
|
23
|
Orlova OV, Glazkova DV, Tsyganova GM, Antoshkina IV, Mintaev RR, Tikhonov AS, Bogoslovskaya EV, Shipulin GA. Application of real-time PCR to significantly reduce the time to obtain recombinant MVA virus. J Virol Methods 2020; 289:114056. [PMID: 33359615 DOI: 10.1016/j.jviromet.2020.114056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
Obtaining a pure recombinant Modified Vaccinia Ankara (MVA) virus is a multistage, time-consuming procedure. We describe a novel single-tube real-time PCR which enables determination of the amount of wild type and recombinant viruses and their ratio in plaques. Use of the real-time PCR significantly reduce the time and efforts needed to obtain purified recombinant MVA. The new approach has been applied to generate recombinant MVAs encoding different SARS-COV-2 antigens.
Collapse
Affiliation(s)
- O V Orlova
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical Biological Agency", 119121, Moscow, Russia.
| | - D V Glazkova
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical Biological Agency", 119121, Moscow, Russia
| | - G M Tsyganova
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical Biological Agency", 119121, Moscow, Russia
| | - I V Antoshkina
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical Biological Agency", 119121, Moscow, Russia
| | - R R Mintaev
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical Biological Agency", 119121, Moscow, Russia; I. Mechnikov Research Institute of Vaccines and Sera, 105064, Moscow, Russia
| | - A S Tikhonov
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical Biological Agency", 119121, Moscow, Russia
| | - E V Bogoslovskaya
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical Biological Agency", 119121, Moscow, Russia
| | - G A Shipulin
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical Biological Agency", 119121, Moscow, Russia
| |
Collapse
|
24
|
Lundstrom K. Application of Viral Vectors for Vaccine Development with a Special Emphasis on COVID-19. Viruses 2020; 12:E1324. [PMID: 33218001 PMCID: PMC7698750 DOI: 10.3390/v12111324] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Viral vectors can generate high levels of recombinant protein expression providing the basis for modern vaccine development. A large number of different viral vector expression systems have been utilized for targeting viral surface proteins and tumor-associated antigens. Immunization studies in preclinical animal models have evaluated the elicited humoral and cellular responses and the possible protection against challenges with lethal doses of infectious pathogens or tumor cells. Several vaccine candidates for both infectious diseases and various cancers have been subjected to a number of clinical trials. Human immunization trials have confirmed safe application of viral vectors, generation of neutralizing antibodies and protection against challenges with lethal doses. A special emphasis is placed on COVID-19 vaccines based on viral vectors. Likewise, the flexibility and advantages of applying viral particles, RNA replicons and DNA replicon vectors of self-replicating RNA viruses for vaccine development are presented.
Collapse
|
25
|
Capone S, Brown A, Hartnell F, Sorbo MD, Traboni C, Vassilev V, Colloca S, Nicosia A, Cortese R, Folgori A, Klenerman P, Barnes E, Swadling L. Optimising T cell (re)boosting strategies for adenoviral and modified vaccinia Ankara vaccine regimens in humans. NPJ Vaccines 2020; 5:94. [PMID: 33083029 PMCID: PMC7550607 DOI: 10.1038/s41541-020-00240-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Simian adenoviral and modified vaccinia Ankara (MVA) viral vectors used in heterologous prime-boost strategies are potent inducers of T cells against encoded antigens and are in advanced testing as vaccine carriers for a wide range of infectious agents and cancers. It is unclear if these responses can be further enhanced or sustained with reboosting strategies. Furthermore, despite the challenges involved in MVA manufacture dose de-escalation has not been performed in humans. In this study, healthy volunteers received chimpanzee-derived adenovirus-3 and MVA vaccines encoding the non-structural region of hepatitis C virus (ChAd3-NSmut/MVA-NSmut) 8 weeks apart. Volunteers were then reboosted with a second round of ChAd3-NSmut/MVA-NSmut or MVA-NSmut vaccines 8 weeks or 1-year later. We also determined the capacity of reduced doses of MVA-NSmut to boost ChAd3-NSmut primed T cells. Reboosting was safe, with no enhanced reactogenicity. Reboosting after an 8-week interval led to minimal re-expansion of transgene-specific T cells. However, after a longer interval, T cell responses expanded efficiently and memory responses were enhanced. The 8-week interval regimen induced a higher percentage of terminally differentiated and effector memory T cells. Reboosting with MVA-NSmut alone was as effective as with ChAd3-NSmut/MVA-NSmut. A ten-fold lower dose of MVA (2 × 107pfu) induced high-magnitude, sustained, broad, and functional Hepatitis C virus (HCV)-specific T cell responses, equivalent to standard doses (2 × 108 pfu). Overall, we show that following Ad/MVA prime-boost vaccination reboosting is most effective after a prolonged interval and is productive with MVA alone. Importantly, we also show that a ten-fold lower dose of MVA is as potent in humans as the standard dose.
Collapse
Affiliation(s)
| | - Anthony Brown
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Cinzia Traboni
- ReiThera Srl, Via di Castel Romano, 100, 00128 Rome, Italy
- Present Address: Nouscom Srl, Via di Castel Romano, 100, 00128 Rome, Italy
| | | | | | - Alfredo Nicosia
- Keires AG, Baumleingasse 18, CH 4051 Basel, Switzerland
- CEINGE, via Gaetano Salvatore 486, 80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | | | | | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford, UK
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford, UK
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Leo Swadling
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Present Address: Rayne Institute, University College London, London, UK
| |
Collapse
|
26
|
Leite Pereira A, Jouhault Q, Marcos Lopez E, Cosma A, Lambotte O, Le Grand R, Lehmann MH, Tchitchek N. Modulation of Cell Surface Receptor Expression by Modified Vaccinia Virus Ankara in Leukocytes of Healthy and HIV-Infected Individuals. Front Immunol 2020; 11:2096. [PMID: 33013882 PMCID: PMC7506042 DOI: 10.3389/fimmu.2020.02096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/03/2020] [Indexed: 11/19/2022] Open
Abstract
Viral vectors are increasingly used as delivery means to induce a specific immunity in humans and animals. However, they also impact the immune system, and it depends on the given context whether this is beneficial or not. The attenuated vaccinia virus strain modified vaccinia virus Ankara (MVA) has been used as a viral vector in clinical studies intended to treat and prevent cancer and infectious diseases. The adjuvant property of MVA is thought to be due to its capability to stimulate innate immunity. Here, we confirmed that MVA induces interleukin-8 (IL-8), and this chemokine was upregulated significantly more in monocytes and HLA-DRbright dendritic cells (DCs) of HIV-infected patients on combined antiretroviral therapy (ART) than in cells of healthy persons. The effect of MVA on cell surface receptors is mostly unknown. Using mass cytometry profiling, we investigated the expression of 17 cell surface receptors in leukocytes after ex vivo infection of human whole-blood samples with MVA. We found that MVA downregulates most of the characteristic cell surface markers in particular types of leukocytes. In contrast, C-X-C motif chemokine receptor 4 (CXCR4) was significantly upregulated in each leukocyte type of healthy persons. Additionally, we detected a relative higher cell surface expression of the HIV-1 co-receptors C-C motif chemokine receptor 5 (CCR5) and CXCR4 in leukocytes of HIV-ART patients than in healthy persons. Importantly, we showed that MVA infection significantly downregulated CCR5 in CD4+ T cells, CD8+ T cells, B cells, and three different DC populations. CD86, a costimulatory molecule for T cells, was significantly upregulated in HLA-DRbright DCs after MVA infection of whole blood from HIV-ART patients. However, MVA was unable to downregulate cell surface expression of CD11b and CD32 in monocytes and neutrophils of HIV-ART patients to the same extent as in monocytes and neutrophils of healthy persons. In summary, MVA modulates the expression of many different kinds of cell surface receptors in leukocytes, which can vary in cells originating from persons previously infected with other pathogens.
