1
|
Ghosh M, Kang MS, Katuwal NB, Hong SD, Park SM, Kim SG, Lee SR, Moon YW. SOX5 inhibition overcomes PARP inhibitor resistance in BRCA-mutated breast and ovarian cancer. Cell Death Dis 2025; 16:333. [PMID: 40274769 PMCID: PMC12022250 DOI: 10.1038/s41419-025-07660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are effective in cells with homologous recombination (HR) deficiency, including BRCA1/2 mutation. However, PARP inhibitors remain a therapeutic challenge in breast and ovarian cancer due to inevitably acquired resistance in most cases. Therefore, strategies to overcome PARP inhibitor resistance are unmet clinical need. SRY-box transcription factor 5 (SOX5) plays a crucial role in development of various cancers but the role of SOX5 in PARP inhibitor resistance is poorly understood. This study identified SOX5 as a potential biomarker associated with PARP inhibitor resistance and addressed potential treatment strategies to overcome PARP inhibitor resistance using the olaparib-resistant preclinical model. We observed that SOX5 was significantly upregulated in olaparib-resistant cells and contributed to PARP inhibitor resistance by upregulating DNA repair pathway genes. Ectopic SOX5 overexpression contributed to PARP inhibitor resistance by suppressing DNA double-strand breaks (DSBs) in BRCA-mutated breast and ovarian cancer. SOX5 small interfering RNA combined with olaparib sensitized olaparib-resistant cells and suppressed the growth of olaparib-resistant xenografts in mice via increased DSBs represented by ɣH2AX formation. Mechanistically, SOX5 directly interacted with yes-associated protein 1 (YAP1) and promoted its nuclear translocation by suppressing the Hippo pathway. YAP1, in association with TEA domain family members (TEAD), upregulated HR-related gene expression and conferred PARP inhibitor resistance. Furthermore, the clinical relevance of SOX5 as a therapeutic target was supported by a significant association between SOX5 overexpression and poor prognosis in ovarian cancer on public mRNA microarray data sets. Therefore, we propose SOX5 as a promising therapeutic target for overcoming PARP inhibitor resistance in BRCA1/2-mutated breast and ovarian cancer.
Collapse
Affiliation(s)
- Mithun Ghosh
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-si, 13488, Republic of Korea
| | - Min Sil Kang
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-si, 13488, Republic of Korea
| | - Nar Bahadur Katuwal
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-si, 13488, Republic of Korea
| | - Sa Deok Hong
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-si, 13488, Republic of Korea
| | - Seong Min Park
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-si, 13488, Republic of Korea
| | - Seul-Gi Kim
- Department of Internal Medicine, Hematology and Oncology, CHA Bundang Medical Center, CHA University, Seongnam-si, 13496, Republic of Korea
| | - Seung Ryeol Lee
- Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam-si, 13496, Republic of Korea
| | - Yong Wha Moon
- Department of Internal Medicine, Hematology and Oncology, CHA Bundang Medical Center, CHA University, Seongnam-si, 13496, Republic of Korea.
| |
Collapse
|
2
|
Thiruppathy M, Teubner L, Roberts RR, Lasser MC, Moscatello A, Chen YW, Hochstim C, Ruffins S, Sarkar A, Tassey J, Evseenko D, Lozito TP, Willsey HR, Gillis JA, Crump JG. Repurposing of a gill gene regulatory program for outer-ear evolution. Nature 2025; 639:682-690. [PMID: 39788155 DOI: 10.1038/s41586-024-08577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
How new structures emerge during evolution has long fascinated biologists. An example is how the diminutive bones of the mammalian middle ear arose from ancestral fish jawbones1. By contrast, the evolutionary origin of the outer ear, another mammalian innovation, remains a mystery, partly because it is supported by non-mineralized elastic cartilage, which is rarely recovered in fossils. Whether the outer ear arose de novo or through the reuse of ancestral developmental programs has remained unknown. Here we show that the outer ear shares gene regulatory programs with the gills of fishes and amphibians for both its initial outgrowth and the later development of the elastic cartilage. Comparative single-nucleus multiomics of the human outer ear and zebrafish gills reveals conserved gene expression and putative enhancers enriched for common transcription factor binding motifs. This is reflected by the transgenic activity of human outer-ear enhancers in gills, and of fish gill enhancers in the outer ear. Furthermore, single-cell multiomics of the cartilaginous book gills of horseshoe crabs reveals a developmental program shared with the distal-less homeobox (DLX)-mediated gill program of vertebrates, with a book-gill distal-less enhancer driving expression in zebrafish gills. We propose that elements of an invertebrate gill program were reutilized in vertebrates to generate first gills and then the outer ear.
Collapse
Affiliation(s)
- Mathi Thiruppathy
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lauren Teubner
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ryan R Roberts
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Micaela C Lasser
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Alessandra Moscatello
- School of Medicine, New York Medical College, Valhalla, NY, USA
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ya-Wen Chen
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute of Airway Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Hochstim
- Division of Otolaryngology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Clinical Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Seth Ruffins
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arijita Sarkar
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jade Tassey
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Denis Evseenko
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Thomas P Lozito
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - J Andrew Gillis
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Long RG, Lee C, Tabin CJ. Active cell proliferation contributes to the enlargement of the nascent nucleus pulposus. Dev Dyn 2025. [PMID: 39976317 DOI: 10.1002/dvdy.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND The notochord is an embryonic organ involved in forming and patterning the spinal column. The mechanism by which the notochord transforms from a continuous rod to a segmented structure excluded from the vertebrae and residing solely as the nucleus pulposus within the intervertebral disc is understudied. The current model of notochordal segmentation suggests that swelling through formation and maturation of the vertebrate cartilage squeezes the notochord cells from the vertebra. RESULTS Analysis of Collagen 10, a marker for hypertrophic differentiation, as well as evaluation of changes in cell density, reveal that the expansion of the vertebral precursor cells occurs after notochord segmentation has already taken place. We find that the bulk of the nucleus pulposus is derived from accelerated proliferation within the nucleus pulposus itself. In a model of cell proliferation, the increased proliferation at the nucleus pulposus importantly contributes to expand the nucleus pulposus area. CONCLUSIONS Our data is consistent with the hypothesis that notochord cell proliferation contributes to the enlargement of the nucleus pulposus before the vertebra undergo hypertrophy.
Collapse
Affiliation(s)
- Rose G Long
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Changhee Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
4
|
Baran K, Brzeziańska-Lasota E, Kryczka J, Boncela J, Czechowska A, Kopacz K, Padula G, Nowak K, Domżalski M. The Expression Level of SOX Family Transcription Factors' mRNA as a Diagnostic Marker for Osteoarthritis. J Clin Med 2025; 14:1176. [PMID: 40004707 PMCID: PMC11856735 DOI: 10.3390/jcm14041176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives:Osteoarthritis (OA) is the most common degenerative and chronic joint disease and is a leading cause of pain and disability in adults worldwide. The SRY-related HMG box (SOX) family transcription factors (TFs) play a crucial role during the pathogenesis of OA; however, their exact mechanisms remain unexplored. The aim of our study was to conduct a bioinformatics analysis of the common interactions of SOX-5, SOX-9, and SOX-11 with other proteins, as well as their role in OA pathogenesis. Methods:SOX5, SOX9, and SOX11 mRNA expression levels in articular cartilage with subchondral bone and synovium from knee OA patients were assessed using the qPCR method. The study group consisted of thirty-one patients (n = 31). Total RNA was isolated from the articular cartilage with subchondral bone and synovium from the affected and unaffected area of the knee joint. Results: Our results revealed a regulatory network between SOX-5, SOX-9, and SOX-11, and various proteins involved in the pathogenesis of knee OA and their collective interactions, which are involved in the regulation of cartilage extracellular matrix (ECM) organization, response to stimulus, regulation of gene expression, inflammatory response, cartilage condensation, and ossification in chondrocytes. Higher expression levels of SOX5, SOX9, and SOX11 mRNA were noted in OA-affected articular cartilage with subchondral bone compared to control tissue (p = 0.00015, p = 0.0024 and p > 0.05, respectively, Mann-Whitney U-test). All studied genes demonstrated elevated mRNA expression levels in the articular cartilage with subchondral bone from stage 4 patients than those with stage 3 (p > 0.05; Mann-Whitney U-test). Lower SOX5, SOX9, and SOX11 mRNA expression levels were found in OA-affected synovium compared to the control tissue (p = 0.0003, p > 0.05 and p = 0.0007, respectively, Mann-Whitney U-test). Decreased SOX9 mRNA expression levels in synovium were noted in patients with stage 4 disease than those with stage 3; however, SOX5 and SOX11 mRNA expression levels were higher in patients with stage 4 (p > 0.05; Mann-Whitney U-test). Conclusions: The results of our research show that the studied SOX TFs play a role in the development of OA, contributing to the formation of pathological changes not only in the articular cartilage, but also in the synovial membrane. The changes in the SOX5, SOX9, and SOX11 mRNA expression levels in the articular cartilage with subchondral bone and synovium may serve as potential molecular diagnostic biomarkers for detecting OA and could indicate the progression of this disease; however, our observations require further investigation.
Collapse
Affiliation(s)
- Kamila Baran
- Department of Biomedicine and Genetics, Chair of Biology and Medical Microbiology, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Chair of Biology and Medical Microbiology, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Jakub Kryczka
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.K.); (J.B.)
| | - Joanna Boncela
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.K.); (J.B.)
| | - Aleksandra Czechowska
- Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, 90-001 Lodz, Poland; (A.C.); (K.K.); (G.P.)
| | - Karolina Kopacz
- Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, 90-001 Lodz, Poland; (A.C.); (K.K.); (G.P.)
| | - Gianluca Padula
- Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, 90-001 Lodz, Poland; (A.C.); (K.K.); (G.P.)
| | - Krzysztof Nowak
- Department of Orthopedics and Traumatology, University Clinical Hospital No. 2 of the Medical University of Lodz, 90-549 Lodz, Poland; (K.N.); (M.D.)
| | - Marcin Domżalski
- Department of Orthopedics and Traumatology, University Clinical Hospital No. 2 of the Medical University of Lodz, 90-549 Lodz, Poland; (K.N.); (M.D.)
| |
Collapse
|
5
|
Li J, Xu Y, Han Y, Yang A, Qian M, Wang B. Role of the SOX family in cancer immune evasion: Emerging player and promising therapeutic opportunities. Medicine (Baltimore) 2025; 104:e41393. [PMID: 39889187 PMCID: PMC11789896 DOI: 10.1097/md.0000000000041393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/12/2024] [Accepted: 11/13/2024] [Indexed: 02/02/2025] Open
Abstract
Cancer immune evasion is one of the important mechanisms for cancer development, which is essential to developing novel immunotherapeutic strategies. The SOX (SRY-related HMG-box) family of transcription factors plays a crucial role in normal physiology as well as in a variety of human diseases especially cancer. It has been shown that SOX is involved in cancer immune evasion processes. This mini-review aimed to summarize how SOX family members induce cancer immune evasion by regulating antigen presentation, shaping the tumor immunosuppressive milieu, and controlling regulatory immune checkpoint inhibitors like programmed death ligand 1. Thorough exploration of SOX family will help uncover the mechanism of cancer immune evasion, and provide new ideas and targets for the development of immunotherapy strategies.
Collapse
Affiliation(s)
- Jinke Li
- Department of General Surgery, Longnan First People’s Hospital, Longnan, China
| | - Yawen Xu
- Department of General Surgery, Longnan First People’s Hospital, Longnan, China
| | - Yunying Han
- Department of General Surgery, Longnan First People’s Hospital, Longnan, China
| | - Aifu Yang
- Department of General Surgery, Longnan First People’s Hospital, Longnan, China
| | - Miaoshan Qian
- Department of General Surgery, Longnan First People’s Hospital, Longnan, China
| | - Bo Wang
- Department of General Surgery, Longnan First People’s Hospital, Longnan, China
| |
Collapse
|
6
|
Li J, Li K, Zhang Y, Li X, Wang H. Regulation mechanism of endochondral ossification in Rana zhenhaiensis during metamorphosis based on histomorphology and transcriptome analyses. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101286. [PMID: 38996694 DOI: 10.1016/j.cbd.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Endochondral ossification plays a crucial role in the limb development of amphibians. This study explored the ossification sequence in the hindlimb of Rana zhenhaiensis tadpoles and the correlation between thyroid hormones (THs) and endochondral ossification via histomorphology and transcriptional analyses. Our results suggest that ossification of the femur and tibiofibula was initiated during the period of high THs activity (metamorphosis climax). In addition, the results of differentially expressed gene analyses in the hindlimb and tail showed that systemic factors, transcription factors, and locally secreted factors interacted with each other during the metamorphosis climax to regulate the occurrence of endochondral ossification. These results will enrich the morphological data of anurans and provide scientific reference for the evolutionary history of vertebrates.
