1
|
Brooks PM, Lewis P, Million-Perez S, Yandulskaya AS, Khalil M, Janes M, Porco J, Walker E, Meyers JR. Pharmacological reprogramming of zebrafish lateral line supporting cells to a migratory progenitor state. Dev Biol 2024; 512:70-88. [PMID: 38729405 DOI: 10.1016/j.ydbio.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
In the zebrafish lateral line, non-sensory supporting cells readily re-enter the cell cycle to generate new hair cells and supporting cells during homeostatic maintenance and following damage to hair cells. This contrasts with supporting cells from mammalian vestibular and auditory sensory epithelia which rarely re-enter the cell cycle, and hence loss of hair cells results in permanent sensory deficit. Lateral line supporting cells are derived from multipotent progenitor cells that migrate down the trunk midline as a primordium and are deposited to differentiate into a neuromast. We have found that we can revert zebrafish support cells back to a migratory progenitor state by pharmacologically altering the signaling environment to mimic that of the migratory primordium, with active Wnt signaling and repressed FGF signaling. The reverted supporting cells migrate anteriorly and posteriorly along the horizontal myoseptum and will re-epithelialize to form an increased number of neuromasts along the midline when the pharmacological agents are removed. These data demonstrate that supporting cells can be readily reprogrammed to a migratory multipotent progenitor state that can form new sensory neuromasts, which has important implications for our understanding of how the lateral line system matures and expands in fish and also suggest avenues for returning mammalian supporting cells back to a proliferative state.
Collapse
Affiliation(s)
- Paige M Brooks
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Parker Lewis
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Sara Million-Perez
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Anastasia S Yandulskaya
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Mahmoud Khalil
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Meredith Janes
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Joseph Porco
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Eleanor Walker
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Jason R Meyers
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA.
| |
Collapse
|
2
|
Liu R, Ding Y, Xie G. Real-time position and pose prediction for a self-propelled undulatory swimmer in 3D space with artificial lateral line system. BIOINSPIRATION & BIOMIMETICS 2024; 19:046014. [PMID: 38722349 DOI: 10.1088/1748-3190/ad493b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
This study aims to investigate the feasibility of using an artificial lateral line (ALL) system for predicting the real-time position and pose of an undulating swimmer with Carangiform swimming patterns. We established a 3D computational fluid dynamics simulation to replicate the swimming dynamics of a freely swimming mackerel under various motion parameters, calculating the corresponding pressure fields. Using the simulated lateral line data, we trained an artificial neural network to predict the centroid coordinates and orientation of the swimmer. A comprehensive analysis was further conducted to explore the impact of sensor quantity, distribution, noise amplitude and sampling intervals of the ALL array on predicting performance. Additionally, to quantitatively assess the reliability of the localization network, we trained another neural network to evaluate error magnitudes for different input signals. These findings provide valuable insights for guiding future research on mutual sensing and schooling in underwater robotic fish.
Collapse
Affiliation(s)
- Ruosi Liu
- State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Yang Ding
- Beijing Computational Science Research Center, Haidian District, Beijing, People's Republic of China
- Beijing Normal University, Haidian District, Beijing, People's Republic of China
| | - Guangming Xie
- State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, People's Republic of China
- Institute of Ocean Research, Peking University, Beijing, People's Republic of China
| |
Collapse
|
3
|
Gonzalez D, Cuenca X, Allende ML. Knockdown of tgfb1a partially improves ALS phenotype in a transient zebrafish model. Front Cell Neurosci 2024; 18:1384085. [PMID: 38644973 PMCID: PMC11032012 DOI: 10.3389/fncel.2024.1384085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) corresponds to a neurodegenerative disorder marked by the progressive degeneration of both upper and lower motor neurons located in the brain, brainstem, and spinal cord. ALS can be broadly categorized into two main types: sporadic ALS (sALS), which constitutes approximately 90% of all cases, and familial ALS (fALS), which represents the remaining 10% of cases. Transforming growth factor type-β (TGF-β) is a cytokine involved in various cellular processes and pathological contexts, including inflammation and fibrosis. Elevated levels of TGF-β have been observed in the plasma and cerebrospinal fluid (CSF) of both ALS patients and mouse models. In this perspective, we explore the impact of the TGF-β signaling pathway using a transient zebrafish model for ALS. Our findings reveal that the knockdown of tgfb1a lead to a partial prevention of motor axon abnormalities and locomotor deficits in a transient ALS zebrafish model at 48 h post-fertilization (hpf). In this context, we delve into the proposed distinct roles of TGF-β in the progression of ALS. Indeed, some evidence suggests a dual role for TGF-β in ALS progression. Initially, it seems to exert a neuroprotective effect in the early stages, but paradoxically, it may contribute to disease progression in later stages. Consequently, we suggest that the TGF-β signaling pathway emerges as an attractive therapeutic target for treating ALS. Nevertheless, further research is crucial to comprehensively understand the nuanced role of TGF-β in the pathological context.
