1
|
Vonk JMJ, Morin BT, Pillai J, Rosado Rolon D, Bogley R, Baquirin DP, Ezzes Z, Tee BL, de Leon J, Wauters L, Lukic S, Montembeault M, Younes K, Miller ZA, García AM, Mandelli ML, Miller BL, Rosen HJ, Rankin KP, Sturm V, Gorno-Tempini ML. Automated Speech Analysis to Differentiate Frontal and Right Anterior Temporal Lobe Atrophy in Frontotemporal Dementia. Neurology 2025; 104:e213556. [PMID: 40209131 PMCID: PMC11998018 DOI: 10.1212/wnl.0000000000213556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/19/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Frontotemporal dementia (FTD) includes behavioral-variant FTD (bvFTD) with predominant frontal atrophy and semantic behavioral-variant FTD (sbvFTD) with predominant right anterior temporal lobe (rATL) atrophy. These variants present diagnostic challenges because of overlapping symptoms and neuroanatomy. Accurate differentiation is crucial for clinical trial inclusion targeting TDP-43 proteinopathies. This study investigated whether automated speech analysis can distinguish between FTD-related rATL and frontal atrophy, potentially offering a noninvasive diagnostic tool. METHODS This cross-sectional study used data from the University of California, San Francisco Memory and Aging Center. Using stepwise logistic regression and receiver-operating characteristic curve analysis, we analyzed 16 linguistic and acoustic features that were extracted automatically from audio-recorded picture description tasks. Voxel-based morphometry was used to investigate brain-behavior relationships. RESULTS We evaluated 62 participants: 16 with FTD-related predominant frontal atrophy, 24 with predominant rATL atrophy, and 22 healthy controls (mean age 68.3 years, SD = 9.2; 53.2% female). Logistic regression identified 3 features (content units, lexical frequency, and familiarity) differentiating the overall FTD group from controls (area under the curve [AUC] = 0.973), adjusted for age. Within the FTD group, 5 features (adpositions/total words ratio, arousal, syllable pause duration, restarts, and words containing "thing") differentiated frontal from rATL atrophy (AUC = 0.943). Neuroimaging analyses showed that semantic features (lexical frequency, content units, and "thing" words) were linked to bilateral inferior temporal lobe structures, speech and lexical features (syllable pause duration, and adpositions/total words ratio) to bilateral inferior frontal gyri, and socioemotional features (arousal) to areas known to mediate social cognition including the right insula and bilateral anterior temporal structures. As a composite score, this set of 5 features was uniquely associated with rATL atrophy. DISCUSSION Automated speech analysis demonstrated high accuracy in differentiating FTD subtypes and provided insights into the neural basis of language impairments. Automated speech analysis could enhance early diagnosis and monitoring of FTD, offering a scalable, noninvasive alternative to traditional methods, particularly in resource-limited settings. Future research should focus on further clinical validation with other neuroimaging or fluid biomarkers and longitudinal cognitive data, as well as external validation in larger and more diverse populations.
Collapse
Affiliation(s)
- Jet M J Vonk
- Memory and Aging Center, Department of Neurology, University of California San Francisco
| | - Brittany T Morin
- Memory and Aging Center, Department of Neurology, University of California San Francisco
| | - Janhavi Pillai
- Memory and Aging Center, Department of Neurology, University of California San Francisco
| | - David Rosado Rolon
- Memory and Aging Center, Department of Neurology, University of California San Francisco
| | - Rian Bogley
- Memory and Aging Center, Department of Neurology, University of California San Francisco
| | - David Paul Baquirin
- Memory and Aging Center, Department of Neurology, University of California San Francisco
| | - Zoe Ezzes
- Memory and Aging Center, Department of Neurology, University of California San Francisco
| | - Boon Lead Tee
- Memory and Aging Center, Department of Neurology, University of California San Francisco
| | - Jessica de Leon
- Memory and Aging Center, Department of Neurology, University of California San Francisco
| | - Lisa Wauters
- Memory and Aging Center, Department of Neurology, University of California San Francisco
- Department of Speech, Language and Hearing Sciences, University of Texas Austin
| | - Sladjana Lukic
- School of Communication Science and Disorders, Florida State University, Tallahassee
| | - Maxime Montembeault
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, Canada
| | - Kyan Younes
- Department of Neurology, Stanford University, Palo Alto, CA
| | - Zachary Adam Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco
| | - Adolfo M García
- Cognitive Neuroscience Center, Universidad de San Andrés Buenos Aires, Argentina
- Global Brain Health Institute (GBHI), University of California San Francisco; and
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile
| | - Maria Luisa Mandelli
- Memory and Aging Center, Department of Neurology, University of California San Francisco
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, University of California San Francisco
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, University of California San Francisco
| | - Virginia Sturm
- Memory and Aging Center, Department of Neurology, University of California San Francisco
| | | |
Collapse
|
2
|
Horne K, de Andrade Saraiva L, de Souza LC, Irish M. Social interaction as a unique form of reward - Insights from healthy ageing and frontotemporal dementia. Neurosci Biobehav Rev 2025; 172:106128. [PMID: 40157435 DOI: 10.1016/j.neubiorev.2025.106128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/27/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The drive for positive social interactions, or "social rewards", is an important motivator of human behaviour, conferring several adaptive benefits. Social motivation fluctuates across the lifespan, reflecting changes in goals and priorities at different developmental stages. In older adulthood, for instance, priorities tend to shift toward maintaining emotional wellbeing and resources over seeking novel gains. Contemporary theories of social interaction must account for such motivational shifts, addressing the enhancement of social processing in ageing and its decline in dementia. Here, we propose a framework to track the evolution of social motivation across the lifespan, focusing on three mechanisms: (i) social interactions as rewards, (ii) learning from social interactions, and (iii) the effort required for social interactions. We posit that social rewards hold equivalent or increased value later in life, enhancing older adults' social connections. Conversely, social rewards become devalued in neurodegenerative disorders such as frontotemporal dementia (FTD), resulting in social withdrawal. This integrative framework serves as a foundation for understanding adaptive and maladaptive trajectories of social motivation throughout the adult lifespan.
Collapse
Affiliation(s)
- Kristina Horne
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia; The University of Sydney, School of Psychology, Sydney, New South Wales, Australia
| | - Lucas de Andrade Saraiva
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo Cruz de Souza
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Muireann Irish
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia; The University of Sydney, School of Psychology, Sydney, New South Wales, Australia.
| |
Collapse
|
3
|
Koumasopoulos E, Stanitsa E, Angelopoulou E, Koros C, Barbarousi V, Velonakis G, Koulouris A, Michaletou C, Alevetsovitis SK, Constantinides VC, Kyrozis A, Stefanis L, Kroupis C, Papageorgiou SG. Predominant right temporal and frontal brain atrophy and progressive behavioral dementia. A case of prion gene mutation (PRNP). Neurocase 2025:1-6. [PMID: 40220019 DOI: 10.1080/13554794.2025.2491746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) is a rare and often hereditary type of dementia, usually developing under the age of 65 years. Mutations in the gene encoding the prion protein (PRNP), typically resulting in Creutzfeldt-Jakob disease, are an extremely rare cause of FTD phenotype. The clinical spectrum of this genetic form of FTD has not been fully elucidated, and no case carrying a PRNP gene mutation has been previously described in the Greek population. CASE REPORT This case report describes a patient with phenotype of probable behavioral variant frontotemporal dementia (bvFTD) with positive family history of dementia.A mutation in the prion gene (PRNP) is identified as the genetic cause of the behavioral FTD phenotype of the patient. CONCLUSION Heterozygous c.623G>A (p.Arg208His) genotype may be responsible for FTD phenotype. This case shows the necessity of genetic testing for possible mutations in the prion gene in patients with bvFTD and positive family history of dementia.
Collapse
Affiliation(s)
- Evangelos Koumasopoulos
- First Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Stanitsa
- First Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthalia Angelopoulou
- First Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Koros
- First Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki Barbarousi
- Research Unit of Radiology-2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- Research Unit of Radiology-2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Koulouris
- First Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysoula Michaletou
- First Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Vasilios C Constantinides
- First Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Kyrozis
- First Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas Stefanis
- First Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Kroupis
- Biochemistry department, National and Kapodistrian University of Athens, NKUA, Attikon University Hospital, Athens, Greece
| | - Sokratis G Papageorgiou
- First Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Watamura N, Foiani MS, Bez S, Bourdenx M, Santambrogio A, Frodsham C, Camporesi E, Brinkmalm G, Zetterberg H, Patel S, Kamano N, Takahashi M, Rueda-Carrasco J, Katsouri L, Fowler S, Turkes E, Hashimoto S, Sasaguri H, Saito T, Islam AS, Benner S, Endo T, Kobayashi K, Ishida C, Vendruscolo M, Yamada M, Duff KE, Saido TC. In vivo hyperphosphorylation of tau is associated with synaptic loss and behavioral abnormalities in the absence of tau seeds. Nat Neurosci 2025; 28:293-307. [PMID: 39719507 PMCID: PMC11802456 DOI: 10.1038/s41593-024-01829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/23/2024] [Indexed: 12/26/2024]
Abstract
Tau pathology is a hallmark of several neurodegenerative diseases, including frontotemporal dementia and Alzheimer's disease. However, the sequence of events and the form of tau that confers toxicity are still unclear, due in large part to the lack of physiological models of tauopathy initiation and progression in which to test hypotheses. We have developed a series of targeted mice expressing frontotemporal-dementia-causing mutations in the humanized MAPT gene to investigate the earliest stages of tauopathy. MAPTInt10+3G>A and MAPTS305N;Int10+3G>A lines show abundant hyperphosphorylated tau in the hippocampus and entorhinal cortex, but they do not develop seed-competent fibrillar structures. Accumulation of hyperphosphorylated tau was accompanied by neurite degeneration, loss of viable synapses and indicators of behavioral abnormalities. Our results demonstrate that neuronal toxicity can occur in the absence of fibrillar, higher-order structures and that tau hyperphosphorylation is probably involved in the earliest etiological events in tauopathies showing isoform ratio imbalance.
Collapse
Affiliation(s)
- Naoto Watamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan.
- UK Dementia Research Institute at University College London, London, UK.
| | - Martha S Foiani
- UK Dementia Research Institute at University College London, London, UK.
| | - Sumi Bez
- UK Dementia Research Institute at University College London, London, UK
| | - Mathieu Bourdenx
- UK Dementia Research Institute at University College London, London, UK
| | - Alessia Santambrogio
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Claire Frodsham
- UK Dementia Research Institute at University College London, London, UK
| | - Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, London, UK
- Queen Square Institute of Neurology, University College London, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Saisha Patel
- UK Dementia Research Institute at University College London, London, UK
| | - Naoko Kamano
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Mika Takahashi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | | | - Loukia Katsouri
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Stephanie Fowler
- UK Dementia Research Institute at University College London, London, UK
- Nuffield Department of Medicine, Oxford-GSK Institute of Molecular and Computational Medicine, Centre for Human Genetics, Oxford, UK
| | - Emir Turkes
- UK Dementia Research Institute at University College London, London, UK
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Pioneering Research Division, Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Dementia Pathophysiology Collaboration Unit, RIKEN Center for Brain Science, Wako, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Afm Saiful Islam
- Queen Square Institute of Neurology, University College London, London, UK
| | - Seico Benner
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | | | - Katsuji Kobayashi
- Department of Psychiatry, Awazu Neuropsychiatric Hospital, Ishikawa, Japan
| | - Chiho Ishida
- Department of Neurology, NHO Iou National Hospital, Iwade-machi, Japan
| | - Michele Vendruscolo
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Masahito Yamada
- Department of Internal Medicine, Division of Neurology, Kudanzaka Hospital, Tokyo, Japan
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Kanazawa University, Kanazawa, Japan
| | - Karen E Duff
- UK Dementia Research Institute at University College London, London, UK.
- Queen Square Institute of Neurology, University College London, London, UK.
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan.
| |
Collapse
|
5
|
Camic PM, Harding E, Rossi-Harries S, Hayes OS, Sullivan MP, Wilson L, Zimmermann N, McKee-Jackson R, Stott J, Fox NC, Mummery CJ, Rohrer JD, Warren JD, Weil RS, Crutch SJ. "A torch, a rope, a belly laugh": engaging with the multiple voices of support groups for people living with rare dementia. FRONTIERS IN DEMENTIA 2025; 3:1488025. [PMID: 39845648 PMCID: PMC11750841 DOI: 10.3389/frdem.2024.1488025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 01/24/2025]
Abstract
Purpose Rare forms of dementia bring unique difficulties related to age of onset, impact on family commitments, employment and finances, and also bring distinctive needs for support and care. The aim of the present study was to explore and better understand what the concept of support means for people living with different rare dementia (PLwRD) and their care-partners who attend ongoing support groups. Methods Representing seven types of rare dementia, source material was collected from 177 PLwRD and care-partners attending in-person support groups, with the goal of developing research-informed group poems, co-constructed by a facilitating poet. Data were analyzed through a three-step process involving linguistic analysis followed by structured-tabular thematic analysis, relational analysis, and concluded with an online survey about participation in the study. Results Linguistic analysis found that co-constructed poems remained faithful to the original source material offered by participants. These results provided confidence to subsequently conduct a thematic analysis of eight completed poems, identifying 15 initial themes. A further relational analysis between themes drew on six relational forms and identified an overarching theme "A Community, Not an Intervention" that describes the process of support for this population. Survey results revealed a varied but generally positive response to writing whilst reactions to the completed poems reflected strong emotional connections that resonated with personal experience. Conclusion This is the first study that we are aware of to explore the use of co-constructed research poetry to better understand how in-person support groups provide support for people impacted by different rare dementias. The poems portray the complex, dynamic and relational aspects of how support groups provide a necessary form of connection for this population. An overarching theme characterized the support groups as a community rather than an intervention. Findings are discussed within the theoretical context of positive social identity, social health and biosocial groups. The results also demonstrate that solicited words from participants can be faithfully portrayed in poems co-created by an experienced poet. This novel finding expands methodological options for the use of research poetry in healthcare and also offers support group members further creative choices for engagement, connection and communication.
Collapse
Affiliation(s)
- Paul M. Camic
- Dementia Research Centre, Research Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Emma Harding
- Dementia Research Centre, Research Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sam Rossi-Harries
- Dementia Research Centre, Research Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Oliver S. Hayes
- Dementia Research Centre, Research Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Mary Pat Sullivan
- School of Social Work, Faculty of Education and Professional Studies, Nipissing University, North Bay, ON, Canada
| | | | - Nikki Zimmermann
- Dementia Research Centre, Research Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Roberta McKee-Jackson
- Dementia Research Centre, Research Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Joshua Stott
- Research Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom
| | - Nick C. Fox
- Dementia Research Centre, Research Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Catherine J. Mummery
- Dementia Research Centre, Research Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jonathan D. Rohrer
- Dementia Research Centre, Research Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jason D. Warren
- Dementia Research Centre, Research Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rimona S. Weil
- Dementia Research Centre, Research Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sebastian James Crutch
- Dementia Research Centre, Research Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
6
|
Tirigay R, Moltrasio J, Rubinstein W. Dissociations between musical semantic memory and verbal memory in a patient with behavioral variant frontotemporal dementia. APPLIED NEUROPSYCHOLOGY. ADULT 2025; 32:75-84. [PMID: 36416413 DOI: 10.1080/23279095.2022.2148105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Patients with dementia show dissociations between musical semantic memory (i.e., spared musical lexicon) and other memory modalities, except in some severe cases. We aim to study, from a neuropsychological point of view, the dissociation between musical semantic memory compared to language and verbal memory in a patient with severe Behavioral Variant Frontotemporal Dementia (bvFTD). We hypothesize a single dissociation between these domains will be found, with sparing of musical semantic memory. METHODS LC, a patient with severe bvFTD, and three matched controls were assessed through language, semantic, and episodic memory, and musical semantic memory tasks. The control group had similar music taste as LC: to participate as controls, tango must be one of their favorite musical genres. RESULTS LC showed impairment in all Verbal Memory tasks, but not in musical tasks. There was a dissociation between musical semantic memory, and language and verbal semantic memory. CONCLUSIONS The musical lexicon can be preserved in advanced stages of dementia, which supports the idea that music can be a therapeutic tool in patients with severe dementia.
Collapse
Affiliation(s)
- Romina Tirigay
- Departamento de Neurociencias, Universidad de Palermo, Buenos Aires, Argentina
- Residencia Manantial, Buenos Aires, Argentina
| | - Julieta Moltrasio
- Facultad de Psicología; Instituto de Investigaciones, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Wanda Rubinstein
- Departamento de Neurociencias, Universidad de Palermo, Buenos Aires, Argentina
- Facultad de Psicología; Instituto de Investigaciones, Universidad de Buenos Aires, Buenos Aires, Argentina
- HIGA "Eva Perón", CONICET, Laboratorio de Deterioro Cognitivo. San Martín, Buenos Aires, Argentina
| |
Collapse
|
7
|
Nemoto M, Nemoto K, Sasai H, Higashi S, Ota M, Arai T. Long-Term Multimodal Exercise Intervention for Patients with Frontotemporal Lobar Degeneration: Feasibility and Preliminary Outcomes. Dement Geriatr Cogn Dis Extra 2025; 15:19-29. [PMID: 39839371 PMCID: PMC11750171 DOI: 10.1159/000542994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction After Alzheimer's disease, frontotemporal lobar degeneration (FTLD) is the second most common form of early-onset dementia. Despite the heavy burden of care for FTLD, pharmacological and non-pharmacological treatments with sufficient efficacy remain scarce. This study aimed to evaluate the feasibility of a multimodal exercise program for FTLD and to examine preliminary changes in the clinical outcomes of the program in FTLD. Methods This single-arm preliminary study was conducted from July 2017 to July 2018 and recruited 4 male patients with FTLD aged 60-78 years. Patients exercised under the supervision of an exercise instructor once every 2 weeks for 48 weeks. The multimodal exercise program comprised cognitive training, moderate-intensity continuous training, strength training, balance training, and flexibility and relaxation training. Feasibility was measured using dropout and attendance rates. Cognitive, psychological, physical, and behavioral function tests were conducted before and after the intervention. Results All patients completed the intervention (100%) and attended well (93.6%). Positive changes in scores in the Stroop Color-Word Test (cognitive; 5 out of 6 items), Mood Check List-short form 2 (psychological), movement subscales of the Stereotypy Rating Inventory (behavioral), and Timed Up and Go (TUG, physical) assessments demonstrated a medium-to-high effect size (open effect size: 0.52-0.97). While there were improvements in some domains, such as recovery self-efficacy and exercise efficacy, the MMSE-J scores showed an overall slight decline, especially in the semantic dementia case where a marked decrease was observed. Additionally, three physical function items showed no effect, except for a positive outcome in the TUG test. Functional near-infrared spectroscopy revealed increased activation in the frontal lobe, indicated by elevated oxygenated hemoglobin levels before and after the exercise intervention. This pattern of activation suggests that the intervention may have stimulated neural activity in the frontal lobe, potentially enhancing cognitive and behavioral functions, including executive function and attention. Conclusion The long-term multimodal exercise intervention may be feasible and positively change the cognitive, psychological, physical, and behavioral functions in older adults with FTLD. Although the intervention led to improvements in certain areas, there were also declines observed in various functions, which may not necessarily be due to the intervention itself but rather reflect the natural progression of the disease.