Collapse
Affiliation(s)
- Adrien Leite Pereira
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Quentin Jouhault
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Ernesto Marcos Lopez
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Antonio Cosma
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Olivier Lambotte
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France.,INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France.,APHP, Service de Médecine Interne et Immunologie Clinique, Hôpitaux Universitaires Paris Saclay, Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Michael H Lehmann
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicolas Tchitchek
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| |
Collapse
|
27
|
Koch T, Dahlke C, Fathi A, Kupke A, Krähling V, Okba NMA, Halwe S, Rohde C, Eickmann M, Volz A, Hesterkamp T, Jambrecina A, Borregaard S, Ly ML, Zinser ME, Bartels E, Poetsch JSH, Neumann R, Fux R, Schmiedel S, Lohse AW, Haagmans BL, Sutter G, Becker S, Addo MM. Safety and immunogenicity of a modified vaccinia virus Ankara vector vaccine candidate for Middle East respiratory syndrome: an open-label, phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2020; 20:827-838. [PMID: 32325037 PMCID: PMC7172913 DOI: 10.1016/s1473-3099(20)30248-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/14/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The Middle East respiratory syndrome coronavirus (MERS-CoV) causes a respiratory disease with a case fatality rate of up to 35%. Given its potential to cause a public health emergency and the absence of efficacious drugs or vaccines, MERS is one of the WHO priority diseases warranting urgent research and development of countermeasures. We aimed to assess safety and tolerability of an anti-MERS-CoV modified vaccinia virus Ankara (MVA)-based vaccine candidate that expresses the MERS-CoV spike glycoprotein, MVA-MERS-S, in healthy adults. METHODS This open-label, phase 1 trial was done at the University Medical Center Hamburg-Eppendorf (Hamburg, Germany). Participants were healthy men and women aged 18-55 years with no clinically significant health problems as determined during medical history and physical examination, a body-mass index of 18·5-30·0 kg/m2 and weight of more than 50 kg at screening, and a negative pregnancy test for women. A key exclusion criterion was a previous MVA vaccination. For the prime immunisation, participants received doses of 1 × 107 plaque-forming unit (PFU; low-dose group) or 1 × 108 PFU (high-dose group) MVA-MERS-S intramuscularly. A second identical dose was administered intramuscularly as a booster immunisation 28 days after first injection. As a control group for immunogenicity analyses, blood samples were drawn at identical study timepoints from six healthy adults, who did not receive any injections. The primary objectives of the study were safety and tolerability of the two dosage levels and reactogenicity after administration. Immunogenicity was assessed as a secondary endpoint by ELISA and neutralisation tests. T-cell immunity was evaluated by interferon-γ-linked enzyme-linked immune absorbent spot assay. All participants who were vaccinated at least once were included in the safety analysis. Immunogenicity was analysed in the participants who completed 6 months of follow-up. This trial is registered with ClinicalTrials.gov, NCT03615911, and EudraCT, 2014-003195-23 FINDINGS: From Dec 17, 2017, to June 5, 2018, 26 participants (14 in the low-dose group and 12 in the high-dose group) were enrolled and received the first dose of the vaccine according to their group allocation. Of these, 23 participants (12 in the low-dose group and 11 in the high-dose group) received a second dose of MVA-MERS-S according to their group allocation after a 28-day interval and completed follow-up. Homologous prime-boost immunisation with MVA-MERS-S revealed a benign safety profile with only transient mild-to-moderate reactogenicity. Participants had no severe or serious adverse events. 67 vaccine-related adverse events were reported in ten (71%) of 14 participants in the low-dose group, and 111 were reported in ten (83%) of 12 participants in the high-dose group. Solicited local reactions were the most common adverse events: pain was observed in 17 (65%; seven in the low-dose group vs ten in the high-dose group) participants, swelling in ten (38%; two vs eight) participants, and induration in ten (38%; one vs nine) participants. Headaches (observed in seven participants in the low-dose group vs nine in the high-dose group) and fatigue or malaise (ten vs seven participants) were the most common solicited systemic adverse events. All adverse events resolved swiftly (within 1-3 days) and without sequelae. Following booster immunisation, nine (75%) of 12 participants in the low-dose group and 11 (100%) participants in the high-dose group showed seroconversion using a MERS-CoV S1 ELISA at any timepoint during the study. Binding antibody titres correlated with MERS-CoV-specific neutralising antibodies (Spearman's correlation r=0·86 [95% CI 0·6960-0·9427], p=0·0001). MERS-CoV spike-specific T-cell responses were detected in ten (83%) of 12 immunised participants in the low-dose group and ten (91%) of 11 immunised participants in the high-dose group. INTERPRETATION Vaccination with MVA-MERS-S had a favourable safety profile without serious or severe adverse events. Homologous prime-boost immunisation induced humoral and cell-mediated responses against MERS-CoV. A dose-effect relationship was demonstrated for reactogenicity, but not for vaccine-induced immune responses. The data presented here support further clinical testing of MVA-MERS-S in larger cohorts to advance MERS vaccine development. FUNDING German Center for Infection Research.