Collapse
Affiliation(s)
- David Gonzalez
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Santiago, Chile
- Escuela de Terapia Ocupacional, Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Santiago, Chile
- Millennium Institute Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Xiomara Cuenca
- Escuela de Terapia Ocupacional, Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Santiago, Chile
| | - Miguel L. Allende
- Millennium Institute Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Panta K, Deng H, Zhang Z, Huang D, Panah A, Cheng B. Touchless underwater wall-distance sensing via active proprioception of a robotic flapper. BIOINSPIRATION & BIOMIMETICS 2024; 19:026009. [PMID: 38252966 DOI: 10.1088/1748-3190/ad2114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
In this work, we explored a bioinspired method for underwater object sensing based on active proprioception. We investigated whether the fluid flows generated by a robotic flapper, while interacting with an underwater wall, can encode the distance information between the wall and the flapper, and how to decode this information using the proprioception within the flapper. Such touchless wall-distance sensing is enabled by the active motion of a flapping plate, which injects self-generated flow to the fluid environment, thus representing a form of active sensing. Specifically, we trained a long short-term memory (LSTM) neural network to predict the wall distance based on the force and torque measured at the base of the flapping plate. In addition, we varied the Rossby number (Ro, or the aspect ratio of the plate) and the dimensionless flapping amplitude (A∗) to investigate how the rotational effects and unsteadiness of self-generated flow respectively affect the accuracy of the wall-distance prediction. Our results show that the median prediction error is within 5% of the plate length for all the wall-distances investigated (up to 40 cm or approximately 2-3 plate lengths depending on theRo); therefore, confirming that the self-generated flow can enable underwater perception. In addition, we show that stronger rotational effects at lowerRolead to higher prediction accuracy, while flow unsteadiness (A∗) only has moderate effects. Lastly, analysis based on SHapley Additive exPlanations (SHAP) indicate that temporal features that are most prominent at stroke reversals likely promotes the wall-distance prediction.
Collapse
Affiliation(s)
- Kundan Panta
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Hankun Deng
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Zhiyu Zhang
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Daning Huang
- Department of Aerospace Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Azar Panah
- Division of Engineering, Business & Computing (Berks), The Pennsylvania State University, Reading, PA 19610, United States of America
| | - Bo Cheng
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| |
Collapse
|
5
|
Olson HM, Maxfield A, Calistri NL, Heiser LM, Qian W, Knaut H, Nechiporuk AV. RhoA GEF Mcf2lb regulates rosette integrity during collective cell migration. Development 2024; 151:dev201898. [PMID: 38165177 PMCID: PMC10820872 DOI: 10.1242/dev.201898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Multicellular rosettes are transient epithelial structures that serve as important cellular intermediates in the formation of diverse organs. Using the zebrafish posterior lateral line primordium (pLLP) as a model system, we investigated the role of the RhoA GEF Mcf2lb in rosette morphogenesis. The pLLP is a group of ∼150 cells that migrates along the zebrafish trunk and is organized into epithelial rosettes; these are deposited along the trunk and will differentiate into sensory organs called neuromasts (NMs). Using single-cell RNA-sequencing and whole-mount in situ hybridization, we showed that mcf2lb is expressed in the pLLP during migration. Live imaging and subsequent 3D analysis of mcf2lb mutant pLLP cells showed disrupted apical constriction and subsequent rosette organization. This resulted in an excess number of deposited NMs along the trunk of the zebrafish. Cell polarity markers ZO-1 and Par-3 were apically localized, indicating that pLLP cells are properly polarized. In contrast, RhoA activity, as well as signaling components downstream of RhoA, Rock2a and non-muscle Myosin II, were diminished apically. Thus, Mcf2lb-dependent RhoA activation maintains the integrity of epithelial rosettes.
Collapse
Affiliation(s)
- Hannah M. Olson
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, OR 97239, USA
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amanda Maxfield
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, OR 97239, USA
| | - Nicholas L. Calistri
- Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
- Biomedical Engineering Graduate Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Laura M. Heiser
- Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Weiyi Qian
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alex V. Nechiporuk
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, OR 97239, USA
| |
Collapse
|
6
|
Pontes JRS, Lopes I, Ribeiro R, Araújo CVM. Humane acute testing with tadpoles for risk assessment of chemicals: Avoidance instead of lethality. CHEMOSPHERE 2022; 303:135197. [PMID: 35691390 DOI: 10.1016/j.chemosphere.2022.135197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In spite of the sensitivity of amphibians to contamination, data from fish have been commonly used to predict the effects of chemicals on aquatic life stages. However, recent studies have highlighted that toxicity data derived from fish species may not protect all the aquatic life stages of amphibians. For pesticide toxicity assessment (PTA), EFSA has highlighted that more information on lethal toxicity for the aquatic life stages of amphibians is still needed to reduce uncertainties. The current review aims to propose a test with amphibians based on spatial avoidance, as a more humane alternative method to the lethality tests for chemicals. A review of lethal toxicity tests carried out with amphibians in the period between 2018 and 2021 is presented, then we discuss the suitability of using fish toxicity data as a surrogate to predict the effects on more sensitive amphibian groups. The possible differences in sensitivity to chemicals may justify the need to develop further tests with amphibian embryos and larvae in order to reduce uncertainties. A new test is proposed focused on the avoidance behaviour of organisms fleeing from contamination to replace lethal tests. As avoidance indicates the threshold at which organisms will flee from contamination, a reduction in the population density, or its disappearance, at the local scale due to emigration is expected, with ecological consequences analogous to mortality. Avoidance tests provide an ethical advantage over lethal tests as they respect the concepts of the 3 Rs (mainly Refinement), reducing the suffering of the organisms.
Collapse
Affiliation(s)
- João Rodolfo S Pontes
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Isabel Lopes
- Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal; Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rui Ribeiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
7
|
Bot DM, Wolf BJ, van Netten SM. The Quadrature Method: A Novel Dipole Localisation Algorithm for Artificial Lateral Lines Compared to State of the Art. SENSORS 2021; 21:s21134558. [PMID: 34283129 PMCID: PMC8271408 DOI: 10.3390/s21134558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 12/02/2022]
Abstract
The lateral line organ of fish has inspired engineers to develop flow sensor arrays—dubbed artificial lateral lines (ALLs)—capable of detecting near-field hydrodynamic events for obstacle avoidance and object detection. In this paper, we present a comprehensive review and comparison of ten localisation algorithms for ALLs. Differences in the studied domain, sensor sensitivity axes, and available data prevent a fair comparison between these algorithms from their original works. We compare them with our novel quadrature method (QM), which is based on a geometric property specific to 2D-sensitive ALLs. We show how the area in which each algorithm can accurately determine the position and orientation of a simulated dipole source is affected by (1) the amount of training and optimisation data, and (2) the sensitivity axes of the sensors. Overall, we find that each algorithm benefits from 2D-sensitive sensors, with alternating sensitivity axes as the second-best configuration. From the machine learning approaches, an MLP required an impractically large training set to approach the optimisation-based algorithms’ performance. Regardless of the data set size, QM performs best with both a large area for accurate predictions and a small tail of large errors.