Collapse
Affiliation(s)
- Jiayi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Kaiyue Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yue Zhang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
7
|
Weber CJ, Weitzel AJ, Liu AY, Gacasan EG, Sah RL, Cooper KL. Cellular and molecular mechanisms that shape the development and evolution of tail vertebral proportion in mice and jerboas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620311. [PMID: 39484405 PMCID: PMC11527341 DOI: 10.1101/2024.10.25.620311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Despite the functional importance of the vertebral skeleton, little is known about how individual vertebrae elongate or achieve disproportionate lengths as in the giraffe neck. Rodent tails are an abundantly diverse and more tractable system to understand mechanisms of vertebral growth and proportion. In many rodents, disproportionately long mid-tail vertebrae form a 'crescendo-decrescendo' of lengths in the tail series. In bipedal jerboas, these vertebrae grow exceptionally long such that the adult tail is 1.5x the length of a mouse tail, relative to body length, with four fewer vertebrae. How do vertebrae with the same regional identity elongate differently from their neighbors to establish and diversify adult proportion? Here, we find that vertebral lengths are largely determined by differences in growth cartilage height and the number of cells progressing through endochondral ossification. Hypertrophic chondrocyte size, a major contributor to differential elongation in mammal limb bones, differs only in the longest jerboa mid-tail vertebrae where they are exceptionally large. To uncover candidate molecular mechanisms of disproportionate vertebral growth, we performed intersectional RNA-Seq of mouse and jerboa tail vertebrae with similar and disproportionate elongation rates. Many regulators of posterior axial identity and endochondral elongation are disproportionately differentially expressed in jerboa vertebrae. Among these, the inhibitory natriuretic peptide receptor C (NPR3) appears in multiple studies of rodent and human skeletal proportion suggesting it refines local growth rates broadly in the skeleton and broadly in mammals. Consistent with this hypothesis, NPR3 loss of function mice have abnormal tail and limb proportions. Therefore, in addition to genetic components of the complex process of vertebral evolution, these studies reveal fundamental mechanisms of skeletal growth and proportion.
Collapse
Affiliation(s)
- Ceri J Weber
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alexander J Weitzel
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alexander Y Liu
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Erica G Gacasan
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Robert L Sah
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Kimberly L Cooper
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Bertels JC, He G, Long F. Metabolic reprogramming in skeletal cell differentiation. Bone Res 2024; 12:57. [PMID: 39394187 PMCID: PMC11470040 DOI: 10.1038/s41413-024-00374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/13/2024] Open
Abstract
The human skeleton is a multifunctional organ made up of multiple cell types working in concert to maintain bone and mineral homeostasis and to perform critical mechanical and endocrine functions. From the beginning steps of chondrogenesis that prefigures most of the skeleton, to the rapid bone accrual during skeletal growth, followed by bone remodeling of the mature skeleton, cell differentiation is integral to skeletal health. While growth factors and nuclear proteins that influence skeletal cell differentiation have been extensively studied, the role of cellular metabolism is just beginning to be uncovered. Besides energy production, metabolic pathways have been shown to exert epigenetic regulation via key metabolites to influence cell fate in both cancerous and normal tissues. In this review, we will assess the role of growth factors and transcription factors in reprogramming cellular metabolism to meet the energetic and biosynthetic needs of chondrocytes, osteoblasts, or osteoclasts. We will also summarize the emerging evidence linking metabolic changes to epigenetic modifications during skeletal cell differentiation.
Collapse
Affiliation(s)
- Joshua C Bertels
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Guangxu He
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Orthopedics, The Second Xiangya Hospital, Changsha, Hunan, China
| | - Fanxin Long
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Tian B, Zhang L, Zheng J, Kang X. The role of NF-κB-SOX9 signalling pathway in osteoarthritis. Heliyon 2024; 10:e37191. [PMID: 39319133 PMCID: PMC11419907 DOI: 10.1016/j.heliyon.2024.e37191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
The nuclear factor-κB (NF-κB) signalling pathway exists in a variety of cells and is involved in the gene regulation of various physiological and pathological processes such as inflammation, immunity, cell proliferation and apoptosis. It has been shown that this signaling pathway is also involved in numerous events associated with osteoarthritis, including chondrocyte catabolism, chondrocyte survival, and synovial inflammation. SRY-related high mobility group-box 9(SOX9) is the "master regulator" of chondrocytes and one of the key transcription factors that maintain chondrocyte phenotype and cartilage homeostasis. NF-κB can positively regulate the expression of SOX9 by directly binding to its promoter region, and play a role in the formation and development of chondrocytes. This article reviews the regulatory effect of the NF-κB-SOX9 signaling axis on osteoarthritis.
Collapse
Affiliation(s)
- Bin Tian
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiao Tong University, Shaanxi, 710054, PR China
- Department of Orthopedics, the First Afffliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Liang Zhang
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiao Tong University, Shaanxi, 710054, PR China
| | - Jiang Zheng
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiao Tong University, Shaanxi, 710054, PR China
| | - Xin Kang
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiao Tong University, Shaanxi, 710054, PR China
| |
Collapse
|
10
|
Niharika, Ureka L, Roy A, Patra SK. Dissecting SOX2 expression and function reveals an association with multiple signaling pathways during embryonic development and in cancer progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189136. [PMID: 38880162 DOI: 10.1016/j.bbcan.2024.189136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
SRY (Sex Determining Region) box 2 (SOX2) is an essential transcription factor that plays crucial roles in activating genes involved in pre- and post-embryonic development, adult tissue homeostasis, and lineage specifications. SOX2 maintains the self-renewal property of stem cells and is involved in the generation of induced pluripotency stem cells. SOX2 protein contains a particular high-mobility group domain that enables SOX2 to achieve the capacity to participate in a broad variety of functions. The information about the involvement of SOX2 with gene regulatory elements, signaling networks, and microRNA is gradually emerging, and the higher expression of SOX2 is functionally relevant to various cancer types. SOX2 facilitates the oncogenic phenotype via cellular proliferation and enhancement of invasive tumor properties. Evidence are accumulating in favor of three dimensional (higher order) folding of chromatin and epigenetic control of the SOX2 gene by chromatin modifications, which implies that the expression level of SOX2 can be modulated by epigenetic regulatory mechanisms, specifically, via DNA methylation and histone H3 modification. In view of this, and to focus further insights into the roles SOX2 plays in physiological functions, involvement of SOX2 during development, precisely, the advances of our knowledge in pre- and post-embryonic development, and interactions of SOX2 in this scenario with various signaling pathways in tumor development and cancer progression, its potential as a therapeutic target against many cancers are summarized and discussed in this article.
Collapse
Affiliation(s)
- Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Lina Ureka
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
11
|
Jiang Z, Kang Q, Qian H, Xu Z, Tong H, Yang J, Li L, Li R, Li G, Chen F, Lin N, Zhao Y, Shi H, Huang J, Ma X. Revealing the crucial roles of suppressive immune microenvironment in cardiac myxoma progression. Signal Transduct Target Ther 2024; 9:193. [PMID: 39090109 PMCID: PMC11294589 DOI: 10.1038/s41392-024-01912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Cardiac myxoma is a commonly encountered tumor within the heart that has the potential to be life-threatening. However, the cellular composition of this condition is still not well understood. To fill this gap, we analyzed 75,641 cells from cardiac myxoma tissues based on single-cell sequencing. We defined a population of myxoma cells, which exhibited a resemblance to fibroblasts, yet they were distinguished by an increased expression of phosphodiesterases and genes associated with cell proliferation, differentiation, and adhesion. The clinical relevance of the cell populations indicated a higher proportion of myxoma cells and M2-like macrophage infiltration, along with their enhanced spatial interaction, were found to significantly contribute to the occurrence of embolism. The immune cells surrounding the myxoma exhibit inhibitory characteristics, with impaired function of T cells characterized by the expression of GZMK and TOX, along with a substantial infiltration of tumor-promoting macrophages expressed growth factors such as PDGFC. Furthermore, in vitro co-culture experiments showed that macrophages promoted the growth of myxoma cells significantly. In summary, this study presents a comprehensive single-cell atlas of cardiac myxoma, highlighting the heterogeneity of myxoma cells and their collaborative impact on immune cells. These findings shed light on the complex pathobiology of cardiac myxoma and present potential targets for intervention.
Collapse
Affiliation(s)
- Zedong Jiang
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Qianlong Kang
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Qian
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huan Tong
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaqing Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Renwei Li
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangqi Li
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Chen
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nan Lin
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunuo Zhao
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huashan Shi
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Juan Huang
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
12
|
Casey-Clyde T, Liu SJ, Serrano JAC, Teng C, Jang YG, Vasudevan HN, Bush JO, Raleigh DR. Eed controls craniofacial osteoblast differentiation and mesenchymal proliferation from the neural crest. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584903. [PMID: 38558995 PMCID: PMC10979956 DOI: 10.1101/2024.03.13.584903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The histone methyltransferase Polycomb repressive complex 2 (PRC2) is required for specification of the neural crest, and mis-regulation of neural crest development can cause severe congenital malformations. PRC2 is necessary for neural crest induction, but the embryonic, cellular, and molecular consequences of PRC2 activity after neural crest induction are incompletely understood. Here we show that Eed, a core subunit of PRC2, is required for craniofacial osteoblast differentiation and mesenchymal proliferation after induction of the neural crest. Integrating mouse genetics with single-cell RNA sequencing, our results reveal that conditional knockout of Eed after neural crest cell induction causes severe craniofacial hypoplasia, impaired craniofacial osteogenesis, and attenuated craniofacial mesenchymal cell proliferation that is first evident in post-migratory neural crest cell populations. We show that Eed drives mesenchymal differentiation and proliferation in vivo and in primary craniofacial cell cultures by regulating diverse transcription factor programs that are required for specification of post-migratory neural crest cells. These data enhance understanding of epigenetic mechanisms that underlie craniofacial development, and shed light on the embryonic, cellular, and molecular drivers of rare congenital syndromes in humans.
Collapse
Affiliation(s)
- Tim Casey-Clyde
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - S John Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Juan Antonio Camara Serrano
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Camilla Teng
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Yoon-Gu Jang
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Harish N Vasudevan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey O Bush
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Ambrosio L, Schol J, Ruiz-Fernández C, Tamagawa S, Joyce K, Nomura A, de Rinaldis E, Sakai D, Papalia R, Vadalà G, Denaro V. Getting to the Core: Exploring the Embryonic Development from Notochord to Nucleus Pulposus. J Dev Biol 2024; 12:18. [PMID: 39051200 PMCID: PMC11270426 DOI: 10.3390/jdb12030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
The intervertebral disc (IVD) is the largest avascular organ of the human body and plays a fundamental role in providing the spine with its unique structural and biomechanical functions. The inner part of the IVD contains the nucleus pulposus (NP), a gel-like tissue characterized by a high content of type II collagen and proteoglycans, which is crucial for the disc's load-bearing and shock-absorbing properties. With aging and IVD degeneration (IDD), the NP gradually loses its physiological characteristics, leading to low back pain and additional sequelae. In contrast to surrounding spinal tissues, the NP presents a distinctive embryonic development since it directly derives from the notochord. This review aims to explore the embryology of the NP, emphasizing the pivotal roles of key transcription factors, which guide the differentiation and maintenance of the NP cellular components from the notochord and surrounding sclerotome. Through an understanding of NP development, we sought to investigate the implications of the critical developmental aspects in IVD-related pathologies, such as IDD and the rare malignant chordomas. Moreover, this review discusses the therapeutic strategies targeting these pathways, including the novel regenerative approaches leveraging insights from NP development and embryology to potentially guide future treatments.
