1
|
Kashima H, Fischer A, Veronese-Paniagua DA, Gazit VA, Ma C, Yan Y, Levin MS, Madison BB, Rubin DC. A Novel CRISPR/Cas9-mediated Mouse Model of Colon Carcinogenesis. Cell Mol Gastroenterol Hepatol 2024; 18:101390. [PMID: 39128652 PMCID: PMC11462267 DOI: 10.1016/j.jcmgh.2024.101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND & AIMS Human sporadic colorectal cancer (CRC) results from a multistep pathway with sequential acquisition of specific genetic mutations in the colorectal epithelium. Modeling CRC in vivo is critical for understanding the tumor microenvironment. To accurately recapitulate human CRC pathogenesis, mouse models must include these multi-step genetic abnormalities. The aim of this study was to generate a sporadic CRC model that more closely mimics this multi-step process and to use this model to study the role of a novel Let7 target PLAGL2 in CRC pathogenesis. METHODS We generated a CRISPR/Cas9 somatic mutagenesis mouse model that is inducible and multiplexed for simultaneous inactivation of multiple genes involved in CRC pathogenesis. We used both a doxycycline-inducible transcriptional activator and a doxycycline-inactivated transcriptional repressor to achieve tight, non-leaky expression of the Cas9 nickase. This mouse has transgenic expression of multiple guide RNAs to induce sporadic inactivation in the gut epithelium of 4 tumor suppressor genes commonly mutated in CRC, Apc, Pten, Smad4, and Trp53. These were crossed to Vil-LCL-PLAGL2 mice, which have Cre-inducible overexpression of PLAGL2 in the gut epithelium. RESULTS These mice exhibited random somatic mutations in all 4 targeted tumor suppressor genes, resulting in multiple adenomas and adenocarcinomas in the small bowel and colon. Crosses with Vil-LCL-PLAGL2 mice demonstrated that gut-specific PLAGL2 overexpression increased colon tumor growth. CONCLUSIONS This conditional model represents a new CRISPR/Cas9-mediated mouse model of colorectal carcinogenesis. These mice can be used to investigate the role of novel, previously uncharacterized genes in CRC, in the context of multiple commonly mutated tumor suppressor genes and thus more closely mimic human CRC pathogenesis.
Collapse
Affiliation(s)
- Hajime Kashima
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St Louis, Missouri; Current affiliation: Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Anthony Fischer
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St Louis, Missouri
| | - Daniel A Veronese-Paniagua
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St Louis, Missouri
| | - Vered A Gazit
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St Louis, Missouri
| | - Changqing Ma
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St Louis, Missouri
| | - Yan Yan
- Department of Surgery, Washington University in St. Louis School of Medicine, St Louis, Missouri
| | - Marc S Levin
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St Louis, Missouri; Veteran's Administration St. Louis Health Care System, St Louis, Missouri
| | - Blair B Madison
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St Louis, Missouri; Current affiliation: Poseida Therapeutics Inc, San Diego, California
| | - Deborah C Rubin
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St Louis, Missouri; Department of Developmental Biology, Washington University in St. Louis School of Medicine, St Louis, Missouri.
| |
Collapse
|
2
|
Meiring JCM, Grigoriev I, Nijenhuis W, Kapitein LC, Akhmanova A. Opto-katanin, an optogenetic tool for localized, microtubule disassembly. Curr Biol 2022; 32:4660-4674.e6. [PMID: 36174574 DOI: 10.1016/j.cub.2022.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/01/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022]
Abstract
Microtubules are cytoskeletal polymers that separate chromosomes during mitosis and serve as rails for intracellular transport and organelle positioning. Manipulation of microtubules is widely used in cell and developmental biology, but tools for precise subcellular spatiotemporal control of microtubules are currently lacking. Here, we describe a light-activated system for localized recruitment of the microtubule-severing enzyme katanin. This system, named opto-katanin, uses targeted illumination with blue light to induce rapid, localized, and reversible microtubule depolymerization. This tool allows precise clearing of a subcellular region of microtubules while preserving the rest of the microtubule network, demonstrating that regulation of katanin recruitment to microtubules is sufficient to control its severing activity. The tool is not toxic in the absence of blue light and can be used to disassemble both dynamic and stable microtubules in primary neurons as well as in dividing cells. We show that opto-katanin can be used to locally block vesicle transport and to clarify the dependence of organelle morphology and dynamics on microtubules. Specifically, our data indicate that microtubules are not required for the maintenance of the Golgi stacks or the tubules of the endoplasmic reticulum but are needed for the formation of new membrane tubules. Finally, we demonstrate that this tool can be applied to study the contribution of microtubules to cell mechanics by showing that microtubule bundles can exert forces constricting the nucleus.
Collapse
Affiliation(s)
- Joyce C M Meiring
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, Utrecht 3584 CS, the Netherlands
| | - Ilya Grigoriev
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, Utrecht 3584 CS, the Netherlands
| | - Wilco Nijenhuis
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, Utrecht 3584 CS, the Netherlands; Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, UMC Utrecht, Utrecht 3584 CB, the Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, Utrecht 3584 CS, the Netherlands; Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, UMC Utrecht, Utrecht 3584 CB, the Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, Utrecht 3584 CS, the Netherlands.
| |
Collapse
|
3
|
Schrevens S, Sanglard D. A novel Candida glabrata doxycycline-inducible system for in vitro/in vivo use. FEMS Yeast Res 2022; 22:6680246. [PMID: 36047937 PMCID: PMC9508828 DOI: 10.1093/femsyr/foac046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Candida glabrata is an important pathogen causing superficial to invasive disease in human. Conditional expression systems are helpful in addressing the function of genes and especially when they can be applied to in vivo studies. Tetracycline-dependent regulation systems have been used in diverse fungi to turn-on (Tet-on) or turn-off (Tet-off) gene expression either in vitro but also in vivo in animal models. Up to now, only a Tet-off expression has been constructed for gene expression in C. glabrata. Here, we report a Tet-on gene expression system which can be used in vitro and in vivo in any C. glabrata genetic background. This system was used in a mice model of systemic infection to demonstrate that the general amino acid permease Gap1 is important for C. glabrata virulence.
Collapse
Affiliation(s)
- S Schrevens
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| | - D Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| |
Collapse
|
4
|
Du M, Wang G, Barsukov IL, Gross SR, Smith R, Rudland PS. Direct interaction of metastasis-inducing S100P protein with tubulin causes enhanced cell migration without changes in cell adhesion. Biochem J 2020; 477:1159-1178. [PMID: 32065231 PMCID: PMC7108782 DOI: 10.1042/bcj20190644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Overexpression of S100P promotes breast cancer metastasis in animals and elevated levels in primary breast cancers are associated with poor patient outcomes. S100P can differentially interact with nonmuscle myosin (NM) isoforms (IIA > IIC > IIB) leading to the redistribution of actomyosin filaments to enhance cell migration. Using COS-7 cells which do not naturally express NMIIA, S100P is now shown to interact directly with α,β-tubulin in vitro and in vivo with an equilibrium Kd of 2-3 × 10-7 M. The overexpressed S100P is located mainly in nuclei and microtubule organising centres (MTOC) and it significantly reduces their number, slows down tubulin polymerisation and enhances cell migration in S100P-induced COS-7 or HeLa cells. It fails, however, to significantly reduce cell adhesion, in contrast with NMIIA-containing S100P-inducible HeLa cells. When taxol is used to stabilise MTs or colchicine to dissociate MTs, S100P's stimulation of migration is abolished. Affinity-chromatography of tryptic digests of α and β-tubulin on S100P-bound beads identifies multiple S100P-binding sites consistent with S100P binding to all four half molecules in gel-overlay assays. When screened by NMR and ITC for interacting with S100P, four chemically synthesised peptides show interactions with low micromolar dissociation constants. The two highest affinity peptides significantly inhibit binding of S100P to α,β-tubulin and, when tagged for cellular entry, also inhibit S100P-induced reduction in tubulin polymerisation and S100P-enhancement of COS-7 or HeLa cell migration. A third peptide incapable of interacting with S100P also fails in this respect. Thus S100P can interact directly with two different cytoskeletal filaments to independently enhance cell migration, the most important step in the metastatic cascade.
Collapse
Affiliation(s)
- Min Du
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| | - Guozheng Wang
- Institute of Infection and Global Health, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| | - Igor L. Barsukov
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| | - Stephane R. Gross
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, U.K
| | - Richard Smith
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| | - Philip S. Rudland
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| |
Collapse
|
5
|
Datta S, Renwick M, Chau VQ, Zhang F, Nettesheim ER, Lipinski DM, Hulleman JD. A Destabilizing Domain Allows for Fast, Noninvasive, Conditional Control of Protein Abundance in the Mouse Eye - Implications for Ocular Gene Therapy. Invest Ophthalmol Vis Sci 2018; 59:4909-4920. [PMID: 30347085 PMCID: PMC6181441 DOI: 10.1167/iovs.18-24987] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/30/2018] [Indexed: 01/23/2023] Open
Abstract
Purpose Temporal and reversible control of protein expression in vivo is a central goal for many gene therapies, especially for strategies involving proteins that are detrimental to physiology if constitutively expressed. Accordingly, we explored whether protein abundance in the mouse retina could be effectively controlled using a destabilizing Escherichia coli dihydrofolate reductase (DHFR) domain whose stability is dependent on the small molecule, trimethoprim (TMP). Methods We intravitreally injected wild-type C57BL6/J mice with an adeno-associated vector (rAAV2/2[MAX]) constitutively expressing separate fluorescent reporters: DHFR fused to yellow fluorescent protein (DHFR.YFP) and mCherry. TMP or vehicle was administered to mice via oral gavage, drinking water, or eye drops. Ocular TMP levels post treatment were quantified by LC-MS/MS. Protein abundance was measured by fundus fluorescence imaging and western blotting. Visual acuity, response to light stimulus, retinal structure, and gene expression were evaluated after long-term (3 months) TMP treatment. Results Without TMP, DHFR.YFP was efficiently degraded in the retina. TMP achieved ocular concentrations of ∼13.6 μM (oral gavage), ∼331 nM (drinking water), and ∼636 nM (eye drops). Oral gavage and TMP eye drops stabilized DHFR.YFP as quickly as 6 hours, whereas continuous TMP drinking water could stabilize DHFR.YFP for ≥3 months. Stabilization was completely and repeatedly reversible following removal/addition of TMP in all regimens. Long-term TMP treatment had no impact on retina function/structure and had no effect on >99.9% of tested genes. Conclusions This DHFR-based conditional system is a rapid, efficient, and reversible tool to effectively control protein expression in the retina.