Collapse
Affiliation(s)
- Daniël M. Bot
- I-BioStat, Data Science Institute, Hasselt University, 3500 Hasselt, Belgium
- Correspondence: (D.M.B.); (S.M.v.N.)
| | - Ben J. Wolf
- Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands;
- Bernoulli Institute of Mathematics, Computer Science and Artificial Intelligence, Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Sietse M. van Netten
- Bernoulli Institute of Mathematics, Computer Science and Artificial Intelligence, Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands
- Correspondence: (D.M.B.); (S.M.v.N.)
| |
Collapse
|
8
|
Mekdara PJ, Nasimi F, Schwalbe MAB, Tytell ED. Tail Beat Synchronization during Schooling Requires a Functional Posterior Lateral Line System in Giant Danios, Devario aequipinnatus. Integr Comp Biol 2021; 61:427-441. [PMID: 33982077 DOI: 10.1093/icb/icab071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Swimming in schools has long been hypothesized to allow fish to save energy. Fish must exploit the energy from the wakes of their neighbors for maximum energy savings, a feat that requires them to both synchronize their tail movements and stay in certain positions relative to their neighbors. To maintain position in a school, we know that fish use multiple sensory systems, mainly their visual and flow sensing lateral line system. However, how fish synchronize their swimming movements in a school is still not well understood. Here, we test the hypothesis that this synchronization may depend on functional differences in the two branches of the lateral line sensory system that detects water movements close to the fish's body. The anterior branch, located on the head, encounters largely undisturbed free-stream flow, while the posterior branch, located on the trunk and tail, encounters flow that has been affected strongly by the tail movement. Thus, we hypothesize that the anterior branch may be more important for regulating position within the school, while the posterior branch may be more important for synchronizing tail movements. Our study examines functional differences in the anterior and posterior lateral line in the structure and tail synchronization of fish schools. We used a widely available aquarium fish that schools, the giant danio, Devario equipinnatus. Fish swam in a large circular tank where stereoscopic videos recordings were used to reconstruct the 3D position of each individual within the school and to track tail kinematics to quantify synchronization. For one fish in each school, we ablated using cobalt chloride either the anterior region only, the posterior region only, or the entire lateral line system. We observed that ablating any region of the lateral line system causes fish to swim in a "box" or parallel swimming formation, which was different from the diamond formation observed in normal fish. Ablating only the anterior region did not substantially reduce tail beat synchronization but ablating only the posterior region caused fish to stop synchronizing their tail beats, largely because the tail beat frequency increased dramatically. Thus, the anterior and posterior lateral line system appears to have different behavioral functions in fish. Most importantly, we showed that the posterior lateral line system played a major role in determining tail beat synchrony in schooling fish. Without synchronization, swimming efficiency decreases, which can have an impact on the fitness of the individual fish and group.
Collapse
Affiliation(s)
- Prasong J Mekdara
- Department of Biology, Tufts University, 200 Boston Ave Ste 4700, Medford, MA 02155, USA.,National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD, USA
| | - Fazila Nasimi
- Department of Biology, Tufts University, 200 Boston Ave Ste 4700, Medford, MA 02155, USA
| | - Margot A B Schwalbe
- Department of Biology, Lake Forest College, 555 N Sheridan Road, Lake Forest, IL 60045, USA
| | - Eric D Tytell
- Department of Biology, Tufts University, 200 Boston Ave Ste 4700, Medford, MA 02155, USA
| |
Collapse
|
9
|
Current Advances in Comprehending Dynamics of Regenerating Axons and Axon-Glia Interactions after Peripheral Nerve Injury in Zebrafish. Int J Mol Sci 2021; 22:ijms22052484. [PMID: 33801205 PMCID: PMC7957880 DOI: 10.3390/ijms22052484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Following an injury, axons of both the central nervous system (CNS) and peripheral nervous system (PNS) degenerate through a coordinated and genetically conserved mechanism known as Wallerian degeneration (WD). Unlike central axons, severed peripheral axons have a higher capacity to regenerate and reinnervate their original targets, mainly because of the favorable environment that they inhabit and the presence of different cell types. Even though many aspects of regeneration in peripheral nerves have been studied, there is still a lack of understanding regarding the dynamics of axonal degeneration and regeneration, mostly due to the inherent limitations of most animal models. In this scenario, the use of zebrafish (Danio rerio) larvae combined with time-lapse microscopy currently offers a unique experimental opportunity to monitor the dynamics of the regenerative process in the PNS in vivo. This review summarizes the current knowledge and advances made in understanding the dynamics of the regenerative process of PNS axons. By using different tools available in zebrafish such as electroablation of the posterior lateral line nerve (pLLn), and laser-mediated transection of motor and sensory axons followed by time-lapse microscopy, researchers are beginning to unravel the complexity of the spatiotemporal interactions among different cell types during the regenerative process. Thus, understanding the cellular and molecular mechanisms underlying the degeneration and regeneration of peripheral nerves will open new avenues in the treatment of acute nerve trauma or chronic conditions such as neurodegenerative diseases.