Collapse
Affiliation(s)
- Luca Ambrosio
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Jordy Schol
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Clara Ruiz-Fernández
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Shota Tamagawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Kieran Joyce
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY Galway, Ireland;
- School of Medicine, University of Galway, H91 W2TY Galway, Ireland
| | - Akira Nomura
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Elisabetta de Rinaldis
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Rocco Papalia
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Gianluca Vadalà
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
| |
Collapse
|
14
|
Wang J, Nie H. Genome-wide identification and expression analysis of Sox gene family in the Manila clam (Ruditapes philippinarum). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101244. [PMID: 38749209 DOI: 10.1016/j.cbd.2024.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/27/2024]
Abstract
Sox transcription factors are vital in numerous fundamental biological processes. In this study, nine Sox gene family members were discovered in the Ruditapes philippinarum genome, classified into the SoxB1, SoxB2, SoxC, SoxD, SoxE, and SoxF groups, marking the first genome-wide identification of this gene family in R. philippinarum. Analyses of phylogeny, exon-intron structures, and domains bolster the support for their categorization and annotation. Furthermore, transcriptomic analyses across various developmental stages revealed that RpSox4, RpSox5, RpSox9, and RpSox11 were significantly expressed in the D-larval stage. Additionally, investigations into transcriptomes of clams with different shell colors indicated that most sox genes exhibited their highest expression levels in orange clams, followed by zebra, white zebra, and white clams, and the results of transcriptomes analysis in different tissues indicated that 8 Sox genes (except RpSox17) were highly expressed in the mantle tissue. Moreover, qPCR was used to detect the expression of Sox gene in R. philippinarum at different developmental periods, different shell colors and different tissues, and the results showed consistency with those of the transcriptomes. This study's findings lay the groundwork for additional exploration into the role of the Sox gene in melanin production in R. philippinarum shells.
Collapse
Affiliation(s)
- Jiadi Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
15
|
Frenz-Wiessner S, Fairley SD, Buser M, Goek I, Salewskij K, Jonsson G, Illig D, Zu Putlitz B, Petersheim D, Li Y, Chen PH, Kalauz M, Conca R, Sterr M, Geuder J, Mizoguchi Y, Megens RTA, Linder MI, Kotlarz D, Rudelius M, Penninger JM, Marr C, Klein C. Generation of complex bone marrow organoids from human induced pluripotent stem cells. Nat Methods 2024; 21:868-881. [PMID: 38374263 PMCID: PMC11093744 DOI: 10.1038/s41592-024-02172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
The human bone marrow (BM) niche sustains hematopoiesis throughout life. We present a method for generating complex BM-like organoids (BMOs) from human induced pluripotent stem cells (iPSCs). BMOs consist of key cell types that self-organize into spatially defined three-dimensional structures mimicking cellular, structural and molecular characteristics of the hematopoietic microenvironment. Functional properties of BMOs include the presence of an in vivo-like vascular network, the presence of multipotent mesenchymal stem/progenitor cells, the support of neutrophil differentiation and responsiveness to inflammatory stimuli. Single-cell RNA sequencing revealed a heterocellular composition including the presence of a hematopoietic stem/progenitor (HSPC) cluster expressing genes of fetal HSCs. BMO-derived HSPCs also exhibited lymphoid potential and a subset demonstrated transient engraftment potential upon xenotransplantation in mice. We show that the BMOs could enable the modeling of hematopoietic developmental aspects and inborn errors of hematopoiesis, as shown for human VPS45 deficiency. Thus, iPSC-derived BMOs serve as a physiologically relevant in vitro model of the human BM microenvironment to study hematopoietic development and BM diseases.
Collapse
Affiliation(s)
- Stephanie Frenz-Wiessner
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Savannah D Fairley
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Maximilian Buser
- Institute of AI for Health, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Isabel Goek
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kirill Salewskij
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Gustav Jonsson
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - David Illig
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Benedicta Zu Putlitz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniel Petersheim
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yue Li
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Pin-Hsuan Chen
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martina Kalauz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Raffaele Conca
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Technical University of Munich, Munich, Germany
| | - Johanna Geuder
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Yoko Mizoguchi
- Department of Pediatrics, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Remco T A Megens
- Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Biomedical Engineering (BME), Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Monika I Linder
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martina Rudelius
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany.
- Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
16
|
Sulcanese L, Prencipe G, Canciello A, Cerveró-Varona A, Perugini M, Mauro A, Russo V, Barboni B. Stem-Cell-Driven Chondrogenesis: Perspectives on Amnion-Derived Cells. Cells 2024; 13:744. [PMID: 38727280 PMCID: PMC11083072 DOI: 10.3390/cells13090744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Regenerative medicine harnesses stem cells' capacity to restore damaged tissues and organs. In vitro methods employing specific bioactive molecules, such as growth factors, bio-inductive scaffolds, 3D cultures, co-cultures, and mechanical stimuli, steer stem cells toward the desired differentiation pathways, mimicking their natural development. Chondrogenesis presents a challenge for regenerative medicine. This intricate process involves precise modulation of chondro-related transcription factors and pathways, critical for generating cartilage. Cartilage damage disrupts this process, impeding proper tissue healing due to its unique mechanical and anatomical characteristics. Consequently, the resultant tissue often forms fibrocartilage, which lacks adequate mechanical properties, posing a significant hurdle for effective regeneration. This review comprehensively explores studies showcasing the potential of amniotic mesenchymal stem cells (AMSCs) and amniotic epithelial cells (AECs) in chondrogenic differentiation. These cells exhibit innate characteristics that position them as promising candidates for regenerative medicine. Their capacity to differentiate toward chondrocytes offers a pathway for developing effective regenerative protocols. Understanding and leveraging the innate properties of AMSCs and AECs hold promise in addressing the challenges associated with cartilage repair, potentially offering superior outcomes in tissue regeneration.
Collapse
Affiliation(s)
- Ludovica Sulcanese
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Angelo Canciello
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Monia Perugini
- Department of Bioscience and Technology for Food, Agriculture, and Environment, University of Teramo, 64100 Teramo, Italy;
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Valentina Russo
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| |
Collapse
|
17
|
Ozkan A, Padmanabhan HK, Shipman SL, Azim E, Kumar P, Sadegh C, Basak AN, Macklis JD. Directed differentiation of functional corticospinal-like neurons from endogenous SOX6+/NG2+ cortical progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.21.590488. [PMID: 38712174 PMCID: PMC11071355 DOI: 10.1101/2024.04.21.590488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Corticospinal neurons (CSN) centrally degenerate in amyotrophic lateral sclerosis (ALS), along with spinal motor neurons, and loss of voluntary motor function in spinal cord injury (SCI) results from damage to CSN axons. For functional regeneration of specifically affected neuronal circuitry in vivo , or for optimally informative disease modeling and/or therapeutic screening in vitro , it is important to reproduce the type or subtype of neurons involved. No such appropriate in vitro models exist with which to investigate CSN selective vulnerability and degeneration in ALS, or to investigate routes to regeneration of CSN circuitry for ALS or SCI, critically limiting the relevance of much research. Here, we identify that the HMG-domain transcription factor Sox6 is expressed by a subset of NG2+ endogenous cortical progenitors in postnatal and adult cortex, and that Sox6 suppresses a latent neurogenic program by repressing inappropriate proneural Neurog2 expression by progenitors. We FACS-purify these genetically accessible progenitors from postnatal mouse cortex and establish a pure culture system to investigate their potential for directed differentiation into CSN. We then employ a multi-component construct with complementary and differentiation-sharpening transcriptional controls (activating Neurog2, Fezf2 , while antagonizing Olig2 with VP16:Olig2 ). We generate corticospinal-like neurons from SOX6+/NG2+ cortical progenitors, and find that these neurons differentiate with remarkable fidelity compared with corticospinal neurons in vivo . They possess appropriate morphological, molecular, transcriptomic, and electrophysiological characteristics, without characteristics of the alternate intracortical or other neuronal subtypes. We identify that these critical specifics of differentiation are not reproduced by commonly employed Neurog2 -driven differentiation. Neurons induced by Neurog2 instead exhibit aberrant multi-axon morphology and express molecular hallmarks of alternate cortical projection subtypes, often in mixed form. Together, this developmentally-based directed differentiation from genetically accessible cortical progenitors sets a precedent and foundation for in vitro mechanistic and therapeutic disease modeling, and toward regenerative neuronal repopulation and circuit repair.
Collapse
|
18
|
You S, Xu J, Guo Y, Guo X, Zhang Y, Zhang N, Sun G, Sun Y. E3 ubiquitin ligase WWP2 as a promising therapeutic target for diverse human diseases. Mol Aspects Med 2024; 96:101257. [PMID: 38430667 DOI: 10.1016/j.mam.2024.101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Mammalian E3 ubiquitin ligases have emerged in recent years as critical regulators of cellular homeostasis due to their roles in targeting substrate proteins for ubiquitination and triggering subsequent downstream signals. In this review, we describe the multiple roles of WWP2, an E3 ubiquitin ligase with unique and important functions in regulating a wide range of biological processes, including DNA repair, gene expression, signal transduction, and cell-fate decisions. As such, WWP2 has evolved to play a key role in normal physiology and diseases, such as tumorigenesis, skeletal development and diseases, immune regulation, cardiovascular disease, and others. We attempt to provide an overview of the biochemical, physiological, and pathophysiological roles of WWP2, as well as open questions for future research, particularly in the context of putative therapeutic opportunities.
Collapse
Affiliation(s)
- Shilong You
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiaqi Xu
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yushan Guo
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaofan Guo
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Naijin Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility, National Health Commission, China Medical University, Shenyang, Liaoning, China.
| | - Guozhe Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
19
|
Bendixen SM, Jakobsgaard PR, Hansen D, Hejn KH, Terkelsen MK, Bjerre FA, Thulesen AP, Eriksen NG, Hallenborg P, Geng Y, Dam TV, Larsen FT, Wernberg CW, Vijayathurai J, Scott EAH, Marcher AB, Detlefsen S, Grøntved L, Dimke H, Berdeaux R, de Aguiar Vallim TQ, Olinga P, Lauridsen MM, Krag A, Blagoev B, Ravnskjaer K. Single cell-resolved study of advanced murine MASH reveals a homeostatic pericyte signaling module. J Hepatol 2024; 80:467-481. [PMID: 37972658 DOI: 10.1016/j.jhep.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 10/06/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatohepatitis (MASH) is linked to insulin resistance and type 2 diabetes and marked by hepatic inflammation, microvascular dysfunction, and fibrosis, impairing liver function and aggravating metabolic derangements. The liver homeostatic interactions disrupted in MASH are still poorly understood. We aimed to elucidate the plasticity and changing interactions of non-parenchymal cells associated with advanced MASH. METHODS We characterized a diet-induced mouse model of advanced MASH at single-cell resolution and validated findings by assaying chromatin accessibility, bioimaging murine and human livers, and via functional experiments in vivo and in vitro. RESULTS The fibrogenic activation of hepatic stellate cells (HSCs) led to deterioration of a signaling module consisting of the bile acid receptor NR1H4/FXR and HSC-specific GS-protein-coupled receptors (GSPCRs) capable of preserving stellate cell quiescence. Accompanying HSC activation, we further observed the attenuation of HSC Gdf2 expression, and a MASH-associated expansion of a CD207-positive macrophage population likely derived from both incoming monocytes and Kupffer cells. CONCLUSION We conclude that HSC-expressed NR1H4 and GSPCRs of the healthy liver integrate postprandial cues, which sustain HSC quiescence and, through paracrine signals, overall sinusoidal health. Hence HSC activation in MASH not only drives fibrogenesis but may desensitize the hepatic sinusoid to liver homeostatic signals. IMPACT AND IMPLICATIONS Homeostatic interactions between hepatic cell types and their deterioration in metabolic dysfunction-associated steatohepatitis are poorly characterized. In our current single cell-resolved study of advanced murine metabolic dysfunction-associated steatohepatitis, we identified a quiescence-associated hepatic stellate cell-signaling module with potential to preserve normal sinusoid function. As expression levels of its constituents are conserved in the human liver, stimulation of the identified signaling module is a promising therapeutic strategy to restore sinusoid function in chronic liver disease.