Collapse
Affiliation(s)
- Shyamtanu Datta
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Marian Renwick
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Viet Q. Chau
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Fang Zhang
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Emily R. Nettesheim
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Daniel M. Lipinski
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - John D. Hulleman
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
6
|
DNA-binding of the Tet-transactivator curtails antigen-induced lymphocyte activation in mice. Nat Commun 2017; 8:1028. [PMID: 29044097 PMCID: PMC5647323 DOI: 10.1038/s41467-017-01022-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 08/14/2017] [Indexed: 12/31/2022] Open
Abstract
The Tet-On/Off system for conditional transgene expression constitutes state-of-the-art technology to study gene function by facilitating inducible expression in a timed and reversible manner. Several studies documented the suitability and versatility of this system to trace lymphocyte fate and to conditionally express oncogenes or silence tumour suppressor genes in vivo. Here, we show that expression of the tetracycline/doxycycline-controlled Tet-transactivator, while tolerated well during development and in immunologically unchallenged animals, impairs the expansion of antigen-stimulated T and B cells and thereby curtails adaptive immune responses in vivo. Transactivator-mediated cytotoxicity depends on DNA binding, but can be overcome by BCL2 overexpression, suggesting that apoptosis induction upon lymphocyte activation limits cellular and humoral immune responses. Our findings suggest a possible system-intrinsic biological bias of the Tet-On/Off system in vivo that will favour the outgrowth of apoptosis resistant clones, thus possibly confounding data published using such systems. Tet-transactivators are used for direct regulation of gene expression, RNA interference and for CRISPR/Cas9-based systems. Here the authors show that DNA-bound Tet-transactivators can induce cell death in antigen-activated lymphocytes in vivo, putting into question the use of, and in vivo data generated with, these molecular tools.
Collapse
|
7
|
Gamper I, Burkhart DL, Bywater MJ, Garcia D, Wilson CH, Kreuzaler PA, Arends MJ, Zheng YW, Perfetto A, Littlewood TD, Evan GI. Determination of the physiological and pathological roles of E2F3 in adult tissues. Sci Rep 2017; 7:9932. [PMID: 28855541 PMCID: PMC5577339 DOI: 10.1038/s41598-017-09494-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/27/2017] [Indexed: 11/21/2022] Open
Abstract
While genetically engineered mice have made an enormous contribution towards the elucidation of human disease, it has hitherto not been possible to tune up or down the level of expression of any endogenous gene. Here we describe compound genetically modified mice in which expression of the endogenous E2f3 gene may be either reversibly elevated or repressed in adult animals by oral administration of tetracycline. This technology is, in principle, applicable to any endogenous gene, allowing direct determination of both elevated and reduced gene expression in physiological and pathological processes. Applying this switchable technology to the key cell cycle transcription factor E2F3, we demonstrate that elevated levels of E2F3 drive ectopic proliferation in multiple tissues. By contrast, E2F3 repression has minimal impact on tissue proliferation or homeostasis in the majority of contexts due to redundancy of adult function with E2F1 and E2F2. In the absence of E2F1 and E2F2, however, repression of E2F3 elicits profound reduction of proliferation in the hematopoietic compartments that is rapidly lethal in adult animals.
Collapse
Affiliation(s)
- Ivonne Gamper
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Megan J Bywater
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Daniel Garcia
- The Salk Institute for Biological Sciences, 10010 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | | | | | - Mark J Arends
- Pathology Department, University of Cambridge, Cambridge, UK
- Division of Pathology, Centre for Comparative Pathology, University of Edinburgh, Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh, UK
| | - Yao-Wu Zheng
- Cardiovasular Research Institute, Department of Medicine, University of California, San Francisco, San Francisco, CA, 94158, USA
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | | | | | - Gerard I Evan
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Improvement of the reverse tetracycline transactivator by single amino acid substitutions that reduce leaky target gene expression to undetectable levels. Sci Rep 2016; 6:27697. [PMID: 27323850 PMCID: PMC4914848 DOI: 10.1038/srep27697] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/20/2016] [Indexed: 12/28/2022] Open
Abstract
Conditional gene expression systems that enable inducible and reversible transcriptional control are essential research tools and have broad applications in biomedicine and biotechnology. The reverse tetracycline transcriptional activator is a canonical system for engineered gene expression control that enables graded and gratuitous modulation of target gene transcription in eukaryotes from yeast to human cell lines and transgenic animals. However, the system has a tendency to activate transcription even in the absence of tetracycline and this leaky target gene expression impedes its use. Here, we identify single amino-acid substitutions that greatly enhance the dynamic range of the system in yeast by reducing leaky transcription to undetectable levels while retaining high expression capacity in the presence of inducer. While the mutations increase the inducer concentration required for full induction, additional sensitivity-enhancing mutations can compensate for this effect and confer a high degree of robustness to the system. The novel transactivator variants will be useful in applications where tight and tunable regulation of gene expression is paramount.
Collapse
|
9
|
Drug-inducible synergistic gene silencing with multiple small hairpin RNA molecules for gene function study in animal model. Transgenic Res 2014; 24:309-17. [PMID: 25271076 PMCID: PMC4356887 DOI: 10.1007/s11248-014-9841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 09/23/2014] [Indexed: 11/06/2022]
Abstract
Gene targeting is a critical tool for construction of disease models. However, the application of traditional homologous recombination-mediated gene knockout technology is limited by the absence of rapid frequency-guaranteed targeting methods. Although conventional small hairpin RNA (shRNA)-mediated gene silencing offers an alternative for gene targeting, its application is frequently compromised by lower expression efficiency via RNA interference compared to gene knockout. Here we provide an efficient gene targeting strategy involving drug-inducible synergistic silencing with multiple shRNA molecules. On induction, the levels of the target proteins decreased to undetectable levels in all the tested stable transgenic mammalian cell lines, including HEK293 and embryonic stem cell-derived progenies carrying shRNA silencing cassettes. In a transgenic mouse model carrying a silencing cassette targeting the rhodopsin gene, short-time inducer treatment was sufficient to ablate the rhodopsin protein in the retina, resulting in similar retinal phenotypic changes as those observed in rhodopsin mutant mice. Therefore, on a broad basis, this inducible shRNA gene targeting strategy offers a true gene knockout alternative comparable to conventional RNA interference approaches.
Collapse
|
10
|
VanderVeen N, Paran C, Appelhans A, Krasinkiewicz J, Lemons R, Appelman H, Doherty R, Palmer D, Ng P, Lowenstein PR, Castro MG. Marmosets as a preclinical model for testing "off-label" use of doxycycline to turn on Flt3L expression from high-capacity adenovirus vectors. Mol Ther Methods Clin Dev 2014; 1:10. [PMID: 25068145 PMCID: PMC4111110 DOI: 10.1038/mtm.2013.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/24/2013] [Indexed: 12/17/2022]
Abstract
We developed a combined conditional cytotoxic, i.e., herpes simplex type 1-thymidine kinase (TK), plus immune-stimulatory, i.e., fms-like tyrosine kinase ligand-3-mediated gene therapy for glioblastoma multiforme (GBM). Therapeutic transgenes were encoded within high-capacity adenoviral vectors (HC-Ad); TK was expressed constitutively, while Flt3L was under the control of the TetOn regulatable promoter. We previously assessed efficacy and safety in intracranial GBM rodent models. But, since this approach involves expression of a cytokine within the brain, we chose the nonhuman primate, i.e., Callithrix jaccus (marmoset) as it has been established that its immune response shares similarities with man. We characterized the safety, cell-type specific expression, and doxycycline (DOX)-inducibility of HC-Ad-TetOn-Flt3L delivered within the striatum. We used allometrically scaled DOX doses delivered orally, twice daily for one month, mimicking the route and duration of DOX administration planned for the GBM trial. Flt3L was effectively expressed within astrocytes, microglia, oligodendrocytes, and neurons. No evidence of brain or systemic toxicities due to the treatment was encountered. Our data indicate that DOX doses equivalent to those used in humans to treat infections can be safely used "off-label" to turn "on" therapeutic gene expression from HC-Ad-TetOn-Flt3L; providing evidence for the safety of this approach in the clinic.
Collapse
Affiliation(s)
- Nathan VanderVeen
- Department of Neurosurgery, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Christopher Paran
- Department of Neurosurgery, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Ashley Appelhans
- Department of Neurosurgery, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Johnny Krasinkiewicz
- Department of Neurosurgery, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Rosemary Lemons
- Department of Neurosurgery, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Henry Appelman
- Department of Pathology, The University of Michigan School of Medicine, University Hospital, Ann Arbor, Michigan, USA
| | - Robert Doherty
- Department of Neurosurgery, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Donna Palmer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Maria G Castro
- Department of Neurosurgery, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Jin YX, Jeon Y, Lee SH, Kwon MS, Kim T, Cui XS, Hyun SH, Kim NH. Production of pigs expressing a transgene under the control of a tetracycline-inducible system. PLoS One 2014; 9:e86146. [PMID: 24454957 PMCID: PMC3893280 DOI: 10.1371/journal.pone.0086146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 12/06/2013] [Indexed: 11/21/2022] Open
Abstract
Pigs are anatomically and physiologically closer to humans than other laboratory animals. Transgenic (TG) pigs are widely used as models of human diseases. The aim of this study was to produce pigs expressing a tetracycline (Tet)-inducible transgene. The Tet-on system was first tested in infected donor cells. Porcine fetal fibroblasts were infected with a universal doxycycline-inducible vector containing the target gene enhanced green fluorescent protein (eGFP). At 1 day after treatment with 1 µg/ml doxycycline, the fluorescence intensity of these cells was increased. Somatic cell nuclear transfer (SCNT) was then performed using these donor cells. The Tet-on system was then tested in the generated porcine SCNT-TG embryos. Of 4,951 porcine SCNT-TG embryos generated, 850 were cultured in the presence of 1 µg/ml doxycycline in vitro. All of these embryos expressed eGFP and 15 embryos developed to blastocyst stage. The remaining 4,101 embryos were transferred to thirty three surrogate pigs from which thirty eight cloned TG piglets were obtained. PCR analysis showed that the transgene was inserted into the genome of each of these piglets. Two TG fibroblast cell lines were established from these TG piglets, and these cells were used as donor cells for re-cloning. The re-cloned SCNT embryos expressed the eGFP transgene under the control of doxycycline. These data show that the expression of transgenes in cloned TG pigs can be regulated by the Tet-on/off systems.