Collapse
|
10
|
Dalle Nogare DE, Natesh N, Vishwasrao HD, Shroff H, Chitnis AB. Zebrafish Posterior Lateral Line primordium migration requires interactions between a superficial sheath of motile cells and the skin. eLife 2020; 9:58251. [PMID: 33237853 PMCID: PMC7688310 DOI: 10.7554/elife.58251] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
The Zebrafish Posterior Lateral Line primordium migrates in a channel between the skin and somites. Its migration depends on the coordinated movement of its mesenchymal-like leading cells and trailing cells, which form epithelial rosettes, or protoneuromasts. We describe a superficial population of flat primordium cells that wrap around deeper epithelialized cells and extend polarized lamellipodia to migrate apposed to the overlying skin. Polarization of lamellipodia extended by both superficial and deeper protoneuromast-forming cells depends on Fgf signaling. Removal of the overlying skin has similar effects on superficial and deep cells: lamellipodia are lost, blebs appear instead, and collective migration fails. When skinned embryos are embedded in Matrigel, basal and superficial lamellipodia are recovered; however, only the directionality of basal protrusions is recovered, and migration is not rescued. These observations support a key role played by superficial primordium cells and the skin in directed migration of the Posterior Lateral Line primordium.
Collapse
Affiliation(s)
- Damian E Dalle Nogare
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Naveen Natesh
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Harshad D Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, United States
| | - Hari Shroff
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, United States.,Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Ajay B Chitnis
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
11
|
Abolpour Moshizi S, Azadi S, Belford A, Razmjou A, Wu S, Han ZJ, Asadnia M. Development of an Ultra-Sensitive and Flexible Piezoresistive Flow Sensor Using Vertical Graphene Nanosheets. NANO-MICRO LETTERS 2020; 12:109. [PMID: 34138091 PMCID: PMC7770822 DOI: 10.1007/s40820-020-00446-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/20/2020] [Indexed: 05/21/2023]
Abstract
This paper suggests development of a flexible, lightweight, and ultra-sensitive piezoresistive flow sensor based on vertical graphene nanosheets (VGNs) with a mazelike structure. The sensor was thoroughly characterized for steady-state and oscillatory water flow monitoring applications. The results demonstrated a high sensitivity (103.91 mV (mm/s)-1) and a very low-velocity detection threshold (1.127 mm s-1) in steady-state flow monitoring. As one of many potential applications, we demonstrated that the proposed VGNs/PDMS flow sensor can closely mimic the vestibular hair cell sensors housed inside the semicircular canals (SCCs). As a proof of concept, magnetic resonance imaging of the human inner ear was conducted to measure the dimensions of the SCCs and to develop a 3D printed lateral semicircular canal (LSCC). The sensor was embedded into the artificial LSCC and tested for various physiological movements. The obtained results indicate that the flow sensor is able to distinguish minute changes in the rotational axis physical geometry, frequency, and amplitude. The success of this study paves the way for extending this technology not only to vestibular organ prosthesis but also to other applications such as blood/urine flow monitoring, intravenous therapy (IV), water leakage monitoring, and unmanned underwater robots through incorporation of the appropriate packaging of devices.
Collapse
Affiliation(s)
| | - Shohreh Azadi
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Andrew Belford
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Amir Razmjou
- UNESCO Centre for Membrane Science and Technology, School of Chemical Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shuying Wu
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Zhao Jun Han
- CSIRO Manufacturing, PO Box 218, 36 Bradfield Road, Lindfield, NSW, 2070, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
12
|
Optimal Flow Sensing for Schooling Swimmers. Biomimetics (Basel) 2020; 5:biomimetics5010010. [PMID: 32182929 PMCID: PMC7148469 DOI: 10.3390/biomimetics5010010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 11/17/2022] Open
Abstract
Fish schooling implies an awareness of the swimmers for their companions. In flow mediated environments, in addition to visual cues, pressure and shear sensors on the fish body are critical for providing quantitative information that assists the quantification of proximity to other fish. Here we examine the distribution of sensors on the surface of an artificial swimmer so that it can optimally identify a leading group of swimmers. We employ Bayesian experimental design coupled with numerical simulations of the two-dimensional Navier Stokes equations for multiple self-propelled swimmers. The follower tracks the school using information from its own surface pressure and shear stress. We demonstrate that the optimal sensor distribution of the follower is qualitatively similar to the distribution of neuromasts on fish. Our results show that it is possible to identify accurately the center of mass and the number of the leading swimmers using surface only information.
Collapse
|
13
|
Wolf BJ, Warmelink S, van Netten SM. Recurrent neural networks for hydrodynamic imaging using a 2D-sensitive artificial lateral line. BIOINSPIRATION & BIOMIMETICS 2019; 14:055001. [PMID: 31239415 DOI: 10.1088/1748-3190/ab2cb3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The lateral line is a mechanosensory organ found in fish and amphibians that allows them to sense and act on their near-field hydrodynamic environment. We present a 2D-sensitive artificial lateral line (ALL) comprising eight all-optical flow sensors, which we use to measure hydrodynamic velocity profiles along the sensor array in response to a moving object in its vicinity. We then use the measured velocity profiles to reconstruct the object's location, via two types of neural networks: feed-forward and recurrent. Several implementations of feed-forward neural networks for ALL source localisation exist, while recurrent neural networks may be more appropriate for this task. The performance of a recurrent neural network (the long short-term memory, LSTM) is compared to that of a feed-forward neural network (the online-sequential extreme learning machine, OS-ELM) via localizing a 6 cm sphere moving at 13 cm s-1. Results show that, in a 62 cm [Formula: see text] 9.5 cm area of interest, the LSTM outperforms the OS-ELM with an average localisation error of 0.72 cm compared to 4.27 cm, respectively. Furthermore, the recurrent network is relatively less affected by noise, indicating that recurrent connections can be beneficial for hydrodynamic object localisation.