Collapse
Affiliation(s)
- Sofie M Bendixen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Peter R Jakobsgaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Daniel Hansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Kamilla H Hejn
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Mike K Terkelsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Frederik A Bjerre
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Annemette P Thulesen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Niels G Eriksen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Philip Hallenborg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Yana Geng
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, the Netherlands
| | - Trine V Dam
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Frederik T Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Charlotte W Wernberg
- Department of Gastroenterology and Hepatology, Odense University Hospital, Denmark; Department of Gastroenterology and Hepatology, University Hospital of South Denmark Esbjerg, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Janusa Vijayathurai
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Emma A H Scott
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Ann-Britt Marcher
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, Denmark; Department of Clinical Research, University of Southern Denmark, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Henrik Dimke
- Department of Molecular Medicine, University of Southern Denmark, Denmark; Department of Nephrology, Odense University Hospital, Denmark
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, McGovern Medical School, UT Health Houston, USA
| | - Thomas Q de Aguiar Vallim
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, the Netherlands
| | - Mette M Lauridsen
- Department of Gastroenterology and Hepatology, University Hospital of South Denmark Esbjerg, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Denmark; Department of Clinical Research, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Kim Ravnskjaer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark.
| |
Collapse
|
20
|
Molin AN, Contentin R, Angelozzi M, Karvande A, Kc R, Haseeb A, Voskamp C, de Charleroy C, Lefebvre V. Skeletal growth is enhanced by a shared role for SOX8 and SOX9 in promoting reserve chondrocyte commitment to columnar proliferation. Proc Natl Acad Sci U S A 2024; 121:e2316969121. [PMID: 38346197 PMCID: PMC10895259 DOI: 10.1073/pnas.2316969121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/26/2023] [Indexed: 02/15/2024] Open
Abstract
SOX8 was linked in a genome-wide association study to human height heritability, but roles in chondrocytes for this close relative of the master chondrogenic transcription factor SOX9 remain unknown. We undertook here to fill this knowledge gap. High-throughput assays demonstrate expression of human SOX8 and mouse Sox8 in growth plate cartilage. In situ assays show that Sox8 is expressed at a similar level as Sox9 in reserve and early columnar chondrocytes and turned off when Sox9 expression peaks in late columnar and prehypertrophic chondrocytes. Sox8-/- mice and Sox8fl/flPrx1Cre and Sox9fl/+Prx1Cre mice (inactivation in limb skeletal cells) have a normal or near normal skeletal size. In contrast, juvenile and adult Sox8fl/flSox9fl/+Prx1Cre compound mutants exhibit a 15 to 20% shortening of long bones. Their growth plate reserve chondrocytes progress slowly toward the columnar stage, as witnessed by a delay in down-regulating Pthlh expression, in packing in columns and in elevating their proliferation rate. SOX8 or SOX9 overexpression in chondrocytes reveals not only that SOX8 can promote growth plate cell proliferation and differentiation, even upon inactivation of endogenous Sox9, but also that it is more efficient than SOX9, possibly due to greater protein stability. Altogether, these findings uncover a major role for SOX8 and SOX9 in promoting skeletal growth by stimulating commitment of growth plate reserve chondrocytes to actively proliferating columnar cells. Further, by showing that SOX8 is more chondrogenic than SOX9, they suggest that SOX8 could be preferred over SOX9 in therapies to promote cartilage formation or regeneration in developmental and degenerative cartilage diseases.
Collapse
Affiliation(s)
- Arnaud N. Molin
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Romain Contentin
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Marco Angelozzi
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Anirudha Karvande
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Ranjan Kc
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Abdul Haseeb
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Chantal Voskamp
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Charles de Charleroy
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Véronique Lefebvre
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| |
Collapse
|
21
|
Jiang J, Wang Y, Sun M, Luo X, Zhang Z, Wang Y, Li S, Hu D, Zhang J, Wu Z, Chen X, Zhang B, Xu X, Wang S, Xu S, Huang W, Xia L. SOX on tumors, a comfort or a constraint? Cell Death Discov 2024; 10:67. [PMID: 38331879 PMCID: PMC10853543 DOI: 10.1038/s41420-024-01834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
The sex-determining region Y (SRY)-related high-mobility group (HMG) box (SOX) family, composed of 20 transcription factors, is a conserved family with a highly homologous HMG domain. Due to their crucial role in determining cell fate, the dysregulation of SOX family members is closely associated with tumorigenesis, including tumor invasion, metastasis, proliferation, apoptosis, epithelial-mesenchymal transition, stemness and drug resistance. Despite considerable research to investigate the mechanisms and functions of the SOX family, confusion remains regarding aspects such as the role of the SOX family in tumor immune microenvironment (TIME) and contradictory impacts the SOX family exerts on tumors. This review summarizes the physiological function of the SOX family and their multiple roles in tumors, with a focus on the relationship between the SOX family and TIME, aiming to propose their potential role in cancer and promising methods for treatment.
Collapse
Affiliation(s)
- Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiaoping Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Westlake university school of medicine, Hangzhou, 310006, China
| | - Shengjun Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
22
|
Wang N, Wan R, Tang K. Transcriptional regulation in the development and dysfunction of neocortical projection neurons. Neural Regen Res 2024; 19:246-254. [PMID: 37488873 PMCID: PMC10503610 DOI: 10.4103/1673-5374.379039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 07/26/2023] Open
Abstract
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas, and between the neocortex and other regions of the brain and spinal cord. Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination, proliferation, specification, differentiation, migration, survival, axonogenesis, and synaptogenesis. These processes are precisely regulated in a tempo-spatial manner by intrinsic factors, extrinsic signals, and neural activities. The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions (such as sensory information integration, motor coordination, and cognition) but also to prevent the onset and progression of neurodevelopmental disorders (such as intellectual disability, autism spectrum disorders, anxiety, and depression). This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.
Collapse
Affiliation(s)
- Ningxin Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Rong Wan
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| |
Collapse
|
23
|
He N, Hong A, Zhao K, Zhang Z, Wang S, Jia Y. Association of SOX6 gene polymorphisms with Kashin-Beck disease risk in the Chinese Han population. Open Med (Wars) 2024; 19:20230883. [PMID: 38205152 PMCID: PMC10775412 DOI: 10.1515/med-2023-0883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
Kashin-Beck disease (KBD) is an endemic osteochondropathy. A specific gene called SRY-box transcription factor 6 (SOX6) is important for forming cartilage. This study aims to explore the potential correlation between SOX6 single nucleotide polymorphisms (SNPs) and KBD risk for the first time. In the case-control study, 735 unrelated Chinese Han individuals were enrolled. The four mutation sites of the SOX6 gene (rs4539287 G/A, rs3203295 C/A, rs7928675 C/A, and rs10832681 A/G) were screened and genotyped on the Agena MassARRAY platform. The correlation between SOX6 SNPs and KBD risk was explored based on logistic regression analysis. The interaction between SNP and SNP was analyzed based on the multi-factor dimensionality reduction (MDR) method. Overall analysis revealed a remarkable correlation between rs7928675 and rs10832681 and the reduction of KBD risk (p < 0.05). Subgroup analyses further indicated that these two SNPs have a significant protective effect on KBD risk among participants aged ≤65 years, males, and non-smokers (p < 0.05). MDR displayed a marked interaction between rs3203295 and rs10832681. Our study revealed that SOX6 rs7928675 and rs10832681 are markedly correlated with a reduced risk of KBD in the Chinese Han population, providing a new direction for the prevention, diagnosis, and treatment of KBD.
Collapse
Affiliation(s)
- Na He
- People’s Hospital of Changwu County, Zhaoren Street, Xianyang, Shaanxi 713600, China
| | - Aiwen Hong
- People’s Hospital of Changwu County, Zhaoren Street, Xianyang, Shaanxi 713600, China
| | - Kun Zhao
- People’s Hospital of Changwu County, Zhaoren Street, Xianyang, Shaanxi 713600, China
| | - Zhefan Zhang
- People’s Hospital of Changwu County, Zhaoren Street, Xianyang, Shaanxi 713600, China
| | - Shengli Wang
- People’s Hospital of Changwu County, Zhaoren Street, Xianyang, Shaanxi 713600, China
| | - Yaofei Jia
- People’s Hospital of Changwu County, Zhaoren Street, Xianyang, Shaanxi 713600, China
| |
Collapse
|
24
|
Jing Y, Jiang X, Ji Q, Wu Z, Wang W, Liu Z, Guillen-Garcia P, Esteban CR, Reddy P, Horvath S, Li J, Geng L, Hu Q, Wang S, Belmonte JCI, Ren J, Zhang W, Qu J, Liu GH. Genome-wide CRISPR activation screening in senescent cells reveals SOX5 as a driver and therapeutic target of rejuvenation. Cell Stem Cell 2023; 30:1452-1471.e10. [PMID: 37832549 DOI: 10.1016/j.stem.2023.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 08/04/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Our understanding of the molecular basis for cellular senescence remains incomplete, limiting the development of strategies to ameliorate age-related pathologies by preventing stem cell senescence. Here, we performed a genome-wide CRISPR activation (CRISPRa) screening using a human mesenchymal precursor cell (hMPC) model of the progeroid syndrome. We evaluated targets whose activation antagonizes cellular senescence, among which SOX5 outperformed as a top hit. Through decoding the epigenomic landscapes remodeled by overexpressing SOX5, we uncovered its role in resetting the transcription network for geroprotective genes, including HMGB2. Mechanistically, SOX5 binding elevated the enhancer activity of HMGB2 with increased levels of H3K27ac and H3K4me1, raising HMGB2 expression so as to promote rejuvenation. Furthermore, gene therapy with lentiviruses carrying SOX5 or HMGB2 rejuvenated cartilage and alleviated osteoarthritis in aged mice. Our study generated a comprehensive list of rejuvenators, pinpointing SOX5 as a potent driver for rejuvenation both in vitro and in vivo.
Collapse
Affiliation(s)
- Yaobin Jing
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wei Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Pedro Guillen-Garcia
- Department of Traumatology and Research Unit, Clinica CEMTRO, 28035 Madrid, Spain
| | - Concepcion Rodriguez Esteban
- Altos Labs, Inc., San Diego, CA 94022, USA; Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Pradeep Reddy
- Altos Labs, Inc., San Diego, CA 94022, USA; Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Steve Horvath
- Altos Labs, Inc., San Diego, CA 94022, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 10833, USA
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Lingling Geng
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Qinchao Hu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510060, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510060, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Chongqing Renji Hospital, University of Chinese Academy of Sciences, Chongqing 400062, China
| | - Juan Carlos Izpisua Belmonte
- Altos Labs, Inc., San Diego, CA 94022, USA; Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jie Ren
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Weiqi Zhang
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
25
|
Okita K, Hikiji H, Koga A, Nagai-Yoshioka Y, Yamasaki R, Mitsugi S, Fujii W, Ariyoshi W. Ascorbic acid enhances chondrocyte differentiation of ATDC5 by accelerating insulin receptor signaling. Cell Biol Int 2023; 47:1737-1748. [PMID: 37381608 DOI: 10.1002/cbin.12067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/06/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Chondrogenesis is strictly regulated by several factors, including cytokines, hormones, and extracellular matrix proteins. Mouse teratocarcinoma-derived lineage cells, differentiate into chondrocytes in the presence of insulin. Although ascorbic acid promotes chondrogenic differentiation, the detailed regulative mechanisms underlying its role in chondrogenesis remain unclear. Therefore, in this study, we evaluated the effects of ascorbic acid on insulin-induced chondrogenic differentiation of ATDC5 cells and the underlying intracellular signaling. The results revealed that insulin-stimulated collagen deposition, matrix formation, calcification, and expression of chondrogenic differentiation marker genes in ATDC5 cells. This enhancement by insulin was amplified with the addition of ascorbic acid. Molecular analysis revealed that the activation of insulin-induced phosphoinositide 3-kinase (PI3K)/Akt signaling was enhanced in the presence of ascorbic acid. In contrast, Wnt/β-catenin signaling was suppressed during chondrocyte differentiation via upregulation of the Wnt agonist, secreted Frizzled-related protein 1 (sFRP-1) and 3 (sFRP-3). Notably, ascorbic acid upregulated the expression of insulin receptors and their substrates (IRS-1 and IRS-2). Furthermore, ascorbic acid reversed the suppression of IRS-1 and IRS-2 protein by insulin. These results indicate that ascorbic acid positively regulates the chondrogenic differentiation of ATDC5 cells via enhancement of insulin signaling. Our findings provide a substantial basis for further elucidation of the regulatory mechanisms of chondrocyte differentiation and the pathophysiology of OA, thus aiding in development of effective treatment strategies.
