1
|
Wu Y, Wang C, Qian W, Wang L, Yu L, Zhang M, Yan M. Default mode network-basal ganglia network connectivity predicts the transition to postherpetic neuralgia. IBRO Neurosci Rep 2025; 18:135-141. [PMID: 39896717 PMCID: PMC11783054 DOI: 10.1016/j.ibneur.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Background Neuroimaging studies have revealed aberrant network functional connectivity in postherpetic neuralgia (PHN) patients. However, there is a lack of knowledge regarding the relationship between the brain network connectivity during the acute period and disease prognosis. Objective The purpose of this study was to detect characteristic network connectivity in the process of herpes zoster (HZ) pain chronification and to identify whether abnormal network connectivity in the acute period can predict the outcome of patients with HZ. Methods In this cross-sectional study, 31 patients with PHN, 33 with recuperation from herpes zoster (RHZ), and 28 with acute herpes zoster (AHZ) were recruited and underwent resting-state functional magnetic resonance imaging (fMRI). We investigated the differences in the connectivity of four resting-state networks (RSN) among the three groups. Receiver operating characteristic (ROC) curve analysis was performed to identify whether abnormal network connectivity in the acute period could predict the outcome of patients with HZ. Results First, we found within-basal ganglia network (BGN) and default mode network (DMN)-BGN connectivity differences, with PHN patients showing increased DMN-BGN connectivity compared to AHZ and RHZ patients, while RHZ patients showing increased within-BGN connectivity compared to AHZ and PHN patients. Moreover, DMN-BGN connectivity was associated with the ID pain score in patients with AHZ. Finally, the DMN-BGN connectivity of AHZ patients could predict the outcome of HZ patients with sensitivity and specificity of 77.8 % and 63.2 %, respectively. Conclusions Our results provide evidence that DMN-BGN connectivity during the acute period confers a risk for the development of chronic pain and can act as a neuroimaging biomarker to predict the outcome of patients with HZ.
Collapse
Affiliation(s)
- Ying Wu
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Chao Wang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Wei Qian
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Lieju Wang
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Lina Yu
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Min Yan
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
2
|
Liu Y, Cai X, Shi B, Mo Y, Zhang J, Luo W, Yu B, Li X. Mechanisms and Therapeutic Prospects of Microglia-Astrocyte Interactions in Neuropathic Pain Following Spinal Cord Injury. Mol Neurobiol 2025; 62:4654-4676. [PMID: 39470872 DOI: 10.1007/s12035-024-04562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024]
Abstract
Neuropathic pain is a prevalent and debilitating condition experienced by the majority of individuals with spinal cord injury (SCI). The complex pathophysiology of neuropathic pain, involving continuous activation of microglia and astrocytes, reactive gliosis, and altered neuronal plasticity, poses significant challenges for effective treatment. This review focuses on the pivotal roles of microglia and astrocytes, the two major glial cell types in the central nervous system, in the development and maintenance of neuropathic pain after SCI. We highlight the extensive bidirectional interactions between these cells, mediated by the release of inflammatory mediators, neurotransmitters, and neurotrophic factors, which contribute to the amplification of pain signaling. Understanding the microglia-astrocyte crosstalk and its impact on neuronal function is crucial for developing novel therapeutic strategies targeting neuropathic pain. In addition, this review discusses the fundamental biology, post-injury pain roles, and therapeutic prospects of microglia and astrocytes in neuropathic pain after SCI and elucidates the specific signaling pathways involved. We also speculated that the extracellular matrix (ECM) can affect the glial cells as well. Furthermore, we also mentioned potential targeted therapies, challenges, and progress in clinical trials, as well as new biomarkers and therapeutic targets. Finally, other relevant cell interactions in neuropathic pain and the role of glial cells in other neuropathic pain conditions have been discussed. This review serves as a comprehensive resource for further investigations into the microglia-astrocyte interaction and the detailed mechanisms of neuropathic pain after SCI, with the aim of improving therapeutic efficacy.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xintong Cai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bowen Shi
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yajie Mo
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jianmin Zhang
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wenting Luo
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bodong Yu
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xi Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Göntér K, László S, Tékus V, Dombi Á, Fábián K, Pál S, Pozsgai G, Botz L, Wagner Ö, Pintér E, Hajna Z. New generation capsaicin-diclofenac containing, silicon-based transdermal patch provides prolonged analgesic effect in acute and chronic pain models. Eur J Pharm Sci 2025; 207:107035. [PMID: 39922237 DOI: 10.1016/j.ejps.2025.107035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
OBJECTIVE Pain is one of the major public health burdens worldwide, however, conventional analgesics are often ineffective. Capsaicin-the active compound of Capsicum species, being responsible for their pungency-has been part of traditional medicine long ago. Capsaicin is a natural agonist of the Transient Receptor Potential Vanilloid 1 receptor-localized on capsaicin-sensitive sensory neurons and strongly involved in pain transmission-, and has been in focus of analgesic drug research for many years. In this study, we aimed to develop a sustained release transdermal patch (transdermal therapeutic system, TTS) combining the advantages of low-concentration capsaicin and diclofenac embedded in an innovative structure, as well as to perform complex preclinical investigations of its analgesic effect. METHODS Drug delivery properties of the TTS were investigated with Franz cell and flow-through cell tests. Analgesic effect of the TTS was examined in in vivo models of acute postoperative and inflammatory, chronic neuropathic and osteoarthritic pain. RESULTS Modified silicone polymer matrix-based TTS containing low-concentration capsaicin and diclofenac has been developed, releasing both compounds according to zero-order kinetics. Moreover, capsaicin and diclofenac facilitated the liberation of each other. Combined TTS significantly reduced acute postoperative and inflammatory pain, as well as chronic neuropathic and osteoarthritic pain. Interestingly, in acute postoperative and chronic osteoarthritic pain, capsaicin prolonged and potentiated the pain-relieving effect of diclofenac. CONCLUSIONS New generation combined low-concentration capsaicin-diclofenac containing TTS can be an effective therapeutic tool in acute and chronic pain states involving neuropathic and inflammatory components.
Collapse
Affiliation(s)
- Kitti Göntér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624, Pécs, Hungary; HUN-REN, Chronic Pain Research Group, University of Pécs, Pécs, Hungary; National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, Budapest, 1117, Hungary
| | - Szabolcs László
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624, Pécs, Hungary; Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary; HUN-REN, Computation-Driven Chemistry Research Group, Műegyetem rkp. 3, H-1111, Budapest, Hungary
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624, Pécs, Hungary
| | - Ágnes Dombi
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus str. 2, H-7624, Pécs, Hungary
| | - Katalin Fábián
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus str. 2, H-7624, Pécs, Hungary
| | - Szilárd Pál
- Institute of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pécs, Rókus str. 2, H-7624, Pécs, Hungary
| | - Gábor Pozsgai
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus str. 2, H-7624, Pécs, Hungary
| | - Lajos Botz
- Institute of Clinical Pharmacy, Clinical Centre, University of Pécs, Honvéd str. 3, H-7624, Pécs, Hungary
| | - Ödön Wagner
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624, Pécs, Hungary; HUN-REN, Chronic Pain Research Group, University of Pécs, Pécs, Hungary; National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, Budapest, 1117, Hungary.
| | - Zsófia Hajna
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624, Pécs, Hungary; HUN-REN, Chronic Pain Research Group, University of Pécs, Pécs, Hungary; National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, Budapest, 1117, Hungary
| |
Collapse
|
4
|
Shi S, Yang S, Ma P, Wang Y, Ma C, Ma W. Genetic Evidence Indicates that Serum Micronutrient Levels Mediate the Causal Relationships Between Immune Cells and Neuropathic Pain: A Mediation Mendelian Randomization Study. Mol Neurobiol 2025:10.1007/s12035-025-04805-9. [PMID: 40029530 DOI: 10.1007/s12035-025-04805-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/22/2025] [Indexed: 03/05/2025]
Abstract
A growing body of evidence suggests a correlation among immune cells, serum micronutrient levels, and neuropathic pain. However, previous studies have been limited in scope, hindering the establishment of conclusive findings. Therefore, this study employs mendelian randomization (MR) analysis to investigate the genetic perspectives on the causal relationships among these factors. Initially, the relationship between five serum micronutrient levels (specifically, four vitamin levels and zinc levels) and neuropathic pain was examined using a bidirectional MR design. Subsequently, positive results identified through the inverse variance weighted (IVW) method prompted further analysis, using immune cells as exposures to explore their causal links with neuropathic pain. As a result, a two-step MR analysis demonstrated that serum vitamin levels mediate the relationship between immune cells and neuropathic pain, quantifying both direct impacts and mediation effects. This study revealed that low serum levels of vitamin D and 25-hydroxyvitamin D increased the risk of postherpetic neuralgia and thoracic spine pain. Reverse MR analysis suggested that neuropathic pain does not contribute to a reduction in the serum levels of vitamin D and 25-hydroxyvitamin D. Furthermore, significant associations were observed between 27 immune cells and postherpetic neuralgia, as well as between 22 immune cells and thoracic spine pain. Additionally, the mediation analysis identified causal relationships between immune cells and serum micronutrient levels, confirming the "immune cells-serum micronutrient levels-neuropathic pain" pathway. This study provides valuable insights into the potential mechanisms by which vitamin D and 25-hydroxyvitamin D regulate the interaction between the immune system and neuropathic pain. These findings are crucial for the timely detection, treatment, and management of neuropathic pain, offering new perspectives on how vitamin levels influence immune cell behavior and neuropathic pain susceptibility.
Collapse
Affiliation(s)
- Shaopeng Shi
- Department of Anesthesiology and Perioperative Medicine, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Yinchuan, 750000, Ningxia, China
- Department of Graduate School, Ningxia Medical University, Yinchuan, China
| | - Shaier Yang
- Department of Anesthesiology and Perioperative Medicine, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Yinchuan, 750000, Ningxia, China
- Department of Graduate School, Ningxia Medical University, Yinchuan, China
| | - Peng Ma
- Department of Anesthesiology and Perioperative Medicine, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Yinchuan, 750000, Ningxia, China
- Department of Graduate School, Ningxia Medical University, Yinchuan, China
| | - Yi Wang
- Department of Anesthesiology and Perioperative Medicine, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Yinchuan, 750000, Ningxia, China
| | - Chunxiang Ma
- Department of Anesthesiology and Perioperative Medicine, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Yinchuan, 750000, Ningxia, China
| | - Wan Ma
- Department of Anesthesiology and Perioperative Medicine, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Yinchuan, 750000, Ningxia, China.
| |
Collapse
|
5
|
Gu J, Wang J, Fan H, Wei Y, Li Y, Ma C, Xing K, Wang P, Wu Z, Wu T, Li X, Zhang L, Han Y, Chen T, Qu J, Yan X. Decoding the mechanism of proanthocyanidins in central analgesia: redox regulation and KCNK3 blockade. Exp Mol Med 2025:10.1038/s12276-025-01412-5. [PMID: 40025170 DOI: 10.1038/s12276-025-01412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 03/04/2025] Open
Abstract
Neuropathic pain causes enduring physical discomfort and emotional distress. Conventional pharmacological treatments often provide restricted relief and may result in undesirable side effects, posing a substantial clinical challenge. Peripheral and spinal redox homeostasis plays an important role in pain processing and perception. However, the roles of oxidative stress and antioxidants in pain and analgesia on the cortical region during chronic pain remains obscure. Here we focus on the ventrolateral orbital cortex (VLO), a brain region associated with pain severity and involved in pain inhibition. Using a spared nerve injury mouse model, we observed the notable reactive oxygen species (ROS)-mediated suppression of the excitability of pyramidal cells (PYRVLO) in the VLO. Nasal application or microinjection of the natural antioxidants proanthocyanidins (PACs) to the VLO specifically increased the activity of PYRVLO and induced a significant analgesic effect. Mechanistically, PACs activate PYRVLO by inhibiting distinct potassium channels in different ways: (1) by scavenging ROS to reduce ROS-sensitive voltage-gated potassium currents and (2) by acting as a channel blocker through direct binding to the cap structure of KCNK3 to inhibit the leak potassium current (Ileak). These results reveal the role of cortical oxidative stress in central hyperalgesia and elucidate the mechanism and potential translational significance of PACs in central analgesia. These findings suggest that the effects of PACs extend beyond their commonly assumed antioxidant or anti-inflammatory effects.
Collapse
Affiliation(s)
- Junxiang Gu
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Jian Wang
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongwei Fan
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wei
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
- School of Medicine, Northwest University, Xi'an, China
| | - Yan Li
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Chengwen Ma
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Keke Xing
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Pan Wang
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Zhenyu Wu
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Teng Wu
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yunyun Han
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Chen
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China.
| | - Jianqiang Qu
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Xianxia Yan
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
6
|
Kim JK, You J, Son S, Suh I, Lim JY. Comparison of intermittent theta burst stimulation and high-frequency repetitive transcranial magnetic stimulation on spinal cord injury-related neuropathic pain: A sham-controlled study. J Spinal Cord Med 2025; 48:241-247. [PMID: 37982995 PMCID: PMC11864029 DOI: 10.1080/10790268.2023.2277964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
OBJECTIVE To compare the effects of intermittent theta burst stimulation (iTBS) and high-frequency repetitive transcranial magnetic stimulation (rTMS) on spinal cord injury-related neuropathic pain with sham controls, using neuropathic pain-specific evaluation tools. DESIGN A randomized, double-blind, sham-controlled trial. SETTING Rehabilitation medicine department of a university hospital. PARTICIPANTS Thirty-three patients with spinal cord injury-related neuropathic pain. INTERVENTIONS Patients were randomly allocated to one of three groups (real iTBS, real rTMS, and sham rTMS). Each patient underwent five sessions of assigned stimulation. OUTCOME MEASURES Before and after completion of the five sessions, patients were evaluated using the self-completed Leeds Assessment of Neuropathic Symptoms and Signs, Numeric Rating Scale, Neuropathic Pain Symptom Inventory, and Neuropathic Pain Scale. RESULTS Real iTBS and real rTMS reduced pain levels after stimulation according to all the evaluation tools, and the changes were significant when compared to the values of the sham rTMS group. No significant differences were found between the real iTBS and real rTMS groups. CONCLUSION Both iTBS and rTMS were effective in reducing spinal cord injury-related neuropathic pain. When safety, convenience, and compliance are considered, iTBS would have an advantage over rTMS in clinical situations with spinal cord injury-related neuropathic pain.Trial Registration: This trial was registered with the Clinical Research Information Service (registration no. KCT0004976).
