1
|
Buguet AGC. From pole to pole, life-long research of sleep in extreme environments. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae025. [PMID: 38737795 PMCID: PMC11085838 DOI: 10.1093/sleepadvances/zpae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/25/2024] [Indexed: 05/14/2024]
Abstract
In November 1965, Michel Jouvet accepted me into his laboratory in Lyon as a medical student at a time when sleep research was an adventure. After 4 years of investigations in cats, I obtained my medical doctorate. Being a military physician, I was posted to Antarctica for wintering over and was initiated by Jean Rivolier into the psychology of small isolated human groups. I recorded 180 polysomnographic (PSG) nights in eight of my companions. This was my first contribution to research on human sleep under extreme environments and conditions. I then entered René Hénane's military thermophysiology laboratory, where I analyzed thermal exchanges during human sleep in the heat. Back to the cold, I spent 2 years in Canada and analyzed sleep during the Arctic winter under the direction of Manny W. Radomski, who headed the Defense and Civil Institute of Environmental Medicine and judged my PhD dissertation along with my first two mentors. Throughout my career, I worked in collaboration with Manny Radomski under the auspices of the Franco-Canadian Accord for Defence Research. We studied sleep and exercise, sleep deprivation, and recovery with and without chemical help. He also gave me support during several investigations in Africa. There, I studied normal sleep under various tropical climates (warm and dry in Niger, warm and humid in Côte d'Ivoire and Congo, temperate mid-mountain in Angola). I determined that human African trypanosomiasis, the ravaging sleeping sickness or tsetse disease, is not a hypersomnia, but a disorder of circadian rhythms, notably in the sleep-wake cycle.
Collapse
Affiliation(s)
- Alain G C Buguet
- Invited Scientist (ret), Malaria Research Unit, UMR 5246 CNRS, Claude-Bernard Lyon-1 University, Villeurbanne, France
| |
Collapse
|
2
|
Buguet A, Reis J, Radomski MW. Sleep and global warming: How will we sleep when the Earth is hotter? J Neurol Sci 2023; 454:120859. [PMID: 37922827 DOI: 10.1016/j.jns.2023.120859] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/20/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Societal concern about climate change and global warming has grown worldwide along with the concomitant awareness that health will be impacted deeply. Among living beings, humans have quite large capacities for adaptation to varied temperature conditions. Despite their tropical origin, they live under all Earth climates, such as polar, temperate, altitude, arid, and tropical climates, using a wide range of behavioral and physiological adaptive responses. We address the adaptive abilities of human sleep-wake regulation and its interplay with thermoregulation under different natural climates. Sleep represents one-third of our living time and is also a major determinant of morbidity and mortality; shortening sleep duration increases mortality and multimorbidity. In addition, major advances in sleep neurology have occurred in the last decades. Some have been extensively reviewed, notably comparative sleep physiology among animals, allowing one to hypothesize about the functions of the different sleep states, as well as their relation to cognitive neuroscience or body biorhythms. However, the question of the sleep adaptive capacity of humans to global warming has barely been addressed. We examine "normal" sleep and thermoregulation in young adults residing in temperate conditions. We then review the sleep and thermoregulatory reactions under various climatic conditions, demonstrating the role of sleep changes as potent adaptive responses to living under natural hot climatic conditions. As a result, we show that humans are well-equipped to adapt to severe climates.
Collapse
Affiliation(s)
- Alain Buguet
- Malaria Research Unit, UMR 5246 CNRS, Claude-Bernard Lyon-1 University, 69622 Villeurbanne, France.