Collapse
Affiliation(s)
- Ben J Wolf
- Author to whom correspondence should be addressed
| | | | | |
Collapse
|
14
|
Mogdans J. Sensory ecology of the fish lateral-line system: Morphological and physiological adaptations for the perception of hydrodynamic stimuli. JOURNAL OF FISH BIOLOGY 2019; 95:53-72. [PMID: 30873616 DOI: 10.1111/jfb.13966] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Fishes are able to detect and perceive the hydrodynamic and physical environment they inhabit and process this sensory information to guide the resultant behaviour through their mechanosensory lateral-line system. This sensory system consists of up to several thousand neuromasts distributed across the entire body of the animal. Using the lateral-line system, fishes perceive water movements of both biotic and abiotic origin. The anatomy of the lateral-line system varies greatly between and within species. It is still a matter of debate as to how different lateral-line anatomies reflect adaptations to the hydrodynamic conditions to which fishes are exposed. While there are many accounts of lateral-line system adaptations for the detection of hydrodynamic signals in distinct behavioural contexts and environments for specific fish species, there is only limited knowledge on how the environment influences intra and interspecific variations in lateral-line morphology. Fishes live in a wide range of habitats with highly diverse hydrodynamic conditions, from pools and lakes and slowly moving deep-sea currents to turbulent and fast running rivers and rough coastal surf regions. Perhaps surprisingly, detailed characterisations of the hydrodynamic properties of natural water bodies are rare. In particular, little is known about the spatio-temporal patterns of the small-scale water motions that are most relevant for many fish behaviours, making it difficult to relate environmental stimuli to sensory system morphology and function. Humans use bodies of water extensively for recreational, industrial and domestic purposes and in doing so often alter the aquatic environment, such as through the release of toxicants, the blocking of rivers by dams and acoustic noise emerging from boats and construction sites. Although the effects of anthropogenic interferences are often not well understood or quantified, it seems obvious that they change not only water quality and appearance but also, they alter hydrodynamic conditions and thus the types of hydrodynamic stimuli acting on fishes. To date, little is known about how anthropogenic influences on the aquatic environment affect the morphology and function of sensory systems in general and the lateral-line system in particular. This review starts out by briefly describing naturally occurring hydrodynamic stimuli and the morphology and neurobiology of the fish lateral-line system. In the main part, adaptations of the fish lateral-line system for the detection and analysis of water movements during various behaviours are presented. Finally, anthropogenic influences on the aquatic environment and potential effects on the fish lateral-line system are discussed.
Collapse
|
15
|
Jiang Y, Ma Z, Zhang D. Flow field perception based on the fish lateral line system. BIOINSPIRATION & BIOMIMETICS 2019; 14:041001. [PMID: 30995633 DOI: 10.1088/1748-3190/ab1a8d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fish are able to perceive the surrounding weak flow and pressure variations with their mechanosensory lateral line system, which consists of a superficial lateral line for flow velocity detection and a canal lateral line for flow pressure gradient perception. Achieving a better understanding of the flow field perception algorithms of the lateral line can contribute not only to the design of highly sensitive flow sensors, but also to the development of underwater smart skin with good hydrodynamic imaging properties. In this review, we discuss highly sensitive flow-sensing mechanisms for superficial and canal neuromasts and flow field perception algorithms. Artificial lateral line systems with different transduction mechanisms are then described with special emphasis on the recent innovations in the field of polymer-based artificial flow sensors. Finally, we discuss our perspective of the technological challenges faced while improving flow sensitivity, durability, and sensing fusion schemes.
Collapse
Affiliation(s)
- Yonggang Jiang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, People's Republic of China
| | | | | |
Collapse
|
16
|
Alsalman M, Colvert B, Kanso E. Training bioinspired sensors to classify flows. BIOINSPIRATION & BIOMIMETICS 2018; 14:016009. [PMID: 30479313 DOI: 10.1088/1748-3190/aaef1d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We consider the inverse problem of classifying flow patterns from local sensory measurements. This problem is inspired by the ability of various aquatic organisms to respond to ambient flow signals, and is relevant for translating these abilities to underwater robotic vehicles. In Colvert, Alsalman and Kanso, B&B (2018), we trained neural networks to classify vortical flows by relying on a single flow sensor that measures a 'time history' of the local vorticity. Here, we systematically investigate the effects of distinct types of sensors on the accuracy of flow classification. We consider four types of sensors-vorticity, flow velocities parallel and transverse to the direction of flow propagation, and flow speed-and show that the networks trained using transverse velocity outperform other networks, even when subjected to aggressive data corruption. We then train the network to classify flow patterns instantaneously, using a spatially-distributed array of sensors and a single 'one time' sensory measurement. The network, based on a handful of spatially-distributed sensors, exhibits remarkable accuracy in flow classification. These results lay the groundwork for developing learning algorithms for the dynamic deployment of sensory arrays in unsteady flows.