Collapse
Affiliation(s)
- Till Koch
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Center for Infection Research, Hamburg-Lubeck-Borstel-Riems, Germany
| | - Christine Dahlke
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Center for Infection Research, Hamburg-Lubeck-Borstel-Riems, Germany
| | - Anahita Fathi
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Center for Infection Research, Hamburg-Lubeck-Borstel-Riems, Germany
| | - Alexandra Kupke
- German Center for Infection Research, Gießen-Marburg-Langen, Germany; Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Verena Krähling
- German Center for Infection Research, Gießen-Marburg-Langen, Germany; Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Nisreen M A Okba
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Sandro Halwe
- German Center for Infection Research, Gießen-Marburg-Langen, Germany; Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Cornelius Rohde
- German Center for Infection Research, Gießen-Marburg-Langen, Germany; Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Markus Eickmann
- German Center for Infection Research, Gießen-Marburg-Langen, Germany; Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Asisa Volz
- German Center for Infection Research, Munich, Germany; Institute of Infectious Diseases and Zoonoses, University of Munich LMU, Munich, Germany
| | | | | | | | - My L Ly
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Center for Infection Research, Hamburg-Lubeck-Borstel-Riems, Germany
| | - Madeleine E Zinser
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Center for Infection Research, Hamburg-Lubeck-Borstel-Riems, Germany
| | - Etienne Bartels
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Center for Infection Research, Hamburg-Lubeck-Borstel-Riems, Germany
| | - Joseph S H Poetsch
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Center for Infection Research, Hamburg-Lubeck-Borstel-Riems, Germany
| | - Reza Neumann
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Center for Infection Research, Hamburg-Lubeck-Borstel-Riems, Germany
| | - Robert Fux
- Institute of Infectious Diseases and Zoonoses, University of Munich LMU, Munich, Germany
| | - Stefan Schmiedel
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W Lohse
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research, Hamburg-Lubeck-Borstel-Riems, Germany
| | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Gerd Sutter
- German Center for Infection Research, Munich, Germany; Institute of Infectious Diseases and Zoonoses, University of Munich LMU, Munich, Germany
| | - Stephan Becker
- German Center for Infection Research, Gießen-Marburg-Langen, Germany; Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Marylyn M Addo
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Center for Infection Research, Hamburg-Lubeck-Borstel-Riems, Germany.
| |
Collapse
|
28
|
Wei CJ, Crank MC, Shiver J, Graham BS, Mascola JR, Nabel GJ. Next-generation influenza vaccines: opportunities and challenges. Nat Rev Drug Discov 2020; 19:239-252. [PMID: 32060419 PMCID: PMC7223957 DOI: 10.1038/s41573-019-0056-x] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
Seasonal influenza vaccines lack efficacy against drifted or pandemic influenza strains. Developing improved vaccines that elicit broader immunity remains a public health priority. Immune responses to current vaccines focus on the haemagglutinin head domain, whereas next-generation vaccines target less variable virus structures, including the haemagglutinin stem. Strategies employed to improve vaccine efficacy involve using structure-based design and nanoparticle display to optimize the antigenicity and immunogenicity of target antigens; increasing the antigen dose; using novel adjuvants; stimulating cellular immunity; and targeting other viral proteins, including neuraminidase, matrix protein 2 or nucleoprotein. Improved understanding of influenza antigen structure and immunobiology is advancing novel vaccine candidates into human trials.
Collapse
Affiliation(s)
- Chih-Jen Wei
- Sanofi Global Research and Development, Cambridge, MA, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Barney S Graham
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gary J Nabel
- Sanofi Global Research and Development, Cambridge, MA, USA.
| |
Collapse
|
29
|
Innate and secondary humoral responses are improved by increasing the time between MVA vaccine immunizations. NPJ Vaccines 2020; 5:24. [PMID: 32218996 PMCID: PMC7081268 DOI: 10.1038/s41541-020-0175-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Comprehending the mechanisms behind the impact of vaccine regimens on immunity is critical for improving vaccines. Indeed, the time-interval between immunizations may influence B and T cells, as well as innate responses. We compared two vaccine schedules using cynomolgus macaques immunized with an attenuated vaccinia virus. Two subcutaneous injections 2 weeks apart led to an impaired secondary antibody response and similar innate myeloid responses to both immunizations. In contrast, a delayed boost (2 months) improved the quality of the antibody response and involved more activated/mature innate cells, induced late after the prime and responding to the recall. The magnitude and quality of the secondary antibody response correlated with the abundance of these neutrophils, monocytes, and dendritic cells that were modified phenotypically and enriched prior to revaccination at 2 months, but not 2 weeks. These late phenotypic modifications were associated with an enhanced ex vivo cytokine production (including IL-12/23 and IL-1β) by PBMCs short after the second immunization, linking phenotype and functions. This integrated analysis reveals a deep impact of the timing between immunizations, and highlights the importance of early but also late innate responses involving phenotypical changes, in shaping humoral immunity.
Collapse
|
30
|
Koch A, Cox H. Preventing drug-resistant tuberculosis transmission. THE LANCET. INFECTIOUS DISEASES 2019; 20:157-158. [PMID: 31784368 DOI: 10.1016/s1473-3099(19)30613-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Anastasia Koch
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Helen Cox
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine and Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town 7925, South Africa.
| |
Collapse
|
31
|
Use of sulfated cellulose membrane adsorbers for chromatographic purification of cell cultured-derived influenza A and B viruses. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Navarro-Torné A, Hanrahan F, Kerstiëns B, Aguar P, Matthiessen L. Public Health-Driven Research and Innovation for Next-Generation Influenza Vaccines, European Union. Emerg Infect Dis 2019; 25. [PMID: 30666948 PMCID: PMC6346458 DOI: 10.3201/eid2502.180359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Influenza virus infections are a major public health threat. Vaccination is available, but unpredictable antigenic changes in circulating strains require annual modification of seasonal influenza vaccines. Vaccine effectiveness has proven limited, particularly in certain groups, such as the elderly. Moreover, preparedness for upcoming pandemics is challenging because we can predict neither the strain that will cause the next pandemic nor the severity of the pandemic. The European Union fosters research and innovation to develop novel vaccines that evoke broadly protective and long-lasting immune responses against both seasonal and pandemic influenza, underpinned by a political commitment to global public health.