Collapse
Affiliation(s)
- Miyuki Nemoto
- Division of Clinical Medicine, Department of Psychiatry, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kiyotaka Nemoto
- Division of Clinical Medicine, Department of Psychiatry, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroyuki Sasai
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute of for Geriatrics and Gerontology, Tokyo, Japan
| | - Shinji Higashi
- Department of Psychiatry, Tokyo Medical University, Tokyo, Japan
| | - Miho Ota
- Division of Clinical Medicine, Department of Psychiatry, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tetsuaki Arai
- Division of Clinical Medicine, Department of Psychiatry, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
8
|
Santamaría-García H, Migeot J, Medel V, Hazelton JL, Teckentrup V, Romero-Ortuno R, Piguet O, Lawor B, Northoff G, Ibanez A. Allostatic Interoceptive Overload Across Psychiatric and Neurological Conditions. Biol Psychiatry 2025; 97:28-40. [PMID: 38964530 DOI: 10.1016/j.biopsych.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Emerging theories emphasize the crucial role of allostasis (anticipatory and adaptive regulation of the body's biological processes) and interoception (integration, anticipation, and regulation of internal bodily states) in adjusting physiological responses to environmental and bodily demands. In this review, we explore the disruptions in integrated allostatic interoceptive mechanisms in psychiatric and neurological disorders, including anxiety, depression, Alzheimer's disease, and frontotemporal dementia. We assess the biological mechanisms associated with allostatic interoception, including whole-body cascades, brain structure and function of the allostatic interoceptive network, heart-brain interactions, respiratory-brain interactions, the gut-brain-microbiota axis, peripheral biological processes (inflammatory, immune), and epigenetic pathways. These processes span psychiatric and neurological conditions and call for developing dimensional and transnosological frameworks. We synthesize new pathways to understand how allostatic interoceptive processes modulate interactions between environmental demands and biological functions in brain disorders. We discuss current limitations of the framework and future transdisciplinary developments. This review opens a new research agenda for understanding how allostatic interoception involves brain predictive coding in psychiatry and neurology, allowing for better clinical application and the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Hernando Santamaría-García
- Pontificia Universidad Javeriana, PhD program of Neuroscience, Bogotá, Colombia; Hospital Universitario San Ignacio, Centro de Memoria y Cognición Intellectus, Bogotá, Colombia
| | - Joaquin Migeot
- Global Brain Health Institute, University California of San Francisco, San Francisco, California; Global Brain Health Institute, Trinity College of Dublin, Dublin, Ireland; Latin American Brain Health Institute, Universidad Adolfo Ibanez, Santiago, Chile
| | - Vicente Medel
- Latin American Brain Health Institute, Universidad Adolfo Ibanez, Santiago, Chile
| | - Jessica L Hazelton
- Latin American Brain Health Institute, Universidad Adolfo Ibanez, Santiago, Chile; School of Psychology and Brain & Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Vanessa Teckentrup
- School of Psychology and Trinity Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Roman Romero-Ortuno
- Pontificia Universidad Javeriana, PhD program of Neuroscience, Bogotá, Colombia; Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Olivier Piguet
- School of Psychology and Brain & Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Brian Lawor
- Pontificia Universidad Javeriana, PhD program of Neuroscience, Bogotá, Colombia
| | - George Northoff
- Institute of Mental Health Research, Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Agustin Ibanez
- Global Brain Health Institute, University California of San Francisco, San Francisco, California; Global Brain Health Institute, Trinity College of Dublin, Dublin, Ireland; Latin American Brain Health Institute, Universidad Adolfo Ibanez, Santiago, Chile; School of Psychology and Trinity Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
9
|
Zheng H, Xiao H, Zhang Y, Jia H, Ma X, Gan Y. Time-Frequency functional connectivity alterations in Alzheimer's disease and frontotemporal dementia: An EEG analysis using machine learning. Clin Neurophysiol 2024; 170:110-119. [PMID: 39708531 DOI: 10.1016/j.clinph.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 10/22/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE Alzheimer's disease (AD) and frontotemporal dementia (FTD) are prevalent neurodegenerative diseases characterized by altered brain functional connectivity (FC), affecting over 100 million people worldwide. This study aims to identify distinct FC patterns as potential biomarkers for differential diagnosis. METHODS Resting-state EEG data from 36 AD patients, 23 FTD patients, and 29 healthy controls were analyzed using time-frequency and bandpass filtering FC metrics. These metrics were estimated through Pearson's correlations, mutual information, and phase lag index, and served as input features in a support vector machine (SVM) with Leave-One-Out Cross-Validation for group classification. RESULTS Both AD and FTD exhibited significantly decreased FC in the theta band within the frontal lobe and increased FC in the beta band in the posterior regions. Additionally, a decreased FC in central regions at theta band was observed uniquely in AD, but not in FTD. SVM classification accuracies reached 95% for AD and 86% for FTD. CONCLUSIONS High classification accuracies underscore the potential of these FC alterations as reliable biomarkers for AD and FTD. SIGNIFICANCE This is the first study to integrate time-frequency and bandpass filtering FC metrics to reveal brain network alterations in AD and FTD, providing new insights for diagnostics and neurodegenerative pathologies.
Collapse
Affiliation(s)
- Huang Zheng
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.
| | - Han Xiao
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.
| | - Yinan Zhang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Haozhe Jia
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Xing Ma
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Yiqun Gan
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.
| |
Collapse
|
10
|
Breitling B, Bartels C, Lange C, Bouter C, Falk HS, Wiltfang J, Zilles-Wegner D, Besse M. Clinical Phenotype of Behavioral-Variant Frontotemporal Dementia Reversed by ECT: A Case Report. Neuropsychobiology 2024; 83:214-225. [PMID: 39622206 DOI: 10.1159/000541668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/04/2024] [Indexed: 12/18/2024]
Abstract
INTRODUCTION Diagnosis of frontotemporal dementia (FTD) remains difficult even in the presence of core clinical and imaging features. Furthermore, disease-modifying treatments are lacking. CASE PRESENTATION Here, we report a case of a patient with clinical and imaging features of FTD. Electroconvulsive therapy (ECT) was used to target affective and catatonic symptoms. After ECT, the patient showed improvements not only in affective symptoms but also in cognitive domains, leading to a marked improvement in the patient's level of functioning. CONCLUSION Against the background of diagnostic uncertainty and lack of disease-modifying treatments for FTD, we emphasize the importance of focusing on treatable symptoms. Thus, we recommend consideration of ECT as a viable option for multiple symptom domains. In this case of bvFTD, ECT was well-tolerated with relatively low side-effects.
Collapse
Affiliation(s)
- Benedict Breitling
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Claudia Lange
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Hannah Sönne Falk
- Department of Neuroradiology, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - David Zilles-Wegner
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Matthias Besse
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| |
Collapse
|
11
|
El Baou C, Saunders R, Buckman JEJ, Richards M, Cooper C, Marchant NL, Desai R, Bell G, Fearn C, Pilling S, Zimmermann N, Mansfield V, Crutch S, Brotherhood E, John A, Stott J. Effectiveness of psychological therapies for depression and anxiety in atypical dementia. Alzheimers Dement 2024; 20:8844-8854. [PMID: 39439362 DOI: 10.1002/alz.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION People with dementia may benefit from psychological therapies for depression or anxiety, but evidence of their effectiveness in atypical dementia is limited. METHODS Using electronic health-care records of > 2 million people who attended psychological therapy services in England between 2012 and 2019, we examined pre-post therapy symptom changes and compared therapy outcomes among 523 people with atypical dementia, a matched cohort without dementia, and 1157 people with typical dementia. RESULTS People with atypical dementia experienced reductions in depression (Cohen d = -0.92 [-1.05 to -0.79]) and anxiety (d = -0.85 [-0.98 to -0.73]) symptoms. They had similar odds of improvement than people with typical dementia (odds ratio [OR] = 1.07, 95% confidence interval [CI]: 0.85 to 1.34), but lower odds than people living without dementia (OR = 0.70, 95% CI: 0.53 to 0.91). Reasons for discharge were similar between all groups. DISCUSSION People with atypical dementia may benefit from primary care psychological therapies, but further research is needed to explore necessary adaptations. HIGHLIGHTS Talking therapies for depression and anxiety may be beneficial for people with atypical dementia. Being younger and having a lower socioeconomic background are associated with poorer outcomes. Receiving more treatment sessions and shorter waiting times are associated with better outcomes.
Collapse
Affiliation(s)
- Celine El Baou
- Adapt Lab, Research Department of Clinical, Educational and Health Psychology, UCL London, London, UK
| | - Rob Saunders
- Adapt Lab, Research Department of Clinical, Educational and Health Psychology, UCL London, London, UK
- Centre for Outcomes Research and Effectiveness, Research Department of Clinical, Educational and Health Psychology, UCL, London, UK
| | - Joshua E J Buckman
- Centre for Outcomes Research and Effectiveness, Research Department of Clinical, Educational and Health Psychology, UCL, London, UK
- iCope - Camden & Islington NHS Foundation Trust, St. Pancras Hospital, London, UK
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, UCL, London, UK
| | - Claudia Cooper
- Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University, London, UK
| | | | - Roopal Desai
- Adapt Lab, Research Department of Clinical, Educational and Health Psychology, UCL London, London, UK
| | - Georgia Bell
- Adapt Lab, Research Department of Clinical, Educational and Health Psychology, UCL London, London, UK
| | - Caroline Fearn
- Adapt Lab, Research Department of Clinical, Educational and Health Psychology, UCL London, London, UK
| | - Stephen Pilling
- Centre for Outcomes Research and Effectiveness, Research Department of Clinical, Educational and Health Psychology, UCL, London, UK
- Camden & Islington NHS Foundation Trust, St. Pancras Hospital, London, UK
| | - Nikki Zimmermann
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Val Mansfield
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Sebastian Crutch
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Emilie Brotherhood
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Amber John
- Adapt Lab, Research Department of Clinical, Educational and Health Psychology, UCL London, London, UK
| | - Joshua Stott
- Adapt Lab, Research Department of Clinical, Educational and Health Psychology, UCL London, London, UK
| |
Collapse
|
12
|
García AM, Ferrante FJ, Pérez G, Ponferrada J, Sosa Welford A, Pelella N, Caccia M, Belloli LML, Calcaterra C, González Santibáñez C, Echegoyen R, Cerrutti MJ, Johann F, Hesse E, Carrillo F. Toolkit to Examine Lifelike Language v.2.0: Optimizing Speech Biomarkers of Neurodegeneration. Dement Geriatr Cogn Disord 2024; 54:96-108. [PMID: 39348797 DOI: 10.1159/000541581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
INTRODUCTION The Toolkit to Examine Lifelike Language (TELL) is a web-based application providing speech biomarkers of neurodegeneration. After deployment of TELL v.1.0 in over 20 sites, we now introduce TELL v.2.0. METHODS First, we describe the app's usability features, including functions for collecting and processing data onsite, offline, and via videoconference. Second, we summarize its clinical survey, tapping on relevant habits (e.g., smoking, sleep) alongside linguistic predictors of performance (language history, use, proficiency, and difficulties). Third, we detail TELL's speech-based assessments, each combining strategic tasks and features capturing diagnostically relevant domains (motor function, semantic memory, episodic memory, and emotional processing). Fourth, we specify the app's new data analysis, visualization, and download options. Finally, we list core challenges and opportunities for development. RESULTS Overall, TELL v.2.0 offers scalable, objective, and multidimensional insights for the field. CONCLUSION Through its technical and scientific breakthroughs, this tool can enhance disease detection, phenotyping, and monitoring.
Collapse
Affiliation(s)
- Adolfo M García
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- Global Brain Health Institute (GBHI), University of California, San Francisco, California, USA
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - Franco J Ferrante
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- School of Engineering, University of Buenos Aires, Buenos Aires, Argentina
| | - Gonzalo Pérez
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- School of Engineering, University of Buenos Aires, Buenos Aires, Argentina
| | - Joaquín Ponferrada
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | | | - Nicolás Pelella
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - Matías Caccia
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - Laouen Mayal Louan Belloli
- Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
- Instituto de Ciencias de la Computación, CONICET-UBA, Buenos Aires, Argentina
| | - Cecilia Calcaterra
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- TELL Toolkit SA, Buenos Aires, Argentina
| | - Catalina González Santibáñez
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
- Escuela de Postgrado, Facultad de Filosofía y Humanidades, Universidad de Chile, Santiago, Chile
| | - Raúl Echegoyen
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- TELL Toolkit SA, Buenos Aires, Argentina
| | | | - Fernando Johann
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- TELL Toolkit SA, Buenos Aires, Argentina
- School of Engineering, ORT University, Montevideo, Uruguay
| | - Eugenia Hesse
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- Departamento de Matemática y Ciencias, Universidad de San Andrés, Buenos Aires, Argentina
| | - Facundo Carrillo
- Instituto de Ciencias de la Computación, CONICET-UBA, Buenos Aires, Argentina
| |
Collapse
|
13
|
Vonk JMJ, Morin BT, Pillai J, Rolon DR, Bogley R, Baquirin DP, Ezzes Z, Tee BL, DeLeon J, Wauters L, Lukic S, Montembeault M, Younes K, Miller Z, García AM, Mandelli ML, Sturm VE, Miller BL, Gorno-Tempini ML. Digital language markers distinguish frontal from right anterior temporal lobe atrophy in frontotemporal dementia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.29.24312807. [PMID: 39252889 PMCID: PMC11383468 DOI: 10.1101/2024.08.29.24312807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Background and Objectives Within frontotemporal dementia (FTD), the behavioral variant (bvFTD) characterized by frontal atrophy, and semantic behavioral variant (sbvFTD) characterized by right anterior temporal lobe (rATL) atrophy, present diagnostic challenges due to overlapping symptoms and neuroanatomy. Accurate differentiation is crucial for clinical trial inclusion targeting TDP-43 proteinopathies. This study investigated whether automated speech analysis can distinguish between FTD-related rATL and frontal atrophy, potentially offering a non-invasive diagnostic tool. Methods In a cross-sectional design, we included 40 participants with FTD-related predominant frontal atrophy (n=16) or predominant rATL atrophy (n=24) and 22 healthy controls from the UCSF Memory and Aging Center. Using stepwise logistic regression and receiver operating characteristic (ROC) curve analysis, we analyzed 16 linguistic and acoustic features that were extracted automatically from audio-recorded picture description tasks. Neuroimaging data were analyzed using voxel-based morphometry to examine brain-behavior relationships of regional atrophy with the features selected in the regression models. Results Logistic regression identified three features (content units, lexical frequency, familiarity) differentiating the overall FTD group from controls (AUC=.973), adjusted for age. Within the FTD group, five features (adpositions/total words ratio, arousal, syllable pause duration, restarts, words containing 'thing') differentiated frontal from rATL atrophy (AUC=.943). Neuroimaging analyses showed that semantic features (lexical frequency, content units, 'thing' words) were linked to bilateral inferior temporal lobe structures, speech and lexical features (syllable pause duration, adpositions/total words ratio) to bilateral inferior frontal gyri, and socio-emotional features (arousal) to areas known to mediate social cognition including the right insula and bilateral anterior temporal structures. As a composite score, this set of five features was uniquely associated with rATL atrophy. Discussion Automated speech analysis effectively distinguished the overall FTD group from controls and differentiated between frontal and rATL atrophy. The neuroimaging findings for individual features highlight the neural basis of language impairments in these FTD variants, and when considered together, underscore the importance of utilizing features' combined power to identify impaired language patterns. Automated speech analysis could enhance early diagnosis and monitoring of FTD, offering a scalable, non-invasive alternative to traditional methods, particularly in resource-limited settings. Further research should aim to integrate automated speech analysis into multi-modal diagnostic frameworks.
Collapse
Affiliation(s)
- Jet M J Vonk
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Brittany T Morin
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Janhavi Pillai
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - David Rosado Rolon
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Rian Bogley
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - David Paul Baquirin
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Zoe Ezzes
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Boon Lead Tee
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Jessica DeLeon
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Lisa Wauters
- Department of Speech, Language and Hearing Sciences, University of Texas Austin, Austin, TX
| | - Sladjana Lukic
- School of Communication Science and Disorders, Florida State University, Tallahassee, FL
| | | | - Kyan Younes
- Department of Neurology, Stanford University, CA
| | - Zachary Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Adolfo M García
- Cognitive Neuroscience Center, Universidad de San Andrés Buenos Aires, Argentina, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - Maria Luisa Mandelli
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Virginia E Sturm
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| |
Collapse
|
14
|
Baset A, Huang F. Shedding light on subiculum's role in human brain disorders. Brain Res Bull 2024; 214:110993. [PMID: 38825254 DOI: 10.1016/j.brainresbull.2024.110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Subiculum is a pivotal output component of the hippocampal formation, a structure often overlooked in neuroscientific research. Here, this review aims to explore the role of the subiculum in various brain disorders, shedding light on its significance within the functional-neuroanatomical perspective on neurological diseases. The subiculum's involvement in multiple brain disorders was thoroughly examined. In Alzheimer's disease, subiculum alterations precede cognitive decline, while in epilepsy, the subiculum plays a critical role in seizure initiation. Stress involves the subiculum's impact on the hypothalamic-pituitary-adrenocortical axis. Moreover, the subiculum exhibits structural and functional changes in anxiety, schizophrenia, and Parkinson's disease, contributing to cognitive deficits. Bipolar disorder is linked to subiculum structural abnormalities, while autism spectrum disorder reveals an alteration of inward deformation in the subiculum. Lastly, frontotemporal dementia shows volumetric differences in the subiculum, emphasizing its contribution to the disorder's complexity. Taken together, this review consolidates existing knowledge on the subiculum's role in brain disorders, and may facilitate future research, diagnostic strategies, and therapeutic interventions for various neurological conditions.
Collapse
Affiliation(s)
- Abdul Baset
- Department of Neuroscience, City University of Hong Kong, Hong Kong Special Administrative Region of China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Special Administrative Region of China
| | - Fengwen Huang
- Department of Neuroscience, City University of Hong Kong, Hong Kong Special Administrative Region of China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Special Administrative Region of China.
| |
Collapse
|
15
|
Urso D, Giannoni-Luza S, Mondello S, Logroscino G. Accuracy of clinical diagnosis of behavioural variant frontotemporal dementia: a protocol for a systematic review and meta-analysis. BMJ Open 2024; 14:e081935. [PMID: 38977370 PMCID: PMC11256028 DOI: 10.1136/bmjopen-2023-081935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/10/2024] [Indexed: 07/10/2024] Open
Abstract
INTRODUCTION Behavioural variant frontotemporal dementia (bvFTD) characterisation has evolved, but diagnosis remains challenging, relying on clinical diagnostic criteria that have undergone revisions over time. In this systematic review, our aims are to evaluate the accuracy of clinical diagnostic criteria for bvFTD by comparing them against pathological diagnoses and determine potential improvement in performance over the years. METHODS AND ANALYSIS This systematic review protocol follows the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols 2015 guidelines and is registered on PROSPERO. We will search four databases (MEDLINE-PubMed, Web of Science, Embase and LILACS) using tailored search terms on May 1st 2024. Inclusion criteria encompass peer-reviewed articles reporting diagnostic parameters or raw data regarding bvFTD clinical diagnosis based on well-defined criteria. Screening and selection of relevant articles will be independently performed by two reviewers using the Covidence systematic review manager. Discrepancies will be resolved by a third researcher. Pathologic and genetic diagnosis will be the main gold standard, but we will also consider refined diagnoses after a follow-up period. Data will be collected on study design, baseline demographics and sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy. Study quality will be assessed with Quality Assessment of Diagnostic Accuracy Studies-2. If possible, we will conduct a meta-analysis using bivariate random-effect models. Subgroup analyses will consider study settings, gold standards, disease stages and bias. ETHICS AND DISSEMINATION Ethics approval will not be needed because the data used in this systematic review will be extracted from published studies. Findings will be disseminated through peer-reviewed publications and presentations at relevant scientific conferences, potentially enhancing our understanding of bvFTD clinical diagnosis reliability and guiding future criteria refinements. PROSPERO REGISTRATION NUMBER CRD42023389063.