| | - Jacques Reis
- University of Strasbourg, 67000 Strasbourg, France; Association RISE, 3 rue du Loir, 67205 Oberhausbergen, France
| | - Manny W Radomski
- Professor Emeritus at the University of Toronto, Apt n° 2501, 2010 Islington Avenue, Toronto, ON, M9P3S8, Canada
| |
Collapse
|
3
|
Idiaquez J, Casar JC, Arnardottir ES, August E, Santin J, Iturriaga R. Hyperhidrosis in sleep disorders - A narrative review of mechanisms and clinical significance. J Sleep Res 2023; 32:e13660. [PMID: 35706374 DOI: 10.1111/jsr.13660] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/03/2023]
Abstract
Hyperhidrosis is characterized by excessive sweating beyond thermoregulatory needs that affects patients' quality of life. It results from an excessive stimulation of eccrine sweat glands in the skin by the sympathetic nervous system. Hyperhidrosis may be primary or secondary to an underlying cause. Nocturnal hyperhidrosis is associated with different sleep disorders, such as obstructive sleep apnea, insomnia, restless legs syndrome/periodic limb movement during sleep and narcolepsy. The major cause of the hyperhidrosis is sympathetic overactivity and, in the case of narcolepsy type 1, orexin deficiency may also contribute. In this narrative review, we will provide an outline of the possible mechanisms underlying sudomotor dysfunction and the resulting nocturnal hyperhidrosis in these different sleep disorders and explore its clinical relevance.
Collapse
Affiliation(s)
- Juan Idiaquez
- Departamento de Neurología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Carlos Casar
- Departamento de Neurología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Erna S Arnardottir
- Reykjavik University Sleep Institute, School of Technology, Reykjavik University, Reykjavik, Iceland.,Internal Medicine Services, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Elias August
- Reykjavik University Sleep Institute, School of Technology, Reykjavik University, Reykjavik, Iceland.,Department of Engineering, School of Technology, Reykjavik University, Reykjavik, Iceland
| | - Julia Santin
- Departamento de Neurología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Fan Z, Suzuki Y, Jiang L, Okabe S, Honda S, Endo J, Watanabe T, Abe T. Peripheral blood flow estimated by laser doppler flowmetry provides additional information about sleep state beyond that provided by pulse rate variability. Front Physiol 2023; 14:1040425. [PMID: 36776965 PMCID: PMC9908953 DOI: 10.3389/fphys.2023.1040425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Pulse rate variability (PRV), derived from Laser Doppler flowmetry (LDF) or photoplethysmography, has recently become widely used for sleep state assessment, although it cannot identify all the sleep stages. Peripheral blood flow (BF), also estimated by LDF, may be modulated by sleep stages; however, few studies have explored its potential for assessing sleep state. Thus, we aimed to investigate whether peripheral BF could provide information about sleep stages, and thus improve sleep state assessment. We performed electrocardiography and simultaneously recorded BF signals by LDF from the right-index finger and ear concha of 45 healthy participants (13 women; mean age, 22.5 ± 3.4 years) during one night of polysomnographic recording. Time- and frequency-domain parameters of peripheral BF, and time-domain, frequency-domain, and non-linear indices of PRV and heart rate variability (HRV) were calculated. Finger-BF parameters in the time and frequency domains provided information about different sleep stages, some of which (such as the difference between N1 and rapid eye movement sleep) were not revealed by finger-PRV. In addition, finger-PRV patterns and HRV patterns were similar for most parameters. Further, both finger- and ear-BF results showed 0.2-0.3 Hz oscillations that varied with sleep stages, with a significant increase in N3, suggesting a modulation of respiration within this frequency band. These results showed that peripheral BF could provide information for different sleep stages, some of which was complementary to the information provided by PRV. Furthermore, the combination of peripheral BF and PRV may be more advantageous than HRV alone in assessing sleep states and related autonomic nervous activity.