Collapse
Affiliation(s)
- Kaede Okita
- Department of Health Promotion, Division of Infections and Molecular Biology, Kyushu Dental University, Fukuoka, Japan
- School of Oral Health Sciences, Faculty of Dentistry, Kyushu Dental University, Fukuoka, Japan
| | - Hisako Hikiji
- School of Oral Health Sciences, Faculty of Dentistry, Kyushu Dental University, Fukuoka, Japan
| | - Ayaka Koga
- Department of Health Promotion, Division of Infections and Molecular Biology, Kyushu Dental University, Fukuoka, Japan
- School of Oral Health Sciences, Faculty of Dentistry, Kyushu Dental University, Fukuoka, Japan
| | - Yoshie Nagai-Yoshioka
- Department of Health Promotion, Division of Infections and Molecular Biology, Kyushu Dental University, Fukuoka, Japan
| | - Ryota Yamasaki
- Department of Health Promotion, Division of Infections and Molecular Biology, Kyushu Dental University, Fukuoka, Japan
| | - Sho Mitsugi
- Department of Science of Physical Functions, Division of Oral and Maxillofacial Surgery, Kyushu Dental University, Fukuoka, Japan
| | - Wataru Fujii
- School of Oral Health Sciences, Faculty of Dentistry, Kyushu Dental University, Fukuoka, Japan
| | - Wataru Ariyoshi
- Department of Health Promotion, Division of Infections and Molecular Biology, Kyushu Dental University, Fukuoka, Japan
| |
Collapse
|
26
|
Waldrep KM, Rodgers JI, Garrett SM, Wolf BJ, Feghali-Bostwick CA. The Role of SOX9 in IGF-II-Mediated Pulmonary Fibrosis. Int J Mol Sci 2023; 24:11234. [PMID: 37510994 PMCID: PMC10378869 DOI: 10.3390/ijms241411234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Pulmonary fibrosis (PF) associated with systemic sclerosis (SSc) results in significant morbidity and mortality. We previously reported that insulin-like growth factor-II (IGF-II) is overexpressed in lung tissues and fibroblasts from SSc patients, and IGF-II fosters fibrosis by upregulating collagen type I, fibronectin, and TGFβ. We now show that IGF-II augments mRNA levels of profibrotic signaling molecules TGFβ2 (p ≤ 0.01) and TGFβ3 (p ≤ 0.05), collagen type III (p ≤ 0.01), and the collagen posttranslational modification enzymes P4HA2 (p ≤ 0.05), P3H2 (p ≤ 0.05), LOX (p = 0.065), LOXL2 (p ≤ 0.05), LOXL4 (p ≤ 0.05) in primary human lung fibroblasts. IGF-II increases protein levels of TGFβ2 (p ≤ 0.01), as well as COL3A1, P4HA2, P4Hβ, and LOXL4 (p ≤ 0.05). In contrast, IGF-II decreases mRNA levels of the collagen degradation enzymes cathepsin (CTS) K, CTSB, and CTSL and protein levels of CTSK (p ≤ 0.05). The SRY-box transcription factor 9 (SOX9) is overexpressed in SSc lung tissues at the mRNA (p ≤ 0.05) and protein (p ≤ 0.01) levels compared to healthy controls. IGF-II induces SOX9 in lung fibroblasts (p ≤ 0.05) via the IGF1R/IR hybrid receptor, and SOX9 regulates TGFβ2 (p ≤ 0.05), TGFβ3 (p ≤ 0.05), COL3A1 (p ≤ 0.01), and P4HA2 (p ≤ 0.001) downstream of IGF-II. Our results identify a novel IGF-II signaling axis and downstream targets that are regulated in a SOX9-dependent and -independent manner. Our findings provide novel insights on the role of IGF-II in promoting pulmonary fibrosis.
Collapse
Affiliation(s)
- Kristy M. Waldrep
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Jessalyn I. Rodgers
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Sara M. Garrett
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Bethany J. Wolf
- Department of Public Health Sciences, Biostatistics and Bioinformatics, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Carol A. Feghali-Bostwick
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| |
Collapse
|
27
|
Renaud L, Waldrep KM, da Silveira WA, Pilewski JM, Feghali-Bostwick CA. First Characterization of the Transcriptome of Lung Fibroblasts of SSc Patients and Healthy Donors of African Ancestry. Int J Mol Sci 2023; 24:3645. [PMID: 36835058 PMCID: PMC9966000 DOI: 10.3390/ijms24043645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/25/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disorder that results in fibrosis of the skin and visceral organs. SSc-associated pulmonary fibrosis (SSc-PF) is the leading cause of death amongst SSc patients. Racial disparity is noted in SSc as African Americans (AA) have a higher frequency and severity of disease than European Americans (EA). Using RNAseq, we determined differentially expressed genes (DEGs; q < 0.1, log2FC > |0.6|) in primary pulmonary fibroblasts from SSc lungs (SScL) and normal lungs (NL) of AA and EA patients to characterize the unique transcriptomic signatures of AA-NL and AA-SScL fibroblasts using systems-level analysis. We identified 69 DEGs in "AA-NL vs. EA-NL" and 384 DEGs in "AA-SScL vs. EA-SScL" analyses, and a comparison of disease mechanisms revealed that only 7.5% of DEGs were commonly deregulated in AA and EA patients. Surprisingly, we also identified an SSc-like signature in AA-NL fibroblasts. Our data highlight differences in disease mechanisms between AA and EA SScL fibroblasts and suggest that AA-NL fibroblasts are in a "pre-fibrosis" state, poised to respond to potential fibrotic triggers. The DEGs and pathways identified in our study provide a wealth of novel targets to better understand disease mechanisms leading to racial disparity in SSc-PF and develop more effective and personalized therapies.
Collapse
Affiliation(s)
- Ludivine Renaud
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kristy M. Waldrep
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Willian A. da Silveira
- Department of Biological Sciences, School of Life Sciences and Education, Staffordshire University, Stoke-on-Trent ST4 2DF, UK
| | - Joseph M. Pilewski
- Department of Medicine, Pulmonary, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Carol A. Feghali-Bostwick
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
28
|
Hillis DA, Garland T. Multiple solutions at the genomic level in response to selective breeding for high locomotor activity. Genetics 2023; 223:iyac165. [PMID: 36305689 PMCID: PMC9836024 DOI: 10.1093/genetics/iyac165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/14/2022] [Indexed: 01/19/2023] Open
Abstract
Replicate lines under uniform selection often evolve in different ways. Previously, analyses using whole-genome sequence data for individual mice (Mus musculus) from 4 replicate High Runner lines and 4 nonselected control lines demonstrated genomic regions that have responded consistently to selection for voluntary wheel-running behavior. Here, we ask whether the High Runner lines have evolved differently from each other, even though they reached selection limits at similar levels. We focus on 1 High Runner line (HR3) that became fixed for a mutation at a gene of major effect (Myh4Minimsc) that, in the homozygous condition, causes a 50% reduction in hindlimb muscle mass and many pleiotropic effects. We excluded HR3 from SNP analyses and identified 19 regions not consistently identified in analyses with all 4 lines. Repeating analyses while dropping each of the other High Runner lines identified 12, 8, and 6 such regions. (Of these 45 regions, 37 were unique.) These results suggest that each High Runner line indeed responded to selection somewhat uniquely, but also that HR3 is the most distinct. We then applied 2 additional analytical approaches when dropping HR3 only (based on haplotypes and nonstatistical tests involving fixation patterns). All 3 approaches identified 7 new regions (as compared with analyses using all 4 High Runner lines) that include genes associated with activity levels, dopamine signaling, hippocampus morphology, heart size, and body size, all of which differ between High Runner and control lines. Our results illustrate how multiple solutions and "private" alleles can obscure general signatures of selection involving "public" alleles.
Collapse
Affiliation(s)
- David A Hillis
- Genetics, Genomics, and Bioinformatics Graduate Program, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
29
|
Min Y, Li Q, Yu H. Characterization of larval shell formation and CgPOU2F1, CgSox5, and CgPax6 gene expression during shell morphogenesis in Crassostrea gigas. Comp Biochem Physiol B Biochem Mol Biol 2023; 263:110783. [PMID: 35926704 DOI: 10.1016/j.cbpb.2022.110783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Shell formation is a dynamic process involving organic matrix secretion and calcification. In this study, we characterized shell morphogenesis during larval development in Crassostrea gigas. Using scanning electron microscopy (SEM) and fluorescence staining, we demonstrated that shell field, the first morphologically distinguishable shell-forming tissue, became visible soon after enlargement of the blastopore at the anterior end of the trochophore. Shell organic matrix namely protein polysaccharides and calcified structure appeared as a slit at the dorsal side of the embryo. The early shell field began to extend along the dorsal side of the trochophore larvae, and became a saddle shaped shell field that gave rise to the prodissoconch I embryonic shell in the early D-shaped larvae. Subsequently, prodissoconch II shell was formed in the late D-shaped larvae with a characteristic appearance of growth lines. To identify gene expression markers for studying shell formation, we isolated three potential larval shell formation genes CgPOU2F1, CgSox5, and CgPax6 and analyzed their expression during shell morphogenesis. The three potential shell formation genes possessed a similar pattern of expression. Their expression was detected in the shell gland and shell field regions in early D-shaped larvae, hereafter, their expression was detected at the larval mantle edge in the calcified shell stages. Together, these studies provide knowledge of shell morphogenesis in pacific oyster and molecular markers for studying the molecular regulation of biomineralization and shell formation.
Collapse
Affiliation(s)
- Yue Min
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
30
|
Copy Number Variation of the SOX6 Gene and Its Associations with Growth Traits in Ashidan Yak. Animals (Basel) 2022; 12:ani12223074. [PMID: 36428302 PMCID: PMC9686495 DOI: 10.3390/ani12223074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Copy number variation (CNV) is a fundamental type of structural variation of the genome affecting the economic traits of livestock. The SOX6 gene (sex-determining region Y-box 6), as a transcription factor, has multiple functions with regard to sex determination, embryonic growth, the nervous system development, as well as bone, and various organ formation. This study employed quantitative real-time fluorescence quota PCR (qPCR) for detecting the SOX6-CNV of the 311 Ashidan yaks and analyzed the correlation of the SOX6-CNV with four phenotypes (including body weight, withers height, body length, and chest girth) of the yaks aged 6, 12, 18, and 30 months using ANOVA and multiple comparisons. Furthermore, the SOX6 gene expression was identified in seven different tissues of the yaks. The experiment results demonstrated the expression of SOX6 in each tissue, and the kidney and muscle tissue were found to have higher relative expression levels. Based on the processing by IBM SPSS software, SOX6-CNV was significantly correlated with the chest girth of the 6-months old yaks (p < 0.05) and 30-months yaks (p < 0.05), and withers height of 6 months yaks (p < 0.05) and 18-months yaks (p < 0.05), as well as the normal type of CNV, was chosen for yak breeding. In conclusion, SOX6 might be prominently involved in promoting growth and development of yaks, suggesting that the SOX6 gene can be used in breeding yaks by molecular marker-assisted selection (MAS). The study also offered some important insights into the references and clues for the genetic breeding of yaks.