Collapse
Affiliation(s)
- Mohamad Alsalman
- Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, United States of America
| | | | | |
Collapse
|
17
|
Mekdara PJ, Schwalbe MAB, Coughlin LL, Tytell ED. The effects of lateral line ablation and regeneration in schooling giant danios. ACTA ACUST UNITED AC 2018. [PMID: 29530974 DOI: 10.1242/jeb.175166] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Fish use multiple sensory systems, including vision and their lateral line system, to maintain position and speed within a school. Although previous studies have shown that ablating the lateral line alters schooling behavior, no one has examined how the behavior recovers as the sensory system regenerates. We studied how schooling behavior changes in giant danios, Devario aequipinnatus, when their lateral line system is chemically ablated and after the sensory hair cells regenerate. We found that fish could school normally immediately after chemical ablation, but that they had trouble schooling 1-2 weeks after the chemical treatment, when the hair cells had fully regenerated. We filmed groups of giant danios with two high-speed cameras and reconstructed the three-dimensional positions of each fish within a group. One fish in the school was treated with gentamycin to ablate all hair cells. Both types of neuromasts (canal and superficial) were completely ablated after treatment, but fully regenerated after 1 week. We quantified the structure of the school using nearest neighbor distance, bearing, elevation, and the cross-correlation of velocity between each pair of fish. Treated fish maintained a normal position within the school immediately after the lateral line ablation, but could not school normally 1 or 2 weeks after treatment, even though the neuromasts had fully regenerated. By 4-8 weeks post-treatment, the treated fish could again school normally. These results demonstrate that the behavioral recovery after lateral line ablation is a longer process than the regeneration of the hair cells themselves.
Collapse
Affiliation(s)
- Prasong J Mekdara
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
| | - Margot A B Schwalbe
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
| | - Laura L Coughlin
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
| | - Eric D Tytell
- Department of Biology, Tufts University, 200 Boston Avenue, Ste 4700, Medford, MA 02155, USA
| |
Collapse
|
18
|
Colvert B, Alsalman M, Kanso E. Classifying vortex wakes using neural networks. BIOINSPIRATION & BIOMIMETICS 2018; 13:025003. [PMID: 29334075 DOI: 10.1088/1748-3190/aaa787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Unsteady flows contain information about the objects creating them. Aquatic organisms offer intriguing paradigms for extracting flow information using local sensory measurements. In contrast, classical methods for flow analysis require global knowledge of the flow field. Here, we train neural networks to classify flow patterns using local vorticity measurements. Specifically, we consider vortex wakes behind an oscillating airfoil and we evaluate the accuracy of the network in distinguishing between three wake types, 2S, 2P + 2S and 2P + 4S. The network uncovers the salient features of each wake type.
Collapse
Affiliation(s)
- Brendan Colvert
- Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, United States of America
| | | | | |
Collapse
|
19
|
Bora M, Kottapalli AGP, Miao J, Triantafyllou MS. Sensing the flow beneath the fins. BIOINSPIRATION & BIOMIMETICS 2018; 13:025002. [PMID: 29239859 DOI: 10.1088/1748-3190/aaa1c2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Flow sensing, maneuverability, energy efficiency and vigilance of surroundings are the key factors that dictate the performance of marine animals. Be it swimming at high speeds, attack or escape maneuvers, sensing and survival hydrodynamics are a constant feature of life in the ocean. Fishes are capable of performing energy efficient maneuvers, including capturing energy from vortical structures in water. These impressive capabilities are made possible by the uncanny ability of fish to sense minute pressure and flow variations on their body. This is achieved by arrays of biological neuromast sensors on their bodies that 'feel' the surroundings through 'touch at a distance' sensing. The main focus of this paper is to review the various biomimetic material approaches in developing superficial neuromast inspired ultrasensitive MEMS sensors. Principals and methods that translate biomechanical filtering properties of canal neuromasts to benefit artificial MEMS sensors have also been discussed. MEMS sensors with ultrahigh flow sensitivity and accuracy have been developed mainly through inspiration from the hair cell and cupula structures in the neuromast. Canal-inspired packages have proven beneficial in hydrodynamic flow filtering in artificial sensors enabling signal amplification and noise attenuation. A special emphasis has been placed on the recent innovations that closely mimic the structural and material designs of stereocilia of neuromasts by exploring soft polymers.
Collapse
Affiliation(s)
- Meghali Bora
- Center for Environmental Sensing and Modeling (CENSAM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Singapore 138602, Singapore. These authors contributed equally to this work
| | | | | | | |
Collapse
|
20
|
In toto imaging of the migrating Zebrafish lateral line primordium at single cell resolution. Dev Biol 2017; 422:14-23. [DOI: 10.1016/j.ydbio.2016.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 12/21/2022]
|
21
|
Jantzen CE, Annunziato KM, Cooper KR. Behavioral, morphometric, and gene expression effects in adult zebrafish (Danio rerio) embryonically exposed to PFOA, PFOS, and PFNA. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:123-130. [PMID: 27710860 PMCID: PMC5839330 DOI: 10.1016/j.aquatox.2016.09.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 05/07/2023]
Abstract
Perfluoroalkylated substances (PFAS) are a class of persistent anthropogenic chemicals that have been detected worldwide. PFASs consist of fluorinated carbon chains of varying length, terminal groups, and have a number of industrial uses. A previous zebrafish study from our laboratory showed that acute (3-120h post fertilization, 0.02-2.0μM), waterborne embryonic exposure to these chemicals resulted in chemical specific alterations at 5days post fertilization (dpf), and some effects persisted up to 14 dpf. Using a gene battery consisting of 100 transcripts identified several genes that were up or down regulated. This current study looks at the long-term impacts of PFASs in adult zebrafish using the same exposure regimen. It was hypothesized that sub-lethal exposure of perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), or perfluorooctane sulfonate (PFOA) in embryonic zebrafish (3-120 hpf) would result in permanent morphometric, gene expression, and behavioral changes in adult fish similar to those observed at 5 and 14 dpf. Zebrafish were exposed to PFOS, PFOA, and PFNA (Control 0μM, 2.0μM) for the first five days post fertilization. At six months post fertilization, no PFAS treatment resulted in a significant change in total body length or weight. In terms of behavior, PFNA males showed a reduction in total distance traveled and time of immobility, and an increase in thigmotaxis behavior, aggressive attacks, and preference for the bright section of the tank. PFOS treated males had a reduced aggression behavior, and PFOA females preferred the dark section of the tank. Gene expression of slco2b1, slco1d1, and tgfb1a were analyzed because these transcripts were previously found to be affected by PFAS exposure in 5dpf and 14 dpf zebrafish and resulted in: significant decrease in expression of slco2b1 for both sexes in PFNA and PFOS treated groups, significant decrease of slco1d1 in all treatment groups for females and PFOS and PFOA exposed males, significant increase of tgfb1a in males treated with PFOS and PFNA, and a significant increase of bdnf in all PFAS male groups. This study demonstrates that acute, embryonic exposure (5days) to individual PFASs result in significant biochemical and behavioral changes in young adult zebrafish 6 months after exposure. These three PFASs have long term and persistent impacts following short term embryonic exposure that persists into adulthood.