Collapse
Affiliation(s)
- Zhiwei Fan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- The Japan Society for the Promotion of Science (JSPS) Foreign Researcher, Tokyo, Japan
| | - Yoko Suzuki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Like Jiang
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Satomi Okabe
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | | | | | | | - Takashi Abe
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
Sleep quality and regular physical activity in reducing cardiac risk. Sleep Breath 2022; 27:953-960. [DOI: 10.1007/s11325-022-02688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 10/16/2022]
|
6
|
Cerri M, Amici R. Thermoregulation and Sleep: Functional Interaction and Central Nervous Control. Compr Physiol 2021; 11:1591-1604. [PMID: 33792906 DOI: 10.1002/cphy.c140012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Each of the wake-sleep states is characterized by specific changes in autonomic activity and bodily functions. The goal of such changes is not always clear. During non-rapid eye movement (NREM) sleep, the autonomic outflow and the activity of the endocrine system, the respiratory system, the cardiovascular system, and the thermoregulatory system seem to be directed at increasing energy saving. During rapid eye movement (REM) sleep, the goal of the specific autonomic and regulatory changes is unclear, since a large instability of autonomic activity and cardiorespiratory function is observed in concomitance with thermoregulatory changes, which are apparently non-functional to thermal homeostasis. Reciprocally, the activation of thermoregulatory responses under thermal challenges interferes with sleep occurrence. Such a double-edged and reciprocal interaction between sleep and thermoregulation may be favored by the fact that the central network controlling sleep overlaps in several parts with the central network controlling thermoregulation. The understanding of the central mechanism behind the interaction between sleep and thermoregulation may help to understand the functionality of thermoregulatory sleep-related changes and, ultimately, the function(s) of sleep. © 2021 American Physiological Society. Compr Physiol 11:1591-1604, 2021.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and Neuromotor Sciences - Physiology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Roberto Amici
- Department of Biomedical and Neuromotor Sciences - Physiology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Kim H, Kwon S, Kwon YT, Yeo WH. Soft Wireless Bioelectronics and Differential Electrodermal Activity for Home Sleep Monitoring. SENSORS 2021; 21:s21020354. [PMID: 33430220 PMCID: PMC7825679 DOI: 10.3390/s21020354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 01/10/2023]
Abstract
Sleep is an essential element to human life, restoring the brain and body from accumulated fatigue from daily activities. Quantitative monitoring of daily sleep quality can provide critical feedback to evaluate human health and life patterns. However, the existing sleep assessment system using polysomnography is not available for a home sleep evaluation, while it requires multiple sensors, tabletop electronics, and sleep specialists. More importantly, the mandatory sleep in a designated lab facility disrupts a subject’s regular sleep pattern, which does not capture one’s everyday sleep behaviors. Recent studies report that galvanic skin response (GSR) measured on the skin can be one indicator to evaluate the sleep quality daily at home. However, the available GSR detection devices require rigid sensors wrapped on fingers along with separate electronic components for data acquisition, which can interrupt the normal sleep conditions. Here, we report a new class of materials, sensors, electronics, and packaging technologies to develop a wireless, soft electronic system that can measure GSR on the wrist. The single device platform that avoids wires, rigid sensors, and straps offers the maximum comfort to wear on the skin and minimize disruption of a subject’s sleep. A nanomaterial GSR sensor, printed on a soft elastomeric membrane, can have intimate contact with the skin to reduce motion artifact during sleep. A multi-layered flexible circuit mounted on top of the sensor provides a wireless, continuous, real-time recording of GSR to classify sleep stages, validated by the direct comparison with the standard method that measures other physiological signals. Collectively, the soft bioelectronic system shows great potential to be working as a portable, at-home sensor system for assessing sleep quality before a hospital visit.
Collapse
Affiliation(s)
- Hojoong Kim
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (H.K.); (S.K.)
| | - Shinjae Kwon
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (H.K.); (S.K.)
| | - Young-Tae Kwon
- Department for Metal Powder, Korea Institute of Materials Science, Changwon 51508, Korea;
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (H.K.); (S.K.)