Collapse
Affiliation(s)
- Yong-Xun Jin
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Yubyeol Jeon
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Sung-Hyun Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Mo-Sun Kwon
- School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Teoan Kim
- School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Sang-Hwan Hyun
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- * E-mail: (NHK); (SHH)
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
- * E-mail: (NHK); (SHH)
| |
Collapse
|
12
|
Puttini S, van Zwieten RW, Saugy D, Lekka M, Hogger F, Ley D, Kulik AJ, Mermod N. MAR-mediated integration of plasmid vectors for in vivo gene transfer and regulation. BMC Mol Biol 2013; 14:26. [PMID: 24295286 PMCID: PMC4219123 DOI: 10.1186/1471-2199-14-26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The in vivo transfer of naked plasmid DNA into organs such as muscles is commonly used to assess the expression of prophylactic or therapeutic genes in animal disease models. RESULTS In this study, we devised vectors allowing a tight regulation of transgene expression in mice from such non-viral vectors using a doxycycline-controlled network of activator and repressor proteins. Using these vectors, we demonstrate proper physiological response as consequence of the induced expression of two therapeutically relevant proteins, namely erythropoietin and utrophin. Kinetic studies showed that the induction of transgene expression was only transient, unless epigenetic regulatory elements termed Matrix Attachment Regions, or MAR, were inserted upstream of the regulated promoters. Using episomal plasmid rescue and quantitative PCR assays, we observed that similar amounts of plasmids remained in muscles after electrotransfer with or without MAR elements, but that a significant portion had integrated into the muscle fiber chromosomes. Interestingly, the MAR elements were found to promote plasmid genomic integration but to oppose silencing effects in vivo, thereby mediating long-term expression. CONCLUSIONS This study thus elucidates some of the determinants of transient or sustained expression from the use of non-viral regulated vectors in vivo.
Collapse
Affiliation(s)
- Stefania Puttini
- Institute of Biotechnology, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Manfredsson FP, Bloom DC, Mandel RJ. Regulated protein expression for in vivo gene therapy for neurological disorders: progress, strategies, and issues. Neurobiol Dis 2012; 48:212-21. [PMID: 22426391 DOI: 10.1016/j.nbd.2012.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 01/28/2012] [Accepted: 03/01/2012] [Indexed: 01/16/2023] Open
Abstract
The field of in vivo gene therapy has matured to the point where there are numerous clinical trials underway including late-stage clinical trials. Several viral vectors are especially efficient and support lifetime protein expression in the brain and a number of clinical trials are underway for various progressive or chronic neurological disorders including Parkinson's disease, Alzheimer's disease, and Batten's disease. To date, however, none of the vectors in clinical use have any direct way to reverse or control their transgene product in the event continued protein expression should become problematic. Several schemes that use elements within the vector design have been developed that allow an external drug or pro-drug to alter ongoing protein expression after in vivo gene transfer. The most promising and most studied regulated protein expression methods for in vivo gene transfer are reviewed. In addition, potential scientific and clinical advantages of transgene regulation for gene therapy are discussed.
Collapse
Affiliation(s)
- Fredric P Manfredsson
- Department of Translational Science & Molecular Medicine, Van Andel Institute, Michigan State University, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | | | | |
Collapse
|
14
|
Du M, Wang G, Ismail TM, Gross S, Fernig DG, Barraclough R, Rudland PS. S100P dissociates myosin IIA filaments and focal adhesion sites to reduce cell adhesion and enhance cell migration. J Biol Chem 2012; 287:15330-44. [PMID: 22399300 DOI: 10.1074/jbc.m112.349787] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
S100 proteins promote cancer cell migration and metastasis. To investigate their roles in the process of migration we have constructed inducible systems for S100P in rat mammary and human HeLa cells that show a linear relationship between its intracellular levels and cell migration. S100P, like S100A4, differentially interacts with the isoforms of nonmuscle myosin II (NMIIA, K(d) = 0.5 μM; IIB, K(d) = 8 μM; IIC, K(d) = 1.0 μM). Accordingly, S100P dissociates NMIIA and IIC filaments but not IIB in vitro. NMIIA knockdown increases migration in non-induced cells and there is no further increase upon induction of S100P, whereas NMIIB knockdown reduces cell migration whether or not S100P is induced. NMIIC knockdown does not affect S100P-enhanced cell migration. Further study shows that NMIIA physically interacts with S100P in living cells. In the cytoplasm, S100P occurs in discrete nodules along NMIIA-containing filaments. Induction of S100P causes more peripheral distribution of NMIIA filaments. This change is paralleled by a significant drop in vinculin-containing, actin-terminating focal adhesion sites (FAS) per cell. The induction of S100P, consequently, causes significant reduction in cellular adhesion. Addition of a focal adhesion kinase (FAK) inhibitor reduces disassembly of FAS and thereby suppresses S100P-enhanced cell migration. In conclusion, this work has demonstrated a mechanism whereby the S100P-induced dissociation of NMIIA filaments leads to a weakening of FAS, reduced cell adhesion, and enhanced cell migration, the first major step in the metastatic cascade.
Collapse
Affiliation(s)
- Min Du
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
15
|
Gene regulation systems for gene therapy applications in the central nervous system. Neurol Res Int 2012; 2012:595410. [PMID: 22272373 PMCID: PMC3261487 DOI: 10.1155/2012/595410] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/23/2011] [Indexed: 01/02/2023] Open
Abstract
Substantial progress has been made in the development of novel gene therapy strategies for central nervous system (CNS) disorders in recent years. However, unregulated transgene expression is a significant issue limiting human applications due to the potential side effects from excessive levels of transgenic protein that indiscriminately affect both diseased and nondiseased cells. Gene regulation systems are a tool by which tight tissue-specific and temporal regulation of transgene expression may be achieved. This review covers the features of ideal regulatory systems and summarises the mechanics of current exogenous and endogenous gene regulation systems and their utility in the CNS.
Collapse
|
16
|
Devaney J, Contreras M, Laffey JG. Clinical review: gene-based therapies for ALI/ARDS: where are we now? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:224. [PMID: 21699743 PMCID: PMC3218971 DOI: 10.1186/cc10216] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) confer substantial morbidity and mortality, and have no specific therapy. The accessibility of the distal lung epithelium via the airway route, and the relatively transient nature of ALI/ARDS, suggest that the disease may be amenable to gene-based therapies. Ongoing advances in our understanding of the pathophysiology of ALI/ARDS have revealed multiple therapeutic targets for gene-based approaches. Strategies to enhance or restore lung epithelial and/or endothelial cell function, to strengthen lung defense mechanisms against injury, to speed clearance of infection and to enhance the repair process following ALI/ARDS have all demonstrated promise in preclinical models. Despite three decades of gene therapy research, however, the clinical potential for gene-based approaches to lung diseases including ALI/ARDS remains to be realized. Multiple barriers to effective pulmonary gene therapy exist, including the pulmonary architecture, pulmonary defense mechanisms against inhaled particles, the immunogenicity of viral vectors and the poor transfection efficiency of nonviral delivery methods. Deficits remain in our knowledge regarding the optimal molecular targets for gene-based approaches. Encouragingly, recent progress in overcoming these barriers offers hope for the successful translation of gene-based approaches for ALI/ARDS to the clinical setting.
Collapse
Affiliation(s)
- James Devaney
- Lung Biology Group, Regenerative Medicine Institute, National Centre for Biomedical Engineering Science, Orbsen Building, National University of Ireland, Newcastle Road, Galway, Ireland
| | | | | |
Collapse
|
17
|
Kwon MS, Koo BC, Roh JY, Kim M, Kim JH, Kim T. Production of transgenic chickens expressing a tetracycline-inducible GFP gene. Biochem Biophys Res Commun 2011; 410:890-4. [PMID: 21708138 DOI: 10.1016/j.bbrc.2011.06.088] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 06/13/2011] [Indexed: 11/28/2022]
Abstract
There is much interest in using farm animals as 'bioreactors' to produce large quantities of biopharmaceuticals. However, uncontrolled constitutive expression of foreign genes have been known to cause serious physiological disturbances in transgenic animals. The objective of this study was to test the feasibility of the controllable expression of an exogenous gene in the chicken. A retrovirus vector was designed to express GFP (green fluorescent protein) and rtTA (reverse tetracycline-controlled transactivator) under the control of the tetracycline-inducible promoter and the PGK (phosphoglycerate kinase) promoter, respectively. G0 founder chickens were produced by infecting the blastoderm of freshly laid eggs with concentrated retrovirus vector. Feeding the chickens obtained with doxycycline, a tetracycline derivative, resulted in emission of green body color under fluorescent light, and no apparent significant physiological dysfunctions. Successful germline transmission of the exogenous gene was also confirmed. Expression of the GFP gene reverted to the pre-induction levels when doxycycline was removed from the diet. The results showed that a tetracycline-inducible expression system in transgenic animals might be a promising solution to minimize physiological disturbances caused by the transgene.
Collapse
Affiliation(s)
- Mo Sun Kwon
- Department of Physiology, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | | | | | | | | | | |
Collapse
|
18
|
Le Dévédec SE, Lalai R, Pont C, de Bont H, van de Water B. Two-photon intravital multicolor imaging combined with inducible gene expression to distinguish metastatic behavior of breast cancer cells in vivo. Mol Imaging Biol 2011; 13:67-77. [PMID: 20396956 PMCID: PMC3023020 DOI: 10.1007/s11307-010-0307-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Purpose The aim of this study is to use multicolor intravital imaging together with an inducible cell model to compare metastatic behavior of control and genetically modified breast cancer cell populations within the intact primary tumor of a mouse. Procedure GFP-MTLn3-ErbB1 cells were generated with doxycycline-regulated conditional transgene expression using lentiviral TREAutoR3-cyan fluorescent protein (CFP). CFP expression together with tumor cell motility is monitored in vitro and in vivo. Results Effective and tight control of doxycycline-induced CFP expression was observed both in vitro and in vivo. Intravital multiphoton microscopy on intact orthotopic tumors allowed a clear discrimination between GFP-only and (GFP + CFP) cell populations, which enables direct comparison of the motility behavior of two different cell populations in the same microenvironment in vivo. Conclusions This system is robust and versatile for conditional gene expression and can be used to study the role of individual candidate metastasis genes in vitro and in vivo. This technology will allow investigations of cellular events in cancer metastasis and in particular intravasation within a primary tumor. Electronic supplementary material The online version of this article (doi:10.1007/s11307-010-0307-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sylvia E Le Dévédec
- Division of Toxicology, Leiden Amsterdam Center for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Koo BC, Kwon MS, Lee H, Kim M, Kim D, Roh JY, Park YY, Cui XS, Kim NH, Byun SJ, Kim T. Tetracycline-dependent expression of the human erythropoietin gene in transgenic chickens. Transgenic Res 2009; 19:437-47. [PMID: 19795218 DOI: 10.1007/s11248-009-9327-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
A critical problem in the production of transgenic animals is the uncontrolled constitutive expression of the foreign gene, which occasionally results in serious physiological disorders in the transgenic animal. In this study, we report successful production of transgenic chickens that express the human erythropoietin (hEPO) gene under the control of a tetracycline-inducible promoter. A recombinant Moloney murine leukemia virus (MoMLV)-based retrovirus vector encapsidated with vesicular stomatitis virus G glycoprotein (VSV-G) was injected beneath the blastoderm of unincubated chicken embryos (stage X). Out of 198 injected eggs, 15 chicks hatched after 21 days of incubation and 14 hatched chicks expressed the vector-encoded hEPO gene when fed doxycycline, a tetracycline derivative, without any significant physiological dysfunctions. The expression of hEPO reverted to the pre-induction state by removing doxycycline from the diet. The biological activity of the hEPO produced in the transgenic chickens was comparable to commercially available CHO cell-derived hEPO. Successful germline transmission of the transgene was also confirmed in G1 transgenic chicks produced from crossing G0 transgenic roosters with non-transgenic hens. Tetracycline-inducible expression of the hEPO gene was also confirmed in the blood and eggs of the transgenic chickens.