Collapse
Affiliation(s)
- Daniele Urso
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari Aldo Moro, Pia Fondazione Cardinale G. Panico, Tricase, Puglia, Italy
- Department of Neurosciences, Institute of Psychiatry Psychology and Neuroscience, London, London, UK
| | - Stefano Giannoni-Luza
- Sensory-Motor Lab (SeMoLa), Department of Ophthalmology, Fondation Asile des Aveugles, Lausanne, Vaud, Switzerland
| | - Stefania Mondello
- Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Sicily, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari Aldo Moro, Pia Fondazione Cardinale G. Panico, Tricase, Puglia, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari, Bari, Italy
| |
Collapse
|
16
|
Rossi-Harries S, Harrison CR, Camic PM, Sullivan MP, Grillo A, Crutch SJ, Harding E. 'Talking lines': the stories of diagnosis and support as told by those with lived experience of rare forms of dementia. BMC Geriatr 2024; 24:504. [PMID: 38849735 PMCID: PMC11157747 DOI: 10.1186/s12877-024-04988-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/17/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND People living with, or caring for someone with, rare forms of dementia can encounter issues while obtaining a diagnosis and trying to access appropriate support. This can affect their wellbeing, quality of life, social relationships and employment status. This study makes use of an arts-based narrative approach to explore individual accounts of these experiences whilst also exploring how, in telling their stories, those affected by rare forms of dementia might invoke, and situate their stories in relation to, broader cultural narratives around dementia and illness. METHODS Semi-structured interviews were conducted via video-conferencing software with participants (N = 27), living with, or caring for someone with, a rare forms of dementia. Participants used line drawings to depict their journey from initial symptoms to the present day, followed by prompts to verbally narrate their experiences. All interview transcripts and line drawings were subjected to narrative analysis. Four sets of transcripts and drawings were then subjected to more in-depth analysis. RESULTS Analysis shed light on the struggles encountered by both care-partners and people with a diagnosis, while navigating a health and social care system that does not always understand their needs. This often led to individuals feeling isolated and unsupported. Accounts also depicted challenges to identity brought on by the process. The moment of diagnosis was also drawn in a complicated light. Individuals found comfort in gaining understanding, but felt fear at recognising upcoming challenges. Participants situated their own accounts against mainstream cultural narratives around what good support for cognitive impairment and dementia might look like, whilst also demonstrating the influential role they took on in pursuing the right care. CONCLUSIONS The use of line drawing, alongside narrative interviews, allowed participants to tell complicated, sometimes anachronistic, stories about difficult experiences, whilst also reflecting on, and attaching meaning to, them. These stories highlighted pressing gaps in healthcare services and shone a light on the various pieces of collective action individuals were engaged in in order to improve them. Finally, in modelling some elements of the participants' service provision which were working, the narratives pointed to future directions services might move in.
Collapse
Affiliation(s)
- Samuel Rossi-Harries
- Dementia Research Centre, UCL Queen Square Institute of Neurology, box 16, 8-11 Queen Square, London, WC1N 3BG, UK.
| | - Charles R Harrison
- Dementia Research Centre, UCL Queen Square Institute of Neurology, box 16, 8-11 Queen Square, London, WC1N 3BG, UK
| | - Paul M Camic
- Dementia Research Centre, UCL Queen Square Institute of Neurology, box 16, 8-11 Queen Square, London, WC1N 3BG, UK
| | - Mary Pat Sullivan
- School of Social Work, Faculty of Education and Professional Studies, Nipissing University, Nipissing, ON, Canada
| | - Adetola Grillo
- School of Social Work, Faculty of Education and Professional Studies, Nipissing University, Nipissing, ON, Canada
| | - Sebastian James Crutch
- Dementia Research Centre, UCL Queen Square Institute of Neurology, box 16, 8-11 Queen Square, London, WC1N 3BG, UK
| | - Emma Harding
- Dementia Research Centre, UCL Queen Square Institute of Neurology, box 16, 8-11 Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
17
|
Huang M, Landin-Romero R, Matis S, Dalton MA, Piguet O. Longitudinal volumetric changes in amygdala subregions in frontotemporal dementia. J Neurol 2024; 271:2509-2520. [PMID: 38265470 PMCID: PMC11055736 DOI: 10.1007/s00415-023-12172-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/25/2024]
Abstract
Amygdala atrophy has been found in frontotemporal dementia (FTD), yet the specific changes of its subregions across different FTD phenotypes remain unclear. The aim of this study was to investigate the volumetric alterations of the amygdala subregions in FTD phenotypes and how they evolve with disease progression. Patients clinically diagnosed with behavioral variant FTD (bvFTD) (n = 20), semantic dementia (SD) (n = 20), primary nonfluent aphasia (PNFA) (n = 20), Alzheimer's disease (AD) (n = 20), and 20 matched healthy controls underwent whole brain structural MRI. The patient groups were followed up annually for up to 3.5 years. Amygdala nuclei were segmented using FreeSurfer, corrected by total intracranial volumes, and grouped into the basolateral, superficial, and centromedial subregions. Linear mixed effects models were applied to identify changes in amygdala subregional volumes over time. At baseline, bvFTD, SD, and AD displayed global amygdala volume reduction, whereas amygdala volume appeared to be preserved in PNFA. Asymmetrical amygdala atrophy (left > right) was most pronounced in SD. Longitudinally, SD and PNFA showed greater rates of annual decline in the right basolateral and superficial subregions compared to bvFTD and AD. The findings provide comprehensive insights into the differential impact of FTD pathology on amygdala subregions, revealing distinct atrophy patterns that evolve over disease progression. The characterization of amygdala subregional involvement in FTD and their potential role as biomarkers carry substantial clinical implications.
Collapse
Affiliation(s)
- Mengjie Huang
- School of Psychology, The University of Sydney, Camperdown, NSW, 2050, Australia
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Ramon Landin-Romero
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
- School of Health Sciences, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Sophie Matis
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
- School of Health Sciences, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Marshall A Dalton
- School of Psychology, The University of Sydney, Camperdown, NSW, 2050, Australia
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Olivier Piguet
- School of Psychology, The University of Sydney, Camperdown, NSW, 2050, Australia.
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
18
|
Kim YA, Mellen M, Kizil C, Santa-Maria I. Mechanisms linking cerebrovascular dysfunction and tauopathy: Adding a layer of epiregulatory complexity. Br J Pharmacol 2024; 181:879-895. [PMID: 37926507 DOI: 10.1111/bph.16280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
Intracellular accumulation of hyperphosphorylated misfolded tau proteins are found in many neurodegenerative tauopathies, including Alzheimer's disease (AD). Tau pathology can impact cerebrovascular physiology and function through multiple mechanisms. In vitro and in vivo studies have shown that alterations in the blood-brain barrier (BBB) integrity and function can result in synaptic abnormalities and neuronal damage. In the present review, we will summarize how tau proteostasis dysregulation contributes to vascular dysfunction and, conversely, we will examine the factors and pathways leading to tau pathological alterations triggered by cerebrovascular dysfunction. Finally, we will highlight the role epigenetic and epitranscriptomic factors play in regulating the integrity of the cerebrovascular system and the progression of tauopathy including a few observartions on potential therapeutic interventions. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Yoon A Kim
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Marian Mellen
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain
| | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ismael Santa-Maria
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain
| |
Collapse
|
19
|
Das S, van Engelen MPE, Goossens J, Jacobs D, Bongers B, Fieldhouse JLP, Pijnenburg YAL, Teunissen CE, Vanmechelen E, Verberk IMW. The use of synaptic biomarkers in cerebrospinal fluid to differentiate behavioral variant of frontotemporal dementia from primary psychiatric disorders and Alzheimer's disease. Alzheimers Res Ther 2024; 16:34. [PMID: 38355535 PMCID: PMC10865562 DOI: 10.1186/s13195-024-01409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Lack of early molecular biomarkers in sporadic behavioral variants of frontotemporal dementia (bvFTD) and its clinical overlap with primary psychiatric disorders (PPD) hampers its diagnostic distinction. Synaptic dysfunction is an early feature in bvFTD and identification of specific biomarkers might improve its diagnostic accuracy. Our goal was to understand the differential diagnostic potential of cerebrospinal fluid (CSF) synaptic biomarkers in bvFTD versus PPD and their specificity towards bvFTD compared with Alzheimer's disease (AD) and controls. Additionally, we explored the association of CSF synaptic biomarkers with social cognition, cognitive performance, and disease severity in these clinical groups. METHODS Participants with probable bvFTD (n = 57), PPD (n = 71), AD (n = 60), and cognitively normal controls (n = 39) with available CSF, cognitive tests, and disease severity as frontotemporal lobar degeneration-modified clinical dementia rating scale (FTLD-CDR) were included. In a subset of bvFTD and PPD cases, Ekman 60 faces test scores for social cognition were available. CSF synaptosomal-associated protein 25 (SNAP25), neurogranin (Ng), neuronal pentraxin 2 (NPTX2), and glutamate receptor 4 (GluR4) were measured, along with neurofilament light (NfL), and compared between groups using analysis of covariance (ANCOVA) and logistic regression. Diagnostic accuracy was assessed using ROC analyses, and biomarker panels were selected using Wald's backward selection. Correlations with cognitive measures were performed using Pearson's partial correlation analysis. RESULTS NPTX2 concentrations were lower in the bvFTD group compared with PPD (p < 0.001) and controls (p = 0.003) but not compared with AD. Concentrations of SNAP25 (p < 0.001) and Ng (p < 0.001) were elevated in patients with AD versus those with bvFTD and controls. The modeled panel for differential diagnosis of bvFTD versus PPD consisted of NfL and NPTX2 (AUC = 0.96, CI: 0.93-0.99, p < 0.001). In bvFTD versus AD, the modeled panel consisted of NfL, SNAP25, Ng, and GluR4 (AUC = 0.86, CI: 0.79-0.92, p < 0.001). In bvFTD, lower NPTX2 (Pearson's r = 0.29, p = 0.036) and GluR4 (Pearson's r = 0.34, p = 0.014) concentrations were weakly associated with worse performance of total cognitive score. Lower GluR4 concentrations were also associated with worse MMSE scores (Pearson's r = 0.41, p = 0.002) as well as with worse executive functioning (Pearson's r = 0.36, p = 0.011) in bvFTD. There were no associations between synaptic markers and social cognition or disease severity in bvFTD. CONCLUSION Our findings of involvement of NTPX2 in bvFTD but not PPD contribute towards better understanding of bvFTD disease pathology.
Collapse
Affiliation(s)
- Shreyasee Das
- Department of Laboratory Medicine, Neurochemistry Laboratory, Amsterdam, UMC location VrijeUniversiteit Amsterdam, Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
- ADx NeuroSciences, Technologiepark-Zwijnaarde 6, 9052, Gent, Belgium
| | - Marie-Paule E van Engelen
- Neurology, Amsterdam UMC location VUmc, Alzheimer Center Amsterdam, VrijeUniversiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Julie Goossens
- ADx NeuroSciences, Technologiepark-Zwijnaarde 6, 9052, Gent, Belgium
| | - Dirk Jacobs
- ADx NeuroSciences, Technologiepark-Zwijnaarde 6, 9052, Gent, Belgium
| | - Bram Bongers
- Department of Laboratory Medicine, Neurochemistry Laboratory, Amsterdam, UMC location VrijeUniversiteit Amsterdam, Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
| | - Jay L P Fieldhouse
- Neurology, Amsterdam UMC location VUmc, Alzheimer Center Amsterdam, VrijeUniversiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Yolande A L Pijnenburg
- Neurology, Amsterdam UMC location VUmc, Alzheimer Center Amsterdam, VrijeUniversiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Charlotte E Teunissen
- Department of Laboratory Medicine, Neurochemistry Laboratory, Amsterdam, UMC location VrijeUniversiteit Amsterdam, Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
- Neurology, Amsterdam UMC location VUmc, Alzheimer Center Amsterdam, VrijeUniversiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | | | - Inge M W Verberk
- Department of Laboratory Medicine, Neurochemistry Laboratory, Amsterdam, UMC location VrijeUniversiteit Amsterdam, Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands.
- Neurology, Amsterdam UMC location VUmc, Alzheimer Center Amsterdam, VrijeUniversiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HZ, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands.
| |
Collapse
|
20
|
Ferrante FJ, Migeot J, Birba A, Amoruso L, Pérez G, Hesse E, Tagliazucchi E, Estienne C, Serrano C, Slachevsky A, Matallana D, Reyes P, Ibáñez A, Fittipaldi S, Campo CG, García AM. Multivariate word properties in fluency tasks reveal markers of Alzheimer's dementia. Alzheimers Dement 2024; 20:925-940. [PMID: 37823470 PMCID: PMC10916979 DOI: 10.1002/alz.13472] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION Verbal fluency tasks are common in Alzheimer's disease (AD) assessments. Yet, standard valid response counts fail to reveal disease-specific semantic memory patterns. Here, we leveraged automated word-property analysis to capture neurocognitive markers of AD vis-à-vis behavioral variant frontotemporal dementia (bvFTD). METHODS Patients and healthy controls completed two fluency tasks. We counted valid responses and computed each word's frequency, granularity, neighborhood, length, familiarity, and imageability. These features were used for group-level discrimination, patient-level identification, and correlations with executive and neural (magnetic resonanance imaging [MRI], functional MRI [fMRI], electroencephalography [EEG]) patterns. RESULTS Valid responses revealed deficits in both disorders. Conversely, frequency, granularity, and neighborhood yielded robust group- and subject-level discrimination only in AD, also predicting executive outcomes. Disease-specific cortical thickness patterns were predicted by frequency in both disorders. Default-mode and salience network hypoconnectivity, and EEG beta hypoconnectivity, were predicted by frequency and granularity only in AD. DISCUSSION Word-property analysis of fluency can boost AD characterization and diagnosis. HIGHLIGHTS We report novel word-property analyses of verbal fluency in AD and bvFTD. Standard valid response counts captured deficits and brain patterns in both groups. Specific word properties (e.g., frequency, granularity) were altered only in AD. Such properties predicted cognitive and neural (MRI, fMRI, EEG) patterns in AD. Word-property analysis of fluency can boost AD characterization and diagnosis.
Collapse
Affiliation(s)
- Franco J. Ferrante
- Centro de Neurociencias CognitivasUniversidad de San AndrésVictoriaProvincia de Buenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresArgentina
- Facultad de IngenieríaUniversidad de Buenos Aires (FIUBA)CABAArgentina
| | - Joaquín Migeot
- Latin American Brain Health (BrainLat) InstituteUniversidad Adolfo IbáñezPeñalolénRegión MetropolitanaChile
- Center for Social and Cognitive Neuroscience (CSCN)School of PsychologyUniversidad Adolfo IbáñezLas CondesChile
| | - Agustina Birba
- Centro de Neurociencias CognitivasUniversidad de San AndrésVictoriaProvincia de Buenos AiresArgentina
- Instituto Universitario de NeurocienciaUniversidad de La LagunaLa LagunaTenerifeEspaña
- Cognitive Department of PsychologyUniversidad de La LagunaLa LagunaTenerifeEspaña
| | - Lucía Amoruso
- Centro de Neurociencias CognitivasUniversidad de San AndrésVictoriaProvincia de Buenos AiresArgentina
- Basque Center on Cognition Brain and Language (BCBL)San SebastiánGipuzkoaEspaña
- IkerbasqueBasque Foundation for ScienceBilbaoSpain
| | - Gonzalo Pérez
- Centro de Neurociencias CognitivasUniversidad de San AndrésVictoriaProvincia de Buenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresArgentina
- Facultad de IngenieríaUniversidad de Buenos Aires (FIUBA)CABAArgentina
| | - Eugenia Hesse
- Centro de Neurociencias CognitivasUniversidad de San AndrésVictoriaProvincia de Buenos AiresArgentina
- Departamento de Matemática y CienciasUniversidad de San AndrésVictoriaProvincia de Buenos AiresArgentina
| | - Enzo Tagliazucchi
- Latin American Brain Health (BrainLat) InstituteUniversidad Adolfo IbáñezPeñalolénRegión MetropolitanaChile
- Departamento de FísicaUniversidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA‐CONICET)CABAArgentina
| | - Claudio Estienne
- Instituto de Ingeniería BiomédicaUniversidad de Buenos AiresBuenos AiresArgentina
| | - Cecilia Serrano
- Unidad de Neurología CognitivaHospital César MilsteinCABAArgentina
| | - Andrea Slachevsky
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC)Physiopathology Department ‐ ICBMNeurocience and East Neuroscience DepartmentsFaculty of MedicineUniversity of ChileProvidenciaSantiagoChile
- Geroscience Center for Brain Health and Metabolism (GERO)Faculty of MedicineUniversity of ChileProvidenciaSantiagoChile
- Memory and Neuropsychiatric Clinic (CMYN) Neurology DepartmentHospital del Salvador and Faculty of MedicineUniversity of ChileProvidenciaSantiagoChile
- Servicio de NeurologíaDepartamento de MedicinaClínica Alemana‐Universidad del DesarrolloLas CondesRegión MetropolitanaChile
| | - Diana Matallana
- Instituto de EnvejecimientoDepartment of PsychiatrySchool of MedicinePontifical Xaverian UniversityBogotáColombia
- Department of Mental HealthHospital Universitario Santa Fe de BogotáBogotáColombia
| | - Pablo Reyes
- Centro de Memoria y CogniciónIntellectus‐Hospital Universitario San IgnacioBogotáColombia
- Pontificia Universidad JaverianaDepartments of PhysiologyPsychiatry and Aging InstituteBogotáColombia
| | - Agustín Ibáñez
- Centro de Neurociencias CognitivasUniversidad de San AndrésVictoriaProvincia de Buenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresArgentina
- Latin American Brain Health (BrainLat) InstituteUniversidad Adolfo IbáñezPeñalolénRegión MetropolitanaChile
- Global Brain Health Institute, University of California San Francisco, San Francisco, California, USATrinity College DublinDublinIreland
| | - Sol Fittipaldi
- Centro de Neurociencias CognitivasUniversidad de San AndrésVictoriaProvincia de Buenos AiresArgentina
- Latin American Brain Health (BrainLat) InstituteUniversidad Adolfo IbáñezPeñalolénRegión MetropolitanaChile
- Global Brain Health Institute, University of California San Francisco, San Francisco, California, USATrinity College DublinDublinIreland
| | - Cecilia Gonzalez Campo
- Centro de Neurociencias CognitivasUniversidad de San AndrésVictoriaProvincia de Buenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresArgentina
| | - Adolfo M. García
- Centro de Neurociencias CognitivasUniversidad de San AndrésVictoriaProvincia de Buenos AiresArgentina
- Latin American Brain Health (BrainLat) InstituteUniversidad Adolfo IbáñezPeñalolénRegión MetropolitanaChile
- Global Brain Health Institute, University of California San Francisco, San Francisco, California, USATrinity College DublinDublinIreland
- Departamento de Lingüística y LiteraturaFacultad de HumanidadesUniversidad de Santiago de ChileEstación CentralSantiagoChile
| |
Collapse
|
21
|
Wang Z, Liu A, Yu J, Wang P, Bi Y, Xue S, Zhang J, Guo H, Zhang W. The effect of aperiodic components in distinguishing Alzheimer's disease from frontotemporal dementia. GeroScience 2024; 46:751-768. [PMID: 38110590 PMCID: PMC10828513 DOI: 10.1007/s11357-023-01041-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
Distinguishing between Alzheimer's disease (AD) and frontotemporal dementia (FTD) presents a clinical challenge. Inexpensive and accessible techniques such as electroencephalography (EEG) are increasingly being used to address this challenge. In particular, the potential relevance between aperiodic components of EEG activity and these disorders has gained interest as our understanding evolves. This study aims to determine the differences in aperiodic activity between AD and FTD and evaluate its potential for distinguishing between the two disorders. A total of 88 participants, including 36 patients with AD, 23 patients with FTD, and 29 healthy controls (CN) underwent cognitive assessment and scalp EEG acquisition. Neuronal power spectra were parameterized to decompose the EEG spectrum, enabling comparison of group differences in different components. A support vector machine was employed to assess the impact of aperiodic parameters on the differential diagnosis. Compared with the CN group, both the AD and FTD groups showed varying degrees of increased alpha power (both periodic and raw power) and theta alpha power ratio. At the channel level, theta power (both periodic and raw power) in the frontal regions was higher in the AD group compared to the FTD group, and aperiodic parameters (both exponents and offsets) in the frontal, temporal, central, and parietal regions were higher in the AD group than in the FTD group. Importantly, the inclusion of aperiodic parameters led to improved performance in distinguishing between the two disorders. These findings highlight the significance of aperiodic components in discriminating dementia-related diseases.
