1
|
Schnoz A, Beuret C, Concu M, Hosch S, Rutaihwa LK, Golumbeanu M, Nsanzabana C. Genotyping methods to distinguish Plasmodium falciparum recrudescence from new infection for the assessment of antimalarial drug efficacy: an observational, single-centre, comparison study. THE LANCET. MICROBE 2024:100914. [PMID: 39426395 DOI: 10.1016/s2666-5247(24)00153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 03/24/2024] [Accepted: 06/04/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Distinguishing Plasmodium falciparum recrudescence from new infections is crucial for the assessment of antimalarial drug efficacy against P falciparum. We aimed to compare the efficacy of different genotyping methods to assess their effect on drug efficacy estimates, particularly in patients from high-transmission settings with polyclonal infections. METHODS In this head-to-head comparison study, we compared five different genotyping methods currently used: fast capillary electrophoresis (F-CE) using msp1, msp2, and glurp; high-resolution capillary electrophoresis (H-CE) using msp1, msp2, and glurp; H-CE using microsatellites; targeted amplicon deep sequencing (TADS) using single nucleotide polymorphism (SNP)-rich markers; and high-resolution melting (HRM) analysis using msp1 and msp2. We assessed their sensitivity in detecting minority clones in polyclonal infections, their reproducibility, and the genetic diversity of the markers used. Our study used four well characterised P falciparum laboratory strains mixed in varying ratios, and 20 paired samples collected from an in-vivo clinical trial. The experiments were performed at the Swiss Tropical and Public Health Institute in Basel, Switzerland between May 5, 2020, and Aug 23, 2021. FINDINGS H-CE using msp1 and msp2 and TADS revealed the highest sensitivity in detecting minority clones (up to ratios of 1:100 for H-CE and 50:1:1:1 for TADS in the FCB1:HB3 and 3D7:K1:HB3:FCB1 laboratory strain mixtures, respectively), highest reproducibility (intra-assay: 99% and 91% for H-CE and TADS, respectively; inter-assay: 98% and 92% for H-CE and TADS, respectively), and highest genetic diversity in the used markers (up to 36 and 32 unique genotypes in 20 paired samples for H-CE using msp2 and TADS using cpmp, respectively). Microsatellites assessed by H-CE had a lower genetic diversity compared with msp1, msp2, and glurp assessed by H-CE and the SNP-rich markers assessed by TADS, with a maximum of 13 unique genotypes, and some genotypes having allelic frequencies larger than 30%. Markers used by TADS gave the most consistent results in distinguishing recrudescence from new infection across all methods (in 18 of 20 pairs of samples vs 15 of 20 pairs for H-CE). INTERPRETATION WHO currently recommends replacing glurp with microsatellites. However, in this study, the replacement of glurp with microsatellites did not change the genotyping outcome, probably due to the lower genetic diversity of microsatellites. More studies with large sample sizes are required to identify the most suitable microsatellites that could replace glurp. Our study indicates that TADS should be considered the gold standard for genotyping to distinguish recrudescence from new infection, and that it should be used to validate other methods. FUNDING Swiss Tropical and Public Health Institute.
Collapse
Affiliation(s)
- Annina Schnoz
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Carla Beuret
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Maura Concu
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Salome Hosch
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Liliana K Rutaihwa
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Monica Golumbeanu
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Christian Nsanzabana
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Goodwin J, Kajubi R, Wang K, Li F, Wade M, Orukan F, Huang L, Whalen M, Aweeka FT, Mwebaza N, Parikh S. Persistent and multiclonal malaria parasite dynamics despite extended artemether-lumefantrine treatment in children. Nat Commun 2024; 15:3817. [PMID: 38714692 PMCID: PMC11076639 DOI: 10.1038/s41467-024-48210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/24/2024] [Indexed: 05/10/2024] Open
Abstract
Standard diagnostics used in longitudinal antimalarial studies are unable to characterize the complexity of submicroscopic parasite dynamics, particularly in high transmission settings. We use molecular markers and amplicon sequencing to characterize post-treatment stage-specific malaria parasite dynamics during a 42 day randomized trial of 3- versus 5 day artemether-lumefantrine in 303 children with and without HIV (ClinicalTrials.gov number NCT03453840). The prevalence of parasite-derived 18S rRNA is >70% in children throughout follow-up, and the ring-stage marker SBP1 is detectable in over 15% of children on day 14 despite effective treatment. We find that the extended regimen significantly lowers the risk of recurrent ring-stage parasitemia compared to the standard 3 day regimen, and that higher day 7 lumefantrine concentrations decrease the probability of ring-stage parasites in the early post-treatment period. Longitudinal amplicon sequencing reveals remarkably dynamic patterns of multiclonal infections that include new and persistent clones in both the early post-treatment and later time periods. Our data indicate that post-treatment parasite dynamics are highly complex despite efficacious therapy, findings that will inform strategies to optimize regimens in the face of emerging partial artemisinin resistance in Africa.
Collapse
Affiliation(s)
- Justin Goodwin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Richard Kajubi
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Kaicheng Wang
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Martina Wade
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Francis Orukan
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Liusheng Huang
- University of California, San Francisco, San Francisco, CA, USA
| | - Meghan Whalen
- University of California, San Francisco, San Francisco, CA, USA
| | | | - Norah Mwebaza
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Pharmacology and Therapeutics, Makerere University College of Health Sciences, Kampala, Uganda
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
- Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Mousa A, Cuomo-Dannenburg G, Thompson HA, Chico RM, Beshir KB, Sutherland CJ, Schellenberg D, Gosling R, Alifrangis M, Hocke EF, Hansson H, Chopo-Pizarro A, Mbacham WF, Ali IM, Chaponda M, Roper C, Okell LC. Measuring protective efficacy and quantifying the impact of drug resistance: A novel malaria chemoprevention trial design and methodology. PLoS Med 2024; 21:e1004376. [PMID: 38723040 PMCID: PMC11081503 DOI: 10.1371/journal.pmed.1004376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/14/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Recently revised WHO guidelines on malaria chemoprevention have opened the door to more tailored implementation. Countries face choices on whether to replace old drugs, target additional age groups, and adapt delivery schedules according to local drug resistance levels and malaria transmission patterns. Regular routine assessment of protective efficacy of chemoprevention is key. Here, we apply a novel modelling approach to aid the design and analysis of chemoprevention trials and generate measures of protection that can be applied across a range of transmission settings. METHODS AND FINDINGS We developed a model of genotype-specific drug protection, which accounts for underlying risk of infection and circulating genotypes. Using a Bayesian framework, we fitted the model to multiple simulated scenarios to explore variations in study design, setting, and participant characteristics. We find that a placebo or control group with no drug protection is valuable but not always feasible. An alternative approach is a single-arm trial with an extended follow-up (>42 days), which allows measurement of the underlying infection risk after drug protection wanes, as long as transmission is relatively constant. We show that the currently recommended 28-day follow-up in a single-arm trial results in low precision of estimated 30-day chemoprevention efficacy and low power in determining genotype differences of 12 days in the duration of protection (power = 1.4%). Extending follow-up to 42 days increased precision and power (71.5%) in settings with constant transmission over this time period. However, in settings of unstable transmission, protective efficacy in a single-arm trial was overestimated by 24.3% if recruitment occurred during increasing transmission and underestimated by 15.8% when recruitment occurred during declining transmission. Protective efficacy was estimated with greater precision in high transmission settings, and power to detect differences by resistance genotype was lower in scenarios where the resistant genotype was either rare or too common. CONCLUSIONS These findings have important implications for the current guidelines on chemoprevention efficacy studies and will be valuable for informing where these studies should be optimally placed. The results underscore the need for a comparator group in seasonal settings and provide evidence that the extension of follow-up in single-arm trials improves the accuracy of measures of protective efficacy in settings with more stable transmission. Extension of follow-up may pose logistical challenges to trial feasibility and associated costs. However, these studies may not need to be repeated multiple times, as the estimates of drug protection against different genotypes can be applied to different settings by adjusting for transmission intensity and frequency of resistance.
Collapse
Affiliation(s)
- Andria Mousa
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gina Cuomo-Dannenburg
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Hayley A. Thompson
- Malaria and Neglected Tropical Diseases, PATH, Seattle, Washington, United States of America
| | - R. Matthew Chico
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Khalid B. Beshir
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Colin J. Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David Schellenberg
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Roly Gosling
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Malaria Elimination Initiative, Institute of Global Health, University of California, San Francisco, California, United States of America
| | - Michael Alifrangis
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emma Filtenborg Hocke
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Helle Hansson
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ana Chopo-Pizarro
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Wilfred F. Mbacham
- The Biotechnology Centre, University of Yaoundé, Yaoundé, Cameroon
- The Fobang Institutes for Innovation in Science and Technology, Yaoundé, Cameroon
- The Faculty of Northwest University, Faculty of Natural and Agricultural Sciences, Potchefstroom, South Africa
| | - Innocent M. Ali
- The Biotechnology Centre, University of Yaoundé, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Mike Chaponda
- Department of Clinical Sciences, Tropical Diseases Research Centre, Ndola, Zambia
| | - Cally Roper
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Lucy C. Okell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Dimbu PR, Labuda S, Ferreira CM, Caquece F, André K, Pembele G, Pode D, João MF, Pelenda VM, Nieto Andrade B, Horton B, Kennedy C, Svigel SS, Zhou Z, Morais JFM, do Rosário J, Fortes F, Martins JF, Plucinski MM. Therapeutic response to four artemisinin-based combination therapies in Angola, 2021. Antimicrob Agents Chemother 2024; 68:e0152523. [PMID: 38421163 PMCID: PMC10989004 DOI: 10.1128/aac.01525-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Monitoring antimalarial efficacy is important to detect the emergence of parasite drug resistance. Angola conducts in vivo therapeutic efficacy studies (TESs) every 2 years in its fixed sentinel sites in Benguela, Lunda Sul, and Zaire provinces. Children with uncomplicated Plasmodium falciparum malaria were treated with artemether-lumefantrine (AL), artesunate-amodiaquine (ASAQ), dihydroartemisinin-piperaquine (DP), or artesunate-pyronaridine (ASPY) and followed for 28 (AL and ASAQ) or 42 days (DP and ASPY) to assess clinical and parasitological response to treatment. Two drugs were sequentially assessed in each site in February-July 2021. The primary indicator was the Kaplan-Meier estimate of the PCR-corrected efficacy at the end of the follow-up period. A total of 622 patients were enrolled in the study and 590 (95%) participants reached a study endpoint. By day 3, ≥98% of participants were slide-negative in all study sites and arms. After PCR correction, day 28 AL efficacy was 88.0% (95% CI: 82%-95%) in Zaire and 94.7% (95% CI: 90%-99%) in Lunda Sul. For ASAQ, day 28 efficacy was 92.0% (95% CI: 87%-98%) in Zaire and 100% in Lunda Sul. Corrected day 42 efficacy was 99.6% (95% CI: 99%-100%) for ASPY and 98.3% (95% CI: 96%-100%) for DP in Benguela. High day 3 clearance rates suggest no clinical evidence of artemisinin resistance. This was the fourth of five rounds of TES in Angola showing a corrected AL efficacy <90% in a site. For Zaire, AL has had an efficacy <90% in 2013, 2015, and 2021. ASAQ, DP, and ASPY are appropriate choices as artemisinin-based combination therapies in Angola.
Collapse
Affiliation(s)
| | - Sarah Labuda
- United States President’s Malaria Initiative, United States Centers for Disease Control and Prevention, Luanda, Angola
| | | | - Felismina Caquece
- Field Epidemiology Training Program, Ministry of Health, Luanda, Angola
| | - Kialanda André
- Field Epidemiology Training Program, Ministry of Health, Luanda, Angola
| | - Garcia Pembele
- National Institute of Health Research, Ministry of Health, Luanda, Angola
| | - Dilunvuidi Pode
- Field Epidemiology Training Program, Ministry of Health, Luanda, Angola
| | | | | | | | - Breanna Horton
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Culzean Kennedy
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Samaly S. Svigel
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zhiyong Zhou
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Joana do Rosário
- United States President’s Malaria Initiative, USAID, Luanda, Angola
| | - Filomeno Fortes
- Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Lisbon, Portugal
| | | | - Mateusz M. Plucinski
- United States President’s Malaria Initiative, Malaria Branch, United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Wamae K, Ndwiga L, Kharabora O, Kimenyi K, Osoti V, de Laurent Z, Wambua J, Musyoki J, Ngetsa C, Kalume P, Mwambingu G, Hamaluba M, van der Pluijm R, Dondorp AM, Bailey J, Juliano J, Bejon P, Ochola-Oyier L. Targeted amplicon deep sequencing of ama1 and mdr1 to track within-host P. falciparum diversity throughout treatment in a clinical drug trial. Wellcome Open Res 2024; 7:95. [PMID: 37456906 PMCID: PMC10349275 DOI: 10.12688/wellcomeopenres.17736.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 07/20/2023] Open
Abstract
Introduction Antimalarial therapeutic efficacy studies are routinely conducted in malaria-endemic countries to assess the effectiveness of antimalarial treatment strategies. Targeted amplicon sequencing (AmpSeq) uniquely identifies and quantifies genetically distinct parasites within an infection. In this study, AmpSeq of Plasmodium falciparum apical membrane antigen 1 ( ama1), and multidrug resistance gene 1 ( mdr1), were used to characterise the complexity of infection (COI) and drug-resistance genotypes, respectively. Methods P. falciparum-positive samples were obtained from a triple artemisinin combination therapy clinical trial conducted in 30 children under 13 years of age between 2018 and 2019 in Kilifi, Kenya. Nine of the 30 participants presented with recurrent parasitemia from day 26 (624h) onwards. The ama1 and mdr1 genes were amplified and sequenced, while msp1, msp2 and glurp data were obtained from the original clinical study. Results The COI was comparable between ama1 and msp1, msp2 and glurp; overall, ama1 detected more microhaplotypes. Based on ama1, a stable number of microhaplotypes were detected throughout treatment until day 3. Additionally, a recrudescent infection was identified with an ama1 microhaplotype initially observed at 30h and later in an unscheduled follow-up visit. Using the relative frequencies of ama1 microhaplotypes and parasitemia, we identified a fast (<1h) and slow (>5h) clearing microhaplotype. As expected, only two mdr1 microhaplotypes (NF and NY) were identified based on the combination of amino acid polymorphisms at codons 86 and 184. Conclusions This study highlights AmpSeq as a tool for highly-resolution tracking of parasite microhaplotypes throughout treatment and can detect variation in microhaplotype clearance estimates. AmpSeq can also identify slow-clearing microhaplotypes, a potential early sign of selection during treatment. Consequently, AmpSeq has the capability of improving the discriminatory power to distinguish recrudescences from reinfections accurately.
Collapse
Affiliation(s)
- Kevin Wamae
- Bioscience, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Leonard Ndwiga
- Bioscience, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Oksana Kharabora
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Kelvin Kimenyi
- Bioscience, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Victor Osoti
- Bioscience, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Juliana Wambua
- Bioscience, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Jennifer Musyoki
- Bioscience, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Caroline Ngetsa
- Bioscience, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Peter Kalume
- Bioscience, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Mainga Hamaluba
- Bioscience, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rob van der Pluijm
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Arjen M. Dondorp
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jeffrey Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Jonathan Juliano
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Philip Bejon
- Bioscience, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
6
|
Gunasekera KT, Premaratne RG, Handunnetti SM, Weerasena J, Premawansa S, Fernando DS. msp1, msp2, and glurp genotyping to differentiate Plasmodium falciparum recrudescence from reinfections during prevention of reestablishment phase, Sri Lanka, 2014-2019. Malar J 2024; 23:35. [PMID: 38281044 PMCID: PMC10821543 DOI: 10.1186/s12936-024-04858-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Sri Lanka after eliminating malaria in 2012, is in the prevention of re-establishment (POR) phase. Being a tropical country with high malariogenic potential, maintaining vigilance is important. All malaria cases are investigated epidemiologically and followed up by integrated drug efficacy surveillance (iDES). Occasionally, that alone is not adequate to differentiate Plasmodium falciparum reinfections from recrudescences. This study evaluated the World Health Organization and Medicines for Malaria Venture (MMV) recommended genotyping protocol for the merozoite surface proteins (msp1, msp2) and the glutamate-rich protein (glurp) to discriminate P. falciparum recrudescence from reinfection in POR phase. METHODS All P. falciparum patients detected from April 2014 to December 2019 were included in this study. Patients were treated and followed up by iDES up to 28 days and were advised to get tested if they develop fever at any time over the following year. Basic socio-demographic information including history of travel was obtained. Details of the malariogenic potential and reactive entomological and parasitological surveillance carried out by the Anti Malaria Campaign to exclude the possibility of local transmission were also collected. The msp1, msp2, and glurp genotyping was performed for initial and any recurrent infections. Classification of recurrent infections as recrudescence or reinfection was done based on epidemiological findings and was compared with the genotyping outcome. RESULTS Among 106 P. falciparum patients, six had recurrent infections. All the initial infections were imported, with a history of travel to malaria endemic countries. In all instances, the reactive entomological and parasitological surveillance had no evidence for local transmission. Five recurrences occurred within 28 days of follow-up and were classified as recrudescence. They have not travelled to malaria endemic countries between the initial and recurrent infections. The other had a recurrent infection after 105 days. It was assumed a reinfection, as he had travelled to the same malaria endemic country in between the two malaria attacks. Genotyping confirmed the recrudescence and the reinfection. CONCLUSIONS The msp1, msp2 and glurp genotyping method accurately differentiated reinfections from recrudescence. Since reinfection without a history of travel to a malaria endemic country would mean local transmission, combining genotyping outcome with epidemiological findings will assist classifying malaria cases without any ambiguity.
Collapse
Affiliation(s)
- Kumudunayana T Gunasekera
- Anti Malaria Campaign, Ministry of Health, 555/5 Public Health Complex, Elvitigala Mawatha, Colombo 5, Sri Lanka.
| | | | - Shiroma M Handunnetti
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Jagathpriya Weerasena
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Sunil Premawansa
- Department of Zoology and Environmental Science, University of Colombo, Colombo, Sri Lanka
| | - Deepika S Fernando
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
7
|
Hastings IM, Felger I. WHO antimalarial trial guidelines: good science, bad news? Trends Parasitol 2022; 38:933-941. [PMID: 36068129 DOI: 10.1016/j.pt.2022.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 01/13/2023]
Abstract
Estimating antimalarial drug efficacy requires differentiating treatment failures from new infections arising during the several-week follow-up period in drug trials. Genetic profiling of malaria infections can guide this decision but is notoriously difficult in practice. Previous World Health Organisation (WHO) guidelines were based on assumptions with an inherently high risk of underestimating failure rates. A recent update to WHO guidelines recognises a wider range of analyses to overcome these limitations. We discuss these new analyses and their underlying logic. Drug failure rate estimates in moderate to high transmissions areas will become more accurate but will likely rise twofold due to better detection of treatment failures, and the malaria community needs to anticipate and prepare for potentially large increases in estimated failure rates.
Collapse
Affiliation(s)
- Ian M Hastings
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| |
Collapse
|
8
|
Atroosh WM, Lau YL, Snounou G, Azzani M, Al-Mekhlafi HM. Plasmodium falciparum histidine rich protein 2 (pfhrp2): an additional genetic marker suitable for anti-malarial drug efficacy trials. Malar J 2022; 21:2. [PMID: 34983529 PMCID: PMC8725490 DOI: 10.1186/s12936-021-04014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022] Open
Abstract
Background Genotyping of the three Plasmodium falciparum polymorphic genes, msp1, msp2 and glurp, has been adopted as a standard strategy to distinguish recrudescence from new infection in drug efficacy clinical trials. However, the suitability of a particular gene is compromised in areas where its allelic variants distribution is significantly skewed, a phenomenon that might occur in isolated parasite populations or in areas of very low transmission. Moreover, observation of amplification bias has diminished the value of glurp as a marker. Methods The suitability of the polymorphic P. falciparum histidine-rich protein 2 (pfhrp2) gene was assessed to serve as an alternative marker using a PCR-sequencing or a PCR–RFLP protocol for genotyping of samples in drug efficacy clinical trials. The value of pfhrp2 was validated by side-by-side analyses of 5 admission-recrudescence sample pairs from Yemeni malaria patients. Results The outcome of the single pfhrp2 gene discrimination analysis has been found consistent with msp1, msp2 and glurp pool genotyping analysis for the differentiation of recrudescence from new infection. Conclusion The findings suggest that under the appropriate circumstances, pfhrp2 can serve as an additional molecular marker for monitoring anti-malarials efficacy. However, its use is restricted to endemic areas where only a minority of P. falciparum parasites lack the pfhrp2 gene. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-04014-4.
Collapse
Affiliation(s)
- Wahib M Atroosh
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia. .,Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University of Aden, Aden, Yemen.
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Georges Snounou
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA-HB), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Meram Azzani
- Department of Community Medicine, Faculty of Medicine, MAHSA University, Bandar Saujana Putra, Selangor, Malaysia
| | - Hesham M Al-Mekhlafi
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen.,Medical Research Centre, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Comparative Analysis of Plasmodium falciparum Genotyping via SNP Detection, Microsatellite Profiling, and Whole-Genome Sequencing. Antimicrob Agents Chemother 2021; 66:e0116321. [PMID: 34694871 PMCID: PMC8765236 DOI: 10.1128/aac.01163-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Research efforts to combat antimalarial drug resistance rely on quick, robust, and sensitive methods to genetically characterize Plasmodium falciparum parasites. We developed a single-nucleotide polymorphism (SNP)-based genotyping method that can assess 33 drug resistance-conferring SNPs in dhfr, dhps, pfmdr1, pfcrt, and k13 in nine PCRs, performed directly from P. falciparum cultures or infected blood. We also optimized multiplexed fragment analysis and gel electrophoresis-based microsatellite typing methods using a set of five markers that can distinguish 12 laboratory strains of diverse geographical and temporal origin. We demonstrate how these methods can be applied to screen for the multidrug-resistant KEL1/PLA1/PfPailin (KelPP) lineage that has been sweeping across the Greater Mekong Subregion, verify parasite in vitro SNP-editing, identify novel recombinant genetic cross progeny, or cluster strains to infer their geographical origins. Results were compared with Illumina-based whole-genome sequence analysis that provides the most detailed sequence information but is cost-prohibitive. These adaptable, simple, and inexpensive methods can be easily implemented into routine genotyping of P. falciparum parasites in both laboratory and field settings.
Collapse
|
10
|
Jacob CG, Thuy-Nhien N, Mayxay M, Maude RJ, Quang HH, Hongvanthong B, Vanisaveth V, Ngo Duc T, Rekol H, van der Pluijm R, von Seidlein L, Fairhurst R, Nosten F, Hossain MA, Park N, Goodwin S, Ringwald P, Chindavongsa K, Newton P, Ashley E, Phalivong S, Maude R, Leang R, Huch C, Dong LT, Nguyen KT, Nhat TM, Hien TT, Nguyen H, Zdrojewski N, Canavati S, Sayeed AA, Uddin D, Buckee C, Fanello CI, Onyamboko M, Peto T, Tripura R, Amaratunga C, Myint Thu A, Delmas G, Landier J, Parker DM, Chau NH, Lek D, Suon S, Callery J, Jittamala P, Hanboonkunupakarn B, Pukrittayakamee S, Phyo AP, Smithuis F, Lin K, Thant M, Hlaing TM, Satpathi P, Satpathi S, Behera PK, Tripura A, Baidya S, Valecha N, Anvikar AR, Ul Islam A, Faiz A, Kunasol C, Drury E, Kekre M, Ali M, Love K, Rajatileka S, Jeffreys AE, Rowlands K, Hubbart CS, Dhorda M, Vongpromek R, Kotanan N, Wongnak P, Almagro Garcia J, Pearson RD, Ariani CV, Chookajorn T, Malangone C, Nguyen T, Stalker J, Jeffery B, Keatley J, Johnson KJ, Muddyman D, Chan XHS, Sillitoe J, Amato R, Simpson V, Gonçalves S, Rockett K, Day NP, Dondorp AM, Kwiatkowski DP, Miotto O. Genetic surveillance in the Greater Mekong subregion and South Asia to support malaria control and elimination. eLife 2021; 10:e62997. [PMID: 34372970 PMCID: PMC8354633 DOI: 10.7554/elife.62997] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 06/30/2021] [Indexed: 02/04/2023] Open
Abstract
Background National Malaria Control Programmes (NMCPs) currently make limited use of parasite genetic data. We have developed GenRe-Mekong, a platform for genetic surveillance of malaria in the Greater Mekong Subregion (GMS) that enables NMCPs to implement large-scale surveillance projects by integrating simple sample collection procedures in routine public health procedures. Methods Samples from symptomatic patients are processed by SpotMalaria, a high-throughput system that produces a comprehensive set of genotypes comprising several drug resistance markers, species markers and a genomic barcode. GenRe-Mekong delivers Genetic Report Cards, a compendium of genotypes and phenotype predictions used to map prevalence of resistance to multiple drugs. Results GenRe-Mekong has worked with NMCPs and research projects in eight countries, processing 9623 samples from clinical cases. Monitoring resistance markers has been valuable for tracking the rapid spread of parasites resistant to the dihydroartemisinin-piperaquine combination therapy. In Vietnam and Laos, GenRe-Mekong data have provided novel knowledge about the spread of these resistant strains into previously unaffected provinces, informing decision-making by NMCPs. Conclusions GenRe-Mekong provides detailed knowledge about drug resistance at a local level, and facilitates data sharing at a regional level, enabling cross-border resistance monitoring and providing the public health community with valuable insights. The project provides a rich open data resource to benefit the entire malaria community. Funding The GenRe-Mekong project is funded by the Bill and Melinda Gates Foundation (OPP11188166, OPP1204268). Genotyping and sequencing were funded by the Wellcome Trust (098051, 206194, 203141, 090770, 204911, 106698/B/14/Z) and Medical Research Council (G0600718). A proportion of samples were collected with the support of the UK Department for International Development (201900, M006212), and Intramural Research Program of the National Institute of Allergy and Infectious Diseases.
Collapse
Affiliation(s)
| | | | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Research Unit (LOMWRU), Microbiology Laboratory, Mahosot HospitalVientianeLao People's Democratic Republic
- Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of HealthVientianeLao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
| | - Richard J Maude
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
- Harvard TH Chan School of Public Health, Harvard UniversityBostonUnited States
| | - Huynh Hong Quang
- Institute of Malariology, Parasitology and Entomology (IMPE-QN)Quy NhonViet Nam
| | - Bouasy Hongvanthong
- Centre of Malariology, Parasitology, and EntomologyVientianeLao People's Democratic Republic
| | - Viengxay Vanisaveth
- Centre of Malariology, Parasitology, and EntomologyVientianeLao People's Democratic Republic
| | - Thang Ngo Duc
- National Institute of Malariology, Parasitology and Entomology (NIMPE)HanoiViet Nam
| | - Huy Rekol
- National Center for Parasitology, Entomology, and Malaria ControlPhnom PenhCambodia
| | - Rob van der Pluijm
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Lorenz von Seidlein
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Rick Fairhurst
- National Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUnited States
| | - François Nosten
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Shoklo Malaria Research UnitMae SotThailand
| | | | - Naomi Park
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | | | | | | | - Paul Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Research Unit (LOMWRU), Microbiology Laboratory, Mahosot HospitalVientianeLao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Elizabeth Ashley
- Lao-Oxford-Mahosot Hospital-Wellcome Research Unit (LOMWRU), Microbiology Laboratory, Mahosot HospitalVientianeLao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
| | - Sonexay Phalivong
- Lao-Oxford-Mahosot Hospital-Wellcome Research Unit (LOMWRU), Microbiology Laboratory, Mahosot HospitalVientianeLao People's Democratic Republic
| | - Rapeephan Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
- Faculty of Medicine, Ramathibodi Hospital, Mahidol UniversityBangkokThailand
| | - Rithea Leang
- National Center for Parasitology, Entomology, and Malaria ControlPhnom PenhCambodia
| | - Cheah Huch
- National Center for Parasitology, Entomology, and Malaria ControlPhnom PenhCambodia
| | - Le Thanh Dong
- Institute of Malariology, Parasitology and Entomology (IMPEHCM)Ho Chi Minh CityViet Nam
| | - Kim-Tuyen Nguyen
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | - Tran Minh Nhat
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | - Tran Tinh Hien
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | | | | | | | | | - Didar Uddin
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Caroline Buckee
- Harvard TH Chan School of Public Health, Harvard UniversityBostonUnited States
| | - Caterina I Fanello
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Marie Onyamboko
- Kinshasa School of Public Health, University of KinshasaKinshasaDemocratic Republic of the Congo
| | - Thomas Peto
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Rupam Tripura
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Chanaki Amaratunga
- National Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUnited States
| | - Aung Myint Thu
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Shoklo Malaria Research UnitMae SotThailand
| | - Gilles Delmas
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Shoklo Malaria Research UnitMae SotThailand
| | - Jordi Landier
- Shoklo Malaria Research UnitMae SotThailand
- Aix-Marseille Université, INSERM, IRD, SESSTIM, Aix Marseille Institute of Public Health, ISSPAMMarseilleFrance
| | - Daniel M Parker
- Shoklo Malaria Research UnitMae SotThailand
- Susan and Henry Samueli College of Health Sciences, University of California, IrvineIrvineUnited States
| | | | - Dysoley Lek
- National Center for Parasitology, Entomology, and Malaria ControlPhnom PenhCambodia
| | - Seila Suon
- National Center for Parasitology, Entomology, and Malaria ControlPhnom PenhCambodia
| | - James Callery
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | | | | | - Sasithon Pukrittayakamee
- Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- The Royal Society of ThailandBangkokThailand
| | - Aung Pyae Phyo
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Myanmar-Oxford Clinical Research UnitYangonMyanmar
| | - Frank Smithuis
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Myanmar-Oxford Clinical Research UnitYangonMyanmar
| | - Khin Lin
- Department of Medical ResearchPyin Oo LwinMyanmar
| | - Myo Thant
- Defence Services Medical Research CentreYangonMyanmar
| | | | | | | | | | | | | | - Neena Valecha
- National Institute of Malaria Research, Indian Council of Medical ResearchNew DelhiIndia
| | - Anupkumar R Anvikar
- National Institute of Malaria Research, Indian Council of Medical ResearchNew DelhiIndia
| | | | - Abul Faiz
- Malaria Research Group and Dev Care FoundationDhakaBangladesh
| | - Chanon Kunasol
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | | | - Mihir Kekre
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | - Mozam Ali
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | - Katie Love
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | | | - Anna E Jeffreys
- Wellcome Trust Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Kate Rowlands
- Wellcome Trust Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Christina S Hubbart
- Wellcome Trust Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Mehul Dhorda
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
- Worldwide Antimalarial Resistance Network (WWARN), Asia Regional CentreBangkokThailand
| | - Ranitha Vongpromek
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
- Worldwide Antimalarial Resistance Network (WWARN), Asia Regional CentreBangkokThailand
| | - Namfon Kotanan
- Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Phrutsamon Wongnak
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Jacob Almagro Garcia
- MRC Centre for Genomics and Global Health, Big Data Institute, Oxford UniversityOxfordUnited Kingdom
| | - Richard D Pearson
- Wellcome Sanger InstituteHinxtonUnited Kingdom
- MRC Centre for Genomics and Global Health, Big Data Institute, Oxford UniversityOxfordUnited Kingdom
| | | | | | | | - T Nguyen
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | - Jim Stalker
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | - Ben Jeffery
- MRC Centre for Genomics and Global Health, Big Data Institute, Oxford UniversityOxfordUnited Kingdom
| | | | - Kimberly J Johnson
- Wellcome Sanger InstituteHinxtonUnited Kingdom
- MRC Centre for Genomics and Global Health, Big Data Institute, Oxford UniversityOxfordUnited Kingdom
| | | | - Xin Hui S Chan
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | | | | | - Victoria Simpson
- Wellcome Sanger InstituteHinxtonUnited Kingdom
- MRC Centre for Genomics and Global Health, Big Data Institute, Oxford UniversityOxfordUnited Kingdom
| | | | - Kirk Rockett
- Wellcome Sanger InstituteHinxtonUnited Kingdom
- Wellcome Trust Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Nicholas P Day
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Arjen M Dondorp
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Dominic P Kwiatkowski
- Wellcome Sanger InstituteHinxtonUnited Kingdom
- MRC Centre for Genomics and Global Health, Big Data Institute, Oxford UniversityOxfordUnited Kingdom
| | - Olivo Miotto
- Wellcome Sanger InstituteHinxtonUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
- MRC Centre for Genomics and Global Health, Big Data Institute, Oxford UniversityOxfordUnited Kingdom
| |
Collapse
|
11
|
Rasmussen C, Ringwald P. Is there evidence of anti-malarial multidrug resistance in Burkina Faso? Malar J 2021; 20:320. [PMID: 34281562 PMCID: PMC8287766 DOI: 10.1186/s12936-021-03845-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/05/2021] [Indexed: 11/10/2022] Open
Abstract
Recently, Gansané and colleagues published an article on inadequate efficacy of two different forms of artemisinin-based combination therapy (ACT) in Burkina Faso. The development of Plasmodium falciparum resistance to different ACT partner drugs at levels that could affect the efficacy of two ACT would both be startling and a cause for great concern. In reviewing the available data collected since 2008 on ACT efficacy in Burkina Faso, the analysis shows that the reported efficacy of the tested ACT varies greatly. Most of the studies have considerable methodological deviations and challenges, especially in PCR correction done to distinguish between recrudescence and re-infection, and in the failure to omit re-infections in the calculation of efficacy rates. So far, there is no convincing evidence in the articles reviewed that multidrug resistance has emerged in Burkina Faso. However, the potential consequence of failing ACT means that the results published by Gansané et al. urgently need to be confirmed. Furthermore, articles reporting on efficacy data need to include an examination of the potential consequences of any methodological deviations.
Collapse
Affiliation(s)
| | - Pascal Ringwald
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| |
Collapse
|
12
|
Should deep-sequenced amplicons become the new gold-standard for analysing malaria drug clinical trials? Antimicrob Agents Chemother 2021; 65:e0043721. [PMID: 34252299 PMCID: PMC8448141 DOI: 10.1128/aac.00437-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Regulatory clinical trials are required to ensure the continued supply and deployment of effective antimalarial drugs. Patient follow-up in such trials typically lasts several weeks, as the drugs have long half-lives and new infections often occur during this period. “Molecular correction” is therefore used to distinguish drug failures from new infections. The current WHO-recommended method for molecular correction uses length-polymorphic alleles at highly diverse loci but is inherently poor at detecting low-density clones in polyclonal infections. This likely leads to substantial underestimates of failure rates, delaying the replacement of failing drugs with potentially lethal consequences. Deep-sequenced amplicons (AmpSeq) substantially increase the detectability of low-density clones and may offer a new “gold standard” for molecular correction. Pharmacological simulation of clinical trials was used to evaluate the suitability of AmpSeq for molecular correction. We investigated the impact of factors such as the number of amplicon loci analyzed, the informatics criteria used to distinguish genotyping “noise” from real low-density signals, the local epidemiology of malaria transmission, and the potential impact of genetic signals from gametocytes. AmpSeq greatly improved molecular correction and provided accurate drug failure rate estimates. The use of 3 to 5 amplicons was sufficient, and simple, nonstatistical criteria could be used to classify recurrent infections as drug failures or new infections. These results suggest AmpSeq is strongly placed to become the new standard for molecular correction in regulatory trials, with potential extension into routine surveillance once the requisite technical support becomes established.
Collapse
|
13
|
Reply to Rasmussen and Ringwald, "Continued Low Efficacy of Artemether-Lumefantrine in Angola?". Antimicrob Agents Chemother 2021; 65:AAC.00338-21. [PMID: 33753331 DOI: 10.1128/aac.00338-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Plucinski MM, Hastings IM, Moriarty LF, Venkatesan M, Felger I, Halsey ES. Variation in Calculating and Reporting Antimalarial Efficacy against Plasmodium falciparum in Sub-Saharan Africa: A Systematic Review of Published Reports. Am J Trop Med Hyg 2021; 104:1820-1829. [PMID: 33724925 PMCID: PMC8103451 DOI: 10.4269/ajtmh.20-1481] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/16/2021] [Indexed: 12/11/2022] Open
Abstract
Antimalarials, in particular artemisinin-based combination therapies (ACTs), are critical tools in reducing the global burden of malaria, which is concentrated in sub-Saharan Africa. Performing and reporting antimalarial efficacy studies in a transparent and standardized fashion permit comparison of efficacy outcomes across countries and time periods. This systematic review summarizes study compliance with WHO laboratory and reporting guidance pertaining to antimalarial therapeutic efficacy studies and evaluates how well studies from sub-Saharan Africa adhered to these guidelines. We included all published studies (January 2020 or before) performed in sub-Saharan Africa where ACT efficacy for treatment of uncomplicated Plasmodium falciparum infection was reported. The primary outcome was a composite indicator for study methodology consistent with WHO guidelines for statistical analysis of corrected efficacy, defined as an article presenting a Kaplan-Meier survival analysis of corrected efficacy or reporting a per-protocol analysis where new infections were excluded from the numerator and denominator. Of 581 articles screened, we identified 279 for the review. Molecular correction was used in 83% (232/279) to distinguish new infections from recrudescences in subjects experiencing recurrent parasitemia. Only 45% (99/221) of articles with therapeutic efficacy as a primary outcome and performing molecular correction reported corrected efficacy outcomes calculated in a way consistent with WHO recommendations. These results indicate a widespread lack of compliance with WHO-recommended methods of analysis, which may result in biases in how antimalarial effectiveness is being measured and reported from sub-Saharan Africa.
Collapse
Affiliation(s)
- Mateusz M. Plucinski
- Malaria Branch and U.S. President’s Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ian M. Hastings
- Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Leah F. Moriarty
- Malaria Branch and U.S. President’s Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Meera Venkatesan
- U.S. President’s Malaria Initiative, United States Agency for International Development, Washington, District of Columbia
| | - Ingrid Felger
- University of Basel, Basel, Switzerland;,Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Eric S. Halsey
- Malaria Branch and U.S. President’s Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, Georgia;,Address correspondence to Eric S. Halsey, Malaria Branch and U.S. President’s Malaria Initiative, Centers for Disease Control and Prevention, 1600 Clifton Rd., Malaria Branch, Atlanta, GA 30333. E-mail:
| |
Collapse
|
15
|
Plucinski MM, Barratt JLN. Nonparametric Binary Classification to Distinguish Closely Related versus Unrelated Plasmodium falciparum Parasites. Am J Trop Med Hyg 2021; 104:1830-1835. [PMID: 33819175 PMCID: PMC8103434 DOI: 10.4269/ajtmh.21-0117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/25/2021] [Indexed: 12/24/2022] Open
Abstract
Assessing genetic relatedness of Plasmodium falciparum genotypes is a key component of antimalarial efficacy trials. Previous methods have focused on determining a priori definitions of the level of genetic similarity sufficient to classify two infections as sharing the same strain. However, factors such as mixed-strain infections, allelic suppression, imprecise typing methods, and heterozygosity complicate comparisons of apicomplexan genotypes. Here, we introduce a novel method for nonparametric statistical testing of relatedness for P. falciparum parasites. First, the background distribution of genetic distance between unrelated strains is computed. Second, a threshold genetic distance is computed from this empiric distribution of distances to demarcate genetic distances that are unlikely to have arisen by chance. Third, the genetic distance between paired samples is computed, and paired samples with genetic distances below the threshold are classified as related. The method is designed to work with any arbitrary genetic distance definition. We validated this procedure using two independent approaches to calculating genetic distance. We assessed the concordance of the novel nonparametric classification with a gold-standard Bayesian approach for 175 pairs of recurrent P. falciparum episodes from previously published malaria efficacy trials with microsatellite data from five studies in Guinea and Angola. The novel nonparametric approach was 98% sensitive and 84-89% specific in correctly identifying related genotypes compared with a gold-standard Bayesian algorithm. The approach provides a unified and systematic method to statistically assess relatedness of P. falciparum parasites using arbitrary genetic distance methodologies.
Collapse
Affiliation(s)
- Mateusz M. Plucinski
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia;,U.S. President’s Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, Georgia;,Address correspondence to Mateusz M. Plucinski, Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30329-4018. E-mail:
| | - Joel L. N. Barratt
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
16
|
Rebelo M, Pawliw R, Gower J, Webb L, Mitchell H, Pava Z, Watts RE, Davenport MP, McCarthy JS, Khoury DS. Parasite Viability as a Superior Measure of Antimalarial Drug Activity in Humans. J Infect Dis 2020; 223:2154-2163. [PMID: 33119072 DOI: 10.1093/infdis/jiaa678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/22/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Artemisinin derivatives are the leading class of antimalarial drugs due to their rapid onset of action and rapid clearance of circulating parasites. The parasite clearance half-life measures the rate of loss of parasites from blood after treatment, and this is currently used to assess antimalarial activity of novel agents and to monitor resistance. However, a number of recent studies have challenged the use of parasite clearance to measure drug activity, arguing that many circulating parasites may be nonviable. METHODS Plasmodium falciparum-infected subjects (n = 10) in a malaria volunteer infection study were administered a single dose of artesunate (2 mg/kg). Circulating parasite concentration was assessed by means of quantitative polymerase chain reaction (qPCR). Parasite viability after artesunate administration was estimated by mathematical modeling of the ex vivo growth of parasites collected from subjects. RESULTS We showed that in artemisinin-sensitive infection, viable parasites declined to <0.1% of baseline within 8 hours after artesunate administration, while the total number of circulating parasites measured with quantitative polymerase chain reaction remained unchanged. In artemisinin-resistant infections over the same interval, viable parasites declined to 51.4% (standard error of the mean, 4.6%) of baseline. CONCLUSIONS These results demonstrate that in vivo drug activity of artesunate is faster than is indicated by the parasite clearance half-life.
Collapse
Affiliation(s)
- Maria Rebelo
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rebecca Pawliw
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jeremy Gower
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lachlan Webb
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hayley Mitchell
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Zuleima Pava
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rebecca E Watts
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales (Sydney), Sydney, New South Wales, Australia
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - David S Khoury
- Kirby Institute, University of New South Wales (Sydney), Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Influence of CYP2C8, CYP3A4, and CYP3A5 Host Genotypes on Early Recurrence of Plasmodium vivax. Antimicrob Agents Chemother 2020; 64:AAC.02125-19. [PMID: 32366712 DOI: 10.1128/aac.02125-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/25/2020] [Indexed: 11/20/2022] Open
Abstract
Cytochrome P450 (CYP) enzymes are involved in the biotransformation of chloroquine (CQ), but the role of the different profiles of metabolism of this drug in relation to Plasmodium vivax recurrences has not been properly investigated. To investigate the influence of the CYP genotypes associated with CQ metabolism on the rates of P. vivax early recurrences, a case-control study was carried out. The cases included patients presenting with an early recurrence (CQ-recurrent individuals), defined as a recurrence during the first 28 days after initial infection and plasma concentrations of CQ plus desethylchloroquine (DCQ; the major CQ metabolite) higher than 100 ng/ml. A control group with no parasite recurrence over the follow-up (the CQ-responsive group) was also included. CQ and DCQ plasma levels were measured on day 28. CQ-metabolizing CYP (CYP2C8, CYP3A4, and CYP3A5) genotypes were determined by real-time PCR. An ex vivo study was conducted to verify the efficacy of CQ and DCQ against P. vivax isolates. The frequency of alleles associated with normal and slow metabolism was similar between the cases and the controls for the CYP2C8 (odds ratio [OR] = 1.45, 95% confidence interval [CI] = 0.51 to 4.14, P = 0.570), CYP3A4 (OR = 2.38, 95% CI = 0.92 to 6.19, P = 0.105), and CYP3A5 (OR = 4.17, 95% CI = 0.79 to 22.04, P = 1.038) genes. DCQ levels were higher than CQ levels, regardless of the genotype. Regarding the DCQ/CQ ratio, there was no difference between groups or between those patients who had a normal genotype and those patients who had a mutant genotype. DCQ and CQ showed similar efficacy ex vivo CYP genotypes had no influence on early recurrence rates. The similar efficacy of CQ and DCQ ex vivo could explain the absence of therapeutic failure, despite the presence of alleles associated with slow metabolism.
Collapse
|
18
|
Bretscher MT, Dahal P, Griffin J, Stepniewska K, Bassat Q, Baudin E, D'Alessandro U, Djimde AA, Dorsey G, Espié E, Fofana B, González R, Juma E, Karema C, Lasry E, Lell B, Lima N, Menéndez C, Mombo-Ngoma G, Moreira C, Nikiema F, Ouédraogo JB, Staedke SG, Tinto H, Valea I, Yeka A, Ghani AC, Guerin PJ, Okell LC. The duration of chemoprophylaxis against malaria after treatment with artesunate-amodiaquine and artemether-lumefantrine and the effects of pfmdr1 86Y and pfcrt 76T: a meta-analysis of individual patient data. BMC Med 2020; 18:47. [PMID: 32098634 PMCID: PMC7043031 DOI: 10.1186/s12916-020-1494-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/09/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The majority of Plasmodium falciparum malaria cases in Africa are treated with the artemisinin combination therapies artemether-lumefantrine (AL) and artesunate-amodiaquine (AS-AQ), with amodiaquine being also widely used as part of seasonal malaria chemoprevention programs combined with sulfadoxine-pyrimethamine. While artemisinin derivatives have a short half-life, lumefantrine and amodiaquine may give rise to differing durations of post-treatment prophylaxis, an important additional benefit to patients in higher transmission areas. METHODS We analyzed individual patient data from 8 clinical trials of AL versus AS-AQ in 12 sites in Africa (n = 4214 individuals). The time to PCR-confirmed reinfection after treatment was used to estimate the duration of post-treatment protection, accounting for variation in transmission intensity between settings using hidden semi-Markov models. Accelerated failure-time models were used to identify potential effects of covariates on the time to reinfection. The estimated duration of chemoprophylaxis was then used in a mathematical model of malaria transmission to determine the potential public health impact of each drug when used for first-line treatment. RESULTS We estimated a mean duration of post-treatment protection of 13.0 days (95% CI 10.7-15.7) for AL and 15.2 days (95% CI 12.8-18.4) for AS-AQ overall. However, the duration varied significantly between trial sites, from 8.7-18.6 days for AL and 10.2-18.7 days for AS-AQ. Significant predictors of time to reinfection in multivariable models were transmission intensity, age, drug, and parasite genotype. Where wild type pfmdr1 and pfcrt parasite genotypes predominated (<=20% 86Y and 76T mutants, respectively), AS-AQ provided ~ 2-fold longer protection than AL. Conversely, at a higher prevalence of 86Y and 76T mutant parasites (> 80%), AL provided up to 1.5-fold longer protection than AS-AQ. Our simulations found that these differences in the duration of protection could alter population-level clinical incidence of malaria by up to 14% in under-5-year-old children when the drugs were used as first-line treatments in areas with high, seasonal transmission. CONCLUSION Choosing a first-line treatment which provides optimal post-treatment prophylaxis given the local prevalence of resistance-associated markers could make a significant contribution to reducing malaria morbidity.
Collapse
Affiliation(s)
- Michael T Bretscher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| | - Prabin Dahal
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jamie Griffin
- School of Mathematical Sciences, Queen Mary University of London, London, UK
| | - Kasia Stepniewska
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Umberto D'Alessandro
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Abdoulaye A Djimde
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, USA
| | - Emmanuelle Espié
- Epicentre, Paris, France.,Clinical and Epidemiology Department, GSK Vaccines, R&D Center, Wavre, Belgium
| | - Bakary Fofana
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Raquel González
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Elizabeth Juma
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Corine Karema
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Bertrand Lell
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria.,Centre de Recherches Medicales de Lambarene, Lambarene, Gabon
| | - Nines Lima
- Department of Paediatrics, University of Calabar, Calabar, Nigeria
| | - Clara Menéndez
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Ghyslain Mombo-Ngoma
- Centre de Recherches Medicales de Lambarene, Lambarene, Gabon.,Institute for Tropical Medicine, University of Tubingen, Tubingen, Germany.,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clarissa Moreira
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Frederic Nikiema
- Institut de Recherche en Science de la Sante, Bobo-Dioulasso, Burkina Faso
| | - Jean B Ouédraogo
- Institut de Recherche en Science de la Sante, Bobo-Dioulasso, Burkina Faso
| | - Sarah G Staedke
- Department of Clinical Research, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Halidou Tinto
- Institut de Recherche en Science de la Sante, Nanoro, Burkina Faso
| | - Innocent Valea
- Institut de Recherche en Science de la Sante, Nanoro, Burkina Faso
| | - Adoke Yeka
- Uganda Malaria Surveillance Project, Kampala, Uganda
| | - Azra C Ghani
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Philippe J Guerin
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lucy C Okell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| |
Collapse
|
19
|
Gruenberg M, Lerch A, Beck HP, Felger I. Amplicon deep sequencing improves Plasmodium falciparum genotyping in clinical trials of antimalarial drugs. Sci Rep 2019; 9:17790. [PMID: 31780741 PMCID: PMC6883076 DOI: 10.1038/s41598-019-54203-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/08/2019] [Indexed: 11/09/2022] Open
Abstract
Clinical trials monitoring malaria drug resistance require genotyping of recurrent Plasmodium falciparum parasites to distinguish between treatment failure and new infection occurring during the trial follow up period. Because trial participants usually harbour multi-clonal P. falciparum infections, deep amplicon sequencing (AmpSeq) was employed to improve sensitivity and reliability of minority clone detection. Paired samples from 32 drug trial participants were Illumina deep-sequenced for five molecular markers. Reads were analysed by custom-made software HaplotypR and trial outcomes compared to results from the previous standard genotyping method based on length-polymorphic markers. Diversity of AmpSeq markers in pre-treatment samples was comparable or higher than length-polymorphic markers. AmpSeq was highly reproducible with consistent quantification of co-infecting parasite clones within a host. Outcomes of the three best-performing markers, cpmp, cpp and ama1-D3, agreed in 26/32 (81%) of patients. Discordance between the three markers performed per sample was much lower by AmpSeq (six patients) compared to length-polymorphic markers (eleven patients). Using AmpSeq for discrimination of recrudescence and new infection in antimalarial drug trials provides highly reproducible and robust characterization of clone dynamics during trial follow-up. AmpSeq overcomes limitations inherent to length-polymorphic markers. Regulatory clinical trials of antimalarial drugs will greatly benefit from this unbiased typing method.
Collapse
Affiliation(s)
- Maria Gruenberg
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Anita Lerch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, USA
| | - Hans-Peter Beck
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|