Collapse
Affiliation(s)
- Jong Keun Kim
- Department of Rehabilitation Medicine, Daejeon Eulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - JaeIn You
- Department of Rehabilitation Medicine, Daejeon Eulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Sangpil Son
- Department of Rehabilitation Medicine, Daejeon Eulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - InHyuk Suh
- Department of Rehabilitation Medicine, Daejeon Eulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Jong Youb Lim
- Department of Rehabilitation Medicine, Daejeon Eulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of Korea
- Department of Rehabilitation Medicine, Uijeongbu Eulji University Hospital, Eulji University School of Medicine, Uijeongbu, Republic of Korea
| |
Collapse
|
7
|
Gilron I. Randomized controlled trials of pain treatment: essential research tools, a framework for clinical care. Pain 2025; 166:471-472. [PMID: 39432742 DOI: 10.1097/j.pain.0000000000003414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 10/23/2024]
Affiliation(s)
- Ian Gilron
- Department of Anesthesiology and Perioperative Medicine, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- School of Policy Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
8
|
Kastelik J, Schwerdtfeger K, Stolle A, Schäfer M, Tafelski S. [Systematic review of the effectiveness of local anaesthetics in the treatment of neuropathic pain or phantom pain]. DIE ANAESTHESIOLOGIE 2025; 74:128-135. [PMID: 39992390 DOI: 10.1007/s00101-025-01500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/31/2024] [Accepted: 11/24/2024] [Indexed: 02/25/2025]
Abstract
BACKGROUND Chronic pain is still a relevant medical and socioeconomic problem. The treatment focuses not only on pain reduction but also on functional treatment goals. Neuropathic pain includes biological, social and psychological aspects. In September 2023, the updated S3 guidelines for the management of peripheral nerve injuries were published. Multimodal pain management strategies encompassing systemic and local pharmacological, physiotherapeutic and occupational therapeutic interventions, are part of the guidelines. A central question addressed the widely debated treatment option using perineural local anaesthetics. OBJECTIVE The aim of the study was to evaluate the effectiveness of local anaesthetic infiltration in the treatment of neuropathic pain following nerve injuries through a systematic literature review and evaluation of the evidence by a meta-analysis. MATERIAL AND METHODS After formulating a PICO (patient/population, intervention, comparison and outcomes) question (Infobox 1) within the guideline group, a selective literature analysis of controlled trials in databases (PubMed, Cochrane Central Register of Controlled Trials-CENTRAL) was conducted until 31 July 2023. The literature was assessed by two reviewers and systematic reviews were examined for additional references. The studies were assessed using the Risk of Bias Tool 2.0 of the Cochrane Collaboration for randomized trials and the evidence was classified according to the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) system. RESULTS A total of 357 publications were identified in the literature search. After removing duplicates (n = 15) 327 publications were evaluated. The literature analysis showed heterogeneity with respect to the pain localization, local anaesthetics and reported outcomes. In an in-depth literature analysis one relevant study was identified and included in the evaluation of the evidence. This study enrolled and randomized 144 patients between December 2013 and October 2018 and evaluated the effectivity of the continuous infusion of local anaesthetics (lidocaine 2% with epinephrine 2.5 µg/ml as an initial bolus in both study groups followed by an infusion of ropivacaine 0.5% in the intervention group over 6 days) on the intensity of the phantom pain in comparison to the placebo group with a continuous infusion of saline over 6 days. The mean pain intensity and pain-related dysfunctions were reduced in the intervention group after 4 weeks. In the intervention group 25 patients and in the placebo group 40 patients received the crossover treatment after 4 weeks. CONCLUSION Infiltration with local anaesthetics represents a potential therapeutic option for neuropathic pain and phantom pain after amputations. A randomized, blinded, placebo-controlled study from 2021 demonstrated lower pain intensity and a reduction in pain-related functional limitations after 4 weeks of continuous perineural local anesthetic infiltration. Further studies are necessary to establish a higher level of evidence regarding the effectiveness of minimally invasive pain treatment with local anaesthetics. In particular, long-term follow-up is necessary to be able to draw conclusions with respect to the analgesic efficacy of infiltration with local anaesthetics.
Collapse
Affiliation(s)
- Joanna Kastelik
- Klinik für Anästhesiologie und Intensivmedizin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Deutschland.
- Schmerzmedizin Campus Charité Mitte, Klinik für Anästhesiologie und Intensivmedizin, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland.
| | - Karsten Schwerdtfeger
- Klinik für Neurochirurgie, Medizinische Fakultät der Universität des Saarlandes, 66421, Homburg (Saar), Deutschland
| | - Annette Stolle
- Andreas Wentzensen Forschungsinstitut, BG Klinik Ludwigshafen, Ludwig-Guttmann-Str. 13, 67071, Ludwigshafen, Deutschland
| | - Michael Schäfer
- Klinik für Anästhesiologie und Intensivmedizin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - Sascha Tafelski
- Klinik für Anästhesiologie und Intensivmedizin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Deutschland.
- Schmerzmedizin Campus Charité Mitte, Klinik für Anästhesiologie und Intensivmedizin, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland.
| |
Collapse
|
9
|
Fan Z, Sun S, Wang L, Ge Z. The properties of TREM1 and its emerging role in pain-related diseases. Mol Brain 2025; 18:15. [PMID: 40011963 DOI: 10.1186/s13041-025-01187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/08/2025] [Indexed: 02/28/2025] Open
Abstract
The TREM1 receptor, a member of the TREMs family, is expressed by myeloid cells and functions as an initiator or enhancer of the inflammatory response, playing a pivotal role in the regulation of inflammation. In recent years, it has been found that TREM1-mediated inflammatory response is involved in the regulation of pain-related diseases. This article provides an extensive review on the structural characteristics and distribution patterns, ligand, signaling pathways, inhibitors, and pathophysiological roles of TREM1 in pain disorders aiming to further elucidate its biological function and offer novel insights for clinical interventions targeting pain-related diseases.
Collapse
Affiliation(s)
- Zhenzhen Fan
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Songtang Sun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Longde Wang
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Zhaoming Ge
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China.
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Gansu Provincial Neurology Clinical Medical Research Center, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
10
|
Galosi E, Falco P, Di Pietro G, Esposito N, De Stefano G, Evangelisti E, Leone C, Litewczuk D, Tramontana L, Di Stefano G, Truini A. Epidermal Transient Receptor Potential Vanilloid 1 innervation is increased in patients with painful diabetic polyneuropathy experiencing ongoing burning pain. Pain 2025:00006396-990000000-00831. [PMID: 39968935 DOI: 10.1097/j.pain.0000000000003541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/17/2024] [Indexed: 02/20/2025]
Abstract
ABSTRACT Preclinical studies suggested that Transient Receptor Potential Vanilloid 1 (TRPV1) channels contribute to neuropathic pain in animal models of diabetic polyneuropathy. Patients with painful diabetic polyneuropathy commonly experience ongoing burning pain. This study aimed at evaluating the association between this specific type of pain and TRPV1 intraepidermal nerve fibers in patients with painful diabetic polyneuropathy. We consecutively enrolled 70 patients with diabetic polyneuropathy. Each patient completed the Neuropathic Pain Symptom Inventory (NPSI) to identify the various types of neuropathic pain. All patients underwent a distal leg skin biopsy, with immunostaining of skin nerve fibers using antibodies for the pan-axonal marker Protein Gene Product 9.5 (PGP9.5), TRPV1, Calcitonin Gene-Related Peptide (CGRP), and Substance P. We found that 57% of patients (n = 40) had neuropathic pain symptoms, with ongoing burning pain being the most frequently reported type of pain at the NPSI (70% of patients with pain, n = 28). Patients with ongoing burning pain had higher TRPV1 intraepidermal nerve fiber density and TRPV1/PGP9.5 ratio compared with those with painless polyneuropathy (P = 0.014, P = 0.013) and painful polyneuropathy with other types of pain (P < 0.0001, P = 0.024); they also had increased CGRP dermal nerve fiber density compared with patients with painless polyneuropathy (P = 0.005). Our study showed that ongoing burning pain is associated with an increased expression of intraepidermal TRPV1 fibers, as well as an increased dermal representation of CGRP fibers. These findings suggest that TRPV1 contributes to ongoing burning pain, possibly in conjunction with elevated CGRP expression, highlighting its significance as a therapeutic target for patients with painful diabetic polyneuropathy.
Collapse
Affiliation(s)
- Eleonora Galosi
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ikeda S, Miyagi M, Inoue G, Yoshii T, Egawa S, Sakai K, Takahata M, Endo T, Tsutsui S, Koda M, Takahashi H, Kato S, Mori K, Nakajima H, Furuya T, Maki S, Kawaguchi Y, Nishida N, Kusano K, Nakashima H, Yokozeki Y, Takaso M, Yamazaki M. Risk factors for residual neuropathic pain using specific screening tools in postoperative patients with ossification of the posterior longitudinal ligament of the cervical spine. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2025:10.1007/s00586-025-08722-2. [PMID: 39969563 DOI: 10.1007/s00586-025-08722-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/18/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025]
Abstract
PURPOSE Ageing, long illness duration, and poor preoperative Japanese Orthopaedic Association (JOA) score were reported to be risk factors for residual pain after cervical ossification of the posterior longitudinal ligament (cOPLL). In this study, we focused on residual neuropathic pain (NeP) and aimed to elucidate risk factors for residual NeP after cOPLL. METHODS Total of 234 patients who underwent cOPLL surgery were included. NeP was evaluated using painDETECT (PDQ) and Spine painDETECT (SPDQ) questionnaires. Score of ≥ 13 / ≥ 0 was defined as NeP for PDQ/SPDQ. Patient backgrounds factors, preoperative radiographic factors and surgical factors were reviewed, and comparisons between the NeP(+) and NeP(-) groups were made. Independent risk factors for residual NeP were evaluated using multiple logistic regression analysis. RESULTS Prevalence of residual NeP after cOPLL was 22.6% on PDQ and 55.1% on SPDQ. Preoperative JOA score was significantly lower in the NeP(+) group for PDQ compared with that in the NeP(-) group. Additionally, cervical lordosis angle was significantly lower in the NeP(+) group for SPDQ compared with that in the NeP(-) group. Following multiple logistic regression analysis, poor preoperative JOA score was identified as a risk factor for NeP on the PDQ. Poor preoperative JOA score and low cervical lordosis angle were identified as risk factors using the SPDQ. CONCLUSIONS We found high prevalence of residual NeP after cOPLL. Patients with a poor preoperative JOA score and low cervical lordosis angle might be at risk for residual NeP after surgery evaluated by PDQ or SPDQ and should be monitored with greater care after surgery.
Collapse
Affiliation(s)
- Shinsuke Ikeda
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami Ward, Sagamihara, Kanagawa, 252-0375, Japan
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan
| | - Masayuki Miyagi
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami Ward, Sagamihara, Kanagawa, 252-0375, Japan.
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan.
| | - Gen Inoue
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami Ward, Sagamihara, Kanagawa, 252-0375, Japan
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan
| | - Toshitaka Yoshii
- Department of Orthopedic Surgery, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo Ward, Tokyo, 113-8519, Japan
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan
| | - Satoru Egawa
- Department of Orthopedic Surgery, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo Ward, Tokyo, 113-8519, Japan
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan
| | - Kenichiro Sakai
- Department of Orthopedic Surgery, Saiseikai Kawaguchi General Hospital, 5-11-5 Nishikawaguchi, Kawaguchishi, Saitama, 332-8558, Japan
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan
| | - Masahiko Takahata
- Department of Orthopaedic Surgery, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu-Machi, Shimotsuga-Gun, Tochigi, 321-0293, Japan
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan
| | - Tsutomu Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Sapporo, 060-8638, Japan
- Department of Orthopaedic Surgery, Hakodate Central General Hospital, 33-2 Honcho, Hakodate, 040-8585, Japan
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan
| | - Shunji Tsutsui
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan
| | - Masao Koda
- Department of Orthopaedic Surgery, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan
| | - Hiroshi Takahashi
- Department of Orthopaedic Surgery, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan
| | - Satoshi Kato
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan
| | - Kanji Mori
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Tsukinowa-Cho, Seta, Otsu, Shiga, 520-2192, Japan
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan
| | - Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan
| | - Takeo Furuya
- Department of Orthopedic Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo Ward, Chiba, Chiba, 260-0856, Japan
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan
| | - Satoshi Maki
- Department of Orthopedic Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo Ward, Chiba, Chiba, 260-0856, Japan
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan
| | - Yoshiharu Kawaguchi
- Department of Orthopedic Surgery, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan
| | - Norihiro Nishida
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi Prefecture, 755-8505, Japan
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan
| | - Kazuo Kusano
- Department of Orthopedic Surgery, Kudanzaka Hospital, 1-6-12 Kudanminami, Chiyodaku, Tokyo, 102-0074, Japan
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan
| | - Hiroaki Nakashima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa Ward, Nagoya, Aichi, 466-8550, Japan
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan
| | - Yuji Yokozeki
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami Ward, Sagamihara, Kanagawa, 252-0375, Japan
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan
| | - Masashi Takaso
- Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami Ward, Sagamihara, Kanagawa, 252-0375, Japan
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo, Japan
| |
Collapse
|
12
|
Gu L, Lai Z, Zhang C, Liu Z, Huo Y, Qian Y, Wang B, Wang Z, Zhao Z, Hu W, Ma M. (-) - (11R, 12S)-mefloquine ameliorates neuropathic pain by modulating Cx36-ER stress interaction in the pain-related central nervous system in rats. Life Sci 2025; 363:123405. [PMID: 39828229 DOI: 10.1016/j.lfs.2025.123405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
AIMS To explore the specific molecular and cellular mechanisms of (-) - Mefloquine (one of Mefloquine's enantiomers) in modulating the interaction between Connexin 36 (Cx36) and endoplasmic reticulum stress (ERS) both in rats with CCI-induced neuropathic pain and in tunicamycin-induced ERS cells. MATERIALS AND METHODS The authors conducted chronic constriction injury (CCI) in rats to induce neuropathic pain and established the ERS model in SH-SY5Y cells to mimic the stress state after neuropathic pain. The study employed behavioral tests and various molecular biology techniques, including Western blot analysis, cell transfection, and co-immunoprecipitation (co-IP). KEY FINDINGS In vivo, we found that (-) - MQ treatment alleviated CCI-induced ERS to regulate the cytoplasmic Cx36 by inhibiting the activation of PERK in spinal cord and ATF-6 in hippocampus, thereby ameliorating neuropathic pain significantly. In vitro, (-) - MQ not only promoted Cx36 synthesis in the ER and inhibited the excessive transport of Cx36 from the ER to the Golgi apparatus, but also interrupted the binding of Cx36 with calmodulin (CaM), which led to diminished junction formation as indicated by the reduced over-stacking of Cx36 on the membrane of the ERS-exposed cells. Together, these findings clarified that (-) - MQ could ameliorate neuropathic pain through modulating Cx36-ERS interactions within pain-associated regions of the central nervous system in CCI rats. SIGNIFICANCE This study, for the first time, elucidated the cellular and molecular mechanisms of (-) - MQ in modulating Cx36-ERS interaction in neuropathic pain, thereby providing new therapeutic options for clinical treatment.