Collapse
Affiliation(s)
- Zhuyong Wang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China
| | - Anyang Liu
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China
| | - Jianshen Yu
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China
| | - Pengfei Wang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China
| | - Yuewei Bi
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China
| | - Sha Xue
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China
| | - Jiajun Zhang
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, People's Republic of China.
| | - Hongbo Guo
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China.
| | - Wangming Zhang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China.
| |
Collapse
|
22
|
Toro-Hernández FD, Migeot J, Marchant N, Olivares D, Ferrante F, González-Gómez R, González Campo C, Fittipaldi S, Rojas-Costa GM, Moguilner S, Slachevsky A, Chaná Cuevas P, Ibáñez A, Chaigneau S, García AM. Neurocognitive correlates of semantic memory navigation in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:15. [PMID: 38195756 PMCID: PMC10776628 DOI: 10.1038/s41531-024-00630-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
Cognitive studies on Parkinson's disease (PD) reveal abnormal semantic processing. Most research, however, fails to indicate which conceptual properties are most affected and capture patients' neurocognitive profiles. Here, we asked persons with PD, healthy controls, and individuals with behavioral variant frontotemporal dementia (bvFTD, as a disease control group) to read concepts (e.g., 'sun') and list their features (e.g., hot). Responses were analyzed in terms of ten word properties (including concreteness, imageability, and semantic variability), used for group-level comparisons, subject-level classification, and brain-behavior correlations. PD (but not bvFTD) patients produced more concrete and imageable words than controls, both patterns being associated with overall cognitive status. PD and bvFTD patients showed reduced semantic variability, an anomaly which predicted semantic inhibition outcomes. Word-property patterns robustly classified PD (but not bvFTD) patients and correlated with disease-specific hypoconnectivity along the sensorimotor and salience networks. Fine-grained semantic assessments, then, can reveal distinct neurocognitive signatures of PD.
Collapse
Affiliation(s)
- Felipe Diego Toro-Hernández
- Graduate Program in Neuroscience and Cognition, Federal University of ABC, São Paulo, Brazil
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Joaquín Migeot
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Nicolás Marchant
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Daniela Olivares
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
- Laboratorio de Neuropsicología y Neurociencias Clínicas, Universidad de Chile, Santiago, Chile
| | - Franco Ferrante
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council, Buenos Aires, Argentina
- Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Raúl González-Gómez
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Cecilia González Campo
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Sol Fittipaldi
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, California, USA; & Trinity College, Dublin, Ireland
| | - Gonzalo M Rojas-Costa
- Department of Radiology, Clínica las Condes, Santiago, Chile
- Advanced Epilepsy Center, Clínica las Condes, Santiago, Chile
- Join Unit FISABIO-CIPF, Valencia, Spain
- School of Medicine, Finis Terrae University, Santiago, Chile
- Health Innovation Center, Clínica Las Condes, Santiago, Chile
| | - Sebastian Moguilner
- Global Brain Health Institute, University of California, San Francisco, California, USA; & Trinity College, Dublin, Ireland
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Center (CMYN), Neurology Department, Hospital del Salvador & Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopatology Program - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Neurology and Psychiatry Department, Clínica Alemana-Universidad Desarrollo, Santiago, Chile
| | - Pedro Chaná Cuevas
- Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Agustín Ibáñez
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, California, USA; & Trinity College, Dublin, Ireland
| | - Sergio Chaigneau
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
- Center for Cognition Research, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Adolfo M García
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile.
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina.
- Global Brain Health Institute, University of California, San Francisco, California, USA; & Trinity College, Dublin, Ireland.
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
23
|
Shen T, Vogel JW, Duda J, Phillips JS, Cook PA, Gee J, Elman L, Quinn C, Amado DA, Baer M, Massimo L, Grossman M, Irwin DJ, McMillan CT. Novel data-driven subtypes and stages of brain atrophy in the ALS-FTD spectrum. Transl Neurodegener 2023; 12:57. [PMID: 38062485 PMCID: PMC10701950 DOI: 10.1186/s40035-023-00389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND TDP-43 proteinopathies represent a spectrum of neurological disorders, anchored clinically on either end by amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). The ALS-FTD spectrum exhibits a diverse range of clinical presentations with overlapping phenotypes, highlighting its heterogeneity. This study was aimed to use disease progression modeling to identify novel data-driven spatial and temporal subtypes of brain atrophy and its progression in the ALS-FTD spectrum. METHODS We used a data-driven procedure to identify 13 anatomic clusters of brain volume for 57 behavioral variant FTD (bvFTD; with either autopsy-confirmed TDP-43 or TDP-43 proteinopathy-associated genetic variants), 103 ALS, and 47 ALS-FTD patients with likely TDP-43. A Subtype and Stage Inference (SuStaIn) model was trained to identify subtypes of individuals along the ALS-FTD spectrum with distinct brain atrophy patterns, and we related subtypes and stages to clinical, genetic, and neuropathological features of disease. RESULTS SuStaIn identified three novel subtypes: two disease subtypes with predominant brain atrophy in either prefrontal/somatomotor regions or limbic-related regions, and a normal-appearing group without obvious brain atrophy. The limbic-predominant subtype tended to present with more impaired cognition, higher frequencies of pathogenic variants in TBK1 and TARDBP genes, and a higher proportion of TDP-43 types B, E and C. In contrast, the prefrontal/somatomotor-predominant subtype had higher frequencies of pathogenic variants in C9orf72 and GRN genes and higher proportion of TDP-43 type A. The normal-appearing brain group showed higher frequency of ALS relative to ALS-FTD and bvFTD patients, higher cognitive capacity, higher proportion of lower motor neuron onset, milder motor symptoms, and lower frequencies of genetic pathogenic variants. The overall SuStaIn stages also correlated with evidence for clinical progression including longer disease duration, higher King's stage, and cognitive decline. Additionally, SuStaIn stages differed across clinical phenotypes, genotypes and types of TDP-43 pathology. CONCLUSIONS Our findings suggest distinct neurodegenerative subtypes of disease along the ALS-FTD spectrum that can be identified in vivo, each with distinct brain atrophy, clinical, genetic and pathological patterns.
Collapse
Affiliation(s)
- Ting Shen
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jacob W Vogel
- Department of Clinical Sciences, SciLifeLab, Lund University, 222 42, Lund, Sweden
| | - Jeffrey Duda
- Penn Image Computing and Science Lab (PICSL), Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jeffrey S Phillips
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Philip A Cook
- Penn Image Computing and Science Lab (PICSL), Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James Gee
- Penn Image Computing and Science Lab (PICSL), Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lauren Elman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Colin Quinn
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Defne A Amado
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael Baer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lauren Massimo
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David J Irwin
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Corey T McMillan
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Harding E, Rossi-Harries S, Alterkawi S, Waddington C, Grillo A, Wood O, Brotherhood EV, Windle G, Sullivan MP, Camic PM, Stott J, Crutch SJ. 'The oxygen of shared experience': exploring social support processes within peer support groups for carers of people with non-memory-led and inherited dementias. Aging Ment Health 2023; 27:1912-1928. [PMID: 36999880 DOI: 10.1080/13607863.2023.2194848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/18/2023] [Indexed: 04/01/2023]
Abstract
OBJECTIVES To explore support processes and behaviours taking place during online peer support groups for family carers of people living with rare, non-memory-led and inherited dementias (PLWRD). METHODS Twenty-five family carers of PLWRD participated in a series of ongoing online peer support groups on the theme of 'Independence and Identity'. Transcripts from 16 sessions were analysed using qualitative directed content analysis with a coding framework informed by Cutrona & Suhr's (2004) Social Support Behaviour Code (SSBC). RESULTS Most of the social support behaviours outlined in the SSBC were identified within the sessions, along with two novel social support categories - 'Experiential Support' and 'Community Support' - and novel support behaviours including 'Advocacy and Collective Action' and 'Uses Humour'. The SSBC code 'Relationship' appeared to be of central importance. CONCLUSIONS This study sheds light on the unique challenges of the caring context for those affected by non-memory-led and inherited dementias and the significant contributions carers can offer to, and receive from, peers in similar situations. It highlights the importance of services which recognise the value of the informational and emotional expertise of carers of PLWRD and encourages the continued development and delivery of tailored support for these populations.
Collapse
Affiliation(s)
- Emma Harding
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Samuel Rossi-Harries
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Shaima Alterkawi
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Claire Waddington
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Adetola Grillo
- School of Social Work, Faculty of Education and Professional Studies, Nipissing University, Nipissing, Ontario, Canada
| | - Olivia Wood
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Emilie V Brotherhood
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Gill Windle
- Dementia Services Development Centre, Bangor University, Bangor, UK
| | - Mary Pat Sullivan
- School of Social Work, Faculty of Education and Professional Studies, Nipissing University, Nipissing, Ontario, Canada
| | - Paul M Camic
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Joshua Stott
- Department of Clinical, Educational, and Health Psychology, UCL Division of Psychology and Language Sciences, UCL, London, UK
| | - Sebastian J Crutch
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| |
Collapse
|
25
|
Shen T, Vogel JW, Duda J, Phillips JS, Cook PA, Gee J, Elman L, Quinn C, Amado DA, Baer M, Massimo L, Grossman M, Irwin DJ, McMillan CT. Novel data-driven subtypes and stages of brain atrophy in the ALS-FTD spectrum. RESEARCH SQUARE 2023:rs.3.rs-3183113. [PMID: 37609205 PMCID: PMC10441467 DOI: 10.21203/rs.3.rs-3183113/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Background TDP-43 proteinopathies represents a spectrum of neurological disorders, anchored clinically on either end by amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). The ALS-FTD spectrum exhibits a diverse range of clinical presentations with overlapping phenotypes, highlighting its heterogeneity. This study aimed to use disease progression modeling to identify novel data-driven spatial and temporal subtypes of brain atrophy and its progression in the ALS-FTD spectrum. Methods We used a data-driven procedure to identify 13 anatomic clusters of brain volumes for 57 behavioral variant FTD (bvFTD; with either autopsy-confirmed TDP-43 or TDP-43 proteinopathy-associated genetic variants), 103 ALS, and 47 ALS-FTD patients with likely TDP-43. A Subtype and Stage Inference (SuStaIn) model was trained to identify subtypes of individuals along the ALS-FTD spectrum with distinct brain atrophy patterns, and we related subtypes and stages to clinical, genetic, and neuropathological features of disease. Results SuStaIn identified three novel subtypes: two disease subtypes with predominant brain atrophy either in prefrontal/somatomotor regions or limbic-related regions, and a normal-appearing group without obvious brain atrophy. The Limbic-predominant subtype tended to present with more impaired cognition, higher frequencies of pathogenic variants in TBK1 and TARDBP genes, and a higher proportion of TDP-43 type B, E and C. In contrast, the Prefrontal/Somatomotor-predominant subtype had higher frequencies of pathogenic variants in C9orf72 and GRN genes and higher proportion of TDP-43 type A. The normal-appearing brain group showed higher frequency of ALS relative to ALS-FTD and bvFTD patients, higher cognitive capacity, higher proportion of lower motor neuron onset, milder motor symptoms, and lower frequencies of genetic pathogenic variants. Overall SuStaIn stages also correlated with evidence for clinical progression including longer disease duration, higher King's stage, and cognitive decline. Additionally, SuStaIn stages differed across clinical phenotypes, genotypes and types of TDP-43 pathology. Conclusions Our findings suggest distinct neurodegenerative subtypes of disease along the ALS-FTD spectrum that can be identified in vivo, each with distinct brain atrophy, clinical, genetic and pathological patterns.
Collapse
Affiliation(s)
- Ting Shen
- University of Pennsylvania Perelman School of Medicine
| | | | - Jeffrey Duda
- University of Pennsylvania Perelman School of Medicine
| | | | - Philip A Cook
- University of Pennsylvania Perelman School of Medicine
| | - James Gee
- University of Pennsylvania Perelman School of Medicine
| | - Lauren Elman
- University of Pennsylvania Perelman School of Medicine
| | - Colin Quinn
- University of Pennsylvania Perelman School of Medicine
| | - Defne A Amado
- University of Pennsylvania Perelman School of Medicine
| | - Michael Baer
- University of Pennsylvania Perelman School of Medicine
| | | | | | - David J Irwin
- University of Pennsylvania Perelman School of Medicine
| | | |
Collapse
|
26
|
van Engelen MPE, Verfaillie SCJ, Dols A, Oudega ML, Boellaard R, Golla SSV, den Hollander M, Ossenkoppele R, Scheltens P, van Berckel BNM, Pijnenburg YAL, Vijverberg EGB. Altered brain metabolism in frontotemporal dementia and psychiatric disorders: involvement of the anterior cingulate cortex. EJNMMI Res 2023; 13:71. [PMID: 37493827 PMCID: PMC10371967 DOI: 10.1186/s13550-023-01020-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Behavioural symptoms and frontotemporal hypometabolism overlap between behavioural variant of frontotemporal dementia (bvFTD) and primary psychiatric disorders (PPD), hampering diagnostic distinction. Voxel-wise comparisons of brain metabolism might identify specific frontotemporal-(hypo)metabolic regions between bvFTD and PPD. We investigated brain metabolism in bvFTD and PPD and its relationship with behavioural symptoms, social cognition, severity of depressive symptoms and cognitive functioning. RESULTS Compared to controls, bvFTD showed decreased metabolism in the dorsal anterior cingulate cortex (dACC) (p < 0.001), orbitofrontal cortex (OFC), temporal pole, dorsolateral prefrontal cortex (dlPFC) and caudate, whereas PPD showed no hypometabolism. Compared to PPD, bvFTD showed decreased metabolism in the dACC (p < 0.001, p < 0.05FWE), insula, Broca's area, caudate, thalamus, OFC and temporal cortex (p < 0.001), whereas PPD showed decreased metabolism in the motor cortex (p < 0.001). Across bvFTD and PPD, decreased metabolism in the temporal cortex (p < 0.001, p < 0.05FWE), dACC and frontal cortex was associated with worse social cognition. Decreased metabolism in the dlPFC was associated with compulsiveness (p < 0.001). Across bvFTD, PPD and controls, decreased metabolism in the PFC and motor cortex was associated with executive dysfunctioning (p < 0.001). CONCLUSIONS Our findings indicate subtle but distinct metabolic patterns in bvFTD and PPD, most strongly in the dACC. The degree of frontotemporal and cingulate hypometabolism was related to impaired social cognition, compulsiveness and executive dysfunctioning. Our findings suggest that the dACC might be an important region to differentiate between bvFTD and PPD but needs further validation.
Collapse
Affiliation(s)
- Marie-Paule E van Engelen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Sander C J Verfaillie
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Medical Psychology, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- GGZ inGeest Specialized Mental Health Care, Amsterdam, The Netherlands
| | - Annemieke Dols
- Department of Psychiatry, UMC Utrecht Brain Center, University of Utrecht, Utrecht, The Netherlands
| | - Mardien L Oudega
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- GGZ inGeest Specialized Mental Health Care, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sandeep S V Golla
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marijke den Hollander
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- EQT Life Sciences Partners, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Everard G B Vijverberg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Legaz A, Prado P, Moguilner S, Báez S, Santamaría-García H, Birba A, Barttfeld P, García AM, Fittipaldi S, Ibañez A. Social and non-social working memory in neurodegeneration. Neurobiol Dis 2023; 183:106171. [PMID: 37257663 PMCID: PMC11177282 DOI: 10.1016/j.nbd.2023.106171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
Although social functioning relies on working memory, whether a social-specific mechanism exists remains unclear. This undermines the characterization of neurodegenerative conditions with both working memory and social deficits. We assessed working memory domain-specificity across behavioral, electrophysiological, and neuroimaging dimensions in 245 participants. A novel working memory task involving social and non-social stimuli with three load levels was assessed across controls and different neurodegenerative conditions with recognized impairments in: working memory and social cognition (behavioral-variant frontotemporal dementia); general cognition (Alzheimer's disease); and unspecific patterns (Parkinson's disease). We also examined resting-state theta oscillations and functional connectivity correlates of working memory domain-specificity. Results in controls and all groups together evidenced increased working memory demands for social stimuli associated with frontocinguloparietal theta oscillations and salience network connectivity. Canonical frontal theta oscillations and executive-default mode network anticorrelation indexed non-social stimuli. Behavioral-variant frontotemporal dementia presented generalized working memory deficits related to posterior theta oscillations, with social stimuli linked to salience network connectivity. In Alzheimer's disease, generalized working memory impairments were related to temporoparietal theta oscillations, with non-social stimuli linked to the executive network. Parkinson's disease showed spared working memory performance and canonical brain correlates. Findings support a social-specific working memory and related disease-selective pathophysiological mechanisms.
