1
|
Huang L, Liu M, Jiang W, Ding H, Han Y, Wen M, Li Y, Liu X, Zeng H. Bradykinin/bradykinin 1 receptor promotes brain microvascular endothelial cell permeability and proinflammatory cytokine release by downregulating Wnt3a. J Biochem Mol Toxicol 2022; 36:e23213. [PMID: 36111657 PMCID: PMC10078380 DOI: 10.1002/jbt.23213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/29/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022]
Abstract
Stroke is a life-threatening disease with limited therapeutic options. Damage to the blood-brain barrier (BBB) is the key pathological feature of ischemic stroke. This study explored the role of the bradykinin (BK)/bradykinin 1 receptor (B1R) and its mechanism of action in the BBB. Human brain microvascular endothelial cells (BMECs) were used to test for cellular responses to BK by using the Cell Counting Kit-8 assay, 5-ethynyl-2'-deoxyuridine staining, enzyme-linked immunosorbent assay, flow cytometry, immunofluorescence, cellular permeability assays, and western blotting to evaluate cell viability, cytokine production, and reactive oxygen species (ROS) levels in vitro. A BBB induced by middle cerebral artery occlusion was used to evaluate BBB injuries, and the role played by BK/B1R in ischemic/reperfusion (I/R) was explored in a rat model. Results showed that BK reduced the viability of BMECs and increased the levels of proinflammatory cytokines (interleukin 6 [IL-6], IL-18, and monocyte chemoattractant protein-1) and ROS. Additionally, cellular permeability was increased by BK treatment, and the expression of tight junction proteins (claudin-5 and occludin) was decreased. Interestingly, Wnt3a expression was inhibited by BK and exogenous Wnt3a restored the effects of BK on BMECs. In an in vivo I/R rat model, knockdown of B1R significantly decreased infarct volume and inflammation in I/R rats. Our results suggest that BK might be a key inducer of BBB injury and B1R knockdown might provide a beneficial effect by upregulating Wnt3a.
Collapse
Affiliation(s)
- Linqiang Huang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou Guangdong China
| | - Mengting Liu
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou Guangdong China
- Clinical Medical Division, The Second School of Clinical Medicine Southern Medical University Guangzhou China
| | - Wenqiang Jiang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou Guangdong China
| | - Hongguang Ding
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou Guangdong China
| | - Yongli Han
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou Guangdong China
| | - Miaoyun Wen
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou Guangdong China
| | - Ya Li
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou Guangdong China
- Clinical Medical Division, School of Medicine South China University of Technology Guangzhou China
| | - Xiaoyu Liu
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou Guangdong China
- Clinical Medical Division, The Second School of Clinical Medicine Southern Medical University Guangzhou China
| | - Hongke Zeng
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou Guangdong China
| |
Collapse
|
2
|
Da BB, Luo S, Huang M, Song F, Ding R, Xiao Y, Fu Y, Yang YS, Wang HL. Prediction of Hepatocellular Carcinoma Prognosis and Immune Cell Infiltration Using Gene Signature Associated with Inflammatory Response. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2415129. [PMID: 35035517 PMCID: PMC8759924 DOI: 10.1155/2022/2415129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022]
Abstract
It has been demonstrated that the inflammatory response influences cancer development and can be used as a prognostic biomarker in various tumors. However, the relevance of genes associated with inflammatory responses in hepatocellular carcinoma (HCC) remains unknown. The Cancer Genome Atlas (TCGA) database was analyzed using weighted gene coexpression network analysis (WGCNA) and differential analysis to discover essential inflammatory response-related genes (IFRGs). Cox regression studies, both univariate and multivariate, were employed to develop a prognostic IFRGs signature. Additionally, Gene Set Enrichment Analysis (GSEA) was used to deduce the biological function of the IFRGs signature. Finally, we estimated immune cell infiltration using a single sample GSEA (ssGSEA) and x-cell. Our results revealed that, among the major HCC IFRGs, two (DNASE1L3 and KLKB1) were employed to create a predictive IFRG signature. The IFRG signature could correctly predict overall survival (O.S) as per Kaplan-Meier time-dependent roc curves analysis. It was also linked to pathological tumor stage and T stage and might be used as a prognostic predictor in HCC. GSEA analysis concluded that the IFRG signature might influence the immune response in HCC. Immunological cell infiltration and immune checkpoint molecule expression differed in the high-risk and low-risk groups. As a result of our findings, DNASILE may play a role in the tumor microenvironment. However, more research is necessary to confirm the role of DNASE1L3 and KLKB1.