Collapse
Affiliation(s)
- Carrie E Jantzen
- Rutgers, The State University of New Jersey, Department of Environmental Sciences, New Brunswick, NJ, USA, USA.
| | - Kate M Annunziato
- Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, New Brunswick, NJ, USA, USA
| | - Keith R Cooper
- Rutgers, The State University of New Jersey, Department of Environmental Sciences, New Brunswick, NJ, USA, USA; Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, New Brunswick, NJ, USA, USA
| |
Collapse
|
22
|
Asadnia M, Kottapalli AGP, Karavitaki KD, Warkiani ME, Miao J, Corey DP, Triantafyllou M. From Biological Cilia to Artificial Flow Sensors: Biomimetic Soft Polymer Nanosensors with High Sensing Performance. Sci Rep 2016; 6:32955. [PMID: 27622466 PMCID: PMC5020657 DOI: 10.1038/srep32955] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/15/2016] [Indexed: 11/21/2022] Open
Abstract
We report the development of a new class of miniature all-polymer flow sensors that closely mimic the intricate morphology of the mechanosensory ciliary bundles in biological hair cells. An artificial ciliary bundle is achieved by fabricating bundled polydimethylsiloxane (PDMS) micro-pillars with graded heights and electrospinning polyvinylidenefluoride (PVDF) piezoelectric nanofiber tip links. The piezoelectric nature of a single nanofiber tip link is confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Rheology and nanoindentation experiments are used to ensure that the viscous properties of the hyaluronic acid (HA)-based hydrogel are close to the biological cupula. A dome-shaped HA hydrogel cupula that encapsulates the artificial hair cell bundle is formed through precision drop-casting and swelling processes. Fluid drag force actuates the hydrogel cupula and deflects the micro-pillar bundle, stretching the nanofibers and generating electric charges. Functioning with principles analogous to the hair bundles, the sensors achieve a sensitivity and threshold detection limit of 300 mV/(m/s) and 8 μm/s, respectively. These self-powered, sensitive, flexible, biocompatibale and miniaturized sensors can find extensive applications in navigation and maneuvering of underwater robots, artificial hearing systems, biomedical and microfluidic devices.
Collapse
Affiliation(s)
- Mohsen Asadnia
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- Department of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ajay Giri Prakash Kottapalli
- Center for Environmental Sensing and Modeling (CENSAM) IRG Singapore-MIT Alliance for Research and Technology (SMART) Centre, 3 Science Drive 2, 117543 Singapore
| | - K. Domenica Karavitaki
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Majid Ebrahimi Warkiani
- School of Mechanical and Manufacturing Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jianmin Miao
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - David P. Corey
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael Triantafyllou
- Center for Environmental Sensing and Modeling (CENSAM) IRG Singapore-MIT Alliance for Research and Technology (SMART) Centre, 3 Science Drive 2, 117543 Singapore
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
23
|
Asadnia M, Kottapalli AGP, Miao J, Warkiani ME, Triantafyllou MS. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena. J R Soc Interface 2016; 12:20150322. [PMID: 26423435 DOI: 10.1098/rsif.2015.0322] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow 'vision' and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr(0.52)Ti(0.48))O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s(-1)) and 8.2 µm s(-1), respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles.
Collapse
Affiliation(s)
- Mohsen Asadnia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore Center for Environmental Sensing and Modeling (CENSAM), Singapore-MIT Alliance for Research and Technology (SMART), Singapore 138602, Republic of Singapore School of Electrical, Electronic and Computer Engineering, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Ajay Giri Prakash Kottapalli
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore Center for Environmental Sensing and Modeling (CENSAM), Singapore-MIT Alliance for Research and Technology (SMART), Singapore 138602, Republic of Singapore
| | - Jianmin Miao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Majid Ebrahimi Warkiani
- School of Mechanical and Manufacturing Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Michael S Triantafyllou
- Center for Environmental Sensing and Modeling (CENSAM), Singapore-MIT Alliance for Research and Technology (SMART), Singapore 138602, Republic of Singapore Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
24
|
Zhang F, Lagor FD, Yeo D, Washington P, Paley DA. Distributed flow sensing for closed-loop speed control of a flexible fish robot. BIOINSPIRATION & BIOMIMETICS 2015; 10:065001. [PMID: 26495855 DOI: 10.1088/1748-3190/10/6/065001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Flexibility plays an important role in fish behavior by enabling high maneuverability for predator avoidance and swimming in turbulent flow. This paper presents a novel flexible fish robot equipped with distributed pressure sensors for flow sensing. The body of the robot is molded from soft, hyperelastic material, which provides flexibility. Its Joukowski-foil shape is conducive to modeling the fluid analytically. A quasi-steady potential-flow model is adopted for real-time flow estimation, whereas a discrete-time vortex-shedding flow model is used for higher-fidelity simulation. The dynamics for the flexible fish robot yield a reduced model for one-dimensional swimming. A recursive Bayesian filter assimilates pressure measurements to estimate flow speed, angle of attack, and foil camber. The closed-loop speed-control strategy combines an inverse-mapping feedforward controller based on an average model derived for periodic actuation of angle-of-attack and a proportional-integral feedback controller utilizing the estimated flow information. Simulation and experimental results are presented to show the effectiveness of the estimation and control strategy. The paper provides a systematic approach to distributed flow sensing for closed-loop speed control of a flexible fish robot by regulating the flapping amplitude.