Collapse
Affiliation(s)
- Bon Chul Koo
- Department of Physiology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Stieger K, Belbellaa B, Le Guiner C, Moullier P, Rolling F. In vivo gene regulation using tetracycline-regulatable systems. Adv Drug Deliv Rev 2009; 61:527-41. [PMID: 19394373 PMCID: PMC7103297 DOI: 10.1016/j.addr.2008.12.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 12/15/2008] [Indexed: 10/26/2022]
Abstract
Numerous preclinical studies have demonstrated the efficacy of viral gene delivery vectors, and recent clinical trials have shown promising results. However, the tight control of transgene expression is likely to be required for therapeutic applications and in some instances, for safety reasons. For this purpose, several ligand-dependent transcription regulatory systems have been developed. Among these, the tetracycline-regulatable system is by far the most frequently used and the most advanced towards gene therapy trials. This review will focus on this system and will describe the most recent progress in the regulation of transgene expression in various organs, including the muscle, the retina and the brain. Since the development of an immune response to the transactivator was observed following gene transfer in the muscle of nonhuman primate, focus will be therefore, given on the immune response to transgene products of the tetracycline inducible promoter.
Collapse
Affiliation(s)
- Knut Stieger
- INSERM UMR U649, CHU-Hotel Dieu, Nantes, France
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
21
|
Clanchy FIL, Williams RO. Plasmid DNA as a safe gene delivery vehicle for treatment of chronic inflammatory disease. Expert Opin Biol Ther 2008; 8:1507-19. [DOI: 10.1517/14712598.8.10.1507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Enhanced in vivo transgene expression and immunogenicity from plasmid vectors following electrostimulation in rodents and primates. Vaccine 2008; 26:5202-9. [DOI: 10.1016/j.vaccine.2008.03.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Greber D, El-Baba MD, Fussenegger M. Intronically encoded siRNAs improve dynamic range of mammalian gene regulation systems and toggle switch. Nucleic Acids Res 2008; 36:e101. [PMID: 18632760 PMCID: PMC2532736 DOI: 10.1093/nar/gkn443] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Applications of conditional gene expression, whether for therapeutic or basic research purposes, are increasingly requiring mammalian gene control systems that exhibit far tighter control properties. While numerous approaches have been used to improve the widely used Tet-regulatory system, many applications, particularly with respect to the engineering of synthetic gene networks, will require a broader range of tightly performing gene control systems. Here, a generically applicable approach is described that utilizes intronically encoded siRNA on the relevant transregulator construct, and siRNA sequence-specific tags on the reporter construct, to minimize basal gene activity in the off-state of a range of common gene control systems. To demonstrate tight control of residual expression the approach was successfully used to conditionally express the toxic proteins RipDD and Linamarase. The intronic siRNA concept was also extended to create a new generation of compact, single-vector, autoinducible siRNA vectors. Finally, using improved regulation systems a mammalian epigenetic toggle switch was engineered that exhibited superior in vitro and in vivo induction characteristics in mice compared to the equivalent non-intronic system.
Collapse
Affiliation(s)
- David Greber
- Institute for Chemical and Bioengineering, ETH Zurich, HCI F115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
24
|
Curtin JF, Candolfi M, Xiong W, Lowenstein PR, Castro MG. Turning the gene tap off; implications of regulating gene expression for cancer therapeutics. Mol Cancer Ther 2008; 7:439-48. [PMID: 18347132 DOI: 10.1158/1535-7163.mct-07-2328] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cancer poses a tremendous therapeutic challenge worldwide, highlighting the critical need for developing novel therapeutics. A promising cancer treatment modality is gene therapy, which is a form of molecular medicine designed to introduce into target cells genetic material with therapeutic intent. Anticancer gene therapy strategies currently used in preclinical models, and in some cases in the clinic, include proapoptotic genes, oncolytic/replicative vectors, conditional cytotoxic approaches, inhibition of angiogenesis, inhibition of growth factor signaling, inactivation of oncogenes, inhibition of tumor invasion and stimulation of the immune system. The translation of these novel therapeutic modalities from the preclinical setting to the clinic has been driven by encouraging preclinical efficacy data and advances in gene delivery technologies. One area of intense research involves the ability to accurately regulate the levels of therapeutic gene expression to achieve enhanced efficacy and provide the capability to switch gene expression off completely if adverse side effects should arise. This feature could also be implemented to switch gene expression off when a successful therapeutic outcome ensues. Here, we will review recent developments related to the engineering of transcriptional switches within gene delivery systems, which could be implemented in clinical gene therapy applications directed at the treatment of cancer.
Collapse
Affiliation(s)
- James F Curtin
- University of California-Los Angeles and Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | |
Collapse
|
25
|
Paroni G, Cernotta N, Dello Russo C, Gallinari P, Pallaoro M, Foti C, Talamo F, Orsatti L, Steinkühler C, Brancolini C. PP2A regulates HDAC4 nuclear import. Mol Biol Cell 2008; 19:655-67. [PMID: 18045992 PMCID: PMC2230598 DOI: 10.1091/mbc.e07-06-0623] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 11/12/2007] [Accepted: 11/20/2007] [Indexed: 11/11/2022] Open
Abstract
Different signal-regulated serine/threonine kinases phosphorylate class II histone deacetylases (HDACs) to promote nuclear export, cytosolic accumulation, and activation of gene transcription. However, little is known about mechanisms operating in the opposite direction, which, possibly through phosphatases, should promote class II HDACs nuclear entry and subsequent gene repression. Here we show that HDAC4 forms a complex with the PP2A holoenzyme C alpha, A alpha, B/PR55 alpha. In vitro and in vivo binding studies demonstrate that the N-terminus of HDAC4 interacts with the catalytic subunit of PP2A. HDAC4 is dephosphorylated by PP2A and experiments using okadaic acid or RNA interference have revealed that PP2A controls HDAC4 nuclear import. Moreover, we identified serine 298 as a putative phosphorylation site important for HDAC4 nuclear import. The HDAC4 mutant mimicking phosphorylation of serine 298 is defective in nuclear import. Mutation of serine 298 to alanine partially rescues the defect in HDAC4 nuclear import observed in cells with down-regulated PP2A. These observations suggest that PP2A, via the dephosphorylation of multiple serines including the 14-3-3 binding sites and serine 298, controls HDAC4 nuclear import.
Collapse
Affiliation(s)
- Gabriela Paroni
- *Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Biologia and MATI Center of Excellence, Universita' di Udine, 33100 Udine, Italy; and
| | - Nadia Cernotta
- *Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Biologia and MATI Center of Excellence, Universita' di Udine, 33100 Udine, Italy; and
| | | | | | | | - Carmela Foti
- *Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Biologia and MATI Center of Excellence, Universita' di Udine, 33100 Udine, Italy; and
| | - Fabio Talamo
- IRBM/Merck Research Laboratories Rome, 00040 Pomezia, Italy
| | - Laura Orsatti
- IRBM/Merck Research Laboratories Rome, 00040 Pomezia, Italy
| | | | - Claudio Brancolini
- *Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Biologia and MATI Center of Excellence, Universita' di Udine, 33100 Udine, Italy; and
| |
Collapse
|
26
|
Liu Y, Okada T, Shimazaki K, Sheykholeslami K, Nomoto T, Muramatsu SI, Mizukami H, Kume A, Xiao S, Ichimura K, Ozawa K. Protection against aminoglycoside-induced ototoxicity by regulated AAV vector-mediated GDNF gene transfer into the cochlea. Mol Ther 2008; 16:474-480. [PMID: 18180779 DOI: 10.1038/sj.mt.6300379] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Accepted: 11/15/2007] [Indexed: 01/15/2023] Open
Abstract
Since standard aminoglycoside treatment progressively causes hearing disturbance with hair cell degeneration, systemic use of the drugs is limited. Adeno-associated virus (AAV)-based vectors have been of great interest because they mediate stable transgene expression in a variety of postmitotic cells with minimal toxicity. In this study, we investigated the effects of regulated AAV1-mediated glial cell line-derived neurotrophic factor (GDNF) expression in the cochlea on aminoglycoside-induced damage. AAV1-based vectors encoding GDNF or vectors encoding GDNF with an rtTA2s-S2 Tet-on regulation system were directly microinjected into the rat cochleae through the round window at 5 x 10(10) genome copies/body. Seven days after the virus injection, a dose of 333 mg/kg of kanamycin was subcutaneously given twice daily for 12 consecutive days. GDNF expression in the cochlea was confirmed and successfully modulated by the Tet-on system. Monitoring of the auditory brain stem response revealed an improvement of cochlear function after GDNF transduction over the frequencies tested. Damaged spiral ganglion cells and hair cells were significantly reduced by GDNF expression. Our results suggest that AAV1-mediated expression of GDNF using a regulated expression system in the cochlea is a promising strategy to protect the cochlea from aminoglycoside-induced damage.