Collapse
|
31
|
Zhang W, Li X, Jiang Y, Zhou M, Liu L, Su S, Xu C, Li X, Wang C. Genetic architecture and selection of Anhui autochthonous pig population revealed by whole genome resequencing. Front Genet 2022; 13:1022261. [PMID: 36324508 PMCID: PMC9618877 DOI: 10.3389/fgene.2022.1022261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
The genetic resources among pigs in Anhui Province are diverse, but their value and potential have yet to be discovered. To illustrate the genetic diversity and population structure of the Anhui pigs population, we resequenced the genome of 150 pigs from six representative Anhui pigs populations and analyzed this data together with the sequencing data from 40 Asian wild boars and commercial pigs. Our results showed that Anhui pigs were divided into two distinct types based on ancestral descent: Wannan Spotted pig (WSP) and Wannan Black pig (WBP) origins from the same ancestor and the other four populations origins from another ancestor. We also identified several potential selective sweep regions associated with domestication characteristics among Anhui pigs, including reproduction-associated genes (CABS1, INSL6, MAP3K12, IGF1R, INSR, LIMK2, PATZ1, MAPK1), lipid- and meat-related genes (SNX19, MSTN, MC5R, PRKG1, CREBBP, ADCY9), and ear size genes (MSRB3 and SOX5). Therefore, these findings expand the catalogue and how these genetic differences among pigs and this newly generated data will be a valuable resource for future genetic studies and for improving genome-assisted breeding of pigs and other domesticated animals.
Collapse
|
32
|
Li M, Zhang L, Li J, Zhu Q. Direct Reprogramming of Mouse Subchondral Bone Osteoblasts into Chondrocyte-like Cells. Biomedicines 2022; 10:2582. [PMID: 36289842 PMCID: PMC9599480 DOI: 10.3390/biomedicines10102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment of full-thickness articular cartilage defects with exposure of subchondral bone often seen in osteoarthritic conditions has long been a great challenge, especially with a focus on the feasibility of in situ cartilage regeneration through minimally invasive procedures. Osteoblasts that situate in the subchondral bone plate may be considered a potentially vital endogenous source of cells for cartilage resurfacing through direct reprogramming into chondrocytes. Microarray-based gene expression profiles were generated to compare tissue-specific transcripts between subchondral bone and cartilage of mice and to assess age-dependent differences of chondrocytes as well. On osteoblast cell lines established from mouse proximal tibial subchondral bone, sequential screening by co-transduction of transcription factor (TF) genes that distinguish chondrocytes from osteoblasts reveals a shortlist of potential reprogramming factors exhibiting combined effects in inducing chondrogenesis of subchondral bone osteoblasts. A further combinatorial approach unexpectedly identified two 3-TF combinations containing Sox9 and Sox5 that exhibit differences in reprogramming propensity with the third TF c-Myc or Plagl1, which appeared to direct the converted chondrocytes toward either a superficial or a deeper zone phenotype. Thus, our approach demonstrates the possibility of converting osteoblasts into two major chondrocyte subpopulations with two combinations of three genes (Sox9, Sox5, and c-Myc or Plagl1). The findings may have important implications for developing novel in situ regeneration strategies for the reconstruction of full-thickness cartilage defects.
Collapse
Affiliation(s)
| | | | | | - Qing Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
33
|
Akinyemi MO, Finucan J, Grytsay A, Osaiyuwu OH, Adegbaju MS, Ogunade IM, Thomas BN, Peters SO, Morenikeji OB. Molecular Evolution and Inheritance Pattern of Sox Gene Family among Bovidae. Genes (Basel) 2022; 13:genes13101783. [PMID: 36292668 PMCID: PMC9602320 DOI: 10.3390/genes13101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/04/2022] Open
Abstract
Sox genes are an evolutionarily conserved family of transcription factors that play important roles in cellular differentiation and numerous complex developmental processes. In vertebrates, Sox proteins are required for cell fate decisions, morphogenesis, and the control of self-renewal in embryonic and adult stem cells. The Sox gene family has been well-studied in multiple species including humans but there has been scanty or no research into Bovidae. In this study, we conducted a detailed evolutionary analysis of this gene family in Bovidae, including their physicochemical properties, biological functions, and patterns of inheritance. We performed a genome-wide cataloguing procedure to explore the Sox gene family using multiple bioinformatics tools. Our analysis revealed a significant inheritance pattern including conserved motifs that are critical to the ability of Sox proteins to interact with the regulatory regions of target genes and orchestrate multiple developmental and physiological processes. Importantly, we report an important conserved motif, EFDQYL/ELDQYL, found in the SoxE and SoxF groups but not in other Sox groups. Further analysis revealed that this motif sequence accounts for the binding and transactivation potential of Sox proteins. The degree of protein–protein interaction showed significant interactions among Sox genes and related genes implicated in embryonic development and the regulation of cell differentiation. We conclude that the Sox gene family uniquely evolved in Bovidae, with a few exhibiting important motifs that drive several developmental and physiological processes.
Collapse
Affiliation(s)
- Mabel O. Akinyemi
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, NJ 07940, USA
| | - Jessica Finucan
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, NJ 07940, USA
| | - Anastasia Grytsay
- Division of Biological and Health Sciences, University of Pittsburgh, Bradford, PA 16701, USA
| | - Osamede H. Osaiyuwu
- Department of Animal Science, Faculty of Agriculture, University of Ibadan, Ibadan 200005, Nigeria
| | - Muyiwa S. Adegbaju
- Institute for Plant Biotechnology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Ibukun M. Ogunade
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26505, USA
| | - Bolaji N. Thomas
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Sunday O. Peters
- Department of Animal Science, Berry College, Mount Berry, GA 30149, USA
| | - Olanrewaju B. Morenikeji
- Division of Biological and Health Sciences, University of Pittsburgh, Bradford, PA 16701, USA
- Correspondence: ; Tel.: +1-(585)-490-7271
| |
Collapse
|
34
|
Ming Z, Vining B, Bagheri-Fam S, Harley V. SOX9 in organogenesis: shared and unique transcriptional functions. Cell Mol Life Sci 2022; 79:522. [PMID: 36114905 PMCID: PMC9482574 DOI: 10.1007/s00018-022-04543-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/13/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
The transcription factor SOX9 is essential for the development of multiple organs including bone, testis, heart, lung, pancreas, intestine and nervous system. Mutations in the human SOX9 gene led to campomelic dysplasia, a haploinsufficiency disorder with several skeletal malformations frequently accompanied by 46, XY sex reversal. The mechanisms underlying the diverse SOX9 functions during organ development including its post-translational modifications, the availability of binding partners, and tissue-specific accessibility to target gene chromatin. Here we summarize the expression, activities, and downstream target genes of SOX9 in molecular genetic pathways essential for organ development, maintenance, and function. We also provide an insight into understanding the mechanisms that regulate the versatile roles of SOX9 in different organs.
Collapse
Affiliation(s)
- Zhenhua Ming
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Brittany Vining
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Vincent Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
35
|
Tiffany AS, Harley BAC. Growing Pains: The Need for Engineered Platforms to Study Growth Plate Biology. Adv Healthc Mater 2022; 11:e2200471. [PMID: 35905390 PMCID: PMC9547842 DOI: 10.1002/adhm.202200471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Growth plates, or physis, are highly specialized cartilage tissues responsible for longitudinal bone growth in children and adolescents. Chondrocytes that reside in growth plates are organized into three distinct zones essential for proper function. Modeling key features of growth plates may provide an avenue to develop advanced tissue engineering strategies and perspectives for cartilage and bone regenerative medicine applications and a platform to study processes linked to disease progression. In this review, a brief introduction of the growth plates and their role in skeletal development is first provided. Injuries and diseases of the growth plates as well as physiological and pathological mechanisms associated with remodeling and disease progression are discussed. Growth plate biology, namely, its architecture and extracellular matrix organization, resident cell types, and growth factor signaling are then focused. Next, opportunities and challenges for developing 3D biomaterial models to study aspects of growth plate biology and disease in vitro are discussed. Finally, opportunities for increasingly sophisticated in vitro biomaterial models of the growth plate to study spatiotemporal aspects of growth plate remodeling, to investigate multicellular signaling underlying growth plate biology, and to develop platforms that address key roadblocks to in vivo musculoskeletal tissue engineering applications are described.
Collapse
Affiliation(s)
- Aleczandria S. Tiffany
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Brendan A. C. Harley
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
36
|
Griffin CT, Botelho JF, Hanson M, Fabbri M, Smith-Paredes D, Carney RM, Norell MA, Egawa S, Gatesy SM, Rowe TB, Elsey RM, Nesbitt SJ, Bhullar BAS. The developing bird pelvis passes through ancestral dinosaurian conditions. Nature 2022; 608:346-352. [PMID: 35896745 DOI: 10.1038/s41586-022-04982-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 06/15/2022] [Indexed: 11/08/2022]
Abstract
Living birds (Aves) have bodies substantially modified from the ancestral reptilian condition. The avian pelvis in particular experienced major changes during the transition from early archosaurs to living birds1,2. This stepwise transformation is well documented by an excellent fossil record2-4; however, the ontogenetic alterations that underly it are less well understood. We used embryological imaging techniques to examine the morphogenesis of avian pelvic tissues in three dimensions, allowing direct comparison with the fossil record. Many ancestral dinosaurian features2 (for example, a forward-facing pubis, short ilium and pubic 'boot') are transiently present in the early morphogenesis of birds and arrive at their typical 'avian' form after transitioning through a prenatal developmental sequence that mirrors the phylogenetic sequence of character acquisition. We demonstrate quantitatively that avian pelvic ontogeny parallels the non-avian dinosaur-to-bird transition and provide evidence for phenotypic covariance within the pelvis that is conserved across Archosauria. The presence of ancestral states in avian embryos may stem from this conserved covariant relationship. In sum, our data provide evidence that the avian pelvis, whose early development has been little studied5-7, evolved through terminal addition-a mechanism8-10 whereby new apomorphic states are added to the end of a developmental sequence, resulting in expression8,11 of ancestral character states earlier in that sequence. The phenotypic integration we detected suggests a previously unrecognized mechanism for terminal addition and hints that retention of ancestral states in development is common during evolutionary transitions.
Collapse
Affiliation(s)
- Christopher T Griffin
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
| | - João F Botelho
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
- Departamento Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michael Hanson
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Matteo Fabbri
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
- Nagaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Daniel Smith-Paredes
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Ryan M Carney
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Mark A Norell
- Division of Vertebrate Paleontology, American Museum of Natural History, New York, NY, USA
| | - Shiro Egawa
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Stephen M Gatesy
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Timothy B Rowe
- Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ruth M Elsey
- Rockefeller Wildlife Refuge, Louisiana Department of Wildlife and Fisheries, Grand Chenier, LA, USA
| | | | - Bhart-Anjan S Bhullar
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA.
| |
Collapse
|
37
|
Kawata M, Teramura T, Ordoukhanian P, Head SR, Natarajan P, Sundaresan A, Olmer M, Asahara H, Lotz MK. Krüppel-like factor-4 and Krüppel-like factor-2 are important regulators of joint tissue cells and protect against tissue destruction and inflammation in osteoarthritis. Ann Rheum Dis 2022; 81:1179-1188. [PMID: 35534137 PMCID: PMC9643672 DOI: 10.1136/annrheumdis-2021-221867] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/24/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Analysing expression patterns of Krüppel-like factor (KLF) transcription factors in normal and osteoarthritis (OA) human cartilage, and determining functions and mechanisms of KLF4 and KLF2 in joint homoeostasis and OA pathogenesis. METHODS Experimental approaches included human joint tissues cells, transgenic mice and mouse OA model with viral KLF4 gene delivery to demonstrate therapeutic benefit in structure and pain improvement. Mechanistic studies applied global gene expression analysis and chromatin immunoprecipitation sequencing (ChIP-seq). RESULTS Several KLF genes were significantly decreased in OA cartilage. Among them, KLF4 and KLF2 were strong inducers of cartilage collagen genes and Proteoglycan-4. Cartilage-specific deletion of Klf2 in mature mice aggravated severity of experimental OA. Transduction of human chondrocytes with Adenovirus (Ad) expressing KLF4 or KLF2 enhanced expression of major cartilage extracellular matrix (ECM) genes and SRY-box transcription factor-9, and suppressed mediators of inflammation and ECM-degrading enzymes. Ad-KLF4 and Ad-KLF2 enhanced similar protective functions in meniscus cells and synoviocytes, and promoted chondrocytic differentiation of human mesenchymal stem cells. Viral KLF4 delivery into mouse knees reduced severity of OA-associated changes in cartilage, meniscus and synovium, and improved pain behaviours. ChIP-seq analysis suggested that KLF4 directly bound cartilage signature genes. Ras-related protein-1 signalling was the most enriched pathway in KLF4-transduced cells, and its signalling axis was involved in upregulating cartilage ECM genes by KLF4 and KLF2. CONCLUSIONS KLF4 and KLF2 may be central transcription factors that increase protective and regenerative functions in joint tissue cells, suggesting that KLF gene transfer or molecules upregulating KLFs are therapeutic candidates for OA.