Collapse
Affiliation(s)
- Lingling Gu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Zelin Lai
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Cheng Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Zhili Liu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China; Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yan Huo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yu Qian
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bingying Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Zhiru Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Zheng Zhao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China.
| | - Wenhao Hu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Mingliang Ma
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China; Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
13
|
Qiu Z, Liu T, Zeng C, Yang M, Yang H, Xu X. Exploratory study on the ascending pain pathway in patients with chronic neck and shoulder pain based on combined brain and spinal cord diffusion tensor imaging. Front Neurosci 2025; 19:1460881. [PMID: 40012685 PMCID: PMC11861079 DOI: 10.3389/fnins.2025.1460881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
Objective To explore the changes in the white matter microstructure of the ascending pain conduction pathways in patients with chronic neck and shoulder pain (CNSP) using combined brain and spinal cord diffusion tensor imaging techniques, and to assess its correlation with clinical indicators and cognitive functions. Materials and methods A 3.0T MRI scanner was used to perform combined brain and spinal cord diffusion tensor imaging scans on 31 CNSP patients and 24 healthy controls (HCs), extracting the spinothalamic tract (STT) and quantitatively analyzing the fractional anisotropy (FA) and mean diffusivity (MD) which reflect the microstructural integrity of nerve fibers. Additionally, these differences were subjected to partial correlation analysis in relation to Visual Analog Scale (VAS) scores, duration of pain, Self-Rating Anxiety Scale (SAS), and Self-Rating Depression Scale (SDS). Results Compared to HCs, CNSP patients showed decreased mean FA values and increased mean MD values in bilateral intracranial STT compared to the HC group, but two-sample t-test results indicated no statistically significant differences (p > 0.05). FA values of the left STT (C2 segment, C5 segment) and right STT (C1 segment, C2 segment) were significantly decreased in bilateral cervical STTs of CNSP patients; MD values of the left STT (C1 segment, C2 segment, C5 segment) and right STT (C1 segment, C5 segment) were significantly increased (p < 0.05). Partial correlation analysis results showed that FA values of STT in CNSP patients were negatively correlated with VAS scores, duration of pain, SAS scores, and SDS scores, while MD values were positively correlated with VAS scores and duration of pain (Bonferroni p < 0.05). Conclusion This research identified that patients with CNSP exhibited reduced mean FA and increased mean MD in the bilateral intracranial STT, although these differences were not statistically significant (p > 0.05). Conversely, significant abnormalities were observed in specific segments of the bilateral cervical STT (p < 0.05), which were also correlated with variations in pain intensity, illness duration, and levels of anxiety and depression. These findings contribute a novel neuroimaging perspective to the evaluation and elucidation of the pathophysiological mechanisms underlying chronic pain in the ascending conduction pathways.
Collapse
Affiliation(s)
- Zhiqiang Qiu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tianci Liu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chengxi Zeng
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Maojiang Yang
- Department of Pain, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - HongYing Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoxue Xu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
14
|
Shi G, Hao X, Tu JF, Chen W, Fu Y, Ma X, Liu C, Li H. Electroacupuncture Regulates Macrophage Polarization to Alleviate the Neuropathic Pain Induced by Spared Nerve Injury. J Pain Res 2025; 18:663-671. [PMID: 39958577 PMCID: PMC11829581 DOI: 10.2147/jpr.s486812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/09/2025] [Indexed: 02/18/2025] Open
Abstract
Purpose The current therapeutic strategies for neuropathic pain have limited efficacy. The activation of macrophages and pro-inflammatory responses following peripheral nerve injury can effectively prevent the progression of neuropathic pain. Macrophage polarization to the M2 or M1 (respectively anti- and pro- inflammatory) phenotypes frequently occurs during neuroinflammation. Electroacupuncture (EA) therapy has been shown to exert anti-inflammatory functions in several pain models, and has thus been applied to alleviate neuropathic pain. Therefore, the present study aimed to determine whether EA could reduce neuroinflammation and induce analgesia by regulating macrophage polarization. Methods Forty-five male rats were used to create a spared nerve injury (SNI) model of peripheral nerve injury. Subsequently, EA was applied to the ipsilateral huantiao (GB30) and yanglingquan (GB34), and the von Frey assay was conducted to monitor the effect of EA on the paw withdrawal threshold. Immunofluorescence analyses were further performed to detect the effects of EA on interleukin-1β (IL-1β) expression and peripheral macrophage polarization. Results EA attenuated pain behavior (P=0.002) and decreased inflammatory cytokines derived from macrophages (P=0.002 in the sciatic nerve; P=0.002 in the dorsal root ganglion, DRG) but not in Schwann (P>0.05) or mast (P>0.05) cells in SNI rats. In addition, EA increased M2 macrophage polarization (P<0.0001 in the sciatic nerve; P=0.001 in the DRG) and decreased M1 macrophage expression (P=0.036 in the sciatic nerve; P=0.022 in the DRG). Conclusion These data revealed that EA exerted analgesia by adjusting the polarization of macrophages and inhibiting the IL-1β expressing in macrophages in SNI rats.
Collapse
Affiliation(s)
- Guangxia Shi
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xiaowan Hao
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jian-Feng Tu
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Wen Chen
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yiming Fu
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xin Ma
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Cunzhi Liu
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Hongping Li
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
15
|
Smolderen KG, Ujueta F, Buckley Behan D, Vlaeyen JWS, Jackson EA, Peters M, Whipple M, Phillips K, Chung J, Mena-Hurtado C. Understanding the Pain Experience and Treatment Considerations Along the Spectrum of Peripheral Artery Disease: A Scientific Statement From the American Heart Association. Circ Cardiovasc Qual Outcomes 2025:e000135. [PMID: 39925269 DOI: 10.1161/hcq.0000000000000135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Peripheral artery disease (PAD) is an atherosclerotic condition that affects a growing number of individuals worldwide, with estimates exceeding 220 million. One of the central hallmarks of PAD is lower extremity pain, which may present as intermittent claudication and atypical leg pain, and, in more severe cases, ischemic rest pain, neuropathic pain, or phantom limb pain in those who underwent amputation. Although the majority of individuals with PAD may experience pain that is chronic in nature, the pathogenesis and phenomenology of pain may differ. Nociceptive, inflammatory, and neuropathic mechanisms all play a role in the generation of pain. Pain in PAD results in severe disability and can copresent with distress, sickness behaviors such as avoidance and further deconditioning, and concomitant depression, anxiety, and addiction secondary to opioid use. These factors potentially lead to chronic pain interacting with a multitude of domains of functioning, including physical, emotional, and behavioral. Whereas pain is a normal adaptive response, self-defeating behaviors and cognitions contribute to the persistence or worsening of the chronic pain experience, disability, and distress. Much remains unknown about the phenomenology of pain in PAD and its clinical subgroups and how it affects outcomes. Borrowing from other chronic pain syndromes, multimodal pain management strategies that emphasize a biopsychosocial model have generated a solid evidence base for the use of cognitive behavioral approaches to manage pain. Multimodal pain management in PAD is not the norm, but theoretical pathways and road maps for further research, assessment, and clinical implementation are presented in this scientific statement.
Collapse
|
16
|
Liu Z, Hu J, Shen G. Bioinspired Intelligent Electronic Skin for Medicine and Healthcare. SMALL METHODS 2025:e2402164. [PMID: 39906020 DOI: 10.1002/smtd.202402164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Intelligent electronic skin aims to mimic, enhance, and even surpass the functions of biological skin, enabling artificial systems to sense environmental stimuli and interact more naturally with humans. In healthcare, intelligent electronic skin is revolutionizing diagnostics and personalized medicine by detecting early signs of diseases and programming exogenous stimuli for timely intervention and on-demand treatment. This review discusses latest progress in bioinspired intelligent electronic skin and its application in medicine and healthcare. First, strategies for the development of intelligent electronic skin to simulate or even surpass human skin are discussed, focusing on its basic characteristics, as well as sensing and regulating functions. Then, the applications of electronic skin in health monitoring and wearable therapies are discussed, illustrating its potential to provide early warning and on-demand treatment. Finally, the significance of electronic skin in bridging the gap between electronic and biological systems is emphasized and the challenges and future perspectives of intelligent electronic skin are summarized.
Collapse
Affiliation(s)
- Zhirong Liu
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Junhao Hu
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
17
|
Dong B, Li D, Song S, He N, Yue S, Yin S. MTOR Promotes Astrocyte Activation and Participates in Neuropathic Pain through an Upregulation of RIP3. Neurochem Res 2025; 50:93. [PMID: 39893345 PMCID: PMC11787194 DOI: 10.1007/s11064-025-04341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/27/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025]
Abstract
Neuropathic pain (NP), a chronic pain condition, is the result of abnormalities in both central and peripheral pain conduction pathways. Here, we investigated the underlying mechanisms associated with this effect. We found that following chronic constriction injury (CCI) surgery, there was an increase of mTOR in astrocytes and an activation of astrocytes within the spinal cord. Pharmacological inhibition of mTOR reversed CCI-induced hyperalgesia and neuroinflammation. Moreover, knockdown of astrocytic mTOR rescued the downregulation of spinal glutamate metabolism-related protein expression, underscoring the pivotal role of mTOR in modulating this pathway. Intriguingly, we observed that overexpression of mTOR, achieved via intrathecal administration of TSC2-shRNA, led to an upregulation of RIP3. Notably, pharmacological inhibition of RIP3, while ineffective in modulating mTOR activation, effectively eliminated the mTOR-induced astrocyte activation. Mechanistically, we found that mTOR controlled the expression of RIP3 in astrocytes through ITCH-mediated ubiquitination and an autophagy-dependent degradation. Taken together, our results reveal an unanticipated link between mTOR and RIP3 in promoting astrocyte activation, providing new avenues of investigation directed toward the management and treatment of NP.
Collapse
Affiliation(s)
- Bingru Dong
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250000, Shandong, China
- Institute of Rehabilitation Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266000, Shandong, China
| | - Danyang Li
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250000, Shandong, China
| | - Shasha Song
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250000, Shandong, China
| | - Na He
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250000, Shandong, China
| | - Shouwei Yue
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250000, Shandong, China.
| | - Sen Yin
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250000, Shandong, China.
| |
Collapse
|
18
|
Guo SJ, Shi YQ, Zheng YN, Liu H, Zheng YL. The Voltage-Gated Calcium Channel α2δ Subunit in Neuropathic Pain. Mol Neurobiol 2025; 62:2561-2572. [PMID: 39136907 DOI: 10.1007/s12035-024-04424-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/06/2024] [Indexed: 01/28/2025]
Abstract
Neuropathic pain (NP) is a chronic pain caused by injury or disease of the somatosensory nervous system, or it can be directly caused by disease. It often presents with clinical features like spontaneous pain, hyperalgesia, and dysesthesia. At present, voltage-gated calcium ion channels (VGCCs) are known to be closely related to the development of NP, especially the α2δ subunit. The α2δ subunit is a regulatory subunit of VGCCs. It exists mainly in the brain and peripheral nervous system, especially in nerve cells, and it plays a crucial part in regulating presynaptic and postsynaptic functions. Furthermore, the α2δ subunit influences neuronal excitation and pain signaling by promoting its expression and localization through binding to VGCC-related subunits. The α2δ subunit is widely used in the management of NP as a target of antiepileptic drugs gabapentin and pregabalin. Although drug therapy is one of the treatments for NP, its clinical application is limited due to the adverse reactions caused by drug therapy. Therefore, further research on the therapeutic target α2δ subunit is needed, and attempts are made to obtain an effective treatment for relieving NP without side effects. This review describes the current associated knowledge on the function of the α2δ subunit in perceiving and modulating NP.
Collapse
Affiliation(s)
- Sheng-Jie Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, 399 Changhai Road, Yangpu District, Shanghai, China
| | - Yu-Qin Shi
- Department of Sport Rehabilitation, Shanghai University of Sport, 399 Changhai Road, Yangpu District, Shanghai, China
| | - Ya-Nan Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, 399 Changhai Road, Yangpu District, Shanghai, China
| | - Hui Liu
- Department of Sport Rehabilitation, Shanghai University of Sport, 399 Changhai Road, Yangpu District, Shanghai, China
| | - Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, 399 Changhai Road, Yangpu District, Shanghai, China.
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China.
| |
Collapse
|
19
|
Du Y, Cao J, Gao C, He K, Wang S. Influence of Intraoperative Pain Management on Postoperative Delirium in Elderly Patients: A Prospective Single-Center Randomized Controlled Trial. Pain Ther 2025; 14:387-400. [PMID: 39757288 PMCID: PMC11751207 DOI: 10.1007/s40122-024-00702-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
INTRODUCTION Intraoperative analgesia and sedation are closely related to postoperative delirium. Depth of sedation based on bispectral index (BIS) guidance has been shown to reduce the occurrence of postoperative delirium (POD). However, the correlation between intraoperative analgesia levels and POD is unclear. The aim of this study was to investigate the effect of intraoperative analgesic management guided by the nociceptive stimulus index (NOX) on postoperative delirium. METHODS In this prospective single-center randomized controlled study, elderly patients aged 65 and above, who are scheduled to undergo unilateral total knee arthroplasty (TKA), were allocated into two groups: the routine monitoring group (group R), which solely monitored patient sedation levels using BIS; and the NOX monitoring group (group N), which monitored patient analgesic levels using NOX based on BIS-monitored sedation levels. The primary outcome was the incidence of postoperative delirium within 3 days after surgery, using the confusion assessment method (CAM). RESULTS From May 2022 to December 2022, a total of 240 patients were randomized; 12 were excluded because of failure to meet experimental conditions or were lost to follow-up. Patients in group N had a lower incidence rate (%) of POD on the first day compared to those in group R (8 (7%) vs 18 (16%), P = 0.041). The dosage of remifentanil administered in group N was significantly higher than that in group R (927.07 ± 268.09 vs 882.32 ± 187.91 mg, P = 0.002). CONCLUSIONS Appropriate intraoperative analgesia guided by NOX is associated with POD. When sedation levels were consistent, the incidence of POD was significantly reduced in older patients with NOX-guided analgesic management during unilateral TKA surgery.