Collapse
Affiliation(s)
- Yuhe Liu
- Division of Genetic Therapeutics, Jichi Medical University, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Curtin JF, Candolfi M, Puntel M, Xiong W, Muhammad AKM, Kroeger K, Mondkar S, Liu C, Bondale N, Lowenstein PR, Castro MG. Regulated expression of adenoviral vectors-based gene therapies: therapeutic expression of toxins and immune-modulators. Methods Mol Biol 2008; 434:239-66. [PMID: 18470649 PMCID: PMC2633597 DOI: 10.1007/978-1-60327-248-3_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Regulatable promoter systems allow gene expression to be tightly controlled in vivo. This is highly desirable for the development of safe, efficacious adenoviral vectors that can be used to treat human diseases in the clinic. Ideally, regulatable cassettes should have minimal gene expression in the "OFF" state, and expression should quickly reach therapeutic levels in the "ON" state. In addition, the components of regulatable cassettes should be non-toxic at physiological concentrations and should not be immunogenic, especially when treating chronic illness that requires long-lasting gene expression. In this chapter, we will describe in detail protocols to develop and validate first generation (Ad) and high-capacity adenoviral (HC-Ad) vectors that express therapeutic genes under the control of the TetON regulatable system. Our laboratory has successfully used these protocols to regulate the expression of marker genes, immune stimulatory genes, and toxins for cancer gene therapeutics, i.e., glioma that is a deadly form of brain cancer. We have shown that this third generation TetON regulatable system, incorporating a doxycycline (DOX)-sensitive rtTA(2)S-M2 inducer and tTS(Kid) silencer, is non-toxic, relatively non-immunogenic, and can tightly regulate reporter transgene expression downstream of a TRE promoter from adenoviral vectors in vitro and also in vivo.
Collapse
Affiliation(s)
- James F Curtin
- The Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center and Department of Molecular, Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lamartina S, Cimino M, Roscilli G, Dammassa E, Lazzaro D, Rota R, Ciliberto G, Toniatti C. Helper-dependent adenovirus for the gene therapy of proliferative retinopathies: stable gene transfer, regulated gene expression and therapeutic efficacy. J Gene Med 2007; 9:862-74. [PMID: 17685494 DOI: 10.1002/jgm.1083] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Ocular neovascular disorders, such as diabetic retinopathy and age-related macular degeneration, are the principal causes of blindness in developed countries. Current treatments are of limited efficacy, whereas a therapy based on intraocular gene transfer of angiostatic factors represents a promising alternative. For the first time we have explored the potential of helper-dependent adenovirus (HD-Ad), the last generation of Ad vectors, in the therapy of retinal neovascularization. METHODS We first analyzed efficiency and stability of intraretinal gene transfer following intravitreous injection in mice. A HD-Ad vector expressing green fluorescent protein (GFP) under the control of the cytomegalovirus (CMV) promoter (HD-Ad/GFP) was compared with a first-generation (E1/E3-deleted) Ad vector carrying an identical GFP expression cassette (FG-Ad/GFP). We also constructed HD-Ad vectors expressing a soluble form of the VEGF receptor (sFlt-1) in a constitutive (HD-Ad/sFlt-1) or doxycycline (dox)-inducible (HD-Ad/S-M2/sFlt-1) manner and tested their therapeutic efficacy upon intravitreous delivery in a rat model of oxygen-induced retinopathy (OIR). RESULTS HD-Ad/GFP promoted long-lasting (up to 1 year) transgene expression in retinal Müller cells, in marked contrast with the short-term expression observed with FG-Ad/GFP. Intravitreous injection of HD-Ad vectors expressing sFlt-1 resulted in detectable levels of sFlt-1 and inhibited retinal neovascularization by more than 60% in a rat model of OIR. Notably, the therapeutic efficacy of the inducible vector HD-Ad/S-M2/sFlt-1 was strictly dox-dependent. CONCLUSIONS HD-Ad vectors enable stable gene transfer and regulated expression of angiostatic factors following intravitreous injection and thus are attractive vehicles for the gene therapy of neovascular diseases of the retina.
Collapse
|
29
|
Hojman P, Eriksen J, Gehl J. Tet-On Induction with Doxycycline after Gene Transfer in Mice: Sweetening of Drinking Water is not a Good Idea. Anim Biotechnol 2007; 18:183-8. [PMID: 17612841 DOI: 10.1080/10495390601105055] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Gene transfer to skeletal muscle leads to long-term, stable expression of transferred genes. An exiting development is the use of inducible expression systems. Using the inducible Tet-On system, it has been customary to administer doxycycline in drinking water with added sucrose to ameliorate the bitter taste. During a study aiming at regulating electrotransferred genes through the Tet-On system, we observed excessive drinking behavior among mice. Removal of sugar from the drinking water led to normal drinking behavior and most importantly did not affect the level of gene expression. Based on this study, the practice of adding sucrose to drinking water in doxycycline induction studies should be abandoned.
Collapse
Affiliation(s)
- Pernille Hojman
- Department of Oncology, Copenhagen University Hospital at Herlev, Herlev, Denmark
| | | | | |
Collapse
|
30
|
Gould D, Yousaf N, Fatah R, Subang MC, Chernajovsky Y. Gene therapy with an improved doxycycline-regulated plasmid encoding a tumour necrosis factor-alpha inhibitor in experimental arthritis. Arthritis Res Ther 2007; 9:R7. [PMID: 17254348 PMCID: PMC1860065 DOI: 10.1186/ar2113] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 12/20/2006] [Accepted: 01/25/2007] [Indexed: 02/04/2023] Open
Abstract
Inhibition of tumour necrosis factor (TNF)-alpha with biological molecules has proven an effective treatment for rheumatoid arthritis, achieving a 20% improvement in American College of Rheumatology score in up to 65% of patients. The main drawback to these and many other biological treatments has been their expense, which has precluded their widespread application. Biological molecules could alternatively be delivered by gene therapy as the encoding DNA. We have developed novel plasmid vectors termed pGTLMIK and pGTTMIK, from which luciferase and a dimeric TNF receptor II (dTNFR) are respectively expressed in a doxycycline (Dox)-regulated manner. Regulated expression of luciferase from the self-contained plasmid pGTLMIK was examined in vitro in a variety of cell lines and in vivo following intramuscular delivery with electroporation in DBA/1 mice. Dox-regulated expression of luciferase from pGTLMIK of approximately 1,000-fold was demonstrated in vitro, and efficient regulation was observed in vivo. The vector pGTTMIK encoding dTNFR was delivered by the same route with and without administration of Dox to mice with collagen-induced arthritis. When pGTTMIK was delivered after the onset of arthritis, progression of the disease in terms of both paw thickness and clinical score was inhibited when Dox was also administered. Vectors with similar regulation characteristics may be suitable for clinical application.
Collapse
Affiliation(s)
- David Gould
- Bone and Joint Research Unit, Barts and The London, Queen Mary's School of Medicine and Dentistry, Charterhouse Square, University of London, London, EC1M 6BQ, UK
| | - Nasim Yousaf
- Bone and Joint Research Unit, Barts and The London, Queen Mary's School of Medicine and Dentistry, Charterhouse Square, University of London, London, EC1M 6BQ, UK
| | - Rewas Fatah
- Bone and Joint Research Unit, Barts and The London, Queen Mary's School of Medicine and Dentistry, Charterhouse Square, University of London, London, EC1M 6BQ, UK
| | - Maria Cristina Subang
- Bone and Joint Research Unit, Barts and The London, Queen Mary's School of Medicine and Dentistry, Charterhouse Square, University of London, London, EC1M 6BQ, UK
| | - Yuti Chernajovsky
- Bone and Joint Research Unit, Barts and The London, Queen Mary's School of Medicine and Dentistry, Charterhouse Square, University of London, London, EC1M 6BQ, UK
| |
Collapse
|
31
|
Moerland M, Anghelescu N, Samyn H, van Haperen R, van Gent T, Strouboulis J, van Tol A, Grosveld F, de Crom R. Inducible expression of phospholipid transfer protein (PLTP) in transgenic mice: acute effects of PLTP on lipoprotein metabolism. Transgenic Res 2007; 16:503-13. [PMID: 17437182 DOI: 10.1007/s11248-007-9094-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 03/19/2007] [Indexed: 10/23/2022]
Abstract
One main determinant in high-density lipoprotein (HDL) metabolism is phospholipid transfer protein (PLTP), a plasma protein that is associated with HDL. In transgenic mice overexpressing human PLTP we found that elevated plasma PLTP levels dose-dependently increased the susceptibility to diet-induced atherosclerosis. This could be mainly due to the fact that most functions of PLTP are potentially atherogenic, such as decreasing plasma HDL levels. To further elucidate the role of PLTP in lipoprotein metabolism and atherosclerosis we generated a novel transgenic mouse model that allows conditional expression of human PLTP. In this mouse model a human PLTP encoding sequence is controlled by a Tet-On system. Upon induction of PLTP expression, our mouse model showed a strongly increased PLTP activity (from 3.0 +/- 0.6 to 11.4 +/- 2.8 AU, p < 0.001). The increase in PLTP activity resulted in an acute decrease in plasma cholesterol of 33% and a comparable decrease in phospholipids. The decrease in total plasma cholesterol and phospholipids was caused by a 35% decrease in HDL-cholesterol level and a 41% decrease in HDL-phospholipid level. These results demonstrate the feasibility of our mouse model to induce an acute elevation of PLTP activity, which is easily reversible. As a direct consequence of an increase in PLTP activity, HDL-cholesterol and HDL-phospholipid levels strongly decrease. Using this mouse model, it will be possible to study the effects of acute elevation of PLTP activity on lipoprotein metabolism and pre-existing atherosclerosis.
Collapse
Affiliation(s)
- Matthijs Moerland
- Department of Cell Biology and Genetics, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lena AM, Giannetti P, Sporeno E, Ciliberto G, Savino R. Immune responses against tetracycline-dependent transactivators affect long-term expression of mouse erythropoietin delivered by a helper-dependent adenoviral vector. J Gene Med 2007; 7:1086-96. [PMID: 15772935 DOI: 10.1002/jgm.758] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Helper-dependent adenoviral (HD-Ad) vectors give rise to sustained gene expression after delivery in a variety of organisms. In particular, we previously documented persistent expression of erythropoietin (EPO) in mice after a single intramuscular (i.m.) injection of a HD-Ad vector harboring the mouse EPO cDNA. METHODS We use the same vector harboring the tetracycline (tet)-dependent transactivator (rtTA2S-M2) and silencer (tTS) and mouse EPO cDNA to analyze the capacity of the dual tet-dependent transactivator system to control long-term EPO gene expression and to study the effect of an eventual immune response against these artificial proteins after i.m. delivery in immuno-competent mice. RESULTS In the present study we demonstrate that i.m. injection of this vector in immuno-competent mice generates a cellular immune response to the rtTA2S-M2 transcription factor. This response curtails the duration of mouse EPO expression in mice, presumably by destroying the cells that co-express transcription factors and the therapeutic gene. Nonetheless, regulation of mouse EPO secretion was maintained during the entire experimental period, both when the vector dosage was reduced and when the tet-dependent transcription factors were put under the control of a muscle-specific promoter. CONCLUSIONS Delivery of the tet transactivators using as vehicle a HD-Ad vector induced an immune response directed against the transactivators themselves, causing short-term therapeutic transgene expression. Regulated, long-term therapeutic transgene expression was, however, obtained by reducing the vector dose or expressing the transactivators under the control of a muscle-specific promoter.