Collapse
Affiliation(s)
- Agustina Legaz
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Universidad Nacional de Córdoba, Facultad de Psicología, Córdoba, Argentina
| | - Pavel Prado
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile; Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Sebastián Moguilner
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, United States; Trinity College Dublin (TCD), Dublin, Ireland
| | | | - Hernando Santamaría-García
- Pontificia Universidad Javeriana, Medical School, Physiology and Psychiatry Departments, Memory and Cognition Center Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Agustina Birba
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina; Facultad de Psicología, Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencia, Universidad de La Laguna, Tenerife, Spain
| | - Pablo Barttfeld
- Cognitive Science Group. Instituto de Investigaciones Psicológicas (IIPsi), CONICET UNC, Facultad de Psicología, Universidad Nacional de Córdoba, Boulevard de la Reforma esquina Enfermera Gordillo, CP 5000. Córdoba, Argentina
| | - Adolfo M García
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, United States; Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile; Trinity College Dublin (TCD), Dublin, Ireland
| | - Sol Fittipaldi
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, United States; Trinity College Dublin (TCD), Dublin, Ireland.
| | - Agustín Ibañez
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, United States; Trinity College Dublin (TCD), Dublin, Ireland.
| |
Collapse
|
28
|
Wang JY, Ma GM, Tang XQ, Shi QL, Yu MC, Lou MM, He KW, Wang WY. Brain region-specific synaptic function of FUS underlies the FTLD-linked behavioural disinhibition. Brain 2023; 146:2107-2119. [PMID: 36345573 DOI: 10.1093/brain/awac411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/10/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
Synaptic dysfunction is one of the earliest pathological processes that contribute to the development of many neurological disorders, including Alzheimer's disease and frontotemporal lobar degeneration. However, the synaptic function of many disease-causative genes and their contribution to the pathogenesis of the related diseases remain unclear. In this study, we investigated the synaptic role of fused in sarcoma, an RNA-binding protein linked to frontotemporal lobar degeneration and amyotrophic lateral sclerosis, and its potential pathological role in frontotemporal lobar degeneration using pyramidal neuron-specific conditional knockout mice (FuscKO). We found that FUS regulates the expression of many genes associated with synaptic function in a hippocampal subregion-specific manner, concomitant with the frontotemporal lobar degeneration-linked behavioural disinhibition. Electrophysiological study and molecular pathway analyses further reveal that fused in sarcoma differentially regulates synaptic and neuronal properties in the ventral hippocampus and medial prefrontal cortex, respectively. Moreover, fused in sarcoma selectively modulates the ventral hippocampus-prefrontal cortex projection, which is known to mediate the anxiety-like behaviour. Our findings unveil the brain region- and synapse-specific role of fused in sarcoma, whose impairment might lead to the emotional symptoms associated with frontotemporal lobar degeneration.
Collapse
Affiliation(s)
- Jun-Ying Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guo-Ming Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Qiang Tang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 201210, China
| | - Qi-Li Shi
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 201210, China
| | - Ming-Can Yu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 201210, China
| | - Min-Min Lou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai-Wen He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 201210, China
| | - Wen-Yuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 201210, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Animal Center of Zoology, Institute of Neuroscience, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
29
|
Sanz Perl Y, Fittipaldi S, Gonzalez Campo C, Moguilner S, Cruzat J, Fraile-Vazquez ME, Herzog R, Kringelbach ML, Deco G, Prado P, Ibanez A, Tagliazucchi E. Model-based whole-brain perturbational landscape of neurodegenerative diseases. eLife 2023; 12:e83970. [PMID: 36995213 PMCID: PMC10063230 DOI: 10.7554/elife.83970] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
The treatment of neurodegenerative diseases is hindered by lack of interventions capable of steering multimodal whole-brain dynamics towards patterns indicative of preserved brain health. To address this problem, we combined deep learning with a model capable of reproducing whole-brain functional connectivity in patients diagnosed with Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD). These models included disease-specific atrophy maps as priors to modulate local parameters, revealing increased stability of hippocampal and insular dynamics as signatures of brain atrophy in AD and bvFTD, respectively. Using variational autoencoders, we visualized different pathologies and their severity as the evolution of trajectories in a low-dimensional latent space. Finally, we perturbed the model to reveal key AD- and bvFTD-specific regions to induce transitions from pathological to healthy brain states. Overall, we obtained novel insights on disease progression and control by means of external stimulation, while identifying dynamical mechanisms that underlie functional alterations in neurodegeneration.
Collapse
Affiliation(s)
- Yonatan Sanz Perl
- Department of Physics, University of Buenos AiresBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET), CABABuenos AiresArgentina
- Cognitive Neuroscience Center (CNC), Universidad de San AndrésBuenos AiresArgentina
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu FabraBarcelonaSpain
| | - Sol Fittipaldi
- National Scientific and Technical Research Council (CONICET), CABABuenos AiresArgentina
- Cognitive Neuroscience Center (CNC), Universidad de San AndrésBuenos AiresArgentina
| | - Cecilia Gonzalez Campo
- National Scientific and Technical Research Council (CONICET), CABABuenos AiresArgentina
- Cognitive Neuroscience Center (CNC), Universidad de San AndrésBuenos AiresArgentina
| | - Sebastián Moguilner
- Global Brain Health Institute, University of California, San FranciscoSan FranciscoUnited States
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
| | - Josephine Cruzat
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu FabraBarcelonaSpain
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
| | | | - Rubén Herzog
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
| | - Morten L Kringelbach
- Department of Psychiatry, University of OxfordOxfordUnited Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus UniversityÅrhusDenmark
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBragaPortugal
- Centre for Eudaimonia and Human Flourishing, University of OxfordOxfordUnited Kingdom
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu FabraBarcelonaSpain
- Department of Information and Communication Technologies, Universitat Pompeu FabraBarcelonaSpain
- Institució Catalana de la Recerca i Estudis Avancats (ICREA)BarcelonaSpain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- School of Psychological Sciences, Monash UniversityClaytonAustralia
| | - Pavel Prado
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San SebastiánSantiagoChile
| | - Agustin Ibanez
- National Scientific and Technical Research Council (CONICET), CABABuenos AiresArgentina
- Cognitive Neuroscience Center (CNC), Universidad de San AndrésBuenos AiresArgentina
- Global Brain Health Institute, University of California, San FranciscoSan FranciscoUnited States
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
- Trinity College Institute of Neuroscience (TCIN), Trinity College DublinDublinIreland
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos AiresBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET), CABABuenos AiresArgentina
- Cognitive Neuroscience Center (CNC), Universidad de San AndrésBuenos AiresArgentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
| |
Collapse
|
30
|
Cruzat J, Herzog R, Prado P, Sanz-Perl Y, Gonzalez-Gomez R, Moguilner S, Kringelbach ML, Deco G, Tagliazucchi E, Ibañez A. Temporal Irreversibility of Large-Scale Brain Dynamics in Alzheimer's Disease. J Neurosci 2023; 43:1643-1656. [PMID: 36732071 PMCID: PMC10008060 DOI: 10.1523/jneurosci.1312-22.2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/12/2022] [Accepted: 12/25/2022] [Indexed: 02/04/2023] Open
Abstract
Healthy brain dynamics can be understood as the emergence of a complex system far from thermodynamic equilibrium. Brain dynamics are temporally irreversible and thus establish a preferred direction in time (i.e., arrow of time). However, little is known about how the time-reversal symmetry of spontaneous brain activity is affected by Alzheimer's disease (AD). We hypothesized that the level of irreversibility would be compromised in AD, signaling a fundamental shift in the collective properties of brain activity toward equilibrium dynamics. We investigated the irreversibility from resting-state fMRI and EEG data in male and female human patients with AD and elderly healthy control subjects (HCs). We quantified the level of irreversibility and, thus, proximity to nonequilibrium dynamics by comparing forward and backward time series through time-shifted correlations. AD was associated with a breakdown of temporal irreversibility at the global, local, and network levels, and at multiple oscillatory frequency bands. At the local level, temporoparietal and frontal regions were affected by AD. The limbic, frontoparietal, default mode, and salience networks were the most compromised at the network level. The temporal reversibility was associated with cognitive decline in AD and gray matter volume in HCs. The irreversibility of brain dynamics provided higher accuracy and more distinctive information than classical neurocognitive measures when differentiating AD from control subjects. Findings were validated using an out-of-sample cohort. Present results offer new evidence regarding pathophysiological links between the entropy generation rate of brain dynamics and the clinical presentation of AD, opening new avenues for dementia characterization at different levels.SIGNIFICANCE STATEMENT By assessing the irreversibility of large-scale dynamics across multiple brain signals, we provide a precise signature capable of distinguishing Alzheimer's disease (AD) at the global, local, and network levels and different oscillatory regimes. Irreversibility of limbic, frontoparietal, default-mode, and salience networks was the most compromised by AD compared with more sensory-motor networks. Moreover, the time-irreversibility properties associated with cognitive decline and atrophy outperformed and complemented classical neurocognitive markers of AD in predictive classification performance. Findings were generalized and replicated with an out-of-sample validation procedure. We provide novel multilevel evidence of reduced irreversibility in AD brain dynamics that has the potential to open new avenues for understating neurodegeneration in terms of the temporal asymmetry of brain dynamics.
Collapse
Affiliation(s)
- Josephine Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- Fundación para el Estudio de la Conciencia Humana (ECoH), 7550000, Santiago, Chile
| | - Ruben Herzog
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- Fundación para el Estudio de la Conciencia Humana (ECoH), 7550000, Santiago, Chile
| | - Pavel Prado
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Yonatan Sanz-Perl
- Department of Physics, University of Buenos Aires, C1428EGA, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1033AAJ, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, C116ABJ, Buenos Aires, Argentina
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, 08005 Barcelona, Spain
| | - Raul Gonzalez-Gomez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
| | - Sebastian Moguilner
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94143
- Global Brain Health Institute, Trinity College, Dublin 2, Ireland
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, 8000 Århus, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, United Kingdom
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, 08005 Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, D-04303 Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne 3168, Australia
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- Department of Physics, University of Buenos Aires, C1428EGA, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1033AAJ, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, C116ABJ, Buenos Aires, Argentina
| | - Agustín Ibañez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- National Scientific and Technical Research Council (CONICET), C1033AAJ, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, C116ABJ, Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94143
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
31
|
Sabatini S, Martyr A, Gamble LD, Collins R, Matthews FE, Morris RG, Rusted JM, Pentecost C, Quinn C, Clare L. Longitudinal Predictors of Informant-Rated Involvement of People with Dementia in Everyday Decision-Making: Findings from the IDEAL Program. J Appl Gerontol 2023; 42:290-301. [PMID: 36193737 PMCID: PMC9841822 DOI: 10.1177/07334648221128558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 01/19/2023] Open
Abstract
The extent to which people with dementia are involved in everyday decision-making is unclear. We explored informant-rated involvement of people with dementia in everyday decision-making over 2 years and whether functional, behavioral, and psychological factors related to the person with dementia and the caregiver explain variability in involvement of people with dementia in everyday decision-making. We used IDEAL data for 1182 people with dementia and their caregivers. Baseline mean score on the decision-making involvement scale was 31/45; it minimally declined over time. People with dementia who were female, single, and/or whose caregiver was younger had greater involvement in everyday decision-making than those without these characteristics. Better cognition, fewer functional difficulties, fewer neuropsychiatric symptoms, less caregiver stress, and better informant-rated relationship quality were associated with higher involvement in everyday decision-making. Cognitive and functional rehabilitation, and educational resources for caregivers, could prolong involvement of people with dementia in everyday decision-making.
Collapse
Affiliation(s)
- Serena Sabatini
- Faculty of Biomedical Sciences, University of Italian Switzerland, Lugano, Switzerland
| | - Anthony Martyr
- Centre for Research in Ageing and Cognitive Health, Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Laura D. Gamble
- Population Health Sciences Institute, Newcastle University, Newcastle, UK
| | - Rachel Collins
- Centre for Research in Ageing and Cognitive Health, Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Fiona E. Matthews
- Population Health Sciences Institute, Newcastle University, Newcastle, UK
| | - Robin G. Morris
- Department of Psychology, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | | | - Claire Pentecost
- Centre for Research in Ageing and Cognitive Health, Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Catherine Quinn
- Centre for Applied Dementia Studies, Bradford University, Bradford, UK
- Wolfson Centre for Applied Health Research, Bradford, UK
| | - Linda Clare
- Centre for Research in Ageing and Cognitive Health, Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - behalf of the IDEAL study team
- Faculty of Biomedical Sciences, University of Italian Switzerland, Lugano, Switzerland
- Centre for Research in Ageing and Cognitive Health, Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
- Population Health Sciences Institute, Newcastle University, Newcastle, UK
- Department of Psychology, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- School of Psychology, University of Sussex, Brighton, Brighton, UK
- Centre for Applied Dementia Studies, Bradford University, Bradford, UK
- Wolfson Centre for Applied Health Research, Bradford, UK
| |
Collapse
|
32
|
Ramanan S, El-Omar H, Roquet D, Ahmed RM, Hodges JR, Piguet O, Lambon Ralph MA, Irish M. Mapping behavioural, cognitive and affective transdiagnostic dimensions in frontotemporal dementia. Brain Commun 2023; 5:fcac344. [PMID: 36687395 PMCID: PMC9847565 DOI: 10.1093/braincomms/fcac344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 09/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Two common clinical variants of frontotemporal dementia are the behavioural variant frontotemporal dementia, presenting with behavioural and personality changes attributable to prefrontal atrophy, and semantic dementia, displaying early semantic dysfunction primarily due to anterior temporal degeneration. Despite representing independent diagnostic entities, mounting evidence indicates overlapping cognitive-behavioural profiles in these syndromes, particularly with disease progression. Why such overlap occurs remains unclear. Understanding the nature of this overlap, however, is essential to improve early diagnosis, characterization and management of those affected. Here, we explored common cognitive-behavioural and neural mechanisms contributing to heterogeneous frontotemporal dementia presentations, irrespective of clinical diagnosis. This transdiagnostic approach allowed us to ascertain whether symptoms not currently considered core to these two syndromes are present in a significant proportion of cases and to explore the neural basis of clinical heterogeneity. Sixty-two frontotemporal dementia patients (31 behavioural variant frontotemporal dementia and 31 semantic dementia) underwent comprehensive neuropsychological, behavioural and structural neuroimaging assessments. Orthogonally rotated principal component analysis of neuropsychological and behavioural data uncovered eight statistically independent factors explaining the majority of cognitive-behavioural performance variation in behavioural variant frontotemporal dementia and semantic dementia. These factors included Behavioural changes, Semantic dysfunction, General Cognition, Executive function, Initiation, Disinhibition, Visuospatial function and Affective changes. Marked individual-level overlap between behavioural variant frontotemporal dementia and semantic dementia was evident on the Behavioural changes, General Cognition, Initiation, Disinhibition and Affective changes factors. Compared to behavioural variant frontotemporal dementia, semantic dementia patients displayed disproportionate impairment on the Semantic dysfunction factor, whereas greater impairment on Executive and Visuospatial function factors was noted in behavioural variant frontotemporal dementia. Both patient groups showed comparable magnitude of atrophy to frontal regions, whereas severe temporal lobe atrophy was characteristic of semantic dementia. Whole-brain voxel-based morphometry correlations with emergent factors revealed associations between fronto-insular and striatal grey matter changes with Behavioural, Executive and Initiation factor performance, bilateral temporal atrophy with Semantic dysfunction factor scores, parietal-subcortical regions with General Cognitive performance and ventral temporal atrophy associated with Visuospatial factor scores. Together, these findings indicate that cognitive-behavioural overlap (i) occurs systematically in frontotemporal dementia; (ii) varies in a graded manner between individuals and (iii) is associated with degeneration of different neural systems. Our findings suggest that phenotypic heterogeneity in frontotemporal dementia syndromes can be captured along continuous, multidimensional spectra of cognitive-behavioural changes. This has implications for the diagnosis of both syndromes amidst overlapping features as well as the design of symptomatic treatments applicable to multiple syndromes.
Collapse
Affiliation(s)
- Siddharth Ramanan
- Medical Research Council Cognition and Brain Sciences Unit, The University of Cambridge, Cambridge CB3 1AU, UK
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia
| | - Hashim El-Omar
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Daniel Roquet
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia
| | - Rebekah M Ahmed
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - John R Hodges
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Olivier Piguet
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia
| | - Matthew A Lambon Ralph
- Medical Research Council Cognition and Brain Sciences Unit, The University of Cambridge, Cambridge CB3 1AU, UK
| | - Muireann Irish
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
33
|
Fieldhouse JLP, van Dijk G, Gillissen F, van Engelen MPE, de Boer SCM, Dols A, van der Waal HJ, Regeer BJ, Vijverberg EGB, Pijnenburg YAL. A caregiver's perspective on clinically relevant symptoms in behavioural variant frontotemporal dementia: tools for disease management and trial design. Psychogeriatrics 2023; 23:11-22. [PMID: 36314055 PMCID: PMC10092374 DOI: 10.1111/psyg.12898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Adequate detection of symptoms and disease progression in behavioural variant frontotemporal dementia (bvFTD) is complex. Dementia cohorts usually utilize cognitive and functional measures, which fail to detect dominant behavioural and social cognitive deficits in bvFTD. Moreover, since patients typically have a loss of insight, caregivers are important informants. This is the first qualitative study to investigate caregiver relevant symptoms during the disease course of bvFTD, aiming to improve tools for diagnosis, progression, and future clinical trials. METHODS Informal caregivers of patients in different disease stages of bvFTD (N = 20) were recruited from the neurology outpatient clinic of the Amsterdam UMC and a patient organization for peer support in the Netherlands. Their perspectives on clinical relevance were thoroughly explored during individual semi-structured interviews. Inductive content analysis with open coding was performed by two researchers independently to establish overarching themes and patterns. RESULTS Caregivers reported a variety of symptoms, in which (i) loss of emotional connection, (ii) preoccupation and restlessness, and (iii) apathy and dependency compose major themes of relevance for diagnosis and treatment. Within heterogeneous disease trajectories, symptom presence differed between stages and among individuals, which is relevant in the context of progression and outcome measures. Significant socio-emotional changes dominated in early stages, while severe cognitive, behavioural, and physical deterioration shifted focus from predominant personality change to quality of life in later stages. CONCLUSIONS Caregiver perspectives on target symptoms in bvFTD differ according to clinical stage and patient-caregiver characteristics, with significant socio-emotional changes characterizing early stages. These findings call for more appropriate tools and symptomatic treatments, as well as a personalized approach in treatment of bvFTD and a focus on early stage interventions in clinical trial design.