Collapse
Affiliation(s)
- Yuhao Du
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, Anhui, China.
| | - Jiangbing Cao
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Chen Gao
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Keqiang He
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Sheng Wang
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, Anhui, China.
| |
Collapse
|
20
|
Louis MH, Legrain V, Aron V, Filbrich L, Henrard S, Barbier O, Libouton X, Mouraux D, Lambert J, Berquin A. Early CRPS Is a Heterogeneous Condition: Results From a Latent Class Analysis. Eur J Pain 2025; 29:e4785. [PMID: 39825738 DOI: 10.1002/ejp.4785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/12/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025]
Abstract
BACKGROUND Complex regional pain syndrome (CRPS) is a debilitating condition characterised by significant heterogeneity. Early diagnosis is critical, but limited data exists on the condition's early stages. This study aimed to characterise (very) early CRPS patients and explore potential subgroups to enhance understanding of its mechanisms. METHODS A total of 113 early CRPS patients were recruited, with 89 undergoing physical assessments. Data included demographic information, work-related factors, CRPS history and clinical features, body perception disturbances, quantitative sensory testing (QST), and a visuospatial attention task. RESULTS QST identified deficits in detecting thermal and mechanical stimuli, alongside increased sensitivity to thermal and blunt pressure painful stimuli. Participants reported body perception disturbances similar to those of persistent CRPS. Visuospatial biases were observed in two subgroups of patients. Latent class analysis (LCA) of 85 participants, based on five clinical parameters, identified four profiles: Mild, Moderate, Body Representation Disturbance (BRD), and Pressure Allodynia CRPS. The Mild and Moderate profiles were associated with higher-intensity trauma, with the latter showing worse outcomes. BRD and Pressure Allodynia CRPS followed mild trauma but exhibited the poorest outcomes. BRD CRPS displayed significant body perception disturbances, while Pressure Allodynia CRPS presented the highest sensitivity to pressure and psychosocial risk of chronification. Neither condition duration nor skin temperature effectively distinguished subgroups. CONCLUSIONS These findings emphasise the heterogeneity within (very) early CRPS patients and support the absence of a minimum required duration prior to the CRPS diagnosis. Central/systemic mechanisms may play critical roles in severe cases. SIGNIFICANCE This study identifies distinct (very) early CRPS profiles, suggesting different pathophysiological mechanisms and challenging traditional classifications. It paves the way for improved diagnosis and tailored treatments.
Collapse
Affiliation(s)
- Marc-Henri Louis
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
- Department of Physical and Rehabilitation Medicine, Saint-Luc University Hospital, Brussels, Belgium
| | - Valéry Legrain
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
- Psychological Sciences Research Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Louvain Bionics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Vladimir Aron
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Lieve Filbrich
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
- Health Psychology, Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Séverine Henrard
- Clinical Pharmacy & Pharmacoepidemiology Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
- Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
| | - Olivier Barbier
- Department of Orthopaedic Surgery, Saint-Luc University Hospital, Brussels, Belgium
| | - Xavier Libouton
- Department of Orthopaedic Surgery, Saint-Luc University Hospital, Brussels, Belgium
| | - Dominique Mouraux
- Department of Physical Therapy and Rehabilitation, Erasmus University Hospital, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Université Libre de Bruxelles, Brussels, Belgium
| | - Julien Lambert
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Anne Berquin
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
- Department of Physical and Rehabilitation Medicine, Saint-Luc University Hospital, Brussels, Belgium
| |
Collapse
|
21
|
López-Carrillo J, Bernáldez-Sarabia J, Pawar TJ, Jiménez S, Dueñas S, Figueroa-Montiel A, Olivares-Romero JL, Granados-Soto V, Licea-Navarro AF, Caram-Salas NL. Systemic antihyperalgesic effect of a novel conotoxin from Californiconus californicus in an inflammatory pain model. FRONTIERS IN PAIN RESEARCH 2025; 5:1500789. [PMID: 39925365 PMCID: PMC11802583 DOI: 10.3389/fpain.2024.1500789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/18/2024] [Indexed: 02/11/2025] Open
Abstract
Introduction This study explores the analgesic potential of the novel conotoxin O1_cal6.4b, derived from Californiconus californicus, as a candidate for pain management in a model of inflammatory pain. Methods O1_cal6.4b was systemically administered to Wistar rats, and its effects on thermal hyperalgesia and motor coordination were evaluated. Comparative analyses were conducted against O1_cal6.4d, ω-MVIIA, and standard analgesics (morphine, dexamethasone, and diclofenac). Structural differences between O1_cal6.4b and O1_cal6.4d were examined using in silico modeling and molecular dynamics simulations. Results Systemic administration of O1_cal6.4b significantly reduced thermal hyperalgesia in a dose-dependent manner without impairing motor coordination. The analgesic effect of O1_cal6.4b was superior to that of O1_cal6.4d, ω-MVIIA, and standard analgesics. Structural analyses revealed notable differences between O1_cal6.4b and O1_cal6.4d, suggesting unique functional properties. Discussion The findings indicate that O1_cal6.4b exhibits a promising analgesic profile with advantages over traditional opioid-based therapies. These results underscore the molecular diversity of conotoxins and highlight their potential as innovative analgesic treatments. Further research is needed to elucidate the mechanism of action of this novel conotoxin.
Collapse
Affiliation(s)
| | | | - Tushar J. Pawar
- Red de Estudios Moleculares Avanzados, Instituto de Ecología (INECOL), Xalapa, Mexico
| | - Samanta Jiménez
- Departamento de Innovación Biomédica, CICESE, Ensenada, Mexico
| | - Salvador Dueñas
- Departamento de Innovación Biomédica, CICESE, Ensenada, Mexico
| | | | | | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Alexei F. Licea-Navarro
- Departamento de Innovación Biomédica, CICESE, Ensenada, Mexico
- Dirección de Impulso a la Innovación y el Desarrollo (DIID), CICESE, Ensenada, Mexico
| | - Nadia L. Caram-Salas
- Departamento de Innovación Biomédica, CICESE, Ensenada, Mexico
- CONAHCYT. Av. Insurgentes Sur 1582, Col. Crédito Constructor, Deleg Benito Juárez, Mexico City, Mexico
| |
Collapse
|
22
|
Qi MM, Peng HY, Zhang TG, Li Y, Gao MY, Sun WB, Wang XP. NaHS modulates astrocytic EAAT2 expression to impact SNI-induced neuropathic pain and depressive-like behaviors. Sci Rep 2025; 15:2874. [PMID: 39843656 PMCID: PMC11754697 DOI: 10.1038/s41598-025-86885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
The potential role of hydrogen sulfide (H2S) in the modulation of neuropathic pain is increasingly recognized. This study investigated the therapeutic effect of intraperitoneal injection of the H2S donor sodium hydrosulfide (NaHS) on neuropathic pain. Utilizing the spared nerve injury (SNI) model in mice, the research investigates the role of astrocytes and the excitatory neurotransmitter glutamate in chronic pain. The findings reveal that sodium hydrosulfide (NaHS), an H2S donor, effectively enhances the mechanical pain threshold and thermal pain escape latency in SNI mice. The study further demonstrates NaHS's potential in reducing glutamate levels in the spinal cord and the discharge frequency of neurons in the primary somatosensory cortex hindlimb region (S1HL) brain area, suggesting a novel therapeutic approach for neuropathic pain through the modulation of astrocyte function and EAAT2 expression.
Collapse
Affiliation(s)
- Man-Man Qi
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Heng-Yue Peng
- Affiliated Stomatology Hospital of China Medical University, Shenyang, China
| | - Tian-Ge Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Meng-Ya Gao
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Wen-Bo Sun
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Xu-Peng Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| |
Collapse
|
23
|
Li Z, Jiang J, Jiang X, Xie Y, Lu J, Gu L, Hong S. Abnormal alterations in structure-function coupling at the modular level in patients with postherpetic neuralgia. Sci Rep 2025; 15:2377. [PMID: 39827190 PMCID: PMC11742715 DOI: 10.1038/s41598-025-86908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
To investigate the presence of modular loss of coupling and abnormal alterations in functional and structural networks in the brain networks of patients with postherpetic neuralgia (PHN). We collected resting-state functional magnetic resonance imaging data and diffusion tensor imaging data from 82 healthy controls (HCs) and 71 PHN patients, generated structural connectivity (SC) and functional connectivity (FC) networks, and assessed the corresponding clinical information assessment. Based on AAL(90) mapping, the brain network was divided into 9 modules, and the structural-functional connectivity (SC-FC) coupling was compared at the whole-brain level and within the modules, as well as alterations in the topological properties of the brain network in the patient group. Finally, correlation analyses were performed using the following clinical scales: Visual Analogue Scale (VAS), Hamilton Anxiety Scale (HAMA), and Hamilton Depression Scale (HAMD). Compared with HCs, patients with PHN had reduced global efficiency (Eg) and local efficiency (Eloc) of structural and functional networks. The FC in the PHN group presented abnormal node clustering coefficients (NCp), local node efficiencies (NLe), and node efficiencies (Ne), and the SC presented abnormal node degrees (Dc), NCp, NLe, characteristic path lengths (NLp), and Ne. In addition, SC-FC coupling was reduced in the patient default network (DMN), salient network (SN), and visual network (VIS). Moreover, the degree of impairment of graph theory indicators was significantly positively correlated with scales such as VAS scores, and the coupling of modules was significantly negatively correlated with the early course of the patient's disease. Large-scale impaired topological properties of the FC and SC networks were observed in patients with PHN, and SC-FC decoupling was detected in these modules of the DMN, SN, and VIS. These aberrant alterations may have led to over-transmission of pain information or central sensitization of pain.
Collapse
Affiliation(s)
- Zihan Li
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, China
- Neuroimaging Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, China
| | - Jian Jiang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, China
- Neuroimaging Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, China
| | - Xiaofeng Jiang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, China
- Neuroimaging Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, China
| | - Yangyang Xie
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, China
- Neuroimaging Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, China
| | - Jing Lu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, China
- Neuroimaging Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, China
| | - Lili Gu
- Department of Pain, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Shunda Hong
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, China.
- Neuroimaging Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, China.
| |
Collapse
|
24
|
Sayegh RR, Vitale S, Agrón E, Farrar JT, Asbell PA, Chew EY. Prevalence and risk factors for the development of chronic postoperative pain after cataract surgery in the Age-related Eye Disease Study (AREDS). THE JOURNAL OF PAIN 2025; 28:104790. [PMID: 39826679 DOI: 10.1016/j.jpain.2025.104790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Chronic ocular pain impacts quality of life and is often linked to ocular surgery. We assessed the prevalence of chronic postoperative pain (CPOP) after cataract surgery and associated risk factors using a secondary cohort post-hoc analysis of data from the Age-Related Eye Disease Study (AREDS), a multicenter, controlled, randomized clinical trial of antioxidant vitamins and minerals. Ocular pain was determined from item 4 of the National Eye Institute Visual Function Questionnaire (NEI-VFQ-25), administered between 1997 and 2005. We included participants who underwent cataract surgery during the study and reported no or mild ocular pain before first-eye cataract surgery (n=325). Controls (n=283) reported no or mild ocular pain 3 or more months after first-eye cataract surgery; cases (n=42) reported moderate or severe pain 3 or more months after first-eye cataract surgery. Multivariable logistic regression models assessed associations between potential risk factors (age, sex, body mass index, smoking, diabetes, education level, use of anti-inflammatory agents, use of antacids, general health, AREDS treatment group) and CPOP. Of the 325 participants (mean age, 69.7±4.4 years, 59.4 % female); CPOP developed in 42 (13 %; 95 % CI, 9.3 - 16.6 %). The average time between cataract surgery and the post-surgery VFQ was 18.4±11.8 months (range 3.0 - 65.0 months). Multivariable analysis did not reveal any statistically significant associations with odds of developing CPOP after cataract surgery. As such, in this AREDS cohort who underwent cataract surgery, 13% developed CPOP, consistent with previous reports from cataract and refractive surgery. Our post-hoc analyses did not identify any significant risk factors for CPOP. PERSPECTIVE: We found a high prevalence of Chronic Postoperative Pain (CPOP) in the AREDS cohort, with 13 % of participants who underwent cataract surgery developing CPOP. Post-hoc analysis did not identify significant risk factors for CPOP. Our study contributes valuable insights into a growing area of interest in pain management within ophthalmology.
Collapse
Affiliation(s)
- Rony R Sayegh
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States.
| | - Susan Vitale
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Elvira Agrón
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - John T Farrar
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
25
|
Wang Z, Tang P, Dou C, Shen J, Peng N, Li Y, Wang J, Chen X. Quantification of crisugabalin (HSK16149) in biological matrix by LC-MS/MS method: An application to rat pharmacokinetic and tissue distribution studies. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1251:124396. [PMID: 39642454 DOI: 10.1016/j.jchromb.2024.124396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Crisugabalin (HSK16149), a novel VGCC α2δ ligand, has been approved for the treatment of adult diabetic peripheral neuropathic pain (DPNP) and postherpetic neuralgia (PHN). In this study, an LC-MS/MS method was developed for the determination of crisugabalin in rat plasma and tissues homogenate. Samples were extracted by protein precipitation and separated on a Hypersil GOLD aQ column with methanol and 2 mM ammonium acetate in water containing 0.1 % formic acid as mobile phase. Crisugabalin and its internal standard HSK7891 were ionized by electrospray ionization source and detected by multiple reaction monitoring with transitions of m/z 210.9 → 134.4 and m/z 246.0 → 129.3. Over the range of 0.0100-10.0 μg/mL, the selectivity, linearity, precision and accuracy, matrix effect, stability, recovery and dilution integrity of crisugabalin were validated in rat plasma. Validation was also performed in rat liver homogenate at concentrations ranging from 0.0200-20.0 μg/g. The method was then successfully applied to determine the pharmacokinetics and tissue distribution of crisugabalin. In rats, orally administered crisugabalin was completely and rapidly absorbed with a peak time of about 0.57 h, and was mainly distributed to kidney, bladder and liver tissues. Crisugabalin exhibited linear pharmacokinetics over the oral dose range of 3-30 mg/kg.
Collapse
Affiliation(s)
- Zeyu Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Pingming Tang
- Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, PR China
| | - Caixia Dou
- Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, PR China
| | - Jiale Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Ni Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Yao Li
- Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, PR China
| | - Ju Wang
- Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, PR China.
| | - Xiaoyan Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
26
|
Sudo SZ, Montagnoli TL, Dematté BE, Santos AD, Trachez MM, Gubert F, Mendez-Otero R, Zapata-Sudo G. Intranasal Administration of the Combination of Dextro-Ketamine and Dexmedetomidine for Treatment of Diabetic Neuropathic Pain in Rats. J Pain Res 2025; 18:127-136. [PMID: 39816206 PMCID: PMC11732753 DOI: 10.2147/jpr.s480894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/28/2024] [Indexed: 01/18/2025] Open
Abstract
Introduction Diabetes mellitus (DM) has become a public health problem, which is associated with high morbidity and mortality, due to the chronic complications, such as diabetic neuropathy. Current recommendations for the treatment of neuropathic pain achieve a reduction of 30% in only 30% of cases. Therefore, it is necessary to identify new therapeutic approaches to improve the quality of life of diabetic patients. Methods This work evaluated the antinociceptive effect of intranasal administration of the combination of dextro-ketamine (keta), a non-competitive glutamatergic receptor antagonist, and dexmedetomidine (DEX), a selective alpha2-adrenergic agonist, in rats with neuropathic pain induced by streptozotocin-DM. Results The thermal hyperalgesia and mechanical allodynia observed in DM model are reduced with the intranasal administration of the combination of keta and DEX (200 + 0.10 μg/kg) after 3 days of treatment. The antinociceptive action could be due to reduction of Ca2+ influx with lower glutamate release and reduced excitability through the activation of alpha2-adrenergic receptors by DEX and reduction of NMDA receptor activation by glutamate with lower excitability due to the antagonism produced by keta. DM induced increased expression of glial fibrillary acid protein (GFAP) and tumor necrosis factor-alpha (TNF-alpha) detected by immunohistochemistry, indicating greater astrocyte activity and intense inflammatory response. Intranasal administration for 10 days of the combination of low doses of keta and DEX promoted an intense decrease in the expression of both GFAP and TNF-alpha, indicating lower activation of astrocytes in the spinal cord and reduced production and release of TNF-alpha, favoring the reduction of inflammation. Conclusion Intranasal administration of low doses of keta with DEX could be a new therapeutic approach to reduce neuropathic pain and consequently improve the quality of life of diabetic patients.