Collapse
Affiliation(s)
- Anna Maria Lena
- I.R.B.M. P. Angeletti, Via Pontina km 30 600, 00040 Pomezia, Italy
| | | | | | | | | |
Collapse
|
33
|
Abstract
Osteoarticular disorders are the major cause of disability in Europe and North America. It is estimated that rheumatoid arthritis affects 1 % of the population and that more than two third of people over age 55 develop osteoarthritis. Because there are no satisfactory treatments, gene therapy offers a new therapeutic approach. The delivery of cDNA encoding anti-arthritic proteins to articular cells has shown therapeutic efficacy in numerous animal models in vivo. Through the development and the experimental progresses that have been made for both rheumatoid arthritis and osteoarthritis, this review discusses the different gene therapy strategies available today and the safety issues with which they may be associated. Among the different vectors available today, adeno-associated virus seems the best candidate for a direct in vivo gene delivery approach for the treatment of joint disorders.
Collapse
MESH Headings
- Aged
- Animals
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/physiopathology
- Arthritis, Rheumatoid/therapy
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Cytokines/antagonists & inhibitors
- Cytokines/genetics
- DNA, Complementary/administration & dosage
- DNA, Complementary/therapeutic use
- Dependovirus/genetics
- Dogs
- Doxycycline/pharmacology
- Etanercept
- Gene Expression/drug effects
- Genes, Synthetic
- Genetic Therapy/adverse effects
- Genetic Therapy/methods
- Genetic Vectors/adverse effects
- Genetic Vectors/therapeutic use
- Haplorhini
- Horses
- Humans
- Immunoglobulin G/therapeutic use
- Injections, Intra-Articular
- Mice
- Middle Aged
- Osteoarthritis/physiopathology
- Osteoarthritis/therapy
- Receptors, Tumor Necrosis Factor/therapeutic use
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Sirolimus/pharmacology
Collapse
Affiliation(s)
- Jean-Noël Gouze
- Department of Orthopaedics and Rehabilitation, Gene therapy laboratory, University of Florida, 1600 SW Archer Rd, Rm M2-210, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
34
|
Xiong W, Goverdhana S, Sciascia SA, Candolfi M, Zirger JM, Barcia C, Curtin JF, King GD, Jaita G, Liu C, Kroeger K, Agadjanian H, Medina-Kauwe L, Palmer D, Ng P, Lowenstein PR, Castro MG. Regulatable gutless adenovirus vectors sustain inducible transgene expression in the brain in the presence of an immune response against adenoviruses. J Virol 2007; 80:27-37. [PMID: 16352528 PMCID: PMC1317549 DOI: 10.1128/jvi.80.1.27-37.2006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In view of recent serious adverse events and advances in gene therapy technologies, the use of regulatable expression systems is becoming recognized as indispensable adjuncts to successful clinical gene therapy. In the present work we optimized high-capacity adenoviral (HC-Ad) vectors encoding the novel tetracycline-dependent (TetOn)-regulatory elements for efficient and regulatable gene expression in the rat brain in vivo. We constructed two HC-Ad vectors encoding beta-galactosidase (beta-gal) driven by a TetOn system containing the rtTAS(s)M2 transactivator and the tTS(Kid) repressor under the control of the murine cytomegalovirus (mCMV) (HC-Ad-mTetON-beta-Gal) or the human CMV (hCMV) promoter (HC-Ad-hTetON-beta-Gal). Expression was tightly regulatable by doxycycline (Dox), reaching maximum expression in vivo at 6 days and returning to basal levels at 10 days following the addition or removal of Dox, respectively. Both vectors achieved higher transgene expression levels compared to the expression from vectors encoding the constitutive mCMV or hCMV promoter. HC-Ad-mTetON-beta-Gal yielded the highest transgene expression levels and expressed in both neurons and astrocytes. Antivector immune responses continue to limit the clinical use of vectors. We thus tested the inducibility and longevity of HC-Ad-mediated transgene expression in the brain of rats immunized against adenovirus by prior intradermal injections of RAds. Regulated transgene expression from HC-Ad-mTetON-beta-Gal remained active even in the presence of a significant systemic immune response. Therefore, these vectors display two coveted characteristics of clinically useful vectors, namely their regulation and effectiveness even in the presence of prior immunization against adenovirus.
Collapse
Affiliation(s)
- Weidong Xiong
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Building, Research Pavilion, Room 5090, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
It is feasible to restrict transgene expression to a tissue or region in need of therapy by using promoters that respond to focusable physical stimuli. The most extensively investigated promoters of this type are radiation-inducible promoters and heat shock protein gene promoters that can be activated by directed, transient heat. Temporal regulation of transgenes can be achieved by various two- or three-component gene switches that are triggered by an appropriate small molecule inducer. The most commonly considered gene switches that are reviewed herein are based on small molecule-responsive transactivators derived from bacterial tetracycline repressor, insect or mammalian steroid receptors, or mammalian FKBP12/FRAP. A new generation of gene switches combines a heat shock protein gene promoter and a small molecule-responsive gene switch and can provide for both spatial and temporal regulation of transgene activity.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Unidad de Investigación, Hospital Universitario La Paz, Madrid, Spain
| | | |
Collapse
|
36
|
Ausserlechner MJ, Obexer P, Deutschmann A, Geiger K, Kofler R. A retroviral expression system based on tetracycline-regulated tricistronic transactivator/repressor vectors for functional analyses of antiproliferative and toxic genes. Mol Cancer Ther 2006; 5:1927-34. [PMID: 16928812 DOI: 10.1158/1535-7163.mct-05-0500] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Establishment of stably transfected mammalian cells with conditional expression of antiproliferative or proapoptotic proteins is often hampered by varying expression within bulk-selected cells and high background in the absence of the inducing drug. To overcome such limitations, we designed a gene expression system that transcribes the tetracycline-dependent rtTA2-M2-activator, TRSID-silencer, and selection marker as a tricistronic mRNA from a single retroviral vector. More than 92% of bulk-selected cells expressed enhanced green fluorescent protein or luciferase over more than three orders of magnitude in an almost linear, dose-dependent manner. To functionally test this system, we studied how dose-dependent expression of p27(Kip1) affects proliferation and viability of SH-EP neuroblastoma cells. Low to moderate p27(Kip1) expression caused transient G(0)-G(1) accumulation without reduced viability, whereas high p27(Kip1) levels induced significant apoptosis after 72 hours. This proves that this expression system allows concentration-dependent analysis of gene function and implicates p27(Kip1) as a critical regulator of both proliferation and apoptosis in SH-EP neuroblastoma cells.
Collapse
Affiliation(s)
- Michael J Ausserlechner
- Molecular Biology Research Laboratory, Pediatric Department, Medical University Innsbruck, Innrain 66, A-6020 Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
37
|
Malphettes L, Fussenegger M. Improved transgene expression fine-tuning in mammalian cells using a novel transcription–translation network. J Biotechnol 2006; 124:732-46. [PMID: 16488500 DOI: 10.1016/j.jbiotec.2006.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 01/12/2006] [Indexed: 12/14/2022]
Abstract
Following the discovery of RNA interference (RNAi) and related phenomena, novel regulatory processes, attributable to small non-protein-coding RNAs, continue to emerge. Capitalizing on the ability of artificial short interfering RNAs (siRNAs) to trigger degradation of specific target transcripts, and thereby silence desired gene expression, we designed and characterized a generic transcription-translation network in which it is possible to fine-tune heterologous protein production by coordinated transcription and translation interventions using macrolide and tetracycline antibiotics. Integration of siRNA-specific target sequences (TAGs) into the 5' or 3' untranslated regions (5'UTR, 3'UTR) of a desired constitutive transcription unit rendered transgene-encoded protein (erythropoietin, EPO; human placental alkaline phosphatase, SEAP; human vascular endothelial growth factor 121, VEGF(121)) production in mammalian cells responsive to siRNA levels that can be fine-tuned by macrolide-adjustable RNA polymerase II- or III-dependent promoters. Coupling of such macrolide-responsive siRNA-triggered translation control with tetracycline-responsive transcription of tagged transgene mRNAs created an antibiotic-adjustable two-input transcription-translation network characterized by elimination of detectable leaky expression with no reduction in maximum protein production levels. This transcription-translation network revealed transgene mRNA depletion to be dependent on siRNA and mRNA levels and that translation control was able to eliminate basal expression inherent to current transcription control modalities. Coupled transcription-translation circuitries have the potential to lead the way towards composite artificial regulatory networks, to enable complex therapeutic interventions in future biopharmaceutical manufacturing, gene therapy and tissue engineering initiatives.
Collapse
Affiliation(s)
- Laetitia Malphettes
- Institute for Chemical and Bio-Engineering (ICB), Swiss Federal Institute of Technology-ETH Zurich, Wolfgang-Pauli-Strasse 10, ETH Hoenggerberg, HCI F115, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
38
|
Gao Q, Sun M, Wang X, Zhang GR, Geller AI. Long-term inducible expression in striatal neurons from helper virus-free HSV-1 vectors that contain the tetracycline-inducible promoter system. Brain Res 2006; 1083:1-13. [PMID: 16545782 PMCID: PMC2581870 DOI: 10.1016/j.brainres.2006.01.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 12/27/2005] [Accepted: 01/22/2006] [Indexed: 11/23/2022]
Abstract
Direct gene transfer into neurons in the brain via a virus vector system has potential for both examining neuronal physiology and for developing gene therapy treatments for neurological diseases. Many of these applications require precise control of the levels of recombinant gene expression. The preferred method for controlling the levels of expression is by use of an inducible promoter system, and the tetracycline (tet)-inducible promoter system is the preferred system. Helper virus-free Herpes Simplex Virus (HSV-1) vectors have a number of the advantages, including their large size and efficient gene transfer. Also, we have reported long-term (14 months) expression from HSV-1 vectors that contain a modified neurofilament heavy gene promoter. A number of studies have reported short-term, inducible expression from helper virus-containing HSV-1 vector systems. However, long-term, inducible expression has not been reported using HSV-1 vectors. The goal of this study was to obtain long-term, inducible expression from helper virus-free HSV-1 vectors. We examined two different vector designs for adapting the tet promoter system to HSV-1 vectors. One design was an autoregulatory design; one transcription unit used a tet-regulated promoter to express the tet-regulated transcription factor tet-off, and another transcription unit used a tet-regulated promoter to express the Lac Z gene. In the other vector design, one transcription unit used the modified neurofilament heavy gene promoter to express tet-off, and another transcription unit used a tet-regulated promoter to express the Lac Z gene. The results showed that both vector designs supported inducible expression in cultured fibroblast or neuronal cell lines and for a short time (4 days) in the rat striatum. Of note, only the vector design that used the modified neurofilament promoter to express tet-off supported long-term (2 months) inducible expression in striatal neurons.