Collapse
Affiliation(s)
- Feitian Zhang
- Department of Aerospace Engineering and Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
25
|
Xing C, Gong B, Xue Y, Han Y, Wang Y, Meng A, Jia S. TGFβ1a regulates zebrafish posterior lateral line formation via Smad5 mediated pathway. J Mol Cell Biol 2015; 7:48-61. [PMID: 25603803 DOI: 10.1093/jmcb/mjv004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The zebrafish sensory posterior lateral line (pLL) has become an attractive model for studying collective cell migration and cell morphogenesis. Recent studies have indicated that chemokine, Wnt/β-catenin, Fgf, and Delta-Notch signaling pathways participate in regulating pLL development. However, it remains unclear whether TGFβ signaling pathway is involved in pLL development. Here we report a critical role of TGFβ1 in regulating morphogenesis of the pLL primordium (pLLP). The tgfβ1a gene is abundantly expressed in the lateral line primordium. Knockdown or knockout of tgfβ1a leads to a reduction of neuromast number, an increase of inter-neuromast distance, and a reduced number of hair cells. The aberrant morphogenesis in embryos depleted of tgfβ1a correlates with the reduced expression of atoh1a, deltaA, and n-cadherin/cdh2, which are known important regulators of the pLLP morphogenesis. Like tgfβ1a depletion, knockdown of smad5 that expresses in the pLLP, affects pLLP development whereas overexpression of a constitutive active Smad5 isoform rescues the defects in embryos depleted of tgfβ1a, indicating that Smad5 mediates tgfβ1a function in pLLP development. Therefore, TGFβ/Smad5 signaling plays an important role in the zebrafish lateral line formation.
Collapse
Affiliation(s)
- Cencan Xing
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bo Gong
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yu Xue
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanchao Han
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yixia Wang
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shunji Jia
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
A hybrid mathematical model for self-organizing cell migration in the zebrafish lateral line. J Math Biol 2014; 71:171-214. [DOI: 10.1007/s00285-014-0812-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 06/01/2014] [Indexed: 12/16/2022]
|
27
|
Matsuda M, Nogare DD, Somers K, Martin K, Wang C, Chitnis AB. Lef1 regulates Dusp6 to influence neuromast formation and spacing in the zebrafish posterior lateral line primordium. Development 2013; 140:2387-97. [PMID: 23637337 DOI: 10.1242/dev.091348] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The posterior lateral line primordium (PLLp) migrates caudally and periodically deposits neuromasts. Coupled, but mutually inhibitory, Wnt-FGF signaling systems regulate proto-neuromast formation in the PLLp: FGF ligands expressed in response to Wnt signaling activate FGF receptors and initiate proto-neuromast formation. FGF receptor signaling, in turn, inhibits Wnt signaling. However, mechanisms that determine periodic neuromast formation and deposition in the PLLp remain poorly understood. Previous studies showed that neuromasts are deposited closer together and the PLLp terminates prematurely in lef1-deficient zebrafish embryos. It was suggested that this results from reduced proliferation in the leading domain of the PLLp and/or premature incorporation of progenitors into proto-neuromasts. We found that rspo3 knockdown reduces proliferation in a manner similar to that seen in lef1 morphants. However, it does not cause closer neuromast deposition or premature termination of the PLLp, suggesting that such changes in lef1-deficient embryos are not linked to changes in proliferation. Instead, we suggest that they are related to the role of Lef1 in regulating the balance of Wnt and FGF functions in the PLLp. Lef1 determines expression of the FGF signaling inhibitor Dusp6 in leading cells and regulates incorporation of cells into neuromasts; reduction of Dusp6 in leading cells in lef1-deficient embryos allows new proto-neuromasts to form closer to the leading edge. This is associated with progressively slower PLLp migration, reduced spacing between deposited neuromasts and premature termination of the PLLp system.
Collapse
Affiliation(s)
- Miho Matsuda
- Program in Genomics of Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20852, USA
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Fischer EK, Soares D, Archer KR, Ghalambor CK, Hoke KL. Genetically and environmentally mediated divergence in lateral line morphology in the Trinidadian guppy (Poecilia reticulata). J Exp Biol 2013; 216:3132-42. [DOI: 10.1242/jeb.081349] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Fish and other aquatic vertebrates use their mechanosensory lateral line to detect objects and motion in their immediate environment. Differences in lateral line morphology have been extensively characterized among species, however intraspecific variation remains largely unexplored. In addition, little is known about how environmental factors modify development of lateral line morphology. Predation is one environmental factor that can act both as a selective pressure causing genetic differences between populations, and as a cue during development to induce plastic changes. Here, we test if variation in the risk of predation within and among populations of Trinidadian guppies (Poecilia reticulata) influences lateral line morphology. We compared neuromast arrangement in wild-caught guppies from distinct high- and low-predation population pairs to examine patterns associated with differences in predation pressure. To distinguish genetic and environmental influences, we compared neuromast arrangement in guppies from different source populations reared with and without exposure to predator chemical cues. We found that the distribution of neuromasts across the body varies between populations based on both genetic and environmental factors. To the best of our knowledge, this study is the first to demonstrate variation in lateral line morphology based on environmental exposure to an ecologically relevant stimulus.
Collapse
|