Collapse
Affiliation(s)
- Manabu Kawata
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Takeshi Teramura
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Philip Ordoukhanian
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, California, USA
| | - Steven R Head
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, California, USA
| | - Padmaja Natarajan
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, California, USA
| | - Aishwarya Sundaresan
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, California, USA
| | - Merissa Olmer
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Hiroshi Asahara
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Martin K Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| |
Collapse
|
38
|
Abstract
Nanomaterials are promising in the development of innovative therapeutic options that include tissue and organ replacement, as well as bone repair and regeneration. The expansion of new nanoscaled biomaterials is based on progress in the field of nanotechnologies, material sciences, and biomedicine. In recent decades, nanomaterial systems have bridged the line between the synthetic and natural worlds, leading to the emergence of a new science called nanomaterial design for biological applications. Nanomaterials replicating bone properties and providing unique functions help in bone tissue engineering. This review article is focused on nanomaterials utilized in or being explored for the purpose of bone repair and regeneration. After a brief overview of bone biology, including a description of bone cells, matrix, and development, nanostructured materials and different types of nanoparticles are discussed in detail.
Collapse
|
39
|
Gomez-Picos P, Ovens K, Eames BF. Limb Mesoderm and Head Ectomesenchyme Both Express a Core Transcriptional Program During Chondrocyte Differentiation. Front Cell Dev Biol 2022; 10:876825. [PMID: 35784462 PMCID: PMC9247276 DOI: 10.3389/fcell.2022.876825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
To explain how cartilage appeared in different parts of the vertebrate body at discrete times during evolution, we hypothesize that different embryonic populations co-opted expression of a core gene regulatory network (GRN) driving chondrocyte differentiation. To test this hypothesis, laser-capture microdissection coupled with RNA-seq was used to reveal chondrocyte transcriptomes in the developing chick humerus and ceratobranchial, which are mesoderm- and neural crest-derived, respectively. During endochondral ossification, two general types of chondrocytes differentiate. Immature chondrocytes (IMM) represent the early stages of cartilage differentiation, while mature chondrocytes (MAT) undergo additional stages of differentiation, including hypertrophy and stimulating matrix mineralization and degradation. Venn diagram analyses generally revealed a high degree of conservation between chondrocyte transcriptomes of the limb and head, including SOX9, COL2A1, and ACAN expression. Typical maturation genes, such as COL10A1, IBSP, and SPP1, were upregulated in MAT compared to IMM in both limb and head chondrocytes. Gene co-expression network (GCN) analyses of limb and head chondrocyte transcriptomes estimated the core GRN governing cartilage differentiation. Two discrete portions of the GCN contained genes that were differentially expressed in limb or head chondrocytes, but these genes were enriched for biological processes related to limb/forelimb morphogenesis or neural crest-dependent processes, respectively, perhaps simply reflecting the embryonic origin of the cells. A core GRN driving cartilage differentiation in limb and head was revealed that included typical chondrocyte differentiation and maturation markers, as well as putative novel "chondrocyte" genes. Conservation of a core transcriptional program during chondrocyte differentiation in both the limb and head suggest that the same core GRN was co-opted when cartilage appeared in different regions of the skeleton during vertebrate evolution.
Collapse
Affiliation(s)
- Patsy Gomez-Picos
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Katie Ovens
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - B. Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
40
|
Feng L, Yang Z, Li Y, Pan Q, Zhang X, Wu X, Lo JHT, Wang H, Bai S, Lu X, Wang M, Lin S, Pan X, Li G. MicroRNA-378 contributes to osteoarthritis by regulating chondrocyte autophagy and bone marrow mesenchymal stem cell chondrogenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:328-341. [PMID: 35474736 PMCID: PMC9010521 DOI: 10.1016/j.omtn.2022.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/17/2022] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA) is the most common joint disease; thus, understanding the pathological mechanisms of OA initiation and progression is critical for OA treatment. MicroRNAs (miRNAs) have been shown to be involved in the progression of osteoarthritis, one candidate is microRNA-378 (miR-378), which is highly expressed in the synovium of OA patients during late-stage disease, but its function and the underlying mechanisms of how it contributes to disease progression remain poorly understood. In this study, miR-378 transgenic (TG) mice were used to study the role of miR-378 in OA development. miR-378 TG mice developed spontaneous OA and also exaggerated surgery-induced disease progression. Upon in vitro OA induction, miR-378 expression was upregulated and correlated with elevated inflammation and chondrocyte hypertrophy. Chondrocytes isolated from articular cartilage from miR-378 TG mice showed impaired chondrogenic differentiation. The bone marrow mesenchymal stem cells (BMSCs) collected from miR-378 TG mice also showed repressed chondrogenesis compared with the control group. The autophagy-related protein Atg2a, as well as chondrogenesis regulator Sox6, were identified as downstream targets of miR-378. Ectopic expression of Atg2a and Sox6 rescued miR-378-repressed chondrocyte autophagy and BMSC chondrogenesis, respectively. Anti-miR-378 lentivirus intra-articular injection in an established OA mouse model was shown to ameliorate OA progression, promote articular regeneration, and repress hypertrophy. Atg2a and Sox6 were again confirmed to be the target of miR-378 in vivo. In conclusion, miR-378 amplified OA development via repressing chondrocyte autophagy and by inhibiting BMSCs chondrogenesis, thus indicating miR-378 may be a potential therapeutic target for OA treatments.
Collapse
Affiliation(s)
- Lu Feng
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Zhengmeng Yang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Yucong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Qi Pan
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
- Department of Pediatric Orthopaedics, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, PR China
| | - Xiaoting Zhang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Xiaomin Wu
- Department of Orthopaedics and Traumatology, People’s Hospital of Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen, PR China
| | - Jessica Hiu Tung Lo
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Shanshan Bai
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Xuan Lu
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Ming Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Xiaohua Pan
- Department of Orthopaedics and Traumatology, People’s Hospital of Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen, PR China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| |
Collapse
|
41
|
Ichise N, Sato T, Fusagawa H, Yamazaki H, Kudo T, Ogon I, Tohse N. Ultrastructural Assessment and Proteomic Analysis in Myofibrillogenesis in the Heart Primordium After Heartbeat Initiation in Rats. Front Physiol 2022; 13:907924. [PMID: 35615667 PMCID: PMC9124805 DOI: 10.3389/fphys.2022.907924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Myofibrillogenesis is an essential process for cardiogenesis and is closely related to excitation-contraction coupling and the maintenance of heartbeat. It remains unclear whether the formation of myofibrils and sarcomeres is associated with heartbeat initiation in the early embryonic heart development. Here, we investigated the association between the ultrastructure of myofibrils assessed by transmission electron microscopy and their proteomic profiling assessed by data-independent acquisition mass spectrometry (DIA-MS) in the rat heart primordia before and after heartbeat initiation at embryonic day 10.0, when heartbeat begins in rats, and in the primitive heart tube at embryonic day 11.0. Bundles of myofilaments were scattered in a few cells of the heart primordium after heartbeat initiation, whereas there were no typical sarcomeres in the heart primordia both before and after heartbeat initiation. Sarcomeres with Z-lines were identified in cells of the primitive heart tube, though myofilaments were not aligned. DIA-MS proteome analysis revealed that only 43 proteins were significantly upregulated by more than 2.0 fold among a total of 7,762 detected proteins in the heart primordium after heartbeat initiation compared with that before heartbeat initiation. Indeed, of those upregulated proteins, 12 (27.9%) were constituent proteins of myofibrils and 10 (23.3%) were proteins that were accessories and regulators for myofibrillogenesis, suggesting that upregulated proteins that are associated with heartbeat initiation were enriched in myofibrillogenesis. Collectively, our results suggest that the establishment of heartbeat is induced by development of bundles of myofilaments with upregulated proteins associated with myofibrillogensis, whereas sarcomeres are not required for the initial heartbeat.
Collapse
Affiliation(s)
- Nobutoshi Ichise
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- *Correspondence: Tatsuya Sato,
| | - Hiroyori Fusagawa
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroya Yamazaki
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Taiki Kudo
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Izaya Ogon
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
42
|
Liao HJ, Chang CH, Huang CYF, Chen HT. Potential of Using Infrapatellar–Fat–Pad–Derived Mesenchymal Stem Cells for Therapy in Degenerative Arthritis: Chondrogenesis, Exosomes, and Transcription Regulation. Biomolecules 2022; 12:biom12030386. [PMID: 35327578 PMCID: PMC8945217 DOI: 10.3390/biom12030386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Infrapatellar fat pad–derived mesenchymal stem cells (IPFP-MSCs) are a type of adipose-derived stem cell (ADSC). They potentially contribute to cartilage regeneration and modulation of the immune microenvironment in patients with osteoarthritis (OA). The ability of IPFP-MSCs to increase chondrogenic capacity has been reported to be greater, less age dependent, and less affected by inflammatory changes than that of other MSCs. Transcription-regulatory factors strictly regulate the cartilage differentiation of MSCs. However, few studies have explored the effect of transcriptional factors on IPFP-MSC-based neocartilage formation, cartilage engineering, and tissue functionality during and after chondrogenesis. Instead of intact MSCs, MSC-derived extracellular vesicles could be used for the treatment of OA. Furthermore, exosomes are increasingly being considered the principal therapeutic agent in MSC secretions that is responsible for the regenerative and immunomodulatory functions of MSCs in cartilage repair. The present study provides an overview of advancements in enhancement strategies for IPFP-MSC chondrogenic differentiation, including the effects of transcriptional factors, the modulation of released exosomes, delivery mechanisms for MSCs, and ethical and regulatory points concerning the development of MSC products. This review will contribute to the understanding of the IPFP-MSC chondrogenic differentiation process and enable the improvement of IPFP-MSC-based cartilage tissue engineering.