Collapse
Affiliation(s)
- Susumu Zapata Sudo
- Programa de Pós-Graduação em Medicina (Cirurgia Geral), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tadeu Lima Montagnoli
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Eduardo Dematté
- Programa de Pós-Graduação em Medicina (Cardiologia), Instituto do Coração Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aimeé Diogenes Santos
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Margarete Manhães Trachez
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Gubert
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pós-Graduação em Medicina (Cirurgia Geral), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Medicina (Cardiologia), Instituto do Coração Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Shehab S, Hamad MIK, Emerald BS. A novel approach to completely alleviate peripheral neuropathic pain in human patients: insights from preclinical data. Front Neuroanat 2025; 18:1523095. [PMID: 39839257 PMCID: PMC11747518 DOI: 10.3389/fnana.2024.1523095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025] Open
Abstract
Neuropathic pain is a pervasive health concern worldwide, posing significant challenges to both clinicians and neuroscientists. While acute pain serves as a warning signal for potential tissue damage, neuropathic pain represents a chronic pathological condition resulting from injury or disease affecting sensory pathways of the nervous system. Neuropathic pain is characterized by long-lasting ipsilateral hyperalgesia (increased sensitivity to pain), allodynia (pain sensation in response to stimuli that are not normally painful), and spontaneous unprovoked pain. Current treatments for neuropathic pain are generally inadequate, and prevention remains elusive. In this review, we provide an overview of current treatments, their limitations, and a discussion on the potential of capsaicin and its analog, resiniferatoxin (RTX), for complete alleviation of nerve injury-induced neuropathic pain. In an animal model of neuropathic pain where the fifth lumbar (L5) spinal nerve is unilaterally ligated and cut, resulting in ipsilateral hyperalgesia, allodynia, and spontaneous pain akin to human neuropathic pain. The application of capsaicin or RTX to the adjacent uninjured L3 and L4 nerves completely alleviated and prevented mechanical and thermal hyperalgesia following the L5 nerve injury. The effects of this treatment were specific to unmyelinated fibers (responsible for pain sensation), while thick myelinated nerve fibers (responsible for touch and mechanoreceptor sensations) remained intact. Here, we propose to translate these promising preclinical results into effective therapeutic interventions in humans by direct application of capsaicin or RTX to adjacent uninjured nerves in patients who suffer from neuropathic pain due to peripheral nerve injury, following surgical interventions, diabetic neuropathy, trauma, vertebral disc herniation, nerve entrapment, ischemia, postherpetic lesion, and spinal cord injury.
Collapse
Affiliation(s)
- Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | | |
Collapse
|
28
|
Tappe-Theodor A, Martin TJ, Negus SS. Editorial: Preclinical animal models and measures of pain: improving predictive validity for analgesic drug development - volume II. FRONTIERS IN PAIN RESEARCH 2025; 5:1523938. [PMID: 39839197 PMCID: PMC11747322 DOI: 10.3389/fpain.2024.1523938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Affiliation(s)
- Anke Tappe-Theodor
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Thomas J. Martin
- Pain Mechanisms Laboratory, Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - S. Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
29
|
Sun Y, Tao Y, Cao J, Zhang Y, Huang Z, Wang S, Lu W, Zhu Q, Shan L, Jiang D, Zhang Y, Tao J. H3K27 Trimethylation-Mediated Downregulation of miR-216a-3p in Sensory Neurons Regulates Neuropathic Pain Behaviors via Targeting STIM1. J Neurosci 2025; 45:e0607242024. [PMID: 39592234 DOI: 10.1523/jneurosci.0607-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Although the therapeutic potential of microRNA-mediated gene regulation has been investigated, its precise functional regulatory mechanism in neuropathic pain remains incompletely understood. In this study, we elucidate that miR-216a-3p serves as a critical noncoding RNA involved in the modulation of trigeminal-mediated neuropathic pain. By conducting RNA-seq and qPCR analysis, we observed a notable decrease of miR-216a-3p in the injured trigeminal ganglia (TG) of male rats. Intra-TG administration of miR-216a-3p agomir or lentiviral-mediated overexpression of miR-216a-3p specifically in sensory neurons of injured TGs alleviated established neuropathic pain behaviors, while downregulation of miR-216a-3p (pharmacologically or genetically) in naive rats induced pain behaviors. Moreover, nerve injury significantly elevated the histone H3 lysine-27 (H3K27) trimethylation (H3K27me3) levels in the ipsilateral TG, thereby suppressing the SRY-box TF 10 (SOX10) binding to the miR-216a-3p promoter and resulting in the reduction of miR-216a-3p. Inhibiting the enzymes responsible for catalyzing H3K27me3 restored the nerve injury-induced reduction in miR-216a-3p expression and markedly ameliorated neuropathic pain behaviors. Furthermore, miR-216a-3p targeted stromal interaction molecule 1 (STIM1), and the decreased miR-216a-3p associated with neuropathic pain caused a significant upregulation in the protein abundance of STIM1. Conversely, overexpression of miR-216a-3p in the injured TG suppressed the upregulation of STIM1 expression and reversed the mechanical allodynia. Together, the mechanistic understanding of H3K27me3-dependent SOX10/miR-216a-3p/STIM1 signaling axial in sensory neurons may facilitate the discovery of innovative therapeutic strategies for neuropathic pain management.
Collapse
Affiliation(s)
- Yufang Sun
- Department of Geriatrics, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yu Tao
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Junping Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yaqun Zhang
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Zitong Huang
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Shoupeng Wang
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Weiwei Lu
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Qi Zhu
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Lidong Shan
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Dongsheng Jiang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich 81377, Germany
| | - Yuan Zhang
- Department of Geriatrics, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Jin Tao
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
30
|
Wu H, Zhu L, Geng X, Guo X, Wang T, Xu J, Jiang L, Zhang W. miR-363-5p protects from neuropathic pain in chronic constriction injury (CCI) rat models and regulates Schwann cell injury via negatively modulating SERPING1. Neurol Res 2025; 47:35-43. [PMID: 39663908 DOI: 10.1080/01616412.2024.2438613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
OBJECTIVES Due to the complex and unclear pathogenesis of neuropathic pain, there is a lack of effective therapeutic strategy. miR-363-5p was considered of great potential in mediating the development of neuropathic pain, which has not been confirmed with direct evidence. This study evaluated the role of miR-363-5p in neuropathic pain with animal and cell models, aiming to reveal the potential of miR-363-5p in target therapy of neuropathic pain. METHODS Chronic constriction injury (CCI) rat models were established as the neuropathic pain model. The expression of miR-363-5p and its target was evaluated by PCR. The painology behaviors were evaluated to assess the function of miR-363-5p. Schwann cells were induced with LPS mimicking cell injury during neuropathic pain. Inflammation and cell growth were estimated by ELISA and CCK8 assays. RESULTS Significant downregulation of miR-363-5p and upregulation of SERPING1 were observed in CCI rats. miR-363-5p negatively regulated SERPING1 in CCI rats and LPS-induced Schwann cells. Overexpressing miR-363-5p could improve pain threshold and alleviate inflammation in CCI rats. It also a ttenuated LPS-induced inflammation and reduced proliferation in Schwann cells. The overexpression of SERPING1 could reverse the protective effect of miR-363-5p on CCI rats and LPS-induced Schwann cell injury. CONCLUSION miR-363-5p protected from neuropathic pain via alleviating Schwann cell injury by negatively modulating SERPING1.
Collapse
Affiliation(s)
- Huihui Wu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai, China
| | - Liang Zhu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Geng
- Department of Pain, Dongying People's Hospital, Dongying, Shandong, China
| | - Xiaona Guo
- Department of Pain, Dongying People's Hospital, Dongying, Shandong, China
| | - Tingting Wang
- Department of Pain, Dongying People's Hospital, Dongying, Shandong, China
| | - Jingjing Xu
- Department of Pain, Dongying People's Hospital, Dongying, Shandong, China
| | - Linkai Jiang
- Department of Pain, Dongying People's Hospital, Dongying, Shandong, China
| | - Weibo Zhang
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| |
Collapse
|
31
|
Zhang B, Shi X, Liu X, Liu Y, Li X, Wang Q, Huang D, Zhao W, Cui J, Cao Y, Chai X, Wang J, Zhang Y, Wang X, Jia Q. Discovery of E0199: A novel compound targeting both peripheral Na V and K V7 channels to alleviate neuropathic pain. J Pharm Anal 2025; 15:101132. [PMID: 39906690 PMCID: PMC11791318 DOI: 10.1016/j.jpha.2024.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 02/06/2025] Open
Abstract
This research study focuses on addressing the limitations of current neuropathic pain (NP) treatments by developing a novel dual-target modulator, E0199, targeting both NaV1.7, NaV1.8, and NaV1.9 and KV7 channels, a crucial regulator in controlling NP symptoms. The objective of the study was to synthesize a compound capable of modulating these channels to alleviate NP. Through an experimental design involving both in vitro and in vivo methods, E0199 was tested for its efficacy on ion channels and its therapeutic potential in a chronic constriction injury (CCI) mouse model. The results demonstrated that E0199 significantly inhibited NaV1.7, NaV1.8, and NaV1.9 channels with a particularly low half maximal inhibitory concentration (IC50) for NaV1.9 by promoting sodium channel inactivation, and also effectively increased KV7.2/7.3, KV7.2, and KV7.5 channels, excluding KV7.1 by promoting potassium channel activation. This dual action significantly reduced the excitability of dorsal root ganglion neurons and alleviated pain hypersensitivity in mice at low doses, indicating a potent analgesic effect without affecting heart and skeletal muscle ion channels critically. The safety of E0199 was supported by neurobehavioral evaluations. Conclusively, E0199 represents a ground-breaking approach in NP treatment, showcasing the potential of dual-target small-molecule compounds in providing a more effective and safe therapeutic option for NP. This study introduces a promising direction for the future development of NP therapeutics.
Collapse
Affiliation(s)
- Boxuan Zhang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiaoxing Shi
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xingang Liu
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yan Liu
- Department of Pharmaceutical Experimental Teaching Center, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xuedong Li
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qi Wang
- Shijiazhuang Xianyu Digital Biotechnology Co., Ltd., College of Software, Hebei Normal University, Shijiazhuang, 050024, China
| | - Dongyang Huang
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Weidong Zhao
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Junru Cui
- The Center for New Drug Safety Evaluation and Research, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yawen Cao
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xu Chai
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jiahao Wang
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yang Zhang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiangyu Wang
- Hebei Medical University Postdoctoral Mobile Station of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
- Departments of Clinic Pharmacy, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qingzhong Jia
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| |
Collapse
|
32
|
Thomas J, Fauchon C, Oriol N, Vassal F, Créac'h C, Quesada C, Peyron R. Effects of multiple transcranial magnetic stimulation sessions on pain relief in patients with chronic neuropathic pain: A French cohort study in real-world clinical practice. Eur J Pain 2025; 29:e4763. [PMID: 39655628 PMCID: PMC11629460 DOI: 10.1002/ejp.4763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Current clinical trials indicate that repetitive transcranial magnetic stimulation (rTMS) is effective in reducing drug-resistant neuropathic pain (NP). However, there is a lack of studies evaluating the long-term feasibility and clinical efficacy of rTMS in large patient cohorts in real-world conditions. METHODS In this retrospective cohort study, we analysed 12 years of clinical data to assess the long-term analgesic effects of 20 Hz rTMS over the primary motor cortex in patients with NP. Subgroup analyses were conducted to identify predictive factors and assess the potential role of epidural motor cortex stimulation (eMCS) as a sustained solution. RESULTS In total, 193 patients completed test period of 4 rTMS sessions and 42% of them reported a pain relief (PR) greater than 30%, with concurrent improvement in their most disabling symptom. Iterative rTMS sessions maintained analgesic effects over 10 years in certain patients identified as responders (≥10% PR) without adverse effects. Success probability was higher in patients with central NP compared to peripheral NP (OR = 2.03[1.04;4.00]), and among those with central post-stroke pain, this probability was higher in ischemic versus hemorrhagic strokes (OR = 3.36[1.17;10.05]). PR obtained with iterative rTMS sessions was an excellent predictor of eMCS efficacy. CONCLUSIONS While rTMS shows promise as a therapeutic option for some patients with drug-resistant NP, it does not benefit all patients. Efficacy varies by NP aetiology, aiding patient selection. For responders, eMCS may offer a permanent solution. These findings support a tailored approach to rTMS in NP management, while recognizing both its potential and limitations across diverse patient profiles. SIGNIFICANCE STATEMENT Multiple rTMS sessions demonstrate long-term efficacy and safety in treating drug-resistant neuropathic pain. Extending session numbers for the test period can enhance responder identification, especially in patients with initial low pain relief. This identification refines patient selection for neurosurgery, reducing non-responders. Central neuropathic pain shows higher success rates than peripheral. For post-stroke central pain, patients with ischemic stroke are more likely to respond than those with hemorrhagic stroke. These results support integrating rTMS into clinical practice for managing neuropathic pain.