- Wallace H. Coulter Department of Biomedical Engineering and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Center for Human-Centric Interfaces and Engineering, Neural Engineering Center, Institute for Materials, and Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Correspondence: ; Tel.: +1-404-385-5710; Fax: +1-404-894-1658
| |
Collapse
|
8
|
Foster M, Singh N, Kwok K, Macefield VG. Vestibular modulation of skin sympathetic nerve activity in sopite syndrome induced by low-frequency sinusoidal motion. J Neurophysiol 2020; 124:1551-1559. [PMID: 32965160 DOI: 10.1152/jn.00177.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sopite syndrome, centered around the drowsiness, lethargy, and irritability associated with motion sickness, can be induced by exposure to low-frequency motion. It is known that the vestibular apparatus plays an important role in the pathogenesis of motion sickness, which features several autonomic responses, and we have previously documented increased vestibular modulation of skin sympathetic nerve activity (SSNA) and an increase in skin blood flow associated with nausea. Here, we assessed whether imperceptibly slow sinusoidal motion, sufficient to induce sopite syndrome but not nausea, also modulates SSNA and skin blood flow. Participants were seated upright and exposed to a randomized set of sinusoidal linear accelerations, ranging from 0.03 Hz at 0.5 mG to 0.2 Hz at 5 mG, via a motorized platform. At all frequencies vestibular modulation was greater than the cardiac modulation of SSNA, but cardiac modulation and skin blood flow were both significantly lower during the motion than at baseline. We conclude that sopite syndrome is associated with a marked modulation of sympathetic outflow to the skin and cutaneous vasoconstriction.NEW & NOTEWORTHY Little is known about the autonomic consequences of sopite syndrome-the drowsiness that can be induced by low-amplitude cyclic motion. We recorded skin sympathetic nerve activity (SSNA) in seated participants exposed to slow sinusoidal linear acceleration (0.03-0.2 Hz), which preferentially activates hair cells in the utricular part of the otolithic organs, at amplitudes that generated no sensations of motion. At all frequencies, there was a clear vestibular modulation of SSNA and cutaneous vasoconstriction.
Collapse
Affiliation(s)
- Monique Foster
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
| | - Natasha Singh
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
| | - Kenny Kwok
- School of Civil Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
|
10
|
Sano A, Picard RW, Stickgold R. Quantitative analysis of wrist electrodermal activity during sleep. Int J Psychophysiol 2014; 94:382-9. [PMID: 25286449 DOI: 10.1016/j.ijpsycho.2014.09.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/12/2014] [Accepted: 09/26/2014] [Indexed: 11/20/2022]
Abstract
We present the first quantitative characterization of electrodermal activity (EDA) patterns on the wrists of healthy adults during sleep using dry electrodes. We compare the new results on the wrist to the prior findings on palmar or finger EDA by characterizing data measured from 80 nights of sleep consisting of 9 nights of wrist and palm EDA from 9 healthy adults sleeping at home, 56 nights of wrist and palm EDA from one healthy adult sleeping at home, and 15 nights of wrist EDA from 15 healthy adults in a sleep laboratory, with the latter compared to concurrent polysomnography. While high frequency patterns of EDA called "storms" were identified by eye in the 1960s, we systematically compare thresholds for automatically detecting EDA peaks and establish criteria for EDA storms. We found that more than 80% of the EDA peaks occurred in non-REM sleep, specifically during slow-wave sleep (SWS) and non-REM stage 2 sleep (NREM2). Also, EDA amplitude is higher in SWS than in other sleep stages. Longer EDA storms were more likely to occur in the first two quarters of sleep and during SWS and NREM2. We also found from the home studies (65 nights) that EDA levels were higher and the skin conductance peaks were larger and more frequent when measured on the wrist than when measured on the palm. These EDA high frequency peaks and high amplitude were sometimes associated with higher skin temperature, but more work is needed looking at neurological and other EDA elicitors in order to elucidate their complete behavior.
Collapse
Affiliation(s)
- Akane Sano
- Massachusetts Institute of Technology, Media Lab Affective Computing Group, USA.
| | - Rosalind W Picard
- Massachusetts Institute of Technology, Media Lab Affective Computing Group, USA
| | - Robert Stickgold
- Harvard Medical School, Beth Israel Deaconess Medical Center, Center for Sleep and Cognition, USA
| |
Collapse
|
11
|
Abstract
There is increasing evidence that cardiovascular control during sleep is relevant for cardiovascular risk. This evidence warrants increased experimental efforts to understand the physiological mechanisms of such control. This review summarizes current knowledge on autonomic features of sleep states [non-rapid-eye-movement sleep (NREMS) and rapid-eye-movement sleep (REMS)] and proposes some testable hypotheses concerning the underlying neural circuits. The physiological reduction of blood pressure (BP) during the night (BP dipping phenomenon) is mainly caused by generalized cardiovascular deactivation and baroreflex resetting during NREMS, which, in turn, are primarily a consequence of central autonomic commands. Central commands during NREMS may involve the hypothalamic ventrolateral preoptic area, central thermoregulatory and central baroreflex pathways, and command neurons in the pons and midbrain. During REMS, opposing changes in vascular resistance in different regional beds have the net effect of increasing BP compared with that of NREMS. In addition, there are transient increases in BP and baroreflex suppression associated with bursts of brain and skeletal muscle activity during REMS. These effects are also primarily a consequence of central autonomic commands, which may involve the midbrain periaqueductal gray, the sublaterodorsal and peduncular pontine nuclei, and the vestibular and raphe obscurus medullary nuclei. A key role in permitting physiological changes in BP during sleep may be played by orexin peptides released by hypothalamic neurons, which target the postulated neural pathways of central autonomic commands during NREMS and REMS. Experimental verification of these hypotheses may help reveal which central neural pathways and mechanisms are most essential for sleep-related changes in cardiovascular function.
Collapse
Affiliation(s)
- Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; and
| | | |
Collapse
|
12
|
Suh M, Barksdale DJ, Logan J. Relationships among acculturative stress, sleep, and nondipping blood pressure in Korean American women. Clin Nurs Res 2012; 22:112-29. [PMID: 22872182 DOI: 10.1177/1054773812455054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Generally blood pressure (BP) should drop or dip by 10-20% during sleep. The phenomenon of nondipping BP during sleep has gained interest because of its association with various damaging effects to end-organs. This exploratory study examined nighttime nondipping BP, acculturative stress and quality of sleep in 30 Korean American women. Acculturative stress and sleep quality were measured using the Revised Social, Attitudinal, Familial, and Environmental Acculturative Stress Scale (R-SAFE) and the Pittsburg Sleep Quality Index (PSQI), respectively. Participants' BP was monitored over a 24-hour period. Participants were categorized as dippers and nondippers based on the drop in nocturnal systolic BP. Of the 30 women, 8 (26.7%) were nondippers. A shorter sleep duration and more disturbed sleep were associated with nondipping and, interestingly, less acculturative stress was also associated with nondipping BP. Our finding supports that sleep evaluation is needed in caring for individuals with nondipping BP.
Collapse
Affiliation(s)
- Minhee Suh
- Research Institute of Nursing Science, Seoul National University, College of Nursing, Seoul, South Korea.
| | | | | |
Collapse
|
13
|
ARNARDOTTIR ERNASIF, THORLEIFSDOTTIR BJORG, SVANBORG EVA, OLAFSSON ISLEIFUR, GISLASON THORARINN. Sleep-related sweating in obstructive sleep apnoea: association with sleep stages and blood pressure. J Sleep Res 2010; 19:122-30. [DOI: 10.1111/j.1365-2869.2009.00743.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Whitten TA, Martz LJ, Guico A, Gervais N, Dickson CT. Heat Synch: Inter- and Independence of Body-Temperature Fluctuations and Brain-State Alternations in Urethane-Anesthetized Rats. J Neurophysiol 2009; 102:1647-56. [DOI: 10.1152/jn.00374.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During sleep, warm-blooded animals exhibit cyclic alternations between rapid-eye-movement (REM) and nonrapid-eye-movement (non-REM) states, characterized by distinct patterns of brain activity apparent in electroencephalographic (EEG) recordings coupled with corresponding changes in physiological measures, including body temperature. Recently we have shown that urethane-anesthetized rats display cyclic alternations between an activated state and a deactivated state that are highly similar in both EEG and physiological characteristics to REM and non-REM sleep states, respectively. Here, using intracranial local field potential recordings from urethane-anesthetized rats, we show that brain-state alternations were correlated to core temperature fluctuations induced using a feedback-controlled heating system. Activated (REM-like) states predominated during the rising phase of the temperature cycle, whereas deactivated (non-REM-like) states predominated during the falling phase. Brain-state alternations persisted following the elimination of core temperature fluctuations by the use of a constant heating protocol, but the timing and rhythmicity of state alternations were altered. In contrast, thermal fluctuations applied to the ventral surface (and especially the scrotum) of rats in the absence or independently of core temperature fluctuations appeared to induce brain-state alternations. Heating brought about activated patterns, whereas cooling produced deactivated patterns. This shows that although alternations of sleeplike brain states under urethane anesthesia can be independent of imposed temperature variations, they can also be entrained through the activation of peripheral thermoreceptors. Overall, these results imply that brain state and bodily metabolism are highly related during unconsciousness and that the brain mechanisms underlying sleep cycling and thermoregulation likely represent independent, yet coupled oscillators.
Collapse
|
15
|
Elofsson UOE, von Schèele B, Theorell T, Söndergaard HP. Physiological correlates of eye movement desensitization and reprocessing. J Anxiety Disord 2008; 22:622-34. [PMID: 17604948 DOI: 10.1016/j.janxdis.2007.05.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 05/23/2007] [Accepted: 05/31/2007] [Indexed: 11/21/2022]
Abstract
Eye movement desensitization and reprocessing (EMDR) is an established treatment for post-traumatic stress disorder (PTSD). However, its working mechanism remains unclear. This study explored physiological correlates of eye movements during EMDR in relation to current hypotheses; distraction, conditioning, orienting response activation, and REM-like mechanisms. During EMDR therapy, fingertip temperature, heart rate, skin conductance, expiratory carbon dioxide level, and blood pulse oximeter oxygen saturation, were measured in male subjects with PTSD. The ratio between the low and high frequency components of the heart rate power spectrum (LF/HF) were computed as measures of autonomic balance. Respiratory rate was calculated from the carbon dioxide trace. Stimulation shifted the autonomic balance as indicated by decreases in heart rate, skin conductance and LF/HF-ratio, and an increased finger temperature. The breathing frequency and end-tidal carbon dioxide increased; oxygen saturation decreased during eye movements. In conclusion, eye movements during EMDR activate cholinergic and inhibit sympathetic systems. The reactivity has similarities with the pattern during REM-sleep.
Collapse
Affiliation(s)
- Ulf O E Elofsson
- National Institute for Psychosocial Factors and Health (IPM) & Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
16
|
Abstract
There is a high frequency of dyshidrosis in Parkinson's disease. Daily use of an antiparkinsonian drug does not affect sweating. Mental sweating relates to the contraction period and seriousness. However, hyperthermic sweating does not necessarily relate to the contraction period or seriousness. Abnormalities in mental sweating are not necessarily correlated with cardiovascular autonomic disturbances. As the autonomic disturbance becomes more advanced, dyshidrosis becomes more common. Hyperhidrosis may develop with dyskinesia. Hyperhidrosis may be improved by the temporally administration of levodopa. Dyshidrosis might be caused by a centrally-acting abnormality during its early stage. However, postganglional abnormalities as well as central changes may increase as the disease progresses. The presence of dyshidrosis affects the QOL and depression in patients with Parkinson's disease. The only therapy for hyperhydrotic sweating disorders is the administration of levodopa or dopaminagonist. Additional studies including therapy for sweating disorders are necessary.
Collapse
Affiliation(s)
- Masaaki Hirayama
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
17
|
Stornetta RL, McQuiston TJ, Guyenet PG. GABAergic and glycinergic presympathetic neurons of rat medulla oblongata identified by retrograde transport of pseudorabies virus and in situ hybridization. J Comp Neurol 2005; 479:257-70. [PMID: 15457502 DOI: 10.1002/cne.20332] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Electron microscopy suggests that up to half the synaptic input to sympathetic preganglionic neurons (SPGNs) is GABAergic or glycinergic. A proportion of this input is suspected to originate from neurons located within the medulla oblongata. The present study provides definitive evidence for the existence of these supraspinal presympathetic (PS) neurons with inhibitory phenotypes. PS neurons were identified by retrograde trans-synaptic migration of pseudorabies virus (PRV) injected into the adrenal gland. GABAergic or glycinergic cell bodies were identified by the presence of glutamate decarboxylase (GAD)-67 mRNA or glycine transporter (GlyT)-2 mRNA detected with in situ hybridization (ISH). Neither GABAergic nor glycinergic PS neurons were tyrosine hydroxylase (TH)-immunoreactive (ir). GABAergic PS neurons were located within the ventral gigantocellular nucleus, gigantocellular nucleus alpha, and medial reticular formation, mostly medial to the TH-ir PS neurons. About 30% of GABAergic PS neurons were serotonergic cells located in the raphe pallidus (RPa) and parapyramidal region (PPyr). Glycinergic PS neurons had the same general distribution as the GABAergic cells, except that no glycinergic neurons were located in the RPa or PPyr and none were serotonergic. PRV immunohistochemistry combined with ISH for both GlyT2 and GAD-67 mRNAs showed that at least 63% of midline medulla GABAergic PS neurons were also glycinergic and 76% of glycinergic PS neurons were GABAergic. In conclusion, the rostral ventromedial medulla contains large numbers of GABAergic and glycinergic neurons that innervate adrenal gland SPGNs. Over half of these PS neurons may release both transmitters. The physiological role of this medullary inhibitory input remains to be explored.
Collapse
Affiliation(s)
- Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
18
|
Wilder-Smith E, Liu L, Thein Ma Ma K, Ong BKC. Relationship of inspiratory flow rate and volume on digit tip skin and ulnar artery vasoconstrictor responses in healthy adults. Microvasc Res 2005; 69:95-100. [PMID: 15797266 DOI: 10.1016/j.mvr.2005.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Indexed: 11/20/2022]
Abstract
Reflex vasoconstrictive responses are commonly used to assess sympathetic nerve function of the extremities. A regularly used reflex trigger is deep and rapid inspiration. However, little is known about the relationship between respiratory effort and the magnitude of the resultant vasoconstrictor response. This study investigates the association of inspiratory flow rate and volume to the level of vasoconstrictor reflexes in the 4th digit tip skin and the ulnar artery in 12 healthy volunteers (age range 21-65, mean 38.1 years). The effects of Peak Inspiratory Flow (PIF) and Forced Inspiratory Vital Capacity (FIVC) on blood flow were measured at three levels of respiratory effort: low (PIF < 1.0 l/min; FIVC < 1.0 l), medium (PIF = 1.0-1.5 l/min; FIVC = 1.0-1.5 l), and high (PIF > 1.5 l/min; FIVC > 1.5 l) at two separate occasions. Ulnar vasoconstrictor responses showed good correlation with all levels of respiratory effort. Skin digit tip responses showed good correlation at medium and high levels but not at low respiratory effort. Repeatability of both tests was good. Correlation of inspiratory flow rate to vasoconstriction was consistently better than with inspiratory volume. Both digit tip and ulnar vasoconstrictor responses were maximal with greatest respiratory effort.
Collapse
Affiliation(s)
- Einar Wilder-Smith
- Division of Neurology, National University of Singapore, 5 Lower Kent Ridge Road, 119072 Singapore.
| | | | | | | |
Collapse
|