Collapse
Affiliation(s)
- Hsiu-Jung Liao
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan;
| | - Chih-Hung Chang
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan;
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City 320315, Taiwan
- Correspondence: (C.-H.C.); (H.-T.C.)
| | - Chi-Ying F. Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hui-Ting Chen
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Correspondence: (C.-H.C.); (H.-T.C.)
| |
Collapse
|
43
|
De Kinderen P, Meester J, Loeys B, Peeters S, Gouze E, Woods S, Mortier G, Verstraeten A. Differentiation of Induced Pluripotent Stem Cells Into Chondrocytes: Methods and Applications for Disease Modeling and Drug Discovery. J Bone Miner Res 2022; 37:397-410. [PMID: 35124831 DOI: 10.1002/jbmr.4524] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/11/2022]
Abstract
Induced pluripotent stem cell (iPSC) technology allows pathomechanistic and therapeutic investigation of human heritable disorders affecting tissue types whose collection from patients is difficult or even impossible. Among them are cartilage diseases. Over the past decade, iPSC-chondrocyte disease models have been shown to exhibit several key aspects of known disease mechanisms. Concurrently, an increasing number of protocols to differentiate iPSCs into chondrocytes have been published, each with its respective (dis)advantages. In this review we provide a comprehensive overview of the different differentiation approaches, the hitherto described iPSC-chondrocyte disease models and mechanistic and/or therapeutic insights that have been derived from their investigation, and the current model limitations. Key lessons are that the most appropriate differentiation approach is dependent upon the cartilage disease under investigation and that further optimization is still required to recapitulate the in vivo cartilage. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Pauline De Kinderen
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Josephina Meester
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Silke Peeters
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Elvire Gouze
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Geert Mortier
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Aline Verstraeten
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
44
|
Pouremamali F, Vahedian V, Hassani N, Mirzaei S, Pouremamali A, Kazemzadeh H, Faridvand Y, Jafari-gharabaghlou D, Nouri M, Maroufi NF. The role of SOX family in cancer stem cell maintenance: With a focus on SOX2. Pathol Res Pract 2022; 231:153783. [DOI: 10.1016/j.prp.2022.153783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
|
45
|
Zhu M, Zhong W, Cao W, Zhang Q, Wu G. Chondroinductive/chondroconductive peptides and their-functionalized biomaterials for cartilage tissue engineering. Bioact Mater 2022; 9:221-238. [PMID: 34820567 PMCID: PMC8585793 DOI: 10.1016/j.bioactmat.2021.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
The repair of articular cartilage defects is still challenging in the fields of orthopedics and maxillofacial surgery due to the avascular structure of articular cartilage and the limited regenerative capacity of mature chondrocytes. To provide viable treatment options, tremendous efforts have been made to develop various chondrogenically-functionalized biomaterials for cartilage tissue engineering. Peptides that are derived from and mimic the functions of chondroconductive cartilage extracellular matrix and chondroinductive growth factors, represent a unique group of bioactive agents for chondrogenic functionalization. Since they can be chemically synthesized, peptides bear better reproducibility, more stable efficacy, higher modifiability and yielding efficiency in comparison with naturally derived biomaterials and recombinant growth factors. In this review, we summarize the current knowledge in the designs of the chondroinductive/chondroconductive peptides, the underlying molecular mechanisms and their-functionalized biomaterials for cartilage tissue engineering. We also systematically compare their in-vitro and in-vivo efficacies in inducing chondrogenesis. Our vision is to stimulate the development of novel peptides and their-functionalized biomaterials for cartilage tissue engineering.
Collapse
Affiliation(s)
- Mingjing Zhu
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands
| | - Wenchao Zhong
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Wei Cao
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Qingbin Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| |
Collapse
|
46
|
De la Fuente-Hernandez MA, Sarabia-Sanchez MA, Melendez-Zajgla J, Maldonado-Lagunas V. Role of lncRNAs into Mesenchymal Stromal Cell Differentiation. Am J Physiol Cell Physiol 2022; 322:C421-C460. [PMID: 35080923 DOI: 10.1152/ajpcell.00364.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Currently, findings support that 75% of the human genome is actively transcribed, but only 2% is translated into a protein, according to databases such as ENCODE (Encyclopedia of DNA Elements) [1]. The development of high-throughput sequencing technologies, computational methods for genome assembly and biological models have led to the realization of the importance of the previously unconsidered non-coding fraction of the genome. Along with this, noncoding RNAs have been shown to be epigenetic, transcriptional and post-transcriptional regulators in a large number of cellular processes [2]. Within the group of non-coding RNAs, lncRNAs represent a fascinating field of study, given the functional versatility in their mode of action on their molecular targets. In recent years, there has been an interest in learning about lncRNAs in MSC differentiation. The aim of this review is to address the signaling mechanisms where lncRNAs are involved, emphasizing their role in either stimulating or inhibiting the transition to differentiated cell. Specifically, the main types of MSC differentiation are discussed: myogenesis, osteogenesis, adipogenesis and chondrogenesis. The description of increasingly new lncRNAs reinforces their role as players in the well-studied field of MSC differentiation, allowing a step towards a better understanding of their biology and their potential application in the clinic.
Collapse
Affiliation(s)
- Marcela Angelica De la Fuente-Hernandez
- Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sanchez
- Facultad de Medicina, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | |
Collapse
|
47
|
Lie MU, Pedersen LM, Heuch I, Winsvold B, Gjerstad J, Hasvik E, Nygaard ØP, Grotle M, Matre D, Zwart JA, Nilsen KB. Low Back Pain With Persistent Radiculopathy; the Clinical Role of Genetic Variants in the Genes SOX5, CCDC26/GSDMC and DCC. Front Genet 2022; 12:757632. [PMID: 35140737 PMCID: PMC8819060 DOI: 10.3389/fgene.2021.757632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/29/2021] [Indexed: 12/28/2022] Open
Abstract
In a recently published genome-wide association study (GWAS) chronic back pain was associated with three loci; SOX5, CCDC26/GSDMC and DCC. This GWAS was based on a heterogeneous sample of back pain disorders, and it is unknown whether these loci are of clinical relevance for low back pain (LBP) with persistent radiculopathy. Thus, we examine if LBP with radiculopathy 12 months after an acute episode of LBP with radiculopathy is associated with the selected single nucleotide polymorphisms (SNPs); SOX5 rs34616559, CCDC26/GSDMC rs7833174 and DCC rs4384683. In this prospective cohort study, subjects admitted to a secondary health care institution due to an acute episode of LBP with radiculopathy, reported back pain, leg pain, and Oswestry Disability Index (ODI), were genotyped and followed up at 12 months (n = 338). Kruskal-Wallis H test showed no association between the SNPs and back pain, leg pain or ODI. In conclusion, LBP with radiculopathy 12 months after an acute episode of LBP with radiculopathy, is not associated with the selected SNPs; SOX5 rs34616559, CCDC26/GSDMC rs7833174 and DCC rs4384683. This absent or weak association suggests that the SNPs previously associated with chronic back pain are not useful as prognostic biomarkers for LBP with persistent radiculopathy.
Collapse
Affiliation(s)
- Marie Udnesseter Lie
- Research and Communication Unit for Musculoskeletal Health (FORMI), Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- *Correspondence: Marie Udnesseter Lie,
| | - Linda Margareth Pedersen
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Physiotherapy, Oslo Metropolitan University, Oslo, Norway
| | - Ingrid Heuch
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Bendik Winsvold
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Johannes Gjerstad
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway
- Department of Bioscience, University of Oslo, Oslo, Norway
| | - Eivind Hasvik
- Department of Physical Medicine and Rehabilitation, Østfold Hospital Trust, Grålum, Norway
| | - Øystein Petter Nygaard
- Department of Neurosurgery, St Olavs University Hospital, Trondheim, Norway
- Department of Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- National Advisory Unit on Spinal Surgery, St Olavs Hospital, Trondheim, Norway
| | - Margreth Grotle
- Research and Communication Unit for Musculoskeletal Health (FORMI), Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Physiotherapy, Oslo Metropolitan University, Oslo, Norway
| | - Dagfinn Matre
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway
| | - John-Anker Zwart
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
48
|
Liu NQ, Lin Y, Li L, Lu J, Geng D, Zhang J, Jashashvili T, Buser Z, Magallanes J, Tassey J, Shkhyan R, Sarkar A, Lopez N, Lee S, Lee Y, Wang L, Petrigliano FA, Van Handel B, Lyons K, Evseenko D. gp130/STAT3 signaling is required for homeostatic proliferation and anabolism in postnatal growth plate and articular chondrocytes. Commun Biol 2022; 5:64. [PMID: 35039652 PMCID: PMC8763901 DOI: 10.1038/s42003-021-02944-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/03/2021] [Indexed: 02/05/2023] Open
Abstract
Growth of long bones and vertebrae is maintained postnatally by a long-lasting pool of progenitor cells. Little is known about the molecular mechanisms that regulate the output and maintenance of the cells that give rise to mature cartilage. Here we demonstrate that postnatal chondrocyte-specific deletion of a transcription factor Stat3 results in severely reduced proliferation coupled with increased hypertrophy, growth plate fusion, stunting and signs of progressive dysfunction of the articular cartilage. This effect is dimorphic, with females more strongly affected than males. Chondrocyte-specific deletion of the IL-6 family cytokine receptor gp130, which activates Stat3, phenocopied Stat3-deletion; deletion of Lifr, one of many co-receptors that signals through gp130, resulted in a milder phenotype. These data define a molecular circuit that regulates chondrogenic cell maintenance and output and reveals a pivotal positive function of IL-6 family cytokines in the skeletal system with direct implications for skeletal development and regeneration.
Collapse
Affiliation(s)
- Nancy Q. Liu
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Yucheng Lin
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 China ,grid.263826.b0000 0004 1761 0489Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 China
| | - Liangliang Li
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 China ,grid.89957.3a0000 0000 9255 8984Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu 211100 China
| | - Jinxiu Lu
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Dawei Geng
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 China ,grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Jiankang Zhang
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Tea Jashashvili
- grid.42505.360000 0001 2156 6853Department of Radiology, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Zorica Buser
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Jenny Magallanes
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Jade Tassey
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Ruzanna Shkhyan
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Arijita Sarkar
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Noah Lopez
- grid.19006.3e0000 0000 9632 6718Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angles (UCLA), Los Angeles, CA USA
| | - Siyoung Lee
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Youngjoo Lee
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Liming Wang
- grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 China ,grid.89957.3a0000 0000 9255 8984Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu 210006 China
| | - Frank A. Petrigliano
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA 90033 USA
| | - Ben Van Handel
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Karen Lyons
- grid.19006.3e0000 0000 9632 6718Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angles (UCLA), Los Angeles, CA USA
| | - Denis Evseenko
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA 90033 USA
| |
Collapse
|
49
|
Wells KM, Baumel M, McCusker CD. The Regulation of Growth in Developing, Homeostatic, and Regenerating Tetrapod Limbs: A Minireview. Front Cell Dev Biol 2022; 9:768505. [PMID: 35047496 PMCID: PMC8763381 DOI: 10.3389/fcell.2021.768505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/19/2021] [Indexed: 01/29/2023] Open
Abstract
The size and shape of the tetrapod limb play central roles in their functionality and the overall physiology of the organism. In this minireview we will discuss observations on mutant animal models and humans, which show that the growth and final size of the limb is most impacted by factors that regulate either limb bud patterning or the elongation of the long bones. We will also apply the lessons that have been learned from embryos to how growth could be regulated in regenerating limb structures and outline the challenges that are unique to regenerating animals.
Collapse
|
50
|
Dai Y, Jian C, Wang X, Dai X. Comprehensive expression profiles of mRNAs, lncRNAs and miRNAs in Kashin-Beck disease identified by RNA-sequencing. Mol Omics 2021; 18:154-166. [PMID: 34913457 DOI: 10.1039/d1mo00370d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kashin-Beck disease (KBD) is a chronic, endemic and deforming osteochondropathy, whose basic pathological alterations include apoptosis and necrosis of chondrocytes in articular cartilage and growth plates and imbalanced extracellular matrix metabolism. Numerous studies have reported that long noncoding RNAs (lncRNAs) and microRNA (miRNAs) are aberrantly expressed in KBD. Our study was comprised of 5 KBD patients and 5 healthy individuals and we compared the expression profiles of mRNAs, lncRNAs and miRNAs through RNA-sequencing (RNA-seq). Bioinformatic analysis of GO and KEGG was employed to conduct functional annotation and pathway enriched analysis. In total, 3194 mRNAs, 4103 lncRNAs and 1550 miRNAs were detected to be differentially expressed by RNA-seq (P < 0.05; |log2FC| ≥1). The lysosome pathway, Wnt signaling pathway, TNF signaling pathway, endocytosis and mTOR signaling pathway were identified to be involved in the KBD development according to the result of the KEGG analysis. In addition, a ceRNA network based on lncRNA-miRNA-mRNA was constructed to probe the intricate regulatory mechanism and interaction between transcripts, which was visualized using the Cytoscape software. The ce-lncRNAs of four aberrantly expressed genes, FOSB, EGR3, BCAM and SOX6, were determined through the network. Among the identified DElncRNAs, we selected 8 differentially expressed lncRNAs to confirm the reliability of RNA-seq data by qRT-PCR in 11 KBD patients and 11 healthy individuals. We aimed to provide a comprehensive understanding ofmRNA, lncRNA and miRNA alterations between KBD patients and healthy individuals, and meanwhile reveal several potential causative molecular and signaling pathways involved in KBD.
Collapse
Affiliation(s)
- Yu Dai
- School of Public Health, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Can Jian
- School of Public Health, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Xiaofeng Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Xiaoxia Dai
- School of Public Health, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, China.
| |
Collapse
|