Collapse
|
33
|
A vaccine based on recombinant modified Vaccinia Ankara containing the nucleoprotein from Lassa virus protects against disease progression in a guinea pig model. Vaccine 2019; 37:5404-5413. [PMID: 31331770 DOI: 10.1016/j.vaccine.2019.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/02/2019] [Accepted: 07/06/2019] [Indexed: 12/20/2022]
Abstract
Lassa fever remains the most imported viral haemorrhagic fever in Europe and is responsible for 5000 deaths per year throughout Western Africa. There is no vaccine and treatment is often ineffective. We have developed a vaccine based on modified Vaccinia Ankara expressing the nucleoprotein from Lassa virus (MVALassaNP). This study investigated the immunogenicity (in mice) and efficacy (in guinea pigs) of the MVALassaNP vaccine as a prime/boost or single vaccination regime. ELISA and ELISpot assays confirmed humoral and T-cell immunity following both a prime and prime/boost vaccination, with the prime/boost regime producing a statistically increased response compared to a prime only vaccine (P < 0.0001). The vaccine offered protection in guinea pigs against disease manifestations after challenge with virulent Lassa virus. Clinical signs, weight loss and temperature increases were observed in all animals receiving a control MVA vaccine, after challenge with Lassa virus. In contrast, no clinical signs, fever or weight loss were observed in any of the MVALassaNP vaccinated animals demonstrating that both a single immunisation, and prime/boost regime confer protection against disease progression. In conclusion, the MVALassaNP vaccine candidate elicits an immune response, demonstrates efficacy against Lassa virus disease and is suitable for further preclinical and clinical development.
Collapse
|
34
|
Luteijn RD, van Diemen F, Blomen VA, Boer IGJ, Manikam Sadasivam S, van Kuppevelt TH, Drexler I, Brummelkamp TR, Lebbink RJ, Wiertz EJ. A Genome-Wide Haploid Genetic Screen Identifies Heparan Sulfate-Associated Genes and the Macropinocytosis Modulator TMED10 as Factors Supporting Vaccinia Virus Infection. J Virol 2019; 93:e02160-18. [PMID: 30996093 PMCID: PMC6580964 DOI: 10.1128/jvi.02160-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/11/2019] [Indexed: 12/15/2022] Open
Abstract
Vaccinia virus is a promising viral vaccine and gene delivery candidate and has historically been used as a model to study poxvirus-host cell interactions. We employed a genome-wide insertional mutagenesis approach in human haploid cells to identify host factors crucial for vaccinia virus infection. A library of mutagenized HAP1 cells was exposed to modified vaccinia virus Ankara (MVA). Deep-sequencing analysis of virus-resistant cells identified host factors involved in heparan sulfate synthesis, Golgi organization, and vesicular protein trafficking. We validated EXT1, TM9SF2, and TMED10 (TMP21/p23/p24δ) as important host factors for vaccinia virus infection. The critical roles of EXT1 in heparan sulfate synthesis and vaccinia virus infection were confirmed. TM9SF2 was validated as a player mediating heparan sulfate expression, explaining its contribution to vaccinia virus infection. In addition, TMED10 was found to be crucial for virus-induced plasma membrane blebbing and phosphatidylserine-induced macropinocytosis, presumably by regulating the cell surface expression of the TAM receptor Axl.IMPORTANCE Poxviruses are large DNA viruses that can infect a wide range of host species. A number of these viruses are clinically important to humans, including variola virus (smallpox) and vaccinia virus. Since the eradication of smallpox, zoonotic infections with monkeypox virus and cowpox virus are emerging. Additionally, poxviruses can be engineered to specifically target cancer cells and are used as a vaccine vector against tuberculosis, influenza, and coronaviruses. Poxviruses rely on host factors for most stages of their life cycle, including attachment to the cell and entry. These host factors are crucial for virus infectivity and host cell tropism. We used a genome-wide knockout library of host cells to identify host factors necessary for vaccinia virus infection. We confirm a dominant role for heparin sulfate in mediating virus attachment. Additionally, we show that TMED10, previously not implicated in virus infections, facilitates virus uptake by modulating the cellular response to phosphatidylserine.
Collapse
Affiliation(s)
- Rutger D Luteijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ferdy van Diemen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Ingrid G J Boer
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ingo Drexler
- Institute for Virology, Universitätsklinikum Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | | | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel J Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
35
|
Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Infection, Immunological Response, and Vaccine Development. J Immunol Res 2019; 2019:6491738. [PMID: 31089478 PMCID: PMC6476043 DOI: 10.1155/2019/6491738] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) first emerged in late 2012. Since its emergence, a total of 2279 patients from 27 countries have been infected across the globe according to a World Health Organization (WHO) report (Feb. 12th, 2019). Approximately 806 patients have died. The virus uses its spike proteins as adhesive factors that are proinflammatory for host entry through a specific receptor called dipeptidyl peptidase-4 (DPP4). This receptor is considered a key factor in the signaling and activation of the acquired and innate immune responses in infected patients. Using potent antigens in combination with strong adjuvants may effectively trigger the activation of specific MERS-CoV cellular responses as well as the production of neutralizing antibodies. Unfortunately, to date, there is no effective approved treatment or vaccine for MERS-CoV. Thus, there are urgent needs for the development of novel MERS-CoV therapies as well as vaccines to help minimize the spread of the virus from infected patients, thereby mitigating the risk of any potential pandemics. Our main goals are to highlight and describe the current knowledge of both the innate and adaptive immune responses to MERS-CoV and the current state of MERS-CoV vaccine development. We believe this study will increase our understanding of the mechanisms that enhance the MERS-CoV immune response and subsequently contribute to the control of MERS-CoV infections.