Collapse
Affiliation(s)
- Joy Thomas
- Inserm U1028 NeuropainUniversité Jean‐Monnet, F‐42023, Saint‐Etienne and Centre de Recherche en Neurosciences de Lyon (CRNL) UMR5292Saint‐Etienne et LyonFrance
| | - Camille Fauchon
- Inserm U1028 NeuropainUniversité Jean‐Monnet, F‐42023, Saint‐Etienne and Centre de Recherche en Neurosciences de Lyon (CRNL) UMR5292Saint‐Etienne et LyonFrance
| | - Nicolas Oriol
- Inserm U1028 NeuropainUniversité Jean‐Monnet, F‐42023, Saint‐Etienne and Centre de Recherche en Neurosciences de Lyon (CRNL) UMR5292Saint‐Etienne et LyonFrance
- Centre Stéphanois de la Douleur et Département de NeurologieCentre Hospitalier Régional Universitaire de Saint‐EtienneSaint‐EtienneFrance
| | - François Vassal
- Inserm U1028 NeuropainUniversité Jean‐Monnet, F‐42023, Saint‐Etienne and Centre de Recherche en Neurosciences de Lyon (CRNL) UMR5292Saint‐Etienne et LyonFrance
- Service de NeurochirurgieCentre Hospitalier Régional Universitaire de Saint‐EtienneSaint‐EtienneFrance
| | - Christelle Créac'h
- Inserm U1028 NeuropainUniversité Jean‐Monnet, F‐42023, Saint‐Etienne and Centre de Recherche en Neurosciences de Lyon (CRNL) UMR5292Saint‐Etienne et LyonFrance
- Centre Stéphanois de la Douleur et Département de NeurologieCentre Hospitalier Régional Universitaire de Saint‐EtienneSaint‐EtienneFrance
| | - Charles Quesada
- Inserm U1028 NeuropainUniversité Jean‐Monnet, F‐42023, Saint‐Etienne and Centre de Recherche en Neurosciences de Lyon (CRNL) UMR5292Saint‐Etienne et LyonFrance
| | - Roland Peyron
- Inserm U1028 NeuropainUniversité Jean‐Monnet, F‐42023, Saint‐Etienne and Centre de Recherche en Neurosciences de Lyon (CRNL) UMR5292Saint‐Etienne et LyonFrance
- Centre Stéphanois de la Douleur et Département de NeurologieCentre Hospitalier Régional Universitaire de Saint‐EtienneSaint‐EtienneFrance
| |
Collapse
|
33
|
Wright NJ, Matsuoka Y, Park H, He W, Webster CG, Furutani K, Fedor JG, McGinnis A, Zhao Y, Chen O, Bang S, Fan P, Spasojevic I, Hong J, Ji RR, Lee SY. Design of an equilibrative nucleoside transporter subtype 1 inhibitor for pain relief. Nat Commun 2024; 15:10738. [PMID: 39737929 DOI: 10.1038/s41467-024-54914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/21/2024] [Indexed: 01/01/2025] Open
Abstract
The current opioid crisis urgently calls for developing non-addictive pain medications. Progress has been slow, highlighting the need to uncover targets with unique mechanisms of action. Extracellular adenosine alleviates pain by activating the adenosine A1 receptor (A1R). However, efforts to develop A1R agonists have faced obstacles. The equilibrative nucleoside transporter subtype 1 (ENT1) plays a crucial role in regulating adenosine levels across cell membranes. We postulate that ENT1 inhibition may enhance extracellular adenosine levels, potentiating endogenous adenosine action at A1R and leading to analgesic effects. Here, we modify the ENT1 inhibitor dilazep based on its complex X-ray structure and show that this modified inhibitor reduces neuropathic and inflammatory pain in animal models while dilazep does not. Notably, our ENT1 inhibitor surpasses gabapentin in analgesic efficacy in a neuropathic pain model. Additionally, our inhibitor exhibits less cardiac side effect than dilazep via systemic administration and shows no side effects via local/intrathecal administration. ENT1 is colocalized with A1R in mouse and human dorsal root ganglia, and the analgesic effect of our inhibitor is linked to A1R. Our studies reveal ENT1 as a therapeutic target for analgesia, highlighting the promise of rationally designed ENT1 inhibitors for non-opioid pain medications.
Collapse
Affiliation(s)
- Nicholas J Wright
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yutaka Matsuoka
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Hyeri Park
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Wei He
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Kenta Furutani
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Justin G Fedor
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yiquan Zhao
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ping Fan
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
- Pharmacokinetics/Pharmacodynamics (PK/PD) Core Laboratory, Duke Cancer Institute, Durham, NC, 27710, USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
- Pharmacokinetics/Pharmacodynamics (PK/PD) Core Laboratory, Duke Cancer Institute, Durham, NC, 27710, USA
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC, 27708, USA.
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
34
|
Chen R, Wang D, Chen Z, Li J, Zhang C, Xu C, Wang Y, Li R. Comprehensive nursing care improves symptoms and quality of life in elderly patients with postherpetic neuralgia. Sci Rep 2024; 14:30650. [PMID: 39730331 DOI: 10.1038/s41598-024-69949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 08/12/2024] [Indexed: 12/29/2024] Open
Abstract
This study evaluates the clinical impact of comprehensive nursing care on senior patients suffering from postherpetic neuralgia (PHN), a chronic neuropathic pain condition resulting from the reactivation of the varicella-zoster virus. A total of 102 elderly patients diagnosed with PHN and treated at our hospital were divided into two groups: the control group, which received conventional nursing care, and the intervention group, which received comprehensive nursing care. Comparative analyses were conducted on pain levels, sleep quality, symptoms of depression and anxiety before and after the intervention. After a two-month period of nursing care, both groups exhibited a significant reduction in pain levels (p < 0.05), with the intervention group demonstrating a more substantial decrease (p < 0.001). Sleep quality improved in both groups (p < 0.05), with the intervention group showing a significantly greater improvement (p < 0.05). Additionally, the intervention group experienced a notable reduction in anxiety and depression ratings compared to the control group. Comprehensive nursing care interventions may effectively alleviate clinical symptoms, and diminish levels of depression and anxiety, while improving sleep quality in elderly patients with PHN. These findings underscore the potential benefits of employing a comprehensive approach to managing PHN in the elderly population.
Collapse
Affiliation(s)
- Rui Chen
- Department of Dermatology, Xiang Yang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, Hubei, People's Republic of China
| | - Donghua Wang
- Department of Colorectal and Anal Surgery, Xiang Yang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, Hubei, People's Republic of China
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 441000, People's Republic of China
| | - Juan Li
- Department of Dermatology, Xiang Yang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, Hubei, People's Republic of China
| | - Caiyun Zhang
- Department of Dermatology, Xiang Yang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, Hubei, People's Republic of China
| | - Chengting Xu
- Department of Dermatology, Xiang Yang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, Hubei, People's Republic of China
| | - Yuzheng Wang
- Department of Colorectal and Anal Surgery, Xiang Yang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, Hubei, People's Republic of China.
| | - Ronghui Li
- Department of Geriatrics, Xiang Yang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441000, People's Republic of China.
| |
Collapse
|
35
|
Wang Z, Jia S, Kang X, Chen S, Zhang L, Tian Z, Liang X, Meng C. Isoliquiritigenin alleviates neuropathic pain by reducing microglia inflammation through inhibition of the ERK signaling pathway and decreasing CEBPB transcription expression. Int Immunopharmacol 2024; 143:113536. [PMID: 39488922 DOI: 10.1016/j.intimp.2024.113536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Natural compounds are invaluable for their therapeutic effects in treating various diseases. Isoliquiritigenin (ISL) stands out due to its potent anti-inflammatory and antioxidative properties, offering significant therapeutic effects in many diseases. However, there is currently no existing literature on the role of ISL in neuropathic pain treatment. METHODS We used lipopolysaccharide to stimulate BV-2 microglia in order to evaluate the inhibitory effects of ISL on neuroinflammation. Proteomics data and protein-protein interaction network analysis were used to identify differential proteins expressed in BV-2 microglia treated with ISL. This allowed for the identification of targets impacted by ISL action. Additionally, we assessed the analgesic efficacy of ISL in a mouse model of chronic constriction injury of the sciatic nerve (CCI) and investigated its inhibitory influence on pro-inflammatory cytokine production and spinal microglia activation. RESULTS Our results indicate that ISL efficiently inhibits BV-2 microglia activation and pro-inflammatory cytokine expression. Furthermore, CEBPB has been recognized as a possible target for ISL activity. Crucially, microglia activation was successfully reduced by CEBPB knockdown. Functional recovery tests carried out later on validated that ISL works by specifically inhibiting the ERK/CEBPB signaling pathway. In vivo studies showed that giving mice ISL reduces the mechanical and thermal pain caused on by chronic contraction injuries. CONCLUSION The analgesic effect of ISL on neuropathic pain primarily stems from its ability to inhibit the activation of spinal microglia and neuroinflammation. This mechanism may be attributed to the capacity of ISL to suppress microglial activation, reduce the expression of pro-inflammatory cytokines by inhibiting the ERK signaling pathway, and decrease transcriptional expression of CEBPB.
Collapse
Affiliation(s)
- Zikun Wang
- Department of Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117, China
| | - Shu Jia
- Department of Clinical Research Team of Spine & Spinal Cord Diseases, Medical Research Center, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272000, China
| | - Xizhi Kang
- Department of Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117, China
| | - Shang Chen
- Department of Clinical Research Team of Spine & Spinal Cord Diseases, Medical Research Center, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272000, China
| | - Lu Zhang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 129 Hehua Road, Jining, Shandong 272000, China
| | - ZhiKang Tian
- Department of Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Xiao Liang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 129 Hehua Road, Jining, Shandong 272000, China
| | - Chunyang Meng
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 129 Hehua Road, Jining, Shandong 272000, China.
| |
Collapse
|
36
|
Wu L, Ning P, Liang Y, Wang T, Chen L, Lu D, Tang H. Methyltransferase METTL3 regulates neuropathic pain through m6A methylation modification of SOCS1. Neuropharmacology 2024; 261:110176. [PMID: 39357736 DOI: 10.1016/j.neuropharm.2024.110176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
The mechanisms of neuropathic pain (NP) are considered multifactorial. Alterations in the suppressor of cytokine signaling 1 (SOCS1) play a critical role in neural damage and inflammation. Epigenetic RNA modifications, specifically N6-methyladenosine (m6A) methylation, have increasingly been observed to impact the nervous system. Nevertheless, there is a scarcity of studies investigating the connection between m6A methylation and SOCS1 in the molecular mechanisms of NP. This study investigates the roles and potential mechanisms of the m6A methyltransferase like 3 (METTL3) and SOCS1 in female rats with spinal nerve ligation (SNL)-induced NP. It was found that in NP, both METTL3 and overall m6A levels were downregulated, leading to the activation of pro-inflammatory cytokines, such as interleukin-1β, interleukin 6, and tumor necrosis factor-α. Notably, The SOCS1 mRNA is significantly enriched with m6A methylation modifications, with the most prevalent m6A methyltransferase METTL3 stabilizing the downregulation of SOCS1 by targeting m6A methylation modifications at positions 151, 164, and 966.Exogenous supplementation of METTL3 improved NP-related neuroinflammation and behavioral dysfunctions, but these effects could be reversed by the absence of SOCS1. Additionally, the depletion of endogenous SOCS1 promoted NP progression by inducing the toll-like receptor 4 (TLR4) signaling pathway. The dysregulation of METTL3 and the resulting m6A modification of SOCS1 form a crucial epigenetic regulatory loop that promotes the progression of NP. Targeting the METTL3/SOCS1 axis might offer new insights into potential therapeutic strategies for NP.
Collapse
Affiliation(s)
- Liping Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China; The First Clinical College of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Peng Ning
- The First Clinical College of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Yingye Liang
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Tianyi Wang
- The First Clinical College of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Lingnv Chen
- The First Clinical College of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Dongming Lu
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Hongliang Tang
- Guangxi University of Traditional Chinese Medicine Affiliated Fangchenggang Hospital, Fangchenggang, China.
| |
Collapse
|
37
|
Gao C, Yang T, Shu J, Gao X, Meng C. Overexpression of miR-133a-3p reduces microglia activation by binding to GCH1, alleviating neuroinflammation and neuropathic pain. Exp Brain Res 2024; 243:23. [PMID: 39666013 DOI: 10.1007/s00221-024-06956-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/25/2024] [Indexed: 12/13/2024]
Abstract
Neuropathic pain is a chronic pain condition that is primarily caused by underlying neurological damage and dysfunction. Recent studies have identified microRNAs (miRNAs) as a key factor in the treatment of neuropathic pain. To explore the effects of miR-133a-3p on neuroinflammation and neuropathic pain via GTP cyclohydrolase (GCH1), and its underlying mechanisms. In vitro models were constructed using BV-2 cells that had been treated with lipopolysaccharide, followed by treatment with either miR-133a-3p mimic or GCH1 viral knockdown/overexpression. The expression of miR-133a-3p and GCH1 in BV-2 cells was quantified by RT-qPCR. The degree of neuroinflammation was quantified using an enzyme-linked immunosorbent assay (ELISA). The targeting relationship between miR-133a-3p and GCH1 was confirmed by western blot and dual luciferase reporter assay. A chronic constriction injury model was employed to induce neuropathic pain in rats, and the mechanical withdrawal threshold (MWT) was quantified. Immunofluorescence was used to demonstrate alterations in microglial cells. The expression of miR-133a-3p was found to be decreased in lipopolysaccharide-induced BV-2 cells. The overexpression of miR-133a-3p was observed to inhibit the expression of IL-1β, IL-6, TNF-α and iNOS, which was attributed to a reduction in GCH1.Nevertheless, OE-GCH1 could partially reverse the downregulation by miR-133a-3p of the expression of inflammatory factors. In animal experiments, intrathecal injection of AVV-miR-133a-3p was observed to alleviate mechanical nociceptive abnormalities induced by activated microglia. Furthermore, miR-133a-3p ameliorated neuroinflammation in the spinal cord of chronic constriction injury rats. In summary, miR-133a-3p improves neuroinflammation and neuropathic pain by binding to GCH1. The binding of miR-133a-3p to GCH1 has been demonstrated to improve neuroinflammation and neuropathic pain.This insight will facilitate the development of new methods to effectively treat neuropathic pain.
Collapse
Affiliation(s)
- Chengcan Gao
- Department of Surgery, Jining No. 1 People's Hospital, Jining, 272000, Shandong, China
| | - Tao Yang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272000, Shandong Province, China
| | - Jia Shu
- The Central Laboratory of Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272000, Shandong Province, China
| | - Xu Gao
- Department of Orthopaedic Surgery, Qingdao University, Qingdao City, 266071, China
| | - Chunyang Meng
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272000, Shandong Province, China.
| |
Collapse
|
38
|
Deng C, Yuan X, Lin X, Liu S. MiR-200a-3p Attenuates Neuropathic Pain by Suppressing the Bromodomain-Containing Protein 3-Nuclear Factor-κB Pathway. J Biochem Mol Toxicol 2024; 38:e70041. [PMID: 39651616 DOI: 10.1002/jbt.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/14/2024] [Accepted: 10/18/2024] [Indexed: 12/11/2024]
Abstract
MicroRNAs (miRNAs) have key roles in the pathological processes of neuropathic pain. Here, our aim was to elucidate the function of miR-200a-3p as well as its related regulatory mechanism in neuropathic pain. An animal model of neuropathic pain was established by chronic constriction injury (CCI) induction. The knockdown experiments are performed by injecting a lentiviral construct intrathecally. MiR-200a-3p and bromodomain-containing protein 3 (BRD3) expression in rat spinal cord was determined using RT-qPCR. The mechanical, thermal, and cold responses in animals were assessed at the indicated time after surgery. The levels of inflammatory cytokines in rat spinal cord were measured by ELISA. The changes in NF-κB signaling-related molecules in rat spinal cord were determined using western blot and immunofluorescence. MiR-200a-3p was underexpressed in CCI rats in a time-dependent manner. Overexpression of miR-200a-3p decreased mechanical hyperalgesia and thermal sensitivity to attenuate neuropathic pain in rats. BRD3 was targeted by miR-200a-3p. Additionally, downregulation of BRD3 inhibited neuropathic pain progression. Moreover, overexpression of BRD3 rescued the effect of miR-200a-3p on NF-κB signaling and neuropathic pain in CCI rats. MiR-200a-3p attenuates neuropathic pain via downregulating BRD3 to block NF-κB signaling.