Collapse
Affiliation(s)
- Bin-Bin Da
- Department of Minimally Invasive Interventional Medicine Yunnan Cancer Hospital, Kunming 650118, China
| | - Shuai Luo
- Department of Minimally Invasive Interventional Medicine Yunnan Cancer Hospital, Kunming 650118, China
| | - Ming Huang
- Department of Minimally Invasive Interventional Medicine Yunnan Cancer Hospital, Kunming 650118, China
| | - Fei Song
- Department of Minimally Invasive Interventional Medicine Yunnan Cancer Hospital, Kunming 650118, China
| | - Rong Ding
- Department of Minimally Invasive Interventional Medicine Yunnan Cancer Hospital, Kunming 650118, China
| | - Yao Xiao
- Department of Minimally Invasive Interventional Medicine Yunnan Cancer Hospital, Kunming 650118, China
| | - Yang Fu
- CT Room, Kunming First People's Hospital, Kunming 650000, China
| | - Yin-Shan Yang
- Department of Minimally Invasive Interventional Medicine Yunnan Cancer Hospital, Kunming 650118, China
| | - Hai-Lei Wang
- Hepatobiliary Pancreatic Vascular Surgery, Kunming First People's Hospital, Kunming 650031, China
| |
Collapse
|
3
|
Wu P, Xiang T, Wang J, Lv R, Ma S, Yuan L, Wu G, Che X. Identification of immunization-related new prognostic biomarkers for papillary renal cell carcinoma by integrated bioinformatics analysis. BMC Med Genomics 2021; 14:241. [PMID: 34620162 PMCID: PMC8499437 DOI: 10.1186/s12920-021-01092-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
Background Despite papillary renal cell carcinoma (pRCC) being the second most common type of kidney cancer, the underlying molecular mechanism remains unclear. Targeted therapies in the past have not been successful because of the lack of a clear understanding of the molecular mechanism. Hence, exploring the underlying mechanisms and seeking novel biomarkers for pursuing a precise prognostic biomarker and appropriate therapies are critical. Material and methods In our research, the differentially expressed genes (DEGs) were screened from the TCGA and GEO databases, and a total of 149 upregulated and 285 downregulated genes were sorted. This was followed by construction of functional enrichment and protein–protein interaction (PPI) network, and then the top 15 DEGs were selected for further analysis. The P4HB gene was chosen as our target gene by repetitively validating multiple datasets, and higher levels of P4HB expression predicted lower overall survival (OS) in patients with pRCC. Results We found that P4HB not only connects with immune cell infiltration and co-expression with PD-1, PD-L2, and CTLA-4, but also has a strong connection with the newly discovered hot gene, TOX. Conclusion We speculate that P4HB is a novel gene involved in the progression of pRCC through immunomodulation. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01092-w.
Collapse
Affiliation(s)
- Ping Wu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Tingting Xiang
- Department of Rehabilitation, Liguang Rehabilitation Hospital of Dalian Development Zone, Dalian, 116600, China
| | - Jing Wang
- Department of Neurobiology, Harbin Medical University, Harbin, 150086, China
| | - Run Lv
- Department of Anesthesiology, Dalian Medical University, Dalian, 116044, China
| | - Shaoxin Ma
- Department of Anesthesiology, Dalian Medical University, Dalian, 116044, China
| | - Limei Yuan
- Department of Anesthesiology, Dalian Medical University, Dalian, 116044, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| |
Collapse
|
4
|
Othman R, Cagnone G, Joyal JS, Vaucher E, Couture R. Kinins and Their Receptors as Potential Therapeutic Targets in Retinal Pathologies. Cells 2021; 10:1913. [PMID: 34440682 PMCID: PMC8391508 DOI: 10.3390/cells10081913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/29/2022] Open
Abstract
The kallikrein-kinin system (KKS) contributes to retinal inflammation and neovascularization, notably in diabetic retinopathy (DR) and neovascular age-related macular degeneration (AMD). Bradykinin type 1 (B1R) and type 2 (B2R) receptors are G-protein-coupled receptors that sense and mediate the effects of kinins. While B2R is constitutively expressed and regulates a plethora of physiological processes, B1R is almost undetectable under physiological conditions and contributes to pathological inflammation. Several KKS components (kininogens, tissue and plasma kallikreins, and kinin receptors) are overexpressed in human and animal models of retinal diseases, and their inhibition, particularly B1R, reduces inflammation and pathological neovascularization. In this review, we provide an overview of the KKS with emphasis on kinin receptors in the healthy retina and their detrimental roles in DR and AMD. We highlight the crosstalk between the KKS and the renin-angiotensin system (RAS), which is known to be detrimental in ocular pathologies. Targeting the KKS, particularly the B1R, is a promising therapy in retinal diseases, and B1R may represent an effector of the detrimental effects of RAS (Ang II-AT1R).
Collapse
Affiliation(s)
- Rahmeh Othman
- School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Gael Cagnone
- Department of Pediatry, Faculty of Medicine, CHU St Justine, Université de Montréal, Montreal, QC H3T 1J4, Canada; (G.C.); (J.-S.J.)
| | - Jean-Sébastien Joyal
- Department of Pediatry, Faculty of Medicine, CHU St Justine, Université de Montréal, Montreal, QC H3T 1J4, Canada; (G.C.); (J.-S.J.)
| | - Elvire Vaucher
- School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada
| | - Réjean Couture
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
5
|
Guardiola JJ, Hardesty JE, Beier JI, Prough RA, McClain CJ, Cave MC. Plasma Metabolomics Analysis of Polyvinyl Chloride Workers Identifies Altered Processes and Candidate Biomarkers for Hepatic Hemangiosarcoma and Its Development. Int J Mol Sci 2021; 22:5093. [PMID: 34065028 PMCID: PMC8150673 DOI: 10.3390/ijms22105093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND High-level occupational vinyl chloride (VC) exposures have been associated with hepatic hemangiosarcoma, which typically develops following a long latency period. Although VC is genotoxic, a more comprehensive mode of action has not been determined and diagnostic biomarkers have not been established. The purpose of this study is to address these knowledge gaps through plasma metabolomics. METHODS Plasma samples from polyvinyl chloride polymerization workers who developed hemangiosarcoma (cases, n = 15) and VC exposure-matched controls (n = 17) underwent metabolomic analysis. Random forest and bioinformatic analyses were performed. RESULTS Cases and controls had similar demographics and routine liver biochemistries. Mass spectroscopy identified 606 known metabolites. Random forest analysis had an 82% predictive accuracy for group classification. 60 metabolites were significantly increased and 44 were decreased vs. controls. Taurocholate, bradykinin and fibrin degradation product 2 were up-regulated by greater than 80-fold. The naturally occurring anti-angiogenic phenol, 4-hydroxybenzyl alcohol, was down-regulated 5-fold. Top affected ontologies involved: (i) metabolism of bile acids, taurine, cholesterol, fatty acids and amino acids; (ii) inflammation and oxidative stress; and (iii) nicotinic cholinergic signaling. CONCLUSIONS The plasma metabolome was differentially regulated in polyvinyl chloride workers who developed hepatic hemangiosarcoma. Ontologies potentially involved in hemangiosarcoma pathogenesis and candidate biomarkers were identified.
Collapse
Affiliation(s)
- John J. Guardiola
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.J.G.); (J.E.H.); (C.J.M.)
| | - Josiah E. Hardesty
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.J.G.); (J.E.H.); (C.J.M.)
- Hepatology and Nutrition, University of Louisville Division of Gastroenterology, Louisville, KY 40202, USA
| | - Juliane I. Beier
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
- University of Pittsburgh Liver Research Center (PLRC), Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Russell A. Prough
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA;
| | - Craig J. McClain
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.J.G.); (J.E.H.); (C.J.M.)
- Hepatology and Nutrition, University of Louisville Division of Gastroenterology, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
- The UofL Health—Jewish Hospital Trager Transplant Center, Louisville, KY 40202, USA
- The University of Louisville Superfund Research Center, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Matthew C. Cave
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.J.G.); (J.E.H.); (C.J.M.)
- Hepatology and Nutrition, University of Louisville Division of Gastroenterology, Louisville, KY 40202, USA
- University of Pittsburgh Liver Research Center (PLRC), Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA;
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
- The UofL Health—Jewish Hospital Trager Transplant Center, Louisville, KY 40202, USA
| |
Collapse
|
6
|
BDKRB2 is a novel EMT-related biomarker and predicts poor survival in glioma. Aging (Albany NY) 2021; 13:7499-7516. [PMID: 33686021 PMCID: PMC7993731 DOI: 10.18632/aging.202614] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Bradykinin receptor B2 (BDKRB2) has been reported as an oncogene in several malignancies. In glioma, the role of BDKRB2 remains unknown. This study aimed at investigating its clinical significance and biological function in glioma at the transcriptional level. We selected 301 glioma patients with microarray data from CGGA database and 697 with RNAseq data from TCGA database. Transcriptome and clinical data of 998 samples were analyzed. Statistical analysis and figure generating were performed with R language. BDKRB2 expression showed a positive correlation with the WHO grade of glioma. BDKRB2 was increased in IDH wildtype and mesenchymal subtype of glioma. Gene ontology analysis demonstrated that BDKRB2 was profoundly associated with extracellular matrix organization in glioma. GSEA analysis revealed that BDKRB2 was particularly correlated with epithelial-to-mesenchymal transition (EMT). GSVA analysis showed that BDKRB2 was significantly paralleled with several EMT signaling pathways, including PI3K/AKT, hypoxia, and TGF-