Collapse
Affiliation(s)
| | | | | | | | - Alfred I. Geller
- * Corresponding author. Fax: +1 617 363 5563. E-mail address: (A.I. Geller)
| |
Collapse
|
39
|
Zampaglione I, Simon A, Capone S, Finnefrock A, Casimiro D, Kath G, Tang A, Folgori A, La Monica N, Shiver J, Nicosia A, Ciliberto G, Cortese R, Fattori E. Genetic vaccination by gene electro-transfer in non-human primates. J Drug Deliv Sci Technol 2006. [DOI: 10.1016/s1773-2247(06)50013-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Fanning GC, Symonds G. Gene-expressed RNA as a therapeutic: issues to consider, using ribozymes and small hairpin RNA as specific examples. Handb Exp Pharmacol 2006:289-303. [PMID: 16594621 DOI: 10.1007/3-540-27262-3_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In recent years there has been a greater appreciation of both the role of RNA in intracellular gene regulation and the potential to use RNA in therapeutic modalities. In the latter case, RNA can be used as a therapeutic target or a drug. The chapters in this volume cover the varied and potent actions of RNA as antisense, ribozymes, aptamers, microRNA and small hairpin RNA in gene regulation, as well as their use as potential therapeutics for metabolic and infectious diseases. Our group has been involved in the development of anti-HIV gene expression constructs to treat HIV. In this chapter, we address the relevant scientific and some of the commercial issues in the use of RNA as a therapeutic. Specifically, the chapter discusses delivery, expression, potency, toxicity and commercial development using, as examples, hammerhead ribozymes and small hairpin RNA.
Collapse
Affiliation(s)
- G C Fanning
- Johnson Johnson Research, The Australian Technology Park, Strawberry Hills, Locked Bag 4555, 2012 Sydney NSW, Australia
| | | |
Collapse
|
41
|
Choi BR, Koo BC, Ahn KS, Kwon MS, Kim JH, Cho SK, Kim KM, Kang JH, Shim H, Lee H, Uhm SJ, Lee HT, Kim T. Tetracycline-inducible gene expression in nuclear transfer embryos derived from porcine fetal fibroblasts transformed with retrovirus vectors. Mol Reprod Dev 2006; 73:1221-9. [PMID: 16868927 DOI: 10.1002/mrd.20543] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A critical problem of transgenic livestock production is uncontrollable constitutive expression of the foreign gene, which usually results in serious physiological disturbances in transgenic animals. One of the best solutions for this problem may be use of controllable gene expression system. In this study, using retrovirus vectors designed to express the enhanced green fluorescent protein (EGFP) gene under the control of the tetracycline-inducible promoter, we examined whether the expression of the transgene could be controllable in fibroblast cells and nuclear transfer (NT) embryos of porcine. Transformed fibroblast cells were cultured in medium supplemented with or without doxycycline (a tetracycline analog) for 48 hr, and the induction efficiency was measured by comparing EGFP gene expression using epifluorescence microscopy and Western and Northern blot analyses. After the addition of doxycycline, EGFP expression increased up to 17-fold. The nuclei of transformed fibroblast cells were transferred into enucleated oocytes. Fluorescence emission data revealed strong EGFP gene expression in embryos cultured with doxycycline, but little or no expression in the absence of the antibiotic. Our results demonstrate the successful regulation of transgene expression in porcine nuclear transfer embryos, and support the application of an inducible expression system in transgenic pig production to solve the inherent problems of side-effects due to constitutive expression of the transgene.
Collapse
Affiliation(s)
- Bok Ryul Choi
- Division of Applied Life Science, College of Agriculture and Life Science, Gyeongsang National University, Jinju, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sipo I, Hurtado Picó A, Wang X, Eberle J, Petersen I, Weger S, Poller W, Fechner H. An improved Tet-On regulatable FasL-adenovirus vector system for lung cancer therapy. J Mol Med (Berl) 2005; 84:215-25. [PMID: 16437213 DOI: 10.1007/s00109-005-0009-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 09/22/2005] [Indexed: 10/25/2022]
Abstract
Gene therapy is a new therapeutic approach for the treatment of human cancers. Gene expression systems that can be regulated by drugs have been developed to improve the safety and efficacy of therapeutic transgene delivery. One of the most promising systems is the tetracycline (Tet)-responsive system in the Tet-On configuration. A major problem of the Tet-On system if used in viral vectors is the high basal activity of the Tet response element (TRE) promoter leading to leaky expression of transgenes under uninduced conditions. We therefore evaluated novel TRE promoters for controlling gene expression in an adenovirus vector (AdV) Tet-On system and further investigated them for expression of the pro-apoptotic CD95/Fas ligand (FasL) in human epithelial carcinoma cell line (HeLa) and lung cancer cells. Plasmid-based reporter gene assays showed that modifications within the tetO (7) and minimal immediate early cytomegalovirus promoter (CMV)(min) sequence of the TRE promoter reduced its leakiness and led to a markedly improved regulatability by doxycycline. Among several TRE promoters tested, a new construct (TRE-Tight1) containing modifications of both the tetO (7) sequence and the CMV(min) showed 11-fold reduced leakiness and 1.5-fold increased absolute transgene expression levels after induction, as compared to the original TRE. Under induced conditions, a TRE-Tight1 promoter-dependent AdV expressing the pro-apoptotic CD95L/FasL induced apoptosis and cell lysis in HeLa cells as efficiently as an AdV containing the original TRE promoter. In contrast to the latter, however, the vector with the modified TRE promoter left cells totally unaffected in the absence of the inducer. Stringently regulated induction of apoptosis and cell death by TRE-Tight1-AdV was also demonstrated in three human lung cancer cell lines. These data show that the novel TRE-Tight1 promoter has a high potential for closely controlled and efficient expression of cytotoxic genes in AdV-based anti-cancer approaches.
Collapse
Affiliation(s)
- Isaac Sipo
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Goverdhana S, Puntel M, Xiong W, Zirger JM, Barcia C, Curtin JF, Soffer EB, Mondkar S, King GD, Hu J, Sciascia SA, Candolfi M, Greengold DS, Lowenstein PR, Castro MG. Regulatable gene expression systems for gene therapy applications: progress and future challenges. Mol Ther 2005; 12:189-211. [PMID: 15946903 PMCID: PMC2676204 DOI: 10.1016/j.ymthe.2005.03.022] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 02/16/2005] [Accepted: 03/14/2005] [Indexed: 11/19/2022] Open
Abstract
Gene therapy aims to revert diseased phenotypes by the use of both viral and nonviral gene delivery systems. Substantial progress has been made in making gene transfer vehicles more efficient, less toxic, and nonimmunogenic and in allowing long-term transgene expression. One of the key issues in successfully implementing gene therapies in the clinical setting is to be able to regulate gene expression very tightly and consistently as and when it is needed. The regulation ought to be achievable using a compound that should be nontoxic, be able to penetrate into the desired target tissue or organ, and have a half-life of a few hours (as opposed to minutes or days) so that when withdrawn or added (depending on the regulatable system used) gene expression can be turned "on" or "off" quickly and effectively. Also, the genetic switches employed should ideally be nonimmunogenic in the host. The ability to switch transgenes on and off would be of paramount importance not only when the therapy is no longer needed, but also in the case of the development of adverse side effects to the therapy. Many regulatable systems are currently under development and some, i.e., the tetracycline-dependent transcriptional switch, have been used successfully for in vivo preclinical applications. Despite this, there are no examples of switches that have been employed in a human clinical trial. In this review, we aim to highlight the main regulatable systems currently under development, the gene transfer systems employed for their expression, and also the preclinical models in which they have been used successfully. We also discuss the substantial challenges that still remain before these regulatable switches can be employed in the clinical setting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - M. G. Castro
- To whom correspondence and reprint requests should be addressed. Fax: +1 (310) 423 7308. E-mail:
| |
Collapse
|
44
|
Barde I, Zanta-Boussif MA, Paisant S, Leboeuf M, Rameau P, Delenda C, Danos O. Efficient control of gene expression in the hematopoietic system using a single Tet-on inducible lentiviral vector. Mol Ther 2005; 13:382-90. [PMID: 16275162 DOI: 10.1016/j.ymthe.2005.09.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 09/12/2005] [Accepted: 09/12/2005] [Indexed: 10/25/2022] Open
Abstract
This work addresses the problem of efficient control of gene expression in the context of viral vectors, which still represents a difficult challenge. A number of lentiviral vectors incorporating the different elements of regulatable transcriptional systems have been described, but they fail to perform satisfactorily either because of a poor dynamic range of transcription levels or because they display high background activities in the uninduced state and mediocre inducer response. We report here on the systematic comparison of vector designs containing the elements of the doxycycline-inducible Tet-on system in their most advanced versions (rtTA2S-M2 transactivator and tTS(Kid) repressor). We show that a simple "all-in-one" vector can be obtained and used for efficient control of transgene expression in long-term tissue culture and in the hematopoietic system of mice following bone marrow transplantation. Using this vector, the uninduced state can be kept at background levels and induction factors of 100-fold are repeatedly obtained over months both in tissue culture and in vivo. Interestingly, the low background activity of the all-in-one vector renders the use of the tTS repressor dispensable, avoiding the problem of progressive loss of inducibility over time associated with irreversible modifications of the chromatin surrounding proviral sequences.