Collapse
Affiliation(s)
- Jay L P Fieldhouse
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Gaby van Dijk
- Athena Institute, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Freek Gillissen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marie-Paule E van Engelen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Sterre C M de Boer
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Annemiek Dols
- Department of Old Age Psychiatry, GGZ InGeest, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | | - Barbara J Regeer
- Athena Institute, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Everard G B Vijverberg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Díaz-Rivera MN, Birba A, Fittipaldi S, Mola D, Morera Y, de Vega M, Moguilner S, Lillo P, Slachevsky A, González Campo C, Ibáñez A, García AM. Multidimensional inhibitory signatures of sentential negation in behavioral variant frontotemporal dementia. Cereb Cortex 2022; 33:403-420. [PMID: 35253864 PMCID: PMC9837611 DOI: 10.1093/cercor/bhac074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Processing of linguistic negation has been associated to inhibitory brain mechanisms. However, no study has tapped this link via multimodal measures in patients with core inhibitory alterations, a critical approach to reveal direct neural correlates and potential disease markers. METHODS Here we examined oscillatory, neuroanatomical, and functional connectivity signatures of a recently reported Go/No-go negation task in healthy controls and behavioral variant frontotemporal dementia (bvFTD) patients, typified by primary and generalized inhibitory disruptions. To test for specificity, we also recruited persons with Alzheimer's disease (AD), a disease involving frequent but nonprimary inhibitory deficits. RESULTS In controls, negative sentences in the No-go condition distinctly involved frontocentral delta (2-3 Hz) suppression, a canonical inhibitory marker. In bvFTD patients, this modulation was selectively abolished and significantly correlated with the volume and functional connectivity of regions supporting inhibition (e.g. precentral gyrus, caudate nucleus, and cerebellum). Such canonical delta suppression was preserved in the AD group and associated with widespread anatomo-functional patterns across non-inhibitory regions. DISCUSSION These findings suggest that negation hinges on the integrity and interaction of spatiotemporal inhibitory mechanisms. Moreover, our results reveal potential neurocognitive markers of bvFTD, opening a new agenda at the crossing of cognitive neuroscience and behavioral neurology.
Collapse
Affiliation(s)
- Mariano N Díaz-Rivera
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), C1425FQD, Godoy Cruz 2370, Buenos Aires, Argentina
| | - Agustina Birba
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina
| | - Sol Fittipaldi
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina
| | - Débora Mola
- Instituto de Investigaciones Psicológicas, CONICET, 5000, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yurena Morera
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, Campus de Guajara, 38205 La Laguna, Santa Cruz de Tenerife, Spain
| | - Manuel de Vega
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, Campus de Guajara, 38205 La Laguna, Santa Cruz de Tenerife, Spain
| | - Sebastian Moguilner
- Global Brain Health Institute, University of California, San Francisco, CA94158, US; and Trinity College, Dublin D02DP21, , Ireland.,Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, 8320000, Santiago, Chile
| | - Patricia Lillo
- Departamento de Neurología Sur, Facultad de Medicina, Universidad de Chile, 8380000, Santiago, Chile.,Unidad de Neurología, Hospital San José, 8380000, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), 7800003, Santiago, Chile
| | - Andrea Slachevsky
- Geroscience Center for Brain Health and Metabolism (GERO), 7800003, Santiago, Chile.,Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department, Neuroscience and East Neuroscience Departments, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, 8380000, Santiago, Chile.,Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, 7500000, Santiago, Chile.,Departamento de Medicina, Servicio de Neurología, Clínica Alemana-Universidad del Desarrollo, 7550000, Santiago, Chile
| | - Cecilia González Campo
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina
| | - Agustín Ibáñez
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina.,Global Brain Health Institute, University of California, San Francisco, CA94158, US; and Trinity College, Dublin D02DP21, , Ireland.,Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, 8320000, Santiago, Chile
| | - Adolfo M García
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina.,Global Brain Health Institute, University of California, San Francisco, CA94158, US; and Trinity College, Dublin D02DP21, , Ireland.,Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, 7550000, Santiago, Chile
| |
Collapse
|
35
|
Schievink WI, Maya M, Barnard Z, Taché RB, Prasad RS, Wadhwa VS, Moser FG, Nuño M. The reversible impairment of behavioral variant frontotemporal brain sagging syndrome: Challenges and opportunities. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12367. [PMID: 36544987 PMCID: PMC9760785 DOI: 10.1002/trc2.12367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
Introduction Due to loss of brain buoyancy, spontaneous spinal cerebrospinal fluid (CSF) leaks cause orthostatic headaches but also can cause symptoms indistinguishable from behavioral variant frontotemporal dementia (bvFTD) due to severe brain sagging (including the frontal and temporal lobes), as visualized on brain magnetic resonance imaging. However, the detection of these CSF leaks may require specialized spinal imaging techniques, such as digital subtraction myelography (DSM). Methods We performed DSM in the lateral decubitus position under general anesthesia in 21 consecutive patients with frontotemporal dementia brain sagging syndrome (4 women and 17 men; mean age 56.2 years [range: 31-70 years]). Results Nine patients (42.8%) were found to have a CSF-venous fistula, a recently discovered type of CSF leak that cannot be detected on conventional spinal imaging. All nine patients underwent uneventful surgical ligation of the fistula. Complete or near-complete and sustained resolution of bvFTD symptoms was obtained by all nine patients, accompanied by reversal of brain sagging, but in only three (25.0%) of the twelve patients in whom no CSF-venous fistula could be detected (P = 0.0011), and who were treated with non-targeted therapies. Discussion Concerns about a spinal CSF leak should not be dismissed in patients with frontotemporal brain sagging syndrome, even when conventional spinal imaging is normal. However, even with this specialized imaging the source of the loss of spinal CSF remains elusive in more than half of patients.
Collapse
Affiliation(s)
- Wouter I. Schievink
- Department of NeurosurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Marcel Maya
- Department of ImagingCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Zachary Barnard
- Department of NeurosurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Rachelle B. Taché
- Department of NeurosurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Ravi S. Prasad
- Department of ImagingCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Vikram S. Wadhwa
- Department of ImagingCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Franklin G. Moser
- Department of ImagingCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Miriam Nuño
- Department of Public Health SciencesUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
36
|
Santamaría-García H, Ogonowsky N, Baez S, Palacio N, Reyes P, Schulte M, López A, Matallana D, Ibanez A. Neurocognitive patterns across genetic levels in behavioral variant frontotemporal dementia: a multiple single cases study. BMC Neurol 2022; 22:454. [PMID: 36474176 PMCID: PMC9724347 DOI: 10.1186/s12883-022-02954-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Behavioral variant frontotemporal dementia (bvFTD) has been related to different genetic factors. Identifying multimodal phenotypic heterogeneity triggered by various genetic influences is critical for improving diagnosis, prognosis, and treatments. However, the specific impact of different genetic levels (mutations vs. risk variants vs. sporadic presentations) on clinical and neurocognitive phenotypes is not entirely understood, specially in patites from underrepresented regions such as Colombia. METHODS Here, in a multiple single cases study, we provide systematic comparisons regarding cognitive, neuropsychiatric, brain atrophy, and gene expression-atrophy overlap in a novel cohort of FTD patients (n = 42) from Colombia with different genetic levels, including patients with known genetic influences (G-FTD) such as those with genetic mutations (GR1) in particular genes (MAPT, TARDBP, and TREM2); patients with risk variants (GR2) in genes associated with FTD (tau Haplotypes H1 and H2 and APOE variants including ε2, ε3, ε4); and sporadic FTD patients (S-FTD (GR3)). RESULTS We found that patients from GR1 and GR2 exhibited earlier disease onset, pervasive cognitive impairments (cognitive screening, executive functioning, ToM), and increased brain atrophy (prefrontal areas, cingulated cortices, basal ganglia, and inferior temporal gyrus) than S-FTD patients (GR3). No differences in disease duration were observed across groups. Additionally, significant neuropsychiatric symptoms were observed in the GR1. The GR1 also presented more clinical and neurocognitive compromise than GR2 patients; these groups, however, did not display differences in disease onset or duration. APOE and tau patients showed more neuropsychiatric symptoms and primary atrophy in parietal and temporal cortices than GR1 patients. The gene-atrophy overlap analysis revealed atrophy in regions with specific genetic overexpression in all G-FTD patients. A differential family presentation did not explain the results. CONCLUSIONS Our results support the existence of genetic levels affecting the clinical, neurocognitive, and, to a lesser extent, neuropsychiatric presentation of bvFTD in the present underrepresented sample. These results support tailored assessments characterization based on the parallels of genetic levels and neurocognitive profiles in bvFTD.
Collapse
Affiliation(s)
- Hernando Santamaría-García
- PhD program in Neuroscience, Pontificia Universidad Javeriana, Bogotá, Colombia.
- Memory and cognition Center, Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia.
- Department of Neurology, Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA.
| | - Natalia Ogonowsky
- CONICET & Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
| | - Sandra Baez
- Faculty of Psychology, Universidad de los Andes, Bogotá, Colombia
| | - Nicole Palacio
- Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Pablo Reyes
- PhD program in Neuroscience, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Michael Schulte
- CONICET & Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
| | - Andrea López
- Pontificia Universidad Javeriana, Bogotá, Colombia
- Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | | | - Agustín Ibanez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago de Chile, Chile.
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, & National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
- Trinity Collegue of Dublin, Dublin, Irland.
- Global Brain Health Insititute, Universidad California San Francisco-Trinity College of Dublin, San Francisco, USA.
- Global Brain Health Insititute, Universidad California San Francisco-Trinity College of Dublin, Dublin, Irland.
| |
Collapse
|
37
|
Herzog R, Rosas FE, Whelan R, Fittipaldi S, Santamaria-Garcia H, Cruzat J, Birba A, Moguilner S, Tagliazucchi E, Prado P, Ibanez A. Genuine high-order interactions in brain networks and neurodegeneration. Neurobiol Dis 2022; 175:105918. [PMID: 36375407 PMCID: PMC11195446 DOI: 10.1016/j.nbd.2022.105918] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Brain functional networks have been traditionally studied considering only interactions between pairs of regions, neglecting the richer information encoded in higher orders of interactions. In consequence, most of the connectivity studies in neurodegeneration and dementia use standard pairwise metrics. Here, we developed a genuine high-order functional connectivity (HOFC) approach that captures interactions between 3 or more regions across spatiotemporal scales, delivering a more biologically plausible characterization of the pathophysiology of neurodegeneration. We applied HOFC to multimodal (electroencephalography [EEG], and functional magnetic resonance imaging [fMRI]) data from patients diagnosed with behavioral variant of frontotemporal dementia (bvFTD), Alzheimer's disease (AD), and healthy controls. HOFC revealed large effect sizes, which, in comparison to standard pairwise metrics, provided a more accurate and parsimonious characterization of neurodegeneration. The multimodal characterization of neurodegeneration revealed hypo and hyperconnectivity on medium to large-scale brain networks, with a larger contribution of the former. Regions as the amygdala, the insula, and frontal gyrus were associated with both effects, suggesting potential compensatory processes in hub regions. fMRI revealed hypoconnectivity in AD between regions of the default mode, salience, visual, and auditory networks, while in bvFTD between regions of the default mode, salience, and somatomotor networks. EEG revealed hypoconnectivity in the γ band between frontal, limbic, and sensory regions in AD, and in the δ band between frontal, temporal, parietal and posterior areas in bvFTD, suggesting additional pathophysiological processes that fMRI alone can not capture. Classification accuracy was comparable with standard biomarkers and robust against confounders such as sample size, age, education, and motor artifacts (from fMRI and EEG). We conclude that high-order interactions provide a detailed, EEG- and fMRI compatible, biologically plausible, and psychopathological-specific characterization of different neurodegenerative conditions.
Collapse
Affiliation(s)
- Rubén Herzog
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Fundación para el Estudio de la Conciencia Humana (EcoH), Chile
| | - Fernando E Rosas
- Fundación para el Estudio de la Conciencia Humana (EcoH), Chile; Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, UK; Data Science Institute, Imperial College London, UK; Centre for Complexity Science, Imperial College London, UK; Department of Informatics, University of Sussex, Brighton, UK
| | - Robert Whelan
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin 2, Ireland
| | - Sol Fittipaldi
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin 2, Ireland; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina
| | | | - Josephine Cruzat
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Fundación para el Estudio de la Conciencia Humana (EcoH), Chile
| | - Agustina Birba
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina
| | - Sebastian Moguilner
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Enzo Tagliazucchi
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
| | - Pavel Prado
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile.
| | - Agustin Ibanez
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin 2, Ireland; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), CA, USA.
| |
Collapse
|
38
|
Chen Z, Chu M, Liu L, Zhang J, Kong Y, Xie K, Cui Y, Ye H, Li J, Wang L, Wu L. Genetic prion diseases presenting as frontotemporal dementia: clinical features and diagnostic challenge. Alzheimers Res Ther 2022; 14:90. [PMID: 35768878 PMCID: PMC9245249 DOI: 10.1186/s13195-022-01033-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
To elucidate the clinical and ancillary features of genetic prion diseases (gPrDs) presenting with frontotemporal dementia (FTD) to aid early identification.
Methods
Global data of gPrDs presenting with FTD caused by prion protein gene mutations were collected from literature review and our records. Fifty-one cases of typical FTD and 136 cases of prion diseases admitted to our institution were included as controls. Clinical and ancillary data of the different groups were compared.
Results
Forty-nine cases of gPrDs presenting with FTD were identified. Compared to FTD or prion diseases, gPrDs presenting with FTD were characterized by earlier onset age (median 45 vs. 61/60 years, P < 0.001, P < 0.001) and higher incidence of positive family history (81.6% vs. 27.5/13.2%, P < 0.001, P < 0.001). Furthermore, GPrDs presenting with FTD exhibited shorter duration (median 5 vs. 8 years) and a higher rate of parkinsonism (63.7% vs. 9.8%, P < 0.001), pyramidal signs (39.1% vs. 7.8%, P = 0.001), mutism (35.9% vs. 0%, P < 0.001), seizures (25.8% vs. 0%, P < 0.001), myoclonus (22.5% vs. 0%, P < 0.001), and hyperintensity on MRI (25.0% vs. 0, P < 0.001) compared to FTD. Compared to prion diseases, gPrDs presenting with FTD had a longer duration of symptoms (median 5 vs. 1.1 years, P < 0.001), higher rates of frontotemporal atrophy (89.7% vs. 3.3%, P < 0.001), lower rates of periodic short-wave complexes on EEG (0% vs. 30.3%, P = 0.001), and hyperintensity on MRI (25.0% vs. 83.0%, P < 0.001). The frequency of codon 129 Val allele in gPrDs presenting with FTD was significantly higher than that reported in the literature for gPrDs in the Caucasian and East Asian populations (33.3% vs. 19.2%/8.0%, P = 0.005, P < 0.001).
Conclusions
GPrDs presenting with FTD are characterized by early-onset, high incidence of positive family history, high frequency of the Val allele at codon 129, overlapping symptoms with prion disease and FTD, and ancillary features closer to FTD. PRNP mutations may be a rare cause in the FTD spectrum, and PRNP genotyping should be considered in patients with these features.
Collapse
|
39
|
O'Connor CMC, Fisher A, Cheung SC, Caga J, Piguet O. Supporting behaviour change in younger-onset dementia: mapping the needs of family carers in the community. Aging Ment Health 2022; 26:2252-2261. [PMID: 34424808 DOI: 10.1080/13607863.2021.1966744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Almost 10% of people with dementia experience a younger-onset of disease (before 65 years). Changes in behaviour are common, as are delays in diagnosis and limited access to appropriate support and services. This study aimed to explore the specific behaviour support needs of families living with younger-onset dementia. METHODS Seventy-one families of people with younger-onset dementia were surveyed to understand the experience of family carers regarding difficult-to-manage behaviour changes, confidence in identifying and implementing behaviour support strategies, use of specific behaviour support strategies, and use of formal and informal support services regarding behaviour changes. RESULTS Survey responses were received from family members of people living with behavioural variant frontotemporal dementia (n = 28), semantic dementia (n = 17), and Alzheimer's disease (n = 23). Over 90% of family carers reported difficult-to-manage behaviours which fell into four main domains: (1) aggression, (2) compulsive behaviour, (3) disinhibition and inappropriate social behaviour, and (4) apathy. A range of preventative and responsive strategies, with an emphasis on de-escalation strategies were identified and carers reported variable confidence in managing behaviour changes or in accessing formal support strategies. CONCLUSIONS Difficult-to-manage behaviour changes in community-dwelling people with younger-onset dementia are common. The existing agency of families should be recognised and built upon with better access to specific behaviour support services to increase competence and confidence in providing behaviour support and ultimately improve quality of life for them and their family member with dementia.
Collapse
Affiliation(s)
- Claire M C O'Connor
- Centre for Positive Ageing, HammondCare, Sydney, Australia.,School of Population Health, The University of New South Wales, Sydney, Australia
| | - Alinka Fisher
- College of Nursing and Health Sciences Adelaide, Flinders University, Adelaide, Australia
| | - Sau Chi Cheung
- School of Psychology and Brain & Mind Centre, The University of Sydney, Sydney, Australia
| | - Jashelle Caga
- Sydney Medical School and Brain & Mind Centre, The University of Sydney, Sydney, Australia
| | - Olivier Piguet
- School of Psychology and Brain & Mind Centre, The University of Sydney, Sydney, Australia
| |
Collapse
|
40
|
Migeot JA, Duran-Aniotz CA, Signorelli CM, Piguet O, Ibáñez A. A predictive coding framework of allostatic-interoceptive overload in frontotemporal dementia. Trends Neurosci 2022; 45:838-853. [PMID: 36057473 PMCID: PMC11286203 DOI: 10.1016/j.tins.2022.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/27/2022] [Accepted: 08/09/2022] [Indexed: 10/31/2022]
Abstract
Recent allostatic-interoceptive explanations using predictive coding models propose that efficient regulation of the body's internal milieu is necessary to correctly anticipate environmental needs. We review this framework applied to understanding behavioral variant frontotemporal dementia (bvFTD) considering both allostatic overload and interoceptive deficits. First, we show how this framework could explain divergent deficits in bvFTD (cognitive impairments, behavioral maladjustment, brain atrophy, fronto-insular-temporal network atypicality, aberrant interoceptive electrophysiological activity, and autonomic disbalance). We develop a set of theory-driven predictions based on levels of allostatic interoception associated with bvFTD phenomenology and related physiopathological mechanisms. This approach may help further understand the disparate behavioral and physiopathological dysregulations of bvFTD, suggesting targeted interventions and strengthening clinical models of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Joaquin A Migeot
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Claudia A Duran-Aniotz
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Camilo M Signorelli
- Department of Computer Science, University of Oxford, Oxford, UK; Physiology of Cognition, GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium; Cognitive Neuroimaging Unit, INSERM, Saclay, France
| | - Olivier Piguet
- The University of Sydney, School of Psychology and Brain & Mind Centre, Sydney, Australia
| | - Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Global Brain Health Institute, University of California-San Francisco, San Francisco, CA, USA, and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
41
|
Magrath Guimet N, Zapata-Restrepo LM, Miller BL. Advances in Treatment of Frontotemporal Dementia. J Neuropsychiatry Clin Neurosci 2022; 34:316-327. [PMID: 35578801 DOI: 10.1176/appi.neuropsych.21060166] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this review, the authors explored the clinical features of frontotemporal dementia (FTD), focusing on treatment. The clinical features of FTD are unique, with disinhibition, apathy, loss of empathy, and compulsions common. Motor changes occur later in the illness. The two major proteins that aggregate in the brain with FTD are tau and TDP-43, whereas a minority of patients aggregate FET proteins, primarily the FUS protein. Genetic causes include mutations in MAPT, GRN, and C9orf72. There are no medications that can slow FTD progression, although new therapies for the genetic forms of FTD are moving into clinical trials. Once a diagnosis is made, therapies should begin, focusing on the family and the patient. In the setting of FTD, families experience a severe burden associated with caregiving, and the clinician should focus on alleviating this burden. Advice around legal and financial issues is usually helpful. Careful consideration of environmental changes to cope with abnormal behaviors is essential. Most compounds that have been used to treat dementia of the Alzheimer's disease type are not effective in FTD, and cholinesterase inhibitors and memantine should be avoided. Although the data are scant, there is some evidence that antidepressants and second-generation antipsychotics may help individual patients.
Collapse
Affiliation(s)
- Nahuel Magrath Guimet
- Global Brain Health Institute, University of California, San Francisco (all authors); Institute of Neuroscience, Trinity College, Dublin (all authors); Department of Cognitive Neurology, Neuropsychiatry and Neuropsychology, Instituto Neurológico Fleni, Buenos Aires (Magrath Guimet); Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco (Miller); and Department of Medical Sciences, Pontifical Xaverian University Cali, Cali, Colombia (Zapata-Restrepo), Department of Psychiatry, Fundación Valle del Lili, Cali, Colombia (Zapata-Restrepo)
| | - Lina M Zapata-Restrepo
- Global Brain Health Institute, University of California, San Francisco (all authors); Institute of Neuroscience, Trinity College, Dublin (all authors); Department of Cognitive Neurology, Neuropsychiatry and Neuropsychology, Instituto Neurológico Fleni, Buenos Aires (Magrath Guimet); Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco (Miller); and Department of Medical Sciences, Pontifical Xaverian University Cali, Cali, Colombia (Zapata-Restrepo), Department of Psychiatry, Fundación Valle del Lili, Cali, Colombia (Zapata-Restrepo)
| | - Bruce L Miller
- Global Brain Health Institute, University of California, San Francisco (all authors); Institute of Neuroscience, Trinity College, Dublin (all authors); Department of Cognitive Neurology, Neuropsychiatry and Neuropsychology, Instituto Neurológico Fleni, Buenos Aires (Magrath Guimet); Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco (Miller); and Department of Medical Sciences, Pontifical Xaverian University Cali, Cali, Colombia (Zapata-Restrepo), Department of Psychiatry, Fundación Valle del Lili, Cali, Colombia (Zapata-Restrepo)
| |
Collapse
|
42
|
Ooi S, Patel SK, Eratne D, Kyndt C, Reidy N, Lewis C, Lee SC, Darby D, Brodtmann A. Plasma Neurofilament Light Chain and Clinical Diagnosis in Frontotemporal Dementia Syndromes. J Alzheimers Dis 2022; 89:1221-1231. [DOI: 10.3233/jad-220272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Frontotemporal dementia (FTD) syndromes, mimics, phenocopy (phFTD), and slowly progressive behavioral variant FTD (bvFTD) can be difficult to distinguish clinically. Biomarkers such as neurofilament light chain (NfL) may be helpful. Objective: To study plasma NfL levels in people with FTD syndromes and determine if plasma NfL can distinguish between FTD syndromes and phFTD. Methods: Plasma NfL levels were estimated using both Simoa ® Quanterix HD-X™ and SR-X™ machines grouped via final diagnosis after investigation and review. Results: Fifty participants were studied: bvFTD = 20, semantic variant FTD (svFTD) = 11, non-fluent variant FTD (nfvFTD) = 9, FTD with motor neuron disease (MND) = 4, phFTD = 2, slow progressors = 3, FTD mimic = 1, mean age 67.2 (SD 8.4) years. NfL levels were significantly higher in the FTD group compared to phenocopy group (p = 0.003). Median NfL (IQR) pg/mL was comparable in the FTD syndromes: bvFTD 41.10 (50.72), svFTD 44.38 (16.61), and nfvFTD 42.61 (22.93), highest in FTD with MND 79.67 (45.32) and lowest in both phFTD 13.99 (0.79) and slow progressors 17.97 (3.62). Conclusion: Plasma NfL appears to differentiate FTD syndromes and mimics. However, a lower NfL may predict a slower, but not necessarily lack of, neurodegeneration and therefore appears limited distinguishing slow progressors from FTD phenocopies. Larger numbers of patients from all clinical groups are required to strengthen diagnostic utility.
Collapse
Affiliation(s)
- Suyi Ooi
- Eastern Cognitive Disorders Clinic, Eastern Health, Box Hill, VIC, Australia
- Eastern Clinical Research Unit, Eastern Health Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC, Australia
- Royal Melbourne Hospital, Department of Neurology, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Sheila K Patel
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Dhamidhu Eratne
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Neuropsychiatry and Melbourne Neuropsychiatry Centre, Royal Melbourne Hospital and University of Melbourne, Parkville, VIC, Australia
| | - Christopher Kyndt
- Eastern Cognitive Disorders Clinic, Eastern Health, Box Hill, VIC, Australia
- Eastern Clinical Research Unit, Eastern Health Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC, Australia
- Royal Melbourne Hospital, Department of Neurology, Parkville, VIC, Australia
| | - Natalie Reidy
- Eastern Cognitive Disorders Clinic, Eastern Health, Box Hill, VIC, Australia
| | - Courtney Lewis
- Eastern Cognitive Disorders Clinic, Eastern Health, Box Hill, VIC, Australia
- Neuropsychiatry and Melbourne Neuropsychiatry Centre, Royal Melbourne Hospital and University of Melbourne, Parkville, VIC, Australia
| | - Sarah C.M. Lee
- Eastern Clinical Research Unit, Eastern Health Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC, Australia
- Calvary Health Care Bethlehem, Parkdale, VIC, Australia
| | - David Darby
- Eastern Cognitive Disorders Clinic, Eastern Health, Box Hill, VIC, Australia
- Eastern Clinical Research Unit, Eastern Health Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC, Australia
- Royal Melbourne Hospital, Department of Neurology, Parkville, VIC, Australia
- Alfred Health, Department of Neurology, Prahran, Australia
| | - Amy Brodtmann
- Eastern Cognitive Disorders Clinic, Eastern Health, Box Hill, VIC, Australia
- Eastern Clinical Research Unit, Eastern Health Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC, Australia
- Royal Melbourne Hospital, Department of Neurology, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
43
|
Birba A, Fittipaldi S, Cediel Escobar JC, Gonzalez Campo C, Legaz A, Galiani A, Díaz Rivera MN, Martorell Caro M, Alifano F, Piña-Escudero SD, Cardona JF, Neely A, Forno G, Carpinella M, Slachevsky A, Serrano C, Sedeño L, Ibáñez A, García AM. Multimodal Neurocognitive Markers of Naturalistic Discourse Typify Diverse Neurodegenerative Diseases. Cereb Cortex 2022; 32:3377-3391. [PMID: 34875690 PMCID: PMC9376869 DOI: 10.1093/cercor/bhab421] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/05/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegeneration has multiscalar impacts, including behavioral, neuroanatomical, and neurofunctional disruptions. Can disease-differential alterations be captured across such dimensions using naturalistic stimuli? To address this question, we assessed comprehension of four naturalistic stories, highlighting action, nonaction, social, and nonsocial events, in Parkinson's disease (PD) and behavioral variant frontotemporal dementia (bvFTD) relative to Alzheimer's disease patients and healthy controls. Text-specific correlates were evaluated via voxel-based morphometry, spatial (fMRI), and temporal (hd-EEG) functional connectivity. PD patients presented action-text deficits related to the volume of action-observation regions, connectivity across motor-related and multimodal-semantic hubs, and frontal hd-EEG hypoconnectivity. BvFTD patients exhibited social-text deficits, associated with atrophy and spatial connectivity patterns along social-network hubs, alongside right frontotemporal hd-EEG hypoconnectivity. Alzheimer's disease patients showed impairments in all stories, widespread atrophy and spatial connectivity patterns, and heightened occipitotemporal hd-EEG connectivity. Our framework revealed disease-specific signatures across behavioral, neuroanatomical, and neurofunctional dimensions, highlighting the sensitivity and specificity of a single naturalistic task. This investigation opens a translational agenda combining ecological approaches and multimodal cognitive neuroscience for the study of neurodegeneration.
Collapse
Affiliation(s)
- Agustina Birba
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, B1644BID Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
| | - Sol Fittipaldi
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, B1644BID Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
| | - Judith C Cediel Escobar
- Facultad de Psicología, Universidad del Valle, Santiago de Cali 76001, Colombia
- Departamento de Estudios Psicológicos, Facultad de Derecho y Ciencias Sociales, Universidad Icesi, Cali 1234567, Colombia
| | - Cecilia Gonzalez Campo
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, B1644BID Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
| | - Agustina Legaz
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, B1644BID Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
| | - Agostina Galiani
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, CONICET, C1060AAF Buenos Aires, Argentina
| | - Mariano N Díaz Rivera
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, B1644BID Buenos Aires, Argentina
- National Agency of Scientific and Technological Promotion, C1425FQD Buenos Aires, Argentina
| | - Miquel Martorell Caro
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
| | - Florencia Alifano
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
| | | | - Juan Felipe Cardona
- Facultad de Psicología, Universidad del Valle, Santiago de Cali 76001, Colombia
| | - Alejandra Neely
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, 8320000 Santiago, Chile
| | - Gonzalo Forno
- Neuropsychology and Clinical Neuroscience Laboratory, Physiopathology Department, ICBM, Neurosciences Department, Faculty of Medicine, University of Chile, 8380000 Santiago, Chile
- School of Psychology, Universidad de los Andes, 7620001 Santiago, Chile
- Alzheimer's and other cognitive disorders group, Institute of Neurosciences, University of Barcelona, 8007 Barcelona, Spain
| | - Mariela Carpinella
- Unidad de Neurociencias, Instituto Conci Carpinella, 5000 Córdoba, Argentina
- Facultad de Medicina, Universidad Católica de Cuyo Sede San Luis, 5700 San Luis, Argentina
| | - Andrea Slachevsky
- Neuropsychology and Clinical Neuroscience Laboratory, Physiopathology Department, ICBM, Neurosciences Department, Faculty of Medicine, University of Chile, 8380000 Santiago, Chile
- Gerosciences Center for Brain Health and Metabolism, 7800003 Santiago, Chile
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador & University of Chile, 7500000 Santiago, Chile
- Servicio de Neurología, Departamento de Medicina, Clínica Alemana-Universidad del Desarrollo, 7690000 Santiago, Chile
| | - Cecilia Serrano
- Unidad de Neurología Cognitiva, Hospital César Milstein, C1221AC Buenos Aires, Argentina
| | - Lucas Sedeño
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
| | - Agustín Ibáñez
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, B1644BID Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, 8320000 Santiago, Chile
- Global Brain Health Institute, University of California, San Francisco, CA 94158, US; and Trinity College, Dublin D02 DP21, Ireland
| | - Adolfo M García
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, B1644BID Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, CA 94158, US; and Trinity College, Dublin D02 DP21, Ireland
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, 8431166 Santiago, Chile
| |
Collapse
|
44
|
Birba A, Santamaría-García H, Prado P, Cruzat J, Ballesteros AS, Legaz A, Fittipaldi S, Duran-Aniotz C, Slachevsky A, Santibañez R, Sigman M, García AM, Whelan R, Moguilner S, Ibáñez A. Allostatic-Interoceptive Overload in Frontotemporal Dementia. Biol Psychiatry 2022; 92:54-67. [PMID: 35491275 PMCID: PMC11184918 DOI: 10.1016/j.biopsych.2022.02.955] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND The predictive coding theory of allostatic-interoceptive load states that brain networks mediating autonomic regulation and interoceptive-exteroceptive balance regulate the internal milieu to anticipate future needs and environmental demands. These functions seem to be distinctly compromised in behavioral variant frontotemporal dementia (bvFTD), including alterations of the allostatic-interoceptive network (AIN). Here, we hypothesize that bvFTD is typified by an allostatic-interoceptive overload. METHODS We assessed resting-state heartbeat evoked potential (rsHEP) modulation as well as its behavioral and multimodal neuroimaging correlates in patients with bvFTD relative to healthy control subjects and patients with Alzheimer's disease (N = 94). We measured 1) resting-state electroencephalography (to assess the rsHEP, prompted by visceral inputs and modulated by internal body sensing), 2) associations between rsHEP and its neural generators (source location), 3) cognitive disturbances (cognitive state, executive functions, facial emotion recognition), 4) brain atrophy, and 5) resting-state functional magnetic resonance imaging functional connectivity (AIN vs. control networks). RESULTS Relative to healthy control subjects and patients with Alzheimer's disease, patients with bvFTD presented more negative rsHEP amplitudes with sources in critical hubs of the AIN (insula, amygdala, somatosensory cortex, hippocampus, anterior cingulate cortex). This exacerbated rsHEP modulation selectively predicted the patients' cognitive profile (including cognitive decline, executive dysfunction, and emotional impairments). In addition, increased rsHEP modulation in bvFTD was associated with decreased brain volume and connectivity of the AIN. Machine learning results confirmed AIN specificity in predicting the bvFTD group. CONCLUSIONS Altogether, these results suggest that bvFTD may be characterized by an allostatic-interoceptive overload manifested in ongoing electrophysiological markers, brain atrophy, functional networks, and cognition.
Collapse
Affiliation(s)
- Agustina Birba
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile; National Scientific and Technical Research Council, Buenos Aires, Argentina; Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - Hernando Santamaría-García
- PhD Neuroscience Program, Physiology and Psychiatry Departments, Pontificia Universidad Javeriana, Bogotá, Colombia; Memory and Cognition Center Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia; Global Brain Health Institute, University of California San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland
| | - Pavel Prado
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Josefina Cruzat
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile
| | | | - Agustina Legaz
- National Scientific and Technical Research Council, Buenos Aires, Argentina; Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - Sol Fittipaldi
- National Scientific and Technical Research Council, Buenos Aires, Argentina; Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - Claudia Duran-Aniotz
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile; Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Andrea Slachevsky
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Neuropsychology and Clinical Neuroscience Laboratory, Physiopathology Department, Institute of Biomedical Sciences, Santiago, Chile; Memory and Neuropsychiatric Clinic, Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile; Servicio de Neurología, Departamento de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Rodrigo Santibañez
- Neurology Service, Hospital Dr. Sótero del Río, Santiago, Chile; Neurology Department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariano Sigman
- National Scientific and Technical Research Council, Buenos Aires, Argentina; Laboratorio de Neurociencia, Universidad Torcuato Di Tella, Buenos Aires, Argentina; Facultad de Lenguas y Educación, Universidad Nebrija, Madrid, Spain
| | - Adolfo M García
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile; National Scientific and Technical Research Council, Buenos Aires, Argentina; Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina; Global Brain Health Institute, University of California San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland
| | - Robert Whelan
- Global Brain Health Institute, University of California San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sebastián Moguilner
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile; National Scientific and Technical Research Council, Buenos Aires, Argentina; Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina; Global Brain Health Institute, University of California San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Agustín Ibáñez
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile; National Scientific and Technical Research Council, Buenos Aires, Argentina; Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina; Global Brain Health Institute, University of California San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
45
|
Khoshnood B, Ullgren A, Laffita-Mesa J, Öijerstedt L, Patra K, Nennesmo I, Graff C. TBK1 haploinsufficiency results in changes in the K63-ubiquitination profiles in brain and fibroblasts from affected and presymptomatic mutation carriers. J Neurol 2022; 269:3037-3049. [PMID: 34800171 PMCID: PMC9120096 DOI: 10.1007/s00415-021-10887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Frontotemporal dementia (FTD) is a neurodegenerative disease, resulting in progressive problems in language and/or behaviour and is often diagnosed before 65 years of age. Ubiquitin positive protein aggregates in the brain are among the key pathologic hallmarks of frontotemporal lobar degeneration (FTLD) postmortem. The TANK-binding kinase 1 gene (TBK1) is on the list of genes that can contribute to the development of FTD as well as the related neurodegenerative disease amyotrophic lateral sclerosis (ALS). METHODS In this study, using an array of clinical and neuropathological data combined with biochemical and proteomics assays, we analyze the TBK1 splice-mutation (c.1340 + 1G > A) in a Swedish family with a history of FTD and ALS. We also explore the K63 ubiquitination landscape in post-mortem brain tissue and fibroblast cultures. RESULTS The intronic (c.1340 + 1G > A) mutation in TBK1 results in haploinsufficiency and affects the activity of the protein in symptomatic and pre-symptomatic mutation carriers. CONCLUSION Our results suggest that the mutation leads to a significant reduction of TBK1 activity and induce alterations in K63 ubiquitination profile of the cell already in the presymptomatic stages.
Collapse
Affiliation(s)
- Behzad Khoshnood
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Unit for Hereditary Dementias, Karolinska University Hospital Solna, Stockholm, Sweden
- Swedish FTD Initiative, Stockholm, Sweden
| | - Abbe Ullgren
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Unit for Hereditary Dementias, Karolinska University Hospital Solna, Stockholm, Sweden
- Swedish FTD Initiative, Stockholm, Sweden
| | - Jose Laffita-Mesa
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Unit for Hereditary Dementias, Karolinska University Hospital Solna, Stockholm, Sweden
- Swedish FTD Initiative, Stockholm, Sweden
| | - Linn Öijerstedt
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Unit for Hereditary Dementias, Karolinska University Hospital Solna, Stockholm, Sweden
- Swedish FTD Initiative, Stockholm, Sweden
| | - Kalicharan Patra
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Unit for Hereditary Dementias, Karolinska University Hospital Solna, Stockholm, Sweden
- Swedish FTD Initiative, Stockholm, Sweden
| | - Inger Nennesmo
- Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Graff
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Unit for Hereditary Dementias, Karolinska University Hospital Solna, Stockholm, Sweden
- Swedish FTD Initiative, Stockholm, Sweden
| |
Collapse
|
46
|
Disentangling Reversal-learning Impairments in Frontotemporal Dementia and Alzheimer Disease. Cogn Behav Neurol 2022; 35:110-122. [PMID: 35486540 DOI: 10.1097/wnn.0000000000000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Individuals with frontotemporal dementia (FTD) often present with poor decision-making, which can affect both their financial and social situations. Delineation of the specific cognitive impairments giving rise to impaired decision-making in individuals with FTD may inform treatment strategies, as different neurotransmitter systems have been associated with distinct patterns of altered decision-making. OBJECTIVE To use a reversal-learning paradigm to identify the specific cognitive components of reversal learning that are most impaired in individuals with FTD and those with Alzheimer disease (AD) in order to inform future approaches to treatment for symptoms related to poor decision-making and behavioral inflexibility. METHOD We gave 30 individuals with either the behavioral variant of FTD or AD and 18 healthy controls a stimulus-discrimination reversal-learning task to complete. We then compared performance in each phase between the groups. RESULTS The FTD group demonstrated impairments in initial stimulus-association learning, though to a lesser degree than the AD group. The FTD group also performed poorly in classic reversal learning, with the greatest impairments being observed in individuals with frontal-predominant atrophy during trials requiring inhibition of a previously advantageous response. CONCLUSION Taken together, these results and the reversal-learning paradigm used in this study may inform the development and screening of behavioral, neurostimulatory, or pharmacologic interventions aiming to address behavioral symptoms related to stimulus-reinforcement learning and response inhibition impairments in individuals with FTD.
Collapse
|
47
|
Jenkins LM, Wang L, Rosen H, Weintraub S. A transdiagnostic review of neuroimaging studies of apathy and disinhibition in dementia. Brain 2022; 145:1886-1905. [PMID: 35388419 PMCID: PMC9630876 DOI: 10.1093/brain/awac133] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/18/2022] [Accepted: 03/13/2022] [Indexed: 11/12/2022] Open
Abstract
Apathy and disinhibition are common and highly distressing neuropsychiatric symptoms associated with negative outcomes in persons with dementia. This paper is a critical review of functional and structural neuroimaging studies of these symptoms transdiagnostically in dementia of the Alzheimer type, which is characterized by prominent amnesia early in the disease course, and behavioural variant frontotemporal dementia, characterized by early social-comportmental deficits. We describe the prevalence and clinical correlates of these symptoms and describe methodological issues, including difficulties with symptom definition and different measurement instruments. We highlight the heterogeneity of findings, noting however, a striking similarity of the set of brain regions implicated across clinical diagnoses and symptoms. These regions involve several key nodes of the salience network, and we describe the functions and anatomical connectivity of these brain areas, as well as present a new theoretical account of disinhibition in dementia. Future avenues for research are discussed, including the importance of transdiagnostic studies, measuring subdomains of apathy and disinhibition, and examining different units of analysis for deepening our understanding of the networks and mechanisms underlying these extremely distressing symptoms.
Collapse
Affiliation(s)
- Lisanne M Jenkins
- Correspondence to: Lisanne Jenkins 710 N Lakeshore Drive, Suite 1315 Chicago, IL 60611, USA E-mail:
| | - Lei Wang
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Howie Rosen
- Weill Institute for Neurosciences, School of Medicine, University of California, San Francisco, CA, USA 94158
| | - Sandra Weintraub
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA 60611
| |
Collapse
|
48
|
Lashkarivand A, Eide PK. Brain Sagging Dementia -- Diagnosis, Treatment, and Outcome: A Review. Neurology 2022; 98:798-805. [PMID: 35338080 DOI: 10.1212/wnl.0000000000200511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 02/28/2022] [Indexed: 11/15/2022] Open
Abstract
Brain sagging dementia (BSD), caused by spontaneous intracranial hypotension (SIH), is a rare syndrome that is only recently recognized, mimicking the clinical findings of behavioral variant frontotemporal dementia (bvFTD). Being aware of its signs and symptoms is essential for early diagnosis and treatment in this potentially reversible form of dementia. Our objective was to identify cases with BSD in the literature and present its clinical characteristics, diagnostic workup, treatment options, and outcome.The review was reported according to PRISMA guidelines and registered with the PROSPERO database (CRD42020150709). MEDLINE, EMBASE, PsychINFO, and Cochrane Library were searched. There was no date restriction. The search was updated in April 2021.A total of 983 articles were screened and assessed for eligibility. Twenty-nine articles (25 case reports and four series) and 70 patients were selected for inclusion. No cranial leak cases were identified. BSD diagnosis should be made based on clinical signs and symptoms and radiological findings. There is a male predominance (F: M ratio 1:4) and a peak incidence in the 6th decade of life. The main clinical manifestation is insidious onset, gradually progressive cognitive and behavioral changes characteristic for bvFTD. Headache is present in the majority of patients (89%). The presence of brain sagging and absence of frontotemporal atrophy is an absolute criterion for the diagnosis. The CSF leak is identified with myelography and digital subtraction myelography. The treatment and repair depend on the etiology and extent of the dural defect, although an epidural blood patch is the first-line treatment in most cases. With treatment, 81% experienced partial and 67% complete resolution of their symptoms. This review highlights the most important clinical aspects of BSD. Due to the sparse evidence and lack of BSD awareness, many patients are most likely left undiagnosed. Recognizing this condition is essential to provide early treatment to reverse the cognitive and behavioral changes that may otherwise progress and fully impair the patient. Moreover, patients with longstanding SIH must be carefully assessed for cognitive and behavioral changes.
Collapse
Affiliation(s)
- Aslan Lashkarivand
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
49
|
Ozzoude M, Varriano B, Beaton D, Ramirez J, Holmes MF, Scott CJM, Gao F, Sunderland KM, McLaughlin P, Rabin J, Goubran M, Kwan D, Roberts A, Bartha R, Symons S, Tan B, Swartz RH, Abrahao A, Saposnik G, Masellis M, Lang AE, Marras C, Zinman L, Shoesmith C, Borrie M, Fischer CE, Frank A, Freedman M, Montero-Odasso M, Kumar S, Pasternak S, Strother SC, Pollock BG, Rajji TK, Seitz D, Tang-Wai DF, Turnbull J, Dowlatshahi D, Hassan A, Casaubon L, Mandzia J, Sahlas D, Breen DP, Grimes D, Jog M, Steeves TDL, Arnott SR, Black SE, Finger E, Tartaglia MC. Investigating the contribution of white matter hyperintensities and cortical thickness to empathy in neurodegenerative and cerebrovascular diseases. GeroScience 2022; 44:1575-1598. [PMID: 35294697 DOI: 10.1007/s11357-022-00539-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
Change in empathy is an increasingly recognised symptom of neurodegenerative diseases and contributes to caregiver burden and patient distress. Empathy impairment has been associated with brain atrophy but its relationship to white matter hyperintensities (WMH) is unknown. We aimed to investigate the relationships amongst WMH, brain atrophy, and empathy deficits in neurodegenerative and cerebrovascular diseases. Five hundred thirteen participants with Alzheimer's disease/mild cognitive impairment, amyotrophic lateral sclerosis, frontotemporal dementia (FTD), Parkinson's disease, or cerebrovascular disease (CVD) were included. Empathy was assessed using the Interpersonal Reactivity Index. WMH were measured using a semi-automatic segmentation and FreeSurfer was used to measure cortical thickness. A heterogeneous pattern of cortical thinning was found between groups, with FTD showing thinning in frontotemporal regions and CVD in left superior parietal, left insula, and left postcentral. Results from both univariate and multivariate analyses revealed that several variables were associated with empathy, particularly cortical thickness in the fronto-insulo-temporal and cingulate regions, sex (female), global cognition, and right parietal and occipital WMH. Our results suggest that cortical atrophy and WMH may be associated with empathy deficits in neurodegenerative and cerebrovascular diseases. Future work should consider investigating the longitudinal effects of WMH and atrophy on empathy deficits in neurodegenerative and cerebrovascular diseases.
Collapse
Affiliation(s)
- Miracle Ozzoude
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th floor 6KD-407, Toronto, ON, M5T 0S8, Canada.,L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Brenda Varriano
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th floor 6KD-407, Toronto, ON, M5T 0S8, Canada
| | - Derek Beaton
- Rotman Research Institute of Baycrest Centre, Toronto, ON, Canada
| | - Joel Ramirez
- L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Melissa F Holmes
- L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christopher J M Scott
- L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Fuqiang Gao
- L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Paula McLaughlin
- Nova Scotia Health and Dalhousie University, Halifax, NS, Canada
| | - Jennifer Rabin
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Maged Goubran
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Donna Kwan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Queen's University, Kingston, ON, Canada
| | - Angela Roberts
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA.,School of Communication Sciences and Disorders, Faculty of Health Sciences, Western University, London, ON, Canada
| | - Robert Bartha
- Robarts Research Institute, Western University, London, ON, Canada
| | - Sean Symons
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Brian Tan
- Rotman Research Institute of Baycrest Centre, Toronto, ON, Canada
| | - Richard H Swartz
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Heart & Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Agessandro Abrahao
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Gustavo Saposnik
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Mario Masellis
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Anthony E Lang
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Edmond J Safra Program for Parkinson Disease, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Connie Marras
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Edmond J Safra Program for Parkinson Disease, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Lorne Zinman
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Christen Shoesmith
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Michael Borrie
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,St. Joseph's Healthcare Centre, London, ON, Canada
| | - Corinne E Fischer
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Andrew Frank
- Department of Medicine (Neurology), University of Ottawa Brain and Mind Research Institute and Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Bruyère Research Institute, Ottawa, ON, Canada
| | - Morris Freedman
- Rotman Research Institute of Baycrest Centre, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Baycrest Health Sciences, Toronto, ON, Canada
| | - Manuel Montero-Odasso
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Lawson Health Research Institute, London, ON, Canada.,Gait and Brain Lab, Parkwood Institute, London, ON, Canada
| | - Sanjeev Kumar
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Stephen Pasternak
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Stephen C Strother
- Rotman Research Institute of Baycrest Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Bruce G Pollock
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tarek K Rajji
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| | - Dallas Seitz
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - David F Tang-Wai
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Memory Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - John Turnbull
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Dar Dowlatshahi
- Department of Medicine (Neurology), University of Ottawa Brain and Mind Research Institute and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ayman Hassan
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON, Canada
| | - Leanne Casaubon
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jennifer Mandzia
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada.,Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Demetrios Sahlas
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - David P Breen
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK.,Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - David Grimes
- Department of Medicine (Neurology), University of Ottawa Brain and Mind Research Institute and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Mandar Jog
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada.,Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,London Health Sciences Centre, London, ON, Canada
| | - Thomas D L Steeves
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Stephen R Arnott
- Rotman Research Institute of Baycrest Centre, Toronto, ON, Canada
| | - Sandra E Black
- L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Heart & Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada.,Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th floor 6KD-407, Toronto, ON, M5T 0S8, Canada. .,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada. .,Memory Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
50
|
Tsoukra P, Velakoulis D, Wibawa P, Malpas CB, Walterfang M, Evans A, Farrand S, Kelso W, Eratne D, Loi SM. The Diagnostic Challenge of Young-Onset Dementia Syndromes and Primary Psychiatric Diseases: Results From a Retrospective 20-Year Cross-Sectional Study. J Neuropsychiatry Clin Neurosci 2022; 34:44-52. [PMID: 34538074 DOI: 10.1176/appi.neuropsych.20100266] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Distinguishing a dementia syndrome from a primary psychiatric disease in younger patients can be challenging and may lead to diagnostic change over time. The investigators aimed to examine diagnostic stability in a cohort of patients with younger-onset neurocognitive disorders. METHODS A retrospective review of records was conducted for patients who were admitted to an inpatient neuropsychiatry service unit between 2000 and 2019, who were followed up for at least 12 months, and who received a diagnosis of young-onset dementia at any time point. Initial diagnosis included Alzheimer's disease-type dementia (N=30), frontotemporal dementia (FTD) syndromes (N=44), vascular dementia (N=7), mild cognitive impairment (N=10), primary psychiatric diseases (N=6), and other conditions, such as Lewy body dementia (N=30). RESULTS Among 127 patients, 49 (39%) had a change in their initial diagnoses during the follow-up period. Behavioral variant FTD (bvFTD) was the least stable diagnosis, followed by dementia not otherwise specified and mild cognitive impairment. Compared with patients with a stable diagnosis, those who changed exhibited a higher cognitive score at baseline, a longer follow-up period, greater delay to final diagnosis, and no family history of dementia. Patients whose diagnosis changed from a neurodegenerative to a psychiatric diagnosis were more likely to have a long psychiatric history, while those whose diagnosis changed from a psychiatric to a neurodegenerative one had a recent manifestation of psychiatric symptoms. CONCLUSIONS Misdiagnosis of younger patients with neurocognitive disorders is not uncommon, especially in cases of bvFTD. Late-onset psychiatric symptoms may be the harbinger to a neurodegenerative disease. Close follow-up and monitoring of these patients are necessary.
Collapse
Affiliation(s)
- Paraskevi Tsoukra
- Department of Neurology, Evaggelismos Hospital, Athens, Greece (Tsoukra); Neuropsychiatry Royal Melbourne Hospital, Parkville, Australia (Velakoulis, Wibawa, Walterfang, Evans, Farrand, Kelso, Eratne, Loi); Melbourne Neuropsychiatry Centre, University of Melbourne and Royal Melbourne Hospital, Parkville, Australia (Velakoulis, Wibawa, Walterfang, Evans, Farrand, Kelso, Eratne, Loi); Department of Medicine, Clinical Outcomes Research Unit, Royal Melbourne Hospital, Parkville, Australia (Malpas); Department of Neurology, Royal Melbourne Hospital, Parkville, Australia (Malpas); and Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Australia (Malpas)
| | - Dennis Velakoulis
- Department of Neurology, Evaggelismos Hospital, Athens, Greece (Tsoukra); Neuropsychiatry Royal Melbourne Hospital, Parkville, Australia (Velakoulis, Wibawa, Walterfang, Evans, Farrand, Kelso, Eratne, Loi); Melbourne Neuropsychiatry Centre, University of Melbourne and Royal Melbourne Hospital, Parkville, Australia (Velakoulis, Wibawa, Walterfang, Evans, Farrand, Kelso, Eratne, Loi); Department of Medicine, Clinical Outcomes Research Unit, Royal Melbourne Hospital, Parkville, Australia (Malpas); Department of Neurology, Royal Melbourne Hospital, Parkville, Australia (Malpas); and Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Australia (Malpas)
| | - Pierre Wibawa
- Department of Neurology, Evaggelismos Hospital, Athens, Greece (Tsoukra); Neuropsychiatry Royal Melbourne Hospital, Parkville, Australia (Velakoulis, Wibawa, Walterfang, Evans, Farrand, Kelso, Eratne, Loi); Melbourne Neuropsychiatry Centre, University of Melbourne and Royal Melbourne Hospital, Parkville, Australia (Velakoulis, Wibawa, Walterfang, Evans, Farrand, Kelso, Eratne, Loi); Department of Medicine, Clinical Outcomes Research Unit, Royal Melbourne Hospital, Parkville, Australia (Malpas); Department of Neurology, Royal Melbourne Hospital, Parkville, Australia (Malpas); and Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Australia (Malpas)
| | - Charles B Malpas
- Department of Neurology, Evaggelismos Hospital, Athens, Greece (Tsoukra); Neuropsychiatry Royal Melbourne Hospital, Parkville, Australia (Velakoulis, Wibawa, Walterfang, Evans, Farrand, Kelso, Eratne, Loi); Melbourne Neuropsychiatry Centre, University of Melbourne and Royal Melbourne Hospital, Parkville, Australia (Velakoulis, Wibawa, Walterfang, Evans, Farrand, Kelso, Eratne, Loi); Department of Medicine, Clinical Outcomes Research Unit, Royal Melbourne Hospital, Parkville, Australia (Malpas); Department of Neurology, Royal Melbourne Hospital, Parkville, Australia (Malpas); and Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Australia (Malpas)
| | - Mark Walterfang
- Department of Neurology, Evaggelismos Hospital, Athens, Greece (Tsoukra); Neuropsychiatry Royal Melbourne Hospital, Parkville, Australia (Velakoulis, Wibawa, Walterfang, Evans, Farrand, Kelso, Eratne, Loi); Melbourne Neuropsychiatry Centre, University of Melbourne and Royal Melbourne Hospital, Parkville, Australia (Velakoulis, Wibawa, Walterfang, Evans, Farrand, Kelso, Eratne, Loi); Department of Medicine, Clinical Outcomes Research Unit, Royal Melbourne Hospital, Parkville, Australia (Malpas); Department of Neurology, Royal Melbourne Hospital, Parkville, Australia (Malpas); and Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Australia (Malpas)
| | - Andrew Evans
- Department of Neurology, Evaggelismos Hospital, Athens, Greece (Tsoukra); Neuropsychiatry Royal Melbourne Hospital, Parkville, Australia (Velakoulis, Wibawa, Walterfang, Evans, Farrand, Kelso, Eratne, Loi); Melbourne Neuropsychiatry Centre, University of Melbourne and Royal Melbourne Hospital, Parkville, Australia (Velakoulis, Wibawa, Walterfang, Evans, Farrand, Kelso, Eratne, Loi); Department of Medicine, Clinical Outcomes Research Unit, Royal Melbourne Hospital, Parkville, Australia (Malpas); Department of Neurology, Royal Melbourne Hospital, Parkville, Australia (Malpas); and Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Australia (Malpas)
| | - Sarah Farrand
- Department of Neurology, Evaggelismos Hospital, Athens, Greece (Tsoukra); Neuropsychiatry Royal Melbourne Hospital, Parkville, Australia (Velakoulis, Wibawa, Walterfang, Evans, Farrand, Kelso, Eratne, Loi); Melbourne Neuropsychiatry Centre, University of Melbourne and Royal Melbourne Hospital, Parkville, Australia (Velakoulis, Wibawa, Walterfang, Evans, Farrand, Kelso, Eratne, Loi); Department of Medicine, Clinical Outcomes Research Unit, Royal Melbourne Hospital, Parkville, Australia (Malpas); Department of Neurology, Royal Melbourne Hospital, Parkville, Australia (Malpas); and Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Australia (Malpas)
| | - Wendy Kelso
- Department of Neurology, Evaggelismos Hospital, Athens, Greece (Tsoukra); Neuropsychiatry Royal Melbourne Hospital, Parkville, Australia (Velakoulis, Wibawa, Walterfang, Evans, Farrand, Kelso, Eratne, Loi); Melbourne Neuropsychiatry Centre, University of Melbourne and Royal Melbourne Hospital, Parkville, Australia (Velakoulis, Wibawa, Walterfang, Evans, Farrand, Kelso, Eratne, Loi); Department of Medicine, Clinical Outcomes Research Unit, Royal Melbourne Hospital, Parkville, Australia (Malpas); Department of Neurology, Royal Melbourne Hospital, Parkville, Australia (Malpas); and Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Australia (Malpas)
| | - Dhamidhu Eratne
- Department of Neurology, Evaggelismos Hospital, Athens, Greece (Tsoukra); Neuropsychiatry Royal Melbourne Hospital, Parkville, Australia (Velakoulis, Wibawa, Walterfang, Evans, Farrand, Kelso, Eratne, Loi); Melbourne Neuropsychiatry Centre, University of Melbourne and Royal Melbourne Hospital, Parkville, Australia (Velakoulis, Wibawa, Walterfang, Evans, Farrand, Kelso, Eratne, Loi); Department of Medicine, Clinical Outcomes Research Unit, Royal Melbourne Hospital, Parkville, Australia (Malpas); Department of Neurology, Royal Melbourne Hospital, Parkville, Australia (Malpas); and Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Australia (Malpas)
| | - Samantha M Loi
- Department of Neurology, Evaggelismos Hospital, Athens, Greece (Tsoukra); Neuropsychiatry Royal Melbourne Hospital, Parkville, Australia (Velakoulis, Wibawa, Walterfang, Evans, Farrand, Kelso, Eratne, Loi); Melbourne Neuropsychiatry Centre, University of Melbourne and Royal Melbourne Hospital, Parkville, Australia (Velakoulis, Wibawa, Walterfang, Evans, Farrand, Kelso, Eratne, Loi); Department of Medicine, Clinical Outcomes Research Unit, Royal Melbourne Hospital, Parkville, Australia (Malpas); Department of Neurology, Royal Melbourne Hospital, Parkville, Australia (Malpas); and Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Australia (Malpas)
| |
Collapse
|