Collapse
|
36
|
Chea LS, Wyatt LS, Gangadhara S, Moss B, Amara RR. Novel Modified Vaccinia Virus Ankara Vector Expressing Anti-apoptotic Gene B13R Delays Apoptosis and Enhances Humoral Responses. J Virol 2019; 93:e01648-18. [PMID: 30541829 PMCID: PMC6384055 DOI: 10.1128/jvi.01648-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/17/2018] [Indexed: 01/18/2023] Open
Abstract
Modified vaccinia virus Ankara (MVA), an attenuated poxvirus, has been developed as a potential vaccine vector for use against cancer and multiple infectious diseases, including human immunodeficiency virus (HIV). MVA is highly immunogenic and elicits strong cellular and humoral responses in preclinical models and humans. However, there is potential to further enhance the immunogenicity of MVA, as MVA-infected cells undergo rapid apoptosis, leading to faster clearance of recombinant antigens and potentially blunting a greater response. Here, we generated MVA-B13R by replacing the fragmented 181R/182R genes of MVA with a functional anti-apoptotic gene, B13R, and confirmed its anti-apoptotic function against chemically induced apoptosis in vitro In addition, MVA-B13R showed a significant delay in induction of apoptosis in muscle cells derived from mice and humans, as well as in plasmacytoid dendritic cells (pDCs) and CD141+ DCs from rhesus macaques, compared to the induction of apoptosis in MVA-infected cells. MVA-B13R expressing simian immunodeficiency virus (SIV) Gag and Pol and HIV envelope (SHIV) (MVA-B13R/SHIV) produced higher levels of envelope in the supernatants than MVA/SHIV-infected DF-1 cells in vitro Immunization of BALB/c mice showed induction of higher levels of envelope-specific antibody-secreting cells and memory B cells, higher IgG antibody titers, and better persistence of antibody titers with MVA-B13R/SHIV than with MVA/SHIV. Gene set enrichment analysis of draining lymph node cells from day 1 after immunization showed negative enrichment for interferon responses in MVA-B13R/SHIV-immunized mice compared to the responses in MVA/SHIV-immunized mice. Taken together, these results demonstrate that restoring B13R functionality in MVA significantly delays MVA-induced apoptosis in muscle and antigen-presenting cells in vitro and augments vaccine-induced humoral immunity in mice.IMPORTANCE MVA is an attractive viral vector for vaccine development due to its safety and immunogenicity in multiple species and humans even under conditions of immunodeficiency. Here, to further improve the immunogenicity of MVA, we developed a novel vector, MVA-B13R, by replacing the fragmented anti-apoptotic genes 181R/182R with a functional version derived from vaccinia virus, B13R Our results show that MVA-B13R significantly delays apoptosis in antigen-presenting cells and muscle cells in vitro and augments vaccine-induced humoral immunity in mice, leading to the development of a novel vector for vaccine development against infectious diseases and cancer.
Collapse
Affiliation(s)
- Lynette S Chea
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Linda S Wyatt
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sailaja Gangadhara
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rama R Amara
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
37
|
Elbahesh H, Saletti G, Gerlach T, Rimmelzwaan GF. Broadly protective influenza vaccines: design and production platforms. Curr Opin Virol 2019; 34:1-9. [DOI: 10.1016/j.coviro.2018.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023]
|
38
|
Hay AJ, McCauley JW. The WHO global influenza surveillance and response system (GISRS)-A future perspective. Influenza Other Respir Viruses 2018; 12:551-557. [PMID: 29722140 PMCID: PMC6086842 DOI: 10.1111/irv.12565] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2018] [Indexed: 12/26/2022] Open
Abstract
In the centenary year of the devastating 1918-19 pandemic, it seems opportune to reflect on the success of the WHO Global Influenza Surveillance and Response System (GISRS) initiated 70 years ago to provide early warning of changes in influenza viruses circulating in the global population to help mitigate the consequences of such a pandemic and maintain the efficacy of seasonal influenza vaccines. Three pandemics later and in the face of pandemic threats from highly pathogenic zoonotic infections by different influenza A subtypes, it continues to represent a model platform for global collaboration and timely sharing of viruses, reagents and information to forestall and respond to public health emergencies.
Collapse
|
39
|
Avian Influenza A Virus Pandemic Preparedness and Vaccine Development. Vaccines (Basel) 2018; 6:vaccines6030046. [PMID: 30044370 PMCID: PMC6161001 DOI: 10.3390/vaccines6030046] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/17/2018] [Accepted: 07/21/2018] [Indexed: 12/24/2022] Open
Abstract
Influenza A viruses can infect a wide range of hosts, creating opportunities for zoonotic transmission, i.e., transmission from animals to humans, and placing the human population at constant risk of potential pandemics. In the last hundred years, four influenza A virus pandemics have had a devastating effect, especially the 1918 influenza pandemic that took the lives of at least 40 million people. There is a constant risk that currently circulating avian influenza A viruses (e.g., H5N1, H7N9) will cause a new pandemic. Vaccines are the cornerstone in preparing for and combating potential pandemics. Despite exceptional advances in the design and development of (pre-)pandemic vaccines, there are still serious challenges to overcome, mainly caused by intrinsic characteristics of influenza A viruses: Rapid evolution and a broad host range combined with maintenance in animal reservoirs, making it near impossible to predict the nature and source of the next pandemic virus. Here, recent advances in the development of vaccination strategies to prepare against a pandemic virus coming from the avian reservoir will be discussed. Furthermore, remaining challenges will be addressed, setting the agenda for future research in the development of new vaccination strategies against potentially pandemic influenza A viruses.
Collapse
|
40
|
de Vries RD, Altenburg AF, Nieuwkoop NJ, de Bruin E, van Trierum SE, Pronk MR, Lamers MM, Richard M, Nieuwenhuijse DF, Koopmans MPG, Kreijtz JHCM, Fouchier RAM, Osterhaus ADME, Sutter G, Rimmelzwaan GF. Induction of Cross-Clade Antibody and T-Cell Responses by a Modified Vaccinia Virus Ankara-Based Influenza A(H5N1) Vaccine in a Randomized Phase 1/2a Clinical Trial. J Infect Dis 2018; 218:614-623. [PMID: 29912453 PMCID: PMC6047453 DOI: 10.1093/infdis/jiy214] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/15/2018] [Indexed: 11/14/2022] Open
Abstract
Background High-pathogenicity avian influenza viruses continue to circulate in poultry and wild birds and occasionally infect humans, sometimes with fatal outcomes. Development of vaccines is a priority to prepare for potential pandemics but is complicated by antigenic variation of the surface glycoprotein hemagglutinin. We report the immunological profile induced by human immunization with modified vaccinia virus Ankara (MVA) expressing the hemagglutinin gene of influenza A(H5N1) virus A/Vietnam/1194/04 (rMVA-H5). Methods In a double-blinded phase 1/2a clinical trial, 79 individuals received 1 or 2 injections of rMVA-H5 or vector control. Twenty-seven study subjects received a booster immunization after 1 year. The breadth, magnitude, and properties of vaccine-induced antibody and T-cell responses were characterized. Results rMVA-H5 induced broadly reactive antibody responses, demonstrated by protein microarray, hemagglutination inhibition, virus neutralization, and antibody-dependent cellular cytotoxicity assays. Antibodies cross-reacted with antigenically distinct H5 viruses, including the recently emerged subtypes H5N6 and H5N8 and the currently circulating subtype H5N1. In addition, the induction of T cells specific for H5 viruses of 2 different clades was demonstrated. Conclusions rMVA-H5 induced immune responses that cross-reacted with H5 viruses of various clades. These findings validate rMVA-H5 as vaccine candidate against antigenically distinct H5 viruses. Clinical Trials Registration NTR3401.
Collapse
Affiliation(s)
- Rory D de Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Arwen F Altenburg
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Nella J Nieuwkoop
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Erwin de Bruin
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Stella E van Trierum
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mark R Pronk
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mart M Lamers
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mathilde Richard
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - David F Nieuwenhuijse
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Joost H C M Kreijtz
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Albert D M E Osterhaus
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Ludwig Maximilian University of Munich, Munich
- German Center for Infection Research, Hannover, Germany
| | - Guus F Rimmelzwaan
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
41
|
Sebastian S, Lambe T. Clinical Advances in Viral-Vectored Influenza Vaccines. Vaccines (Basel) 2018; 6:E29. [PMID: 29794983 PMCID: PMC6027524 DOI: 10.3390/vaccines6020029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 12/27/2022] Open
Abstract
Influenza-virus-mediated disease can be associated with high levels of morbidity and mortality, particularly in younger children and older adults. Vaccination is the primary intervention used to curb influenza virus infection, and the WHO recommends immunization for at-risk individuals to mitigate disease. Unfortunately, influenza vaccine composition needs to be updated annually due to antigenic shift and drift in the viral immunogen hemagglutinin (HA). There are a number of alternate vaccination strategies in current development which may circumvent the need for annual re-vaccination, including new platform technologies such as viral-vectored vaccines. We discuss the different vectored vaccines that have been or are currently in clinical trials, with a forward-looking focus on immunogens that may be protective against seasonal and pandemic influenza infection, in the context of viral-vectored vaccines. We also discuss future perspectives and limitations in the field that will need to be addressed before new vaccines can significantly impact disease levels.
Collapse
Affiliation(s)
- Sarah Sebastian
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 DQ, UK.
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 DQ, UK.
| |
Collapse
|
42
|
Altenburg AF, van Trierum SE, de Bruin E, de Meulder D, van de Sandt CE, van der Klis FRM, Fouchier RAM, Koopmans MPG, Rimmelzwaan GF, de Vries RD. Effects of pre-existing orthopoxvirus-specific immunity on the performance of Modified Vaccinia virus Ankara-based influenza vaccines. Sci Rep 2018; 8:6474. [PMID: 29692427 PMCID: PMC5915537 DOI: 10.1038/s41598-018-24820-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/10/2018] [Indexed: 11/26/2022] Open
Abstract
The replication-deficient orthopoxvirus modified vaccinia virus Ankara (MVA) is a promising vaccine vector against various pathogens and has an excellent safety record. However, pre-existing vector-specific immunity is frequently suggested to be a drawback of MVA-based vaccines. To address this issue, mice were vaccinated with MVA-based influenza vaccines in the presence or absence of orthopoxvirus-specific immunity. Importantly, protective efficacy of an MVA-based influenza vaccine against a homologous challenge was not impaired in the presence of orthopoxvirus-specific pre-existing immunity. Nonetheless, orthopoxvirus-specific pre-existing immunity reduced the induction of antigen-specific antibodies under specific conditions and completely prevented induction of antigen-specific T cell responses by rMVA-based vaccination. Notably, antibodies induced by vaccinia virus vaccination, both in mice and humans, were not capable of neutralizing MVA. Thus, when using rMVA-based vaccines it is important to consider the main correlate of protection induced by the vaccine, the vaccine dose and the orthopoxvirus immune status of vaccine recipients.
Collapse
Affiliation(s)
- Arwen F Altenburg
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Stella E van Trierum
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Erwin de Bruin
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Carolien E van de Sandt
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Fiona R M van der Klis
- Centre for Infectious Disease Control (Cib), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Guus F Rimmelzwaan
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine, Hannover, Germany
| | - Rory D de Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
43
|
Meseda CA, Atukorale V, Soto J, Eichelberger MC, Gao J, Wang W, Weiss CD, Weir JP. Immunogenicity and Protection Against Influenza H7N3 in Mice by Modified Vaccinia Virus Ankara Vectors Expressing Influenza Virus Hemagglutinin or Neuraminidase. Sci Rep 2018; 8:5364. [PMID: 29599502 PMCID: PMC5876369 DOI: 10.1038/s41598-018-23712-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/14/2018] [Indexed: 12/18/2022] Open
Abstract
Influenza subtypes such as H7 have pandemic potential since they are able to infect humans with severe consequences, as evidenced by the ongoing H7N9 infections in China that began in 2013. The diversity of H7 viruses calls for a broadly cross-protective vaccine for protection. We describe the construction of recombinant modified vaccinia virus Ankara (MVA) vectors expressing the hemagglutinin (HA) or neuraminidase (NA) from three H7 viruses representing both Eurasian and North American H7 lineages – A/mallard/Netherlands/12/2000 (H7N3), A/Canada/rv444/2004 (H7N3), and A/Shanghai/02/2013 (H7N9). These vectors were evaluated for immunogenicity and protective efficacy against H7N3 virus in a murine model of intranasal challenge. High levels of H7-, N3-, and N9-specific antibodies, including neutralizing antibodies, were induced by the MVA-HA and MVA-NA vectors. Mice vaccinated with MVA vectors expressing any of the H7 antigens were protected, suggesting cross-protection among H7 viruses. In addition, MVA vectors expressing N3 but not N9 elicited protection against H7N3 virus challenge. Similar outcomes were obtained when immune sera from MVA vector-immunized mice were passively transferred to naïve mice prior to challenge with the H7N3 virus. The results support the further development of an MVA vector platform as a candidate vaccine for influenza strains with pandemic potential.
Collapse
Affiliation(s)
- Clement A Meseda
- Laboratory of DNA Viruses, Center for Biologics Evaluations and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Vajini Atukorale
- Laboratory of DNA Viruses, Center for Biologics Evaluations and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Jackeline Soto
- Laboratory of DNA Viruses, Center for Biologics Evaluations and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Maryna C Eichelberger
- Laboratory of Respiratory Viral Diseases, Center for Biologics Evaluations and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Jin Gao
- Laboratory of Respiratory Viral Diseases, Center for Biologics Evaluations and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Wei Wang
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluations and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Carol D Weiss
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluations and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Jerry P Weir
- Laboratory of DNA Viruses, Center for Biologics Evaluations and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.
| |
Collapse
|
44
|
Wong G, Mendoza EJ, Plummer FA, Gao GF, Kobinger GP, Qiu X. From bench to almost bedside: the long road to a licensed Ebola virus vaccine. Expert Opin Biol Ther 2018; 18:159-173. [PMID: 29148858 PMCID: PMC5841470 DOI: 10.1080/14712598.2018.1404572] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The Ebola virus (EBOV) disease epidemic during 2014-16 in West Africa has accelerated the clinical development of several vaccine candidates that have demonstrated efficacy in the gold standard nonhuman primate (NHP) model, namely cynomolgus macaques. AREAS COVERED This review discusses the pre-clinical research and if available, clinical evaluation of the currently available EBOV vaccine candidates, while emphasizing the translatability of pre-clinical data generated in the NHP model to clinical data in humans. EXPERT OPINION Despite the existence of many successful EBOV vaccine candidates in the pre-clinical stages, only two platforms became the focus of Phase 2/3 efficacy trials in Liberia, Sierra Leone, and Guinea near the peak of the epidemic: the Vesicular stomatitis virus (VSV)-vectored vaccine and the chimpanzee adenovirus type 3 (ChAd3)-vectored vaccine. The results of three distinct clinical trials involving these candidates may soon pave the way for a licensed, safe and efficacious EBOV vaccine to help combat future epidemics.
Collapse
Affiliation(s)
- Gary Wong
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology, Winnipeg, MB, Canada
| | - Emelissa J. Mendoza
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | | | - George F. Gao
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Gary P. Kobinger
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Département de microbiologie-infectiologie et d’immunologie, Universite Laval, Quebec, QC, Canada
| | - Xiangguo Qiu
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology, Winnipeg, MB, Canada
| |
Collapse
|
45
|
Volz A, Jany S, Freudenstein A, Lantermann M, Ludwig H, Sutter G. E3L and F1L Gene Functions Modulate the Protective Capacity of Modified Vaccinia Virus Ankara Immunization in Murine Model of Human Smallpox. Viruses 2018; 10:v10010021. [PMID: 29300297 PMCID: PMC5795434 DOI: 10.3390/v10010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/17/2017] [Accepted: 12/28/2017] [Indexed: 12/15/2022] Open
Abstract
The highly attenuated Modified Vaccinia virus Ankara (MVA) lacks most of the known vaccinia virus (VACV) virulence and immune evasion genes. Today MVA can serve as a safety-tested next-generation smallpox vaccine. Yet, we still need to learn about regulatory gene functions preserved in the MVA genome, such as the apoptosis inhibitor genes F1L and E3L. Here, we tested MVA vaccine preparations on the basis of the deletion mutant viruses MVA-ΔF1L and MVA-ΔE3L for efficacy against ectromelia virus (ECTV) challenge infections in mice. In non-permissive human tissue culture the MVA deletion mutant viruses produced reduced levels of the VACV envelope antigen B5. Upon mousepox challenge at three weeks after vaccination, MVA-ΔF1L and MVA-ΔE3L exhibited reduced protective capacity in comparison to wildtype MVA. Surprisingly, however, all vaccines proved equally protective against a lethal ECTV infection at two days after vaccination. Accordingly, the deletion mutant MVA vaccines induced high levels of virus-specific CD8+ T cells previously shown to be essential for rapidly protective MVA vaccination. These results suggest that inactivation of the anti-apoptotic genes F1L or E3L modulates the protective capacity of MVA vaccination most likely through the induction of distinct orthopoxvirus specific immunity in the absence of these viral regulatory proteins.
Collapse
Affiliation(s)
- Asisa Volz
- Lehrstuhl für Virologie, Institut für Infektionsmedizin und Zoonosen, Ludwig-Maximilians-Universität München, 80539 Munich, Germany.
- Deutsches Zentrum für Infektionsforschung (DZIF), 80539 Munich, Germany.
| | - Sylvia Jany
- Lehrstuhl für Virologie, Institut für Infektionsmedizin und Zoonosen, Ludwig-Maximilians-Universität München, 80539 Munich, Germany.
| | - Astrid Freudenstein
- Lehrstuhl für Virologie, Institut für Infektionsmedizin und Zoonosen, Ludwig-Maximilians-Universität München, 80539 Munich, Germany.
| | | | - Holger Ludwig
- Division of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany.
| | - Gerd Sutter
- Lehrstuhl für Virologie, Institut für Infektionsmedizin und Zoonosen, Ludwig-Maximilians-Universität München, 80539 Munich, Germany.
- Deutsches Zentrum für Infektionsforschung (DZIF), 80539 Munich, Germany.
| |
Collapse
|
46
|
Okeke MI, Okoli AS, Diaz D, Offor C, Oludotun TG, Tryland M, Bøhn T, Moens U. Hazard Characterization of Modified Vaccinia Virus Ankara Vector: What Are the Knowledge Gaps? Viruses 2017; 9:v9110318. [PMID: 29109380 PMCID: PMC5707525 DOI: 10.3390/v9110318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/21/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is the vector of choice for human and veterinary applications due to its strong safety profile and immunogenicity in vivo. The use of MVA and MVA-vectored vaccines against human and animal diseases must comply with regulatory requirements as they pertain to environmental risk assessment, particularly the characterization of potential adverse effects to humans, animals and the environment. MVA and recombinant MVA are widely believed to pose low or negligible risk to ecosystem health. However, key aspects of MVA biology require further research in order to provide data needed to evaluate the potential risks that may occur due to the use of MVA and MVA-vectored vaccines. The purpose of this paper is to identify knowledge gaps in the biology of MVA and recombinant MVA that are of relevance to its hazard characterization and discuss ongoing and future experiments aimed at providing data necessary to fill in the knowledge gaps. In addition, we presented arguments for the inclusion of uncertainty analysis and experimental investigation of verifiable worst-case scenarios in the environmental risk assessment of MVA and recombinant MVA. These will contribute to improved risk assessment of MVA and recombinant MVA vaccines.
Collapse
Affiliation(s)
- Malachy I Okeke
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Arinze S Okoli
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Diana Diaz
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UiT)-The Arctic University of Norway, N-9037 Tromso, Norway.
| | - Collins Offor
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Piaristengasse 1, A-3500 Krems, Austria.
| | - Taiwo G Oludotun
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Piaristengasse 1, A-3500 Krems, Austria.
| | - Morten Tryland
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
- Artic Infection Biology, Department of Artic and Marine Biology, UIT-The Artic University of Norway, N-9037 Tromso, Norway.
| | - Thomas Bøhn
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Ugo Moens
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UiT)-The Arctic University of Norway, N-9037 Tromso, Norway.
| |
Collapse
|
47
|
Riese P, Guzmán CA. Roads to advanced vaccines: influenza case study. Microb Biotechnol 2017; 10:1036-1040. [PMID: 28809451 PMCID: PMC5609253 DOI: 10.1111/1751-7915.12835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 11/30/2022] Open
Abstract
Vaccines represent a cornerstone to ensure healthy lives and promote well‐being for all at all ages. However, there are many diseases for which vaccines are not available, are relatively ineffective or need to be adapted periodically. Advances in microbial biotechnology will contribute to overcoming these roadblocks by laying the groundwork for improving and creating new approaches for developing better vaccines, as illustrated here in the case of influenza.
Collapse
Affiliation(s)
- Peggy Riese
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| |
Collapse
|
48
|
Link EK, Brandmüller C, Suezer Y, Ameres S, Volz A, Moosmann A, Sutter G, Lehmann MH. A synthetic human cytomegalovirus pp65-IE1 fusion antigen efficiently induces and expands virus specific T cells. Vaccine 2017; 35:5131-5139. [PMID: 28818566 DOI: 10.1016/j.vaccine.2017.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/05/2017] [Accepted: 08/07/2017] [Indexed: 11/16/2022]
Abstract
Infection with human cytomegalovirus (HCMV) can cause severe complications in newborns and immunocompromised patients, and a prophylactic or therapeutic vaccine against HCMV is not available. Here, we generated a HCMV vaccine candidate fulfilling the regulatory requirements for GMP-compliant production and clinical testing. A novel synthetic fusion gene consisting of the coding sequences of HCMV pp65 and IE1 having a deleted nuclear localization sequence and STAT2 binding domain was introduced into the genome of the attenuated vaccinia virus strain MVA. This recombinant MVA, MVA-syn65_IE1, allowed for the production of a stable ∼120kDa syn65_IE1 fusion protein upon tissue culture infection. MVA-syn65_IE1 infected CD40-activated B cells activated and expanded pp65- and IE1-specific T cells derived from HCMV-seropositive donors to at least equal levels as control recombinant MVA expressing single genes for pp65 or IE1. Additionally, we show that MVA-syn65_IE1 induced HCMV pp65- and IE1-epitope specific T cells in HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice. Thus, MVA-syn65_IE1 represents a promising vaccine candidate against HCMV and constitutes a basis for the generation of a multivalent vaccine targeting relevant pathogens in immunocompromised patients.
Collapse
Affiliation(s)
- Ellen K Link
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539 Munich, Germany; German Center for Infection Research (DZIF), Germany
| | - Christine Brandmüller
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539 Munich, Germany; German Center for Infection Research (DZIF), Germany
| | - Yasemin Suezer
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany; German Center for Infection Research (DZIF), Germany
| | - Stefanie Ameres
- Helmholtz Zentrum München, Research Unit Gene Vectors, Marchioninistraße 25, 81377 Munich, Germany; German Center for Infection Research (DZIF), Germany
| | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539 Munich, Germany; German Center for Infection Research (DZIF), Germany
| | - Andreas Moosmann
- Helmholtz Zentrum München, Research Unit Gene Vectors, Marchioninistraße 25, 81377 Munich, Germany; German Center for Infection Research (DZIF), Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539 Munich, Germany; German Center for Infection Research (DZIF), Germany.
| | - Michael H Lehmann
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539 Munich, Germany; German Center for Infection Research (DZIF), Germany.
| |
Collapse
|
49
|
A modified vaccinia Ankara vaccine vector expressing a mosaic H5 hemagglutinin reduces viral shedding in rhesus macaques. PLoS One 2017; 12:e0181738. [PMID: 28771513 PMCID: PMC5542451 DOI: 10.1371/journal.pone.0181738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/06/2017] [Indexed: 12/30/2022] Open
Abstract
The rapid antigenic evolution of influenza viruses requires frequent vaccine reformulations. Due to the economic burden of continuous vaccine reformulation and the threat of new pandemics, there is intense interest in developing vaccines capable of eliciting broadly cross-reactive immunity to influenza viruses. We recently constructed a “mosaic” hemagglutinin (HA) based on subtype 5 HA (H5) and designed to stimulate cellular and humoral immunity to multiple influenza virus subtypes. Modified vaccinia Ankara (MVA) expressing this H5 mosaic (MVA-H5M) protected mice against multiple homosubtypic H5N1 strains and a heterosubtypic H1N1 virus. To assess its potential as a human vaccine we evaluated the ability of MVA-H5M to provide heterosubtypic immunity to influenza viruses in a non-human primate model. Rhesus macaques received an initial dose of either MVA-H5M or plasmid DNA encoding H5M, followed by a boost of MVA-H5M, and then were challenged, together with naïve controls, with the heterosubtypic virus A/California/04/2009 (H1N1pdm). Macaques receiving either vaccine regimen cleared H1N1pdm challenge faster than naïve controls. Vaccination with H5M elicited antibodies that bound H1N1pdm HA, but did not neutralize the H1N1pdm challenge virus. Plasma from vaccinated macaques activated NK cells in the presence of H1N1pdm HA, suggesting that vaccination elicited cross-reactive antibodies capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC). Although HA-specific T cell responses to the MVA-H5M vaccine were weak, responses after challenge were stronger in vaccinated macaques than in control animals. Together these data suggest that mosaic HA antigens may provide a means for inducing broadly cross-reactive immunity to influenza viruses.
Collapse
|
50
|
Manini I, Trombetta CM, Lazzeri G, Pozzi T, Rossi S, Montomoli E. Egg-Independent Influenza Vaccines and Vaccine Candidates. Vaccines (Basel) 2017; 5:E18. [PMID: 28718786 PMCID: PMC5620549 DOI: 10.3390/vaccines5030018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 11/16/2022] Open
Abstract
Vaccination remains the principal way to control seasonal infections and is the most effective method of reducing influenza-associated morbidity and mortality. Since the 1940s, the main method of producing influenza vaccines has been an egg-based production process. However, in the event of a pandemic, this method has a significant limitation, as the time lag from strain isolation to final dose formulation and validation is six months. Indeed, production in eggs is a relatively slow process and production yields are both unpredictable and highly variable from strain to strain. In particular, if the next influenza pandemic were to arise from an avian influenza virus, and thus reduce the egg-laying hen population, there would be a shortage of embryonated eggs available for vaccine manufacturing. Although the production of egg-derived vaccines will continue, new technological developments have generated a cell-culture-based influenza vaccine and other more recent platforms, such as synthetic influenza vaccines.
Collapse
Affiliation(s)
- Ilaria Manini
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Claudia Maria Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Giacomo Lazzeri
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Teresa Pozzi
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Stefania Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
- VisMederi S.r.l., Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy.
| |
Collapse
|