Collapse
Affiliation(s)
- Isabelle Barde
- Généthon-Centre National de la Recherche Scientifique UMR 8115, Evry, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Catalucci D, Sporeno E, Cirillo A, Ciliberto G, Nicosia A, Colloca S. An adenovirus type 5 (Ad5) amplicon-based packaging cell line for production of high-capacity helper-independent deltaE1-E2-E3-E4 Ad5 vectors. J Virol 2005; 79:6400-9. [PMID: 15858023 PMCID: PMC1091673 DOI: 10.1128/jvi.79.10.6400-6409.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Production of multiply deleted adenoviral (Ad) vectors with increased cloning capacity and reduced immunogenicity to adenovirus gene products requires the concomitant generation of efficient packaging cell lines. High expression levels of the complementing genes must be achieved in a coordinated fashion with viral replication. This is a particularly difficult task in light of the significant cytotoxicity displayed by adenoviral proteins. To this end, we developed a novel adenovirus-based amplicon with an Epstein-Barr virus origin of replication, Ad type 5 (Ad5) inverted terminal repeats, all Ad5 early region 2 (E2) genes, and the early region 4 (E4) open reading frame 6 (ORF6) under the control of a tetracycline-dependent promoter. The amplicon (pE2) was stably maintained in multiple copies in the nuclei of 293 cells stably expressing the Epstein-Barr virus nuclear antigen 1 (EBNA1) and allowed replication as a linear DNA upon induction of E2 and ORF6 gene expression. A stable cell line (2E2) was generated by introducing pE2 into 293EBNATet cells expressing the tetracycline-dependent transcriptional silencer and the reverse Tet transactivator (rtTA2). Upon induction with doxicycline, 2E2 cells produced higher levels of polymerase, precursor terminal protein (pTP), and DNA binding protein than noninduced 2E2 cells infected with first-generation Ad5 vector and supported efficient amplification of a multiply deleted Ad5 vector lacking E1, E2, E3, and E4 genes (Ad5DeltaE(1-4)). The high cloning capacity of Ad5DeltaE(1-4) (up to 12.6 kb) was exploited to construct a vector encoding the entire hepatitis C virus (HCV) polyprotein. Infection of HeLa cells by the resulting vector showed high levels of correctly processed HCV proteins.
Collapse
Affiliation(s)
- Daniele Catalucci
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, Via Pontina Km 30.600, 00040 Pomezia, Roma, Italy.
| | | | | | | | | | | |
Collapse
|
46
|
Fattori E, Cappelletti M, Zampaglione I, Mennuni C, Calvaruso F, Arcuri M, Rizzuto G, Costa P, Perretta G, Ciliberto G, La Monica N. Gene electro-transfer of an improved erythropoietin plasmid in mice and non-human primates. J Gene Med 2005; 7:228-36. [PMID: 15515133 DOI: 10.1002/jgm.652] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Anemia due to impaired erythropoietin (EPO) production is associated with kidney failure. Recombinant proteins are commonly administered to alleviate the symptoms of this dysfunction, whereas gene therapy approaches envisaging the delivery of EPO genes have been tried in animal models in order to achieve stable and long-lasting EPO protein production. Naked DNA intramuscular injection is a safe approach for gene delivery; however, transduction levels show high inter-individual variability in rodents and very poor efficiency in non-human primates. Transduction can be improved in several animal models by application of electric pulses after DNA injection. METHODS We have designed a modified EPO gene version by changing the EPO leader sequence and optimizing the gene codon usage. This modified gene was electro-injected into mice, rabbits and cynomolgus monkeys to test for protein production and biological effect. CONCLUSIONS The modified EPO gene yields higher levels of circulating transgene product and a more significant biological effect than the wild-type gene in all the species tested, thus showing great potential in clinically developable gene therapy approaches for EPO delivery.
Collapse
Affiliation(s)
- Elena Fattori
- Istituto di Ricerche di Biologia Molecolare (IRBM), Via Pontina Km 30.600, 00040 Pomezia (Rome), Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Richard P, Pollard H, Lanctin C, Bello-Roufaï M, Désigaux L, Escande D, Pitard B. Inducible production of erythropoietin using intramuscular injection of block copolymer/DNA formulation. J Gene Med 2005; 7:80-6. [PMID: 15468192 DOI: 10.1002/jgm.631] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND We have previously shown that intramuscular injection of plasmid DNA formulated with a non-ionic amphiphile synthetic vector [poly(ethylene oxide)(13)-poly(propylene oxide)(30)-poly(ethylene oxide)(13) block copolymer; PE6400] increases reporter gene expression compared with naked DNA. We have now investigated this simple non-viral formulation for production of secreted proteins from the mouse skeletal muscle. METHODS Plasmids encoding either constitutive human secreted alkaline phosphatase or murine erythropoietin inducible via a Tet-on system were formulated with PE6400 and intramuscularly injected into the mouse tibial anterior muscle. RESULTS PE6400/DNA formulation led to an increased amount of recombinant alkaline phosphatase secreted from skeletal muscle as compared with naked DNA. In the presence of doxycycline, a single injection of 10 microg plasmid encoding inducible murine erythropoietin formulated with PE6400 significantly increased the hematocrit, whereas the same amount of DNA in the absence of PE6400 had no effect. The increase in the hematocrit was stable for 42 days. The tetracycline-inducible promoter permitted pharmacological control of hematocrit level after DNA intramuscular injection. However, 4 months post-injection the hematocrit returned to its pre-injection value, even in the presence of doxycycline. This phenomenon was likely caused by an immune response against the tetracycline-activated transcription factor. CONCLUSIONS Intramuscular injection of plasmid DNA formulated with PE6400 provides an efficient and simple method for secretion and production of non-muscle proteins.
Collapse
Affiliation(s)
- Peggy Richard
- L'Institut du Thorax, Institut National de la Santé et de la Recherche Médicale, Inserm U533, Faculté de Médecine, 44000 Nantes, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Vigna E, Amendola M, Benedicenti F, Simmons AD, Follenzi A, Naldini L. Efficient Tet-Dependent Expression of Human Factor IX in Vivo by a New Self-Regulating Lentiviral Vector. Mol Ther 2005; 11:763-75. [PMID: 15851015 DOI: 10.1016/j.ymthe.2004.11.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 11/24/2004] [Indexed: 11/30/2022] Open
Abstract
Regulation of gene expression represents a long-sought goal of gene therapy. However, most viral vectors pose constraints on the incorporation of drug-dependent transcriptional regulatory systems. Here, by optimizing the design of self-regulating lentiviral vectors based on the tetracycline system, we have been able to overcome the limitations of previously reported constructs and to reach both robust expression and efficient regulation from a single vector. The improved performance allows us to report for the first time effective long-term in vivo regulation of a human clotting Factor IX (hF.IX) transgene upon systemic administration of a single vector to SCID mice. We showed that hF.IX expression in the plasma could be expressed to therapeutically significant concentrations, adjusted to different set levels by varying the tetracycline dose, rapidly turned off and on, and completely recovered after each treatment cycle. The new vector design was versatile, as it successfully incorporated a tissue-specific promoter that selectively targeted regulated expression to hepatocytes. Robust transgene expression in the systemic circulation coupled to the ability to switch off and even adjust the expression level may open the way to safer gene-based delivery of therapeutics.
Collapse
Affiliation(s)
- Elisa Vigna
- Institute for Cancer Research and Treatment, University of Torino Medical School, Strada Provinciale 142, 10060 Candiolo, Turin, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Georgievska B, Jakobsson J, Persson E, Ericson C, Kirik D, Lundberg C. Regulated delivery of glial cell line-derived neurotrophic factor into rat striatum, using a tetracycline-dependent lentiviral vector. Hum Gene Ther 2005; 15:934-44. [PMID: 15585109 DOI: 10.1089/hum.2004.15.934] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, a tetracycline-regulated lentiviral vector system, based on the tetracycline-dependent transactivator rtTA2(S)-M2, was developed for controlled expression of glial cell line-derived neurotrophic factor (GDNF) in the rat brain. Expression of the marker gene green fluorescent protein (GFP) and GDNF was tightly regulated in a dose-dependent manner in neural cell lines in vitro. Injection of high-titer lentiviral vectors into the rat striatum resulted in a 7-fold induction of GDNF tissue levels (1060 pg/mg tissue), when doxycycline (a tetracycline analog) was added to the drinking water. However, low levels of GDNF (150 pg/mg tissue) were also detected in animals that did not receive doxycycline, indicating a significant background leakage from the vector system in vivo. The level of basal expression was markedly reduced when a 10-fold lower dose of the tetracycline-regulated GDNF vector was injected into the striatum (3-11 pg/mg tissue), and doxycycline-induced GDNF tissue levels obtained in these animals were about 190 pg/mg tissue. Doxycycline-induced expression of GDNF resulted in a significant downregulation of the tyrosine hydroxylase (TH) protein in the intact striatum. Removal of doxycycline from the drinking water rapidly (within 3 days) turned off transgenic GDNF mRNA expression and GDNF protein levels in the tissue were completely reduced by 2 weeks, demonstrating the dynamics of the system in vivo. Accordingly, TH protein expression returned to normal by 2-8 weeks after removal of doxycycline, indicating that GDNF-induced downregulation of TH is a reversible event.
Collapse
Affiliation(s)
- Biljana Georgievska
- Division of Neurobiology, Department of Physiological Sciences, Wallenberg Neuroscience Center, Lund University, 221 84 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
50
|
Pluta K, Luce MJ, Bao L, Agha-Mohammadi S, Reiser J. Tight control of transgene expression by lentivirus vectors containing second-generation tetracycline-responsive promoters. J Gene Med 2005; 7:803-17. [PMID: 15655804 DOI: 10.1002/jgm.712] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The goal of this study was to design improved regulatable lentivirus vector systems. The aim was to design tetracycline (tet)-regulatable lentivirus vectors based on the Tet-on system displaying low background expression in the absence of the doxycycline (DOX) inducer and high transgene expression levels in the presence of DOX. METHODS We constructed a binary lentivirus vector system that is composed of a self-inactivating (SIN) lentivirus vector bearing inducible first- or second-generation tet-responsive promoter elements (TREs) driving expression of a transgene and a second lentivirus vector encoding a reverse tetracycline-controlled transactivator (rtTA) that activates transgene expression from the TRE in the presence of DOX. RESULTS We evaluated a number of different rtTAs and found rtTA2S-M2 to induce the highest levels of transgene expression. Regulated transgene expression was stable in human breast carcinoma cells implanted into nude mice for up to 11 weeks. In an attempt to minimize background expression levels, the chicken beta-globin cHS4 insulator element was cloned into the 3' long terminal repeat (LTR) of the transgene transfer vector. The cHS4 insulator element reduced background expression but expression levels following DOX addition were lower than those observed with vectors lacking an insulator sequence. In a second strategy, vectors bearing second-generation TREs harboring repositioned tetracycline operator elements were used. Such vectors displayed greatly reduced leakiness in the absence of DOX and induced transgene expression levels were up to 522-fold above those seen in the absence of DOX. CONCLUSIONS Inducible lentivirus vectors bearing insulators or second-generation TREs will likely prove useful for applications demanding the lowest levels of background expression.
Collapse
Affiliation(s)
- Krzysztof Pluta
- Gene Therapy Program, Department of Medicine, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|