Collapse
Affiliation(s)
- Chao Deng
- Department of Pain Treatment, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xuequan Yuan
- Department of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xuezheng Lin
- Department of Anesthesia and Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Sitong Liu
- Department of Anesthesia, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
39
|
Gierthmühlen J, Attal N, Baskozos G, Bennedsgaard K, Bennett DL, Bouhassira D, Crombez G, Finnerup NB, Granovsky Y, Jensen TS, John J, Kennes LN, Laycock H, Pascal MM, Rice AS, Shafran-Topaz L, Themistocleous AC, Yarnitsky D, Baron R. What is associated with painful polyneuropathy? A cross-sectional analysis of symptoms and signs in patients with painful and painless polyneuropathy. Pain 2024; 165:2888-2899. [PMID: 38968400 PMCID: PMC11562764 DOI: 10.1097/j.pain.0000000000003310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/19/2024] [Accepted: 05/16/2024] [Indexed: 07/07/2024]
Abstract
ABSTRACT It is still unclear how and why some patients develop painful and others painless polyneuropathy. The aim of this study was to identify multiple factors associated with painful polyneuropathies (NeuP). A total of 1181 patients of the multicenter DOLORISK database with painful (probable or definite NeuP) or painless (unlikely NeuP) probable or confirmed neuropathy were investigated clinically, with questionnaires and quantitative sensory testing. Multivariate logistic regression including all variables (demographics, medical history, psychological symptoms, personality items, pain-related worrying, life-style factors, as well as results from clinical examination and quantitative sensory testing) and machine learning was used for the identification of predictors and final risk prediction of painful neuropathy. Multivariate logistic regression demonstrated that severity and idiopathic etiology of neuropathy, presence of chronic pain in family, Patient-Reported Outcomes Measurement Information System Fatigue and Depression T-Score, as well as Pain Catastrophizing Scale total score are the most important features associated with the presence of pain in neuropathy. Machine learning (random forest) identified the same variables. Multivariate logistic regression archived an accuracy above 78%, random forest of 76%; thus, almost 4 out of 5 subjects can be classified correctly. This multicenter analysis shows that pain-related worrying, emotional well-being, and clinical phenotype are factors associated with painful (vs painless) neuropathy. Results may help in the future to identify patients at risk of developing painful neuropathy and identify consequences of pain in longitudinal studies.
Collapse
Affiliation(s)
- Janne Gierthmühlen
- Interdisciplinary Pain Unit, Department of Anesthesiology and Surgical Intensive Care Medicine, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
| | - Nadine Attal
- Inserm U987, APHP, CHU Ambroise Pare, UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| | - Georgios Baskozos
- The Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - Kristine Bennedsgaard
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Denmark
| | - David L. Bennett
- The Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - Didier Bouhassira
- Inserm U987, APHP, CHU Ambroise Pare, UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| | - Geert Crombez
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Nanna B. Finnerup
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Yelena Granovsky
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
- Faculty of Medicine, Technion, Haifa, Israel
| | | | - Jishi John
- The Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - Lieven Nils Kennes
- Department of Economics and Business Administration, University of Applied Sciences Stralsund, Stralsund, Germany
| | - Helen Laycock
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Mathilde M.V. Pascal
- The Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - Andrew S.C. Rice
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Leah Shafran-Topaz
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
- Faculty of Medicine, Technion, Haifa, Israel
| | | | - David Yarnitsky
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
- Faculty of Medicine, Technion, Haifa, Israel
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
| |
Collapse
|
40
|
Velasco E, Flores-Cortés M, Guerra-Armas J, Flix-Díez L, Gurdiel-Álvarez F, Donado-Bermejo A, van den Broeke EN, Pérez-Cervera L, Delicado-Miralles M. Is chronic pain caused by central sensitization? A review and critical point of view. Neurosci Biobehav Rev 2024; 167:105886. [PMID: 39278607 DOI: 10.1016/j.neubiorev.2024.105886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Chronic pain causes disability and loss of health worldwide. Yet, a mechanistic explanation for it is still missing. Frequently, neural phenomena, and among them, Central Sensitization (CS), is presented as causing chronic pain. This narrative review explores the evidence substantiating the relationship between CS and chronic pain: four expert researchers were divided in two independent teams that reviewed the available evidence. Three criteria were established for a study to demonstrate a causal relationship: (1) confirm presence of CS, (2) study chronic pain, and (3) test sufficiency or necessity of CS over chronic pain symptoms. No study met those criteria, failing to demonstrate that CS can cause chronic pain. Also, no evidence reporting the occurrence of CS in humans was found. Worryingly, pain assessments are often confounded with CS measures in the literature, omitting that the latter is a neurophysiological and not a perceptual phenomenon. Future research should avoid this misconception to directly interrogate what is the causal contribution of CS to chronic pain to better comprehend this problematic condition.
Collapse
Affiliation(s)
- Enrique Velasco
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium. Department of Cellular and Molecular Medicine, KU Leuven, Belgium; Neuroscience in Physiotherapy (NiP), independent research group, Elche, Spain.
| | - Mar Flores-Cortés
- International Doctorate School, Faculty of Health Sciences, University of Málaga, Málaga 29071, Spain
| | - Javier Guerra-Armas
- International Doctorate School, Faculty of Health Sciences, University of Málaga, Málaga 29071, Spain
| | - Laura Flix-Díez
- Department of Otorrinolaryngology, Clínica Universidad de Navarra, University of Navarra, Madrid, Spain
| | - Francisco Gurdiel-Álvarez
- International Doctorate School, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain. Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid 28032, Spain
| | - Aser Donado-Bermejo
- International Doctorate School, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain. Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid 28032, Spain
| | | | - Laura Pérez-Cervera
- Neuroscience in Physiotherapy (NiP), independent research group, Elche, Spain
| | - Miguel Delicado-Miralles
- Neuroscience in Physiotherapy (NiP), independent research group, Elche, Spain; Department of Pathology and Surgery. Physiotherapy Area. Faculty of Medicine, Miguel Hernandez University, Alicante, Spain
| |
Collapse
|
41
|
Bejar-Chapa M, Caragher SP, Gfrerer L, Valerio IL, Colwell AS, Winograd JM. Diagnosis and Management of Neuropathic Breast Pain. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e6266. [PMID: 39717719 PMCID: PMC11666212 DOI: 10.1097/gox.0000000000006266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/27/2024] [Indexed: 12/25/2024]
Abstract
Chronic postoperative pain after breast surgery is a significant concern, with studies indicating varying rates depending on the type of surgical procedure. The risk of developing neuropathic pain is notably increased with axillary lymph node dissection due to potential nerve injuries. Additionally, the method of breast reconstruction may influence postsurgical pain rates, with conflicting findings on the impact of reconstruction type. Recent advancements in techniques such as targeted muscle reinnervation, among others, show promise in addressing postoperative pain in these patients. As the prevalence of these procedures rises, future research is likely to focus on assessing and managing pain in this patient population. The development of patient-reported outcome measures specific to breast surgery pain can aid in clinical assessment and treatment planning. This review emphasizes the importance of gaining a deeper understanding of risk factors, nerve anatomy, and treatment options to enhance outcomes and quality of life for individuals undergoing breast surgery.
Collapse
Affiliation(s)
- Maria Bejar-Chapa
- From the Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Seamus P. Caragher
- From the Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Lisa Gfrerer
- Division of Plastic and Reconstructive Surgery, Weill Cornell Medicine, New York City, N.Y
| | - Ian L. Valerio
- From the Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Amy S. Colwell
- From the Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Jonathan M. Winograd
- From the Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| |
Collapse
|
42
|
Lopalco G, Vescovo SD, Morrone M, Cito A, Fornaro M, Capparelli E, Cela E, Chimenti MS, Iannone F. Neuropathic pain in spondyloarthritis: Decoding its prevalence, risk factors, and impact on disease activity. Semin Arthritis Rheum 2024; 69:152557. [PMID: 39357168 DOI: 10.1016/j.semarthrit.2024.152557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/16/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVES This study aimed to evaluate the prevalence and characteristics of neuropathic pain in patients with various subtypes of spondyloarthritis (SpA), including axial SpA (axSpA), psoriatic arthritis (PsA), and undifferentiated peripheral SpA (p-SpA). Additionally, the study sought to identify potential risk factors associated with the presence or severity of neuropathic pain and to investigate its impact on clinical disease activity assessment. METHODS We conducted a cross-sectional study at two tertiary rheumatology centers, enrolling patients diagnosed with SpA. Data on demographic and clinical characteristics, comorbidities, and current therapies were collected. Neuropathic pain was assessed using the PainDETECT Questionnaire (PD-Q) and the Neuropathic Pain Symptom Inventory (NPSI). Statistical analyses included descriptive statistics, t-tests, and Pearson's correlations to evaluate the relationships between neuropathic pain scores and clinical disease activity indices. RESULTS The study included 177 patients. Of these, 22.2% had a PD-Q score ≥19, showing a high likelihood of neuropathic pain, while 64.9% scored ≤12, suggesting the absence of significant neuropathic components. The mean PD-Q score was 11.5 ± 10.1. Subgroup analyses showed that females had significantly higher scores for paroxysmal and evoked pain (p < 0.05), and obese patients had significantly higher scores across all NPSI subscores (p < 0.05). Moderate positive correlations were found between neuropathic pain scores and clinical disease activity indices, such as DAPSA (r = 0.46, p < 0.0001) and ASDAS-CRP (r = 0.42, p < 0.01). CONCLUSIONS Neuropathic pain is prevalent among patients with SpA and is significantly associated with disease activity assessments and management. This study highlights the importance of integrating neuropathic pain evaluation into the clinical assessment of SpA to tailor treatment approaches effectively and improve patient outcomes.
Collapse
Affiliation(s)
- Giuseppe Lopalco
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Bari, Italy.
| | - Sergio Del Vescovo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Bari, Italy
| | - Maria Morrone
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Bari, Italy
| | - Andrea Cito
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Bari, Italy
| | - Marco Fornaro
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Bari, Italy
| | - Eugenio Capparelli
- Reumatology, allergology and clinical immunology University of Rome Tor Vergata, Rome, Italy
| | - Eneida Cela
- Reumatology, allergology and clinical immunology University of Rome Tor Vergata, Rome, Italy
| | - Maria Sole Chimenti
- Reumatology, allergology and clinical immunology University of Rome Tor Vergata, Rome, Italy
| | - Florenzo Iannone
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Bari, Italy
| |
Collapse
|
43
|
Wang L, Gao Y, Qiao Y, Wang X, Liang Z, Xu JT, Li L. Activation of MSK-1 exacerbates neuropathic pain through histone H3 phosphorylation in the rats' dorsal root ganglia and spinal dorsal horn. Brain Res Bull 2024; 219:111135. [PMID: 39557219 DOI: 10.1016/j.brainresbull.2024.111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/31/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
The exact mechanism underlies the development of neuropathic pain is not yet completely understood. Mitogen and stress-activated kinase 1 (MSK-1) is an important downstream kinase of the mitogen-activated protein kinase (MAPK). It has been extensively studied in the central nervous system, but whether MSK-1 is associated with the neuropathic pain remains elusive. In this experiment, Lumbar 5 spinal nerve ligation (SNL) was used to establish a neuropathic pain condition in the rats. Western blotting, qRT-PCR, immunohistochemistry, intrathecal catheterization and drugs delivery were evaluated to study the physiological responses of the animals. The results showed that SNL resulted in elevated phosphorylated MSK-1 (p-MSK-1) expression in the ipsilateral dorsal root ganglion (DRG) and the spinal dorsal horn in rats, while total MSK-1 (t-MSK-1) did not change significantly. Intrathecal injection of the MSK-1 inhibitor SB747651A partially reversed established neuropathic pain. Additionally, intrathecal administration of MSK-1 siRNA either preoperatively or 7 days postoperatively relieves the development and maintenance of pain, respectively. Meanwhile, the expression levels of p-H3S10, a downstream target of MSK-1, also displayed a significant increase after SNL. And these changes could be reversed by using MSK-1 siRNA. Collectively, the increase of MSK-1 induced by SNL participates in the development and maintenance of neuropathic pain by regulating the expression of p-H3S10 in DRG and spinal dorsal horn. Concentrating on MSK-1 may result in a novel approach to the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Li Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yan Gao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yiming Qiao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xueli Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Zongyi Liang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liren Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
44
|
Sun Y, Zhang K, Li C, Wang Q, Zang R. Procaine Regulates the STAT3/CCL5 Axis and Inhibits Microglia M1 Polarization to Alleviate Complete Freund's Adjuvant Rats Pain Behavior. eNeuro 2024; 11:ENEURO.0303-24.2024. [PMID: 39542733 PMCID: PMC11633591 DOI: 10.1523/eneuro.0303-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/14/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024] Open
Abstract
Neuropathic pain (NP) caused by sciatic nerve injury can significantly impact the quality of life of patients. The M1 phenotype of microglia has been reported to promote the progression of NP. Procaine is a lipid-soluble local anesthetic drug that exerts narcotic analgesic effects. Nevertheless, the detailed effect of procaine in NP is not clear. In order to explore the role of procaine in the polarization of NP microglia, HAPI cells were exposed to LPS to polarize into M1 type. In addition, the number of the M1 phenotype of HAPI cells was assessed using flow cytometry. The binding site between CCL5 and STAT3 was explored using the dual luciferase assay. Furthermore, in vivo experiments were applied for testing the impact of procaine on NP. LPS significantly inhibited HAPI cell viability, which was reversed by procaine. Consistently, procaine alleviated LPS-induced upregulation of inflammatory factors. Additionally, it significantly inhibited HAPI cell M1 polarization induced by LPS. Meanwhile, overexpression of STAT3 was able to promote HAPI cells M1 polarization through binding with the CCL5 promoter region and activating the PI3K/Akt signaling. Procaine could alleviate the painful behavior of complete Freund's adjuvant (CFA) rats by modulating the STAT3/CCL5 axis and inhibiting microglia M1 polarization. In conclusion, procaine alleviated the painful behavior of CFA rats via regulating the STAT3/CCL5 axis and inhibiting microglia M1 polarization. Hence, the research might provide a novel agent for NP treatment.
Collapse
Affiliation(s)
- Yu Sun
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province 154002, P.R. China
| | - Kai Zhang
- Tuberculosis Department one ward, PLA General Hospital Eighth Medical Center, Beijing 100091, P.R. China
| | - Chen Li
- Jiamusi University, Jiamusi, Heilongjiang Province 154002, P.R. China
| | - QingDong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province 154002, P.R. China
| | - Rongjia Zang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province 154002, P.R. China
| |
Collapse
|
45
|
Song Y, Gao L. Spinal Nerve Axotomy: Effects on I h In Vivo and HCNs in DRG Neurons. Int J Mol Sci 2024; 25:12889. [PMID: 39684600 DOI: 10.3390/ijms252312889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
In vitro experiments performed on dissociated dorsal root ganglion (DRG) neurons suggest the involvement of the hyperpolarization-activated cation current (Ih) in enhancing neuronal excitability, potentially contributing to neuropathic pain. However, the more confirmative in vivo information about how nerve injury interacts with Ih is lacking. In this study, Ih was recorded in vivo using the dynamic single-electrode voltage clamp (dSEVC) technique on L5 DRG neurons of normal rats and those seven days after spinal nerve axotomy (SNA). Compared to normal rats, SNA unexpectedly inhibited the activity of Ih channels on A-fiber DRG neurons: (a) the Ih current magnitude, density, and conductance were consistently diminished; and (b) the Ih activation velocity was slowed and the voltage for Ih activation was hyperpolarized. The half-activation voltage (V0.5) exhibited a negative shift, and the time constant for Ih activation was prolonged across all test potentials, indicating the reduced availability of Ih after SNA. To further investigate the mechanisms of SNA on Ih, the underlying HCN channels and the correlated mRNA were quantified and compared. The mRNA expression level of HCN1-4 was uniformly enhanced after SNA, which might have contributed to the increased cytoplasmic HCN1 intensity observed in both medium- and large-sized DRG neurons. This finding contradicted the functional reduction of Ih after SNA. Surprisingly, the HCN labeling pattern was altered after SNA: the labeling area of HCN1 and HCN2 at the membranous ring region of the axotomized large neurons became significantly thinner or absent. We concluded that the diminished ring immunoreactivity for HCN1 and HCN2 correlated with a reduced availability of Ih channels, elucidating the observed decrease in Ih in axotomized A-fiber neurons.
Collapse
Affiliation(s)
- Yuanlong Song
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan,430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan,430030, China
| | - Linlin Gao
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan,430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan,430030, China
| |
Collapse
|
46
|
Lacroix A, Martiné-Fabre G, Plansont B, Buisson A, Guignandon S, Rozette M, Caire F, Calvet B. Predictors for quality of life improvement following rTMS treatment in neuropathic pain patients. Neurol Sci 2024:10.1007/s10072-024-07813-0. [PMID: 39602015 DOI: 10.1007/s10072-024-07813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/08/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVES Recently, Repetitive Transcranial Magnetic Stimulation (rTMS) has gained attention for its potential in relieving neuropathic pain (NP). NP encompasses central and peripheral neuralgia, characterized by sensory abnormalities and spontaneous pain. Pharmacological treatments often provide partial relief with significant side effects, making rTMS an attractive alternative. This study aimed to assess the efficacy of rTMS in treating NP and its impact on quality of life over three months. METHODS A total of 51 patients with drug-resistant NP were included, undergoing 15 sessions of rTMS targeting motor cortex areas over three weeks. Clinical response was evaluated using various psychometric scales, including VAS for pain and PGIC. Quality of life was assessed using the SF-36 questionnaire. RESULTS Results showed significant clinical improvements in pain severity and quality of life following rTMS treatment. Predictive factors of quality of life improvement were identified, with mental health being crucial across all NP areas. Notably, patients with cerebral NP showed improvements linked to physical dimensions, emphasizing tailored treatment approaches. CONCLUSIONS This study underscores the efficacy of rTMS in managing NP, highlighting sustained improvements in pain severity and quality of life. The findings offer valuable insights for personalized treatment approaches and optimizing patient outcomes in NP management.
Collapse
Affiliation(s)
- Aurélie Lacroix
- EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, Inserm U1094, IRD UMR270, Univ. Limoges, CHU Limoges, OmegaHealth, Limoges, France.
- Research and Innovation Unit, Esquirol Hospital, 15 rue du Docteur Marcland, Limoges cedex, 87025, France.
| | - Gaëlle Martiné-Fabre
- Pain Center, CHU Limoges, Limoges, France
- Pain Center, Polyclinic Chénieux, Limoges, France
| | - Brigitte Plansont
- Research and Innovation Unit, Esquirol Hospital, 15 rue du Docteur Marcland, Limoges cedex, 87025, France
| | - Alexandre Buisson
- Research and Innovation Unit, Esquirol Hospital, 15 rue du Docteur Marcland, Limoges cedex, 87025, France
| | - Sandrine Guignandon
- Research and Innovation Unit, Esquirol Hospital, 15 rue du Docteur Marcland, Limoges cedex, 87025, France
| | | | - François Caire
- Department of Neurosurgery, CHU Limoges, Limoges, France
| | - Benjamin Calvet
- EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, Inserm U1094, IRD UMR270, Univ. Limoges, CHU Limoges, OmegaHealth, Limoges, France
- Research and Innovation Unit, Esquirol Hospital, 15 rue du Docteur Marcland, Limoges cedex, 87025, France
| |
Collapse
|
47
|
Leone CM, Truini A. Understanding neuropathic pain: the role of neurophysiological tests in unveiling underlying mechanisms. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:77. [PMID: 39558394 PMCID: PMC11575013 DOI: 10.1186/s44158-024-00212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Neuropathic pain, arising from lesions of the somatosensory nervous system, presents with diverse symptoms including ongoing pain, paroxysmal pain, and provoked pain, usually accompanied by sensory deficits. Understanding the pathophysiological mechanisms behind these symptoms is crucial for targeted treatment strategies. Neurophysiological techniques such as nerve conduction studies, reflexes, and evoked potentials help elucidate these mechanisms by assessing large myelinated non-nociceptive fibres and small nociceptive fibres. This argumentative review highlights the importance of tailored neurophysiological assessments for improving our understanding of the pathophysiological mechanisms behind neuropathic pain symptoms.
Collapse
Affiliation(s)
| | - Andrea Truini
- Department of Human Neuroscience, Sapienza University, Rome, Italy.
| |
Collapse
|
48
|
Karcz M, Abd-Elsayed A, Chakravarthy K, Aman MM, Strand N, Malinowski MN, Latif U, Dickerson D, Suvar T, Lubenow T, Peskin E, D’Souza R, Cornidez E, Dudas A, Lam C, Farrell II M, Sim GY, Sebai M, Garcia R, Bracero L, Ibrahim Y, Mahmood SJ, Lawandy M, Jimenez D, Shahgholi L, Sochacki K, Ramadan ME, Tieppo Francio V, Sayed D, Deer T. Pathophysiology of Pain and Mechanisms of Neuromodulation: A Narrative Review (A Neuron Project). J Pain Res 2024; 17:3757-3790. [PMID: 39583192 PMCID: PMC11581984 DOI: 10.2147/jpr.s475351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Pain serves as a vital innate defense mechanism that can significantly impact an individual's quality of life. Understanding the physiological effects of pain well plays an important role in developing novel pain treatments. Nociceptor neurons play a key role in pain and inflammation. Interactions between nociceptors and the immune system occur both at the site of injury and within the central nervous system. Modulating chemical mediators and nociceptor activity offers promising new approaches to pain management. Essentially, the sensory nervous system is essential for modulating the body's protective response, making it critical to understand these interactions to discover new pain treatment strategies. New innovations in neuromodulation have led to alternatives to opioids individuals with chronic pain with consequent improvement in disease-based treatment and nerve targeting. New neural targets from cellular and structural perspectives have revolutionized the field of neuromodulation. This narrative review aims to elucidate the mechanisms of pain transmission and processing, examine the characteristics and properties of nociceptors, and explore how the immune system influences pain perception. It further provides an updated overview of the physiology of pain and neuromodulatory mechanisms essential for managing acute and chronic pain. We assess the current understanding of different pain types, focusing on key molecules involved in each type and their physiological effects. Additionally, we compare painful and painless neuropathies and discuss the neuroimmune interactions involved in pain manifestation.
Collapse
Affiliation(s)
- Marcin Karcz
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | | | - Mansoor M Aman
- Aurora Pain Management, Aurora Health Care, Oshkosh, WI, USA
| | - Natalie Strand
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Mark N Malinowski
- OhioHealth Neurological Physicians, OhioHealth Inc, Columbus, OH, USA
| | - Usman Latif
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - David Dickerson
- Department of Pain Medicine, Northshore University Health System, Skokie, IL, USA
| | - Tolga Suvar
- Department of Anesthesiology and Pain Medicine, Rush University Medical Center, Oak Park, IL, USA
| | - Timothy Lubenow
- Department of Anesthesiology and Pain Medicine, Rush University Medical Center, Oak Park, IL, USA
| | - Evan Peskin
- Department of Pain Management, Insight Institute of Neurosurgery & Neuroscience, Flint, MI, USA
| | - Ryan D’Souza
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ, USA
| | | | - Andrew Dudas
- Mays and Schnapp Neurospine and Pain, Memphis, TN, USA
| | - Christopher Lam
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michael Farrell II
- Department of Pain Management, Erie County Medical Center, Buffalo, NY, USA
| | - Geum Yeon Sim
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Mohamad Sebai
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rosa Garcia
- Department of Physical Medicine & Rehabilitation, Larkin Hospital Health System, Miami, FL, USA
| | - Lucas Bracero
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| | - Yussr Ibrahim
- Department of Pain Management at Northern Light Health – Eastern Maine Medical Center, Bangor, ME, USA
| | - Syed Jafar Mahmood
- Department of Pain Medicine, University of California Davis Health System, Sacramento, CA, USA
| | - Marco Lawandy
- Department of Physical Medicine & Rehabilitation, Montefiore Medical Center, Bronx, NY, USA
| | - Daniel Jimenez
- Department of Physical Medicine & Rehabilitation, Michigan State University, Lansing, MI, USA
| | - Leili Shahgholi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kamil Sochacki
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson, New Brunswick, NJ, USA
| | - Mohamed Ehab Ramadan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vinicius Tieppo Francio
- Division of Pain Medicine, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Dawood Sayed
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Timothy Deer
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| |
Collapse
|
49
|
Rosner J, Attal N, Finnerup NB. Clinical pharmacology of neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:403-430. [PMID: 39580218 DOI: 10.1016/bs.irn.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
This chapter aims to review the current pharmacological options for neuropathic pain treatment, their mechanisms of action, and future directions for clinical practice. Achieving pain relief in neuropathic pain conditions remains a challenge in clinical practice. The field of pharmacotherapy for neuropathic pain has encountered significant difficulties in translating substantial advances in our understanding of the underlying pathophysiological mechanisms into clinically effective therapies. This chapter presents the drugs recommended for the pharmacotherapy of neuropathic pain, based on the widely accepted treatment guidelines formulated by the Neuropathic Pain Special Interest Group of the International Association for the Study of Pain. In addition to discussing how the evidence base is created as part of international consortia, the drugs are also examined in terms of their putative molecular mechanisms as well as pharmacological pleiotropy, i.e., their potential unspecific and multi-target effects resulting in modulation of neuronal hyperexcitability. The chapter closes with a discussion of potential future developments in the field.
Collapse
Affiliation(s)
- Jan Rosner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| | - Nadine Attal
- Inserm U987, APHP, CHU Ambroise Pare, UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
50
|
Zheng Y, Jiang M, Wei Z, Chi H, Kang Y, Li S, Zheng Y, He X, Shao X, Fang J, Jiang Y. Electroacupuncture alleviates neuropathic pain in a rat model of CCD via suppressing P2X3 expression in dorsal root ganglia. Chin Med 2024; 19:156. [PMID: 39529111 PMCID: PMC11552355 DOI: 10.1186/s13020-024-01030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Sciatica and low back pain are prevalent clinical types of neuropathic pain that significantly impair patients' quality of life. Conventional therapies often lack effectiveness, making these conditions challenging to treat. Electroacupuncture (EA) is an effective physiotherapy for pain relief. Prior research has demonstrated a relationship between the frequency of neuropathic pain and the analgesic impact of EA stimulation. This work aimed to assess the analgesic effects of EA in a rat model of chronic compression of the dorsal root ganglion (CCD) and to understand the underlying processes. METHODS We established a rat CCD model to simulate sciatica and low back pain. EA was applied to rats with CCD at various frequencies (2 Hz, 100 Hz, and 2/100 Hz). The paw withdrawal threshold (PWT) was measured to assess analgesic effects. Additionally, protein levels of the purinergic receptor P2X3 (P2X3) and the expression of nociceptive neuronal markers were analyzed using immunohistochemistry and western blot (WB) techniques. The study also measured levels of proinflammatory cytokines TNF-α and IL-1β in the dorsal root ganglion (DRG). The involvement of P2X3 receptors was further investigated using the P2X3 agonist, α,β-methylene ATP (α,β-meATP). RESULTS CCD rats developed pronounced mechanical allodynia. EA stimulation at all tested frequencies produced analgesic effects, with 2/100 Hz showing superior efficacy compared to 2 Hz and 100 Hz. The expression of P2X3 was increased in ipsilateral DRG of CCD model rats. P2X3 were co-labeled with isolectin B4 (IB4) and transient receptor potential vanilloid (TRPV1), indicating their role in nociception. 2/100 Hz EA treatment significantly reduced mechanical allodynia and inhibited the overexpression of P2X3, TRPV1, substance P (SP), and calcitonin gene-related peptide (CGRP) in the ipsilateral DRG of CCD model rats. Additionally, EA reduced the levels of proinflammatory cytokines TNF-α and IL-1β in the ipsilateral DRG, indicating an anti-inflammatory effect. The P2X3 agonist α,β-me ATP attenuated the analgesic effect of 2/100 Hz EA in CCD rats. The WB and immunofluorescence results consistently demonstrated P2X3 inhibition contributed to the analgesic effects of 2/100 Hz EA on CCD-induced neuropathic pain. CONCLUSIONS Our findings suggest that 2/100 Hz EA alleviates neuropathic pain in rats by inhibiting the upregulation of P2X3 receptors in the ipsilateral DRG. This study backs up EA as a viable treatment option for sciatica and low back pain in clinical settings.
Collapse
Affiliation(s)
- Yu Zheng
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Minjian Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhouyuan Wei
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hengyu Chi
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yurong Kang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Siyi Li
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yinmu Zheng
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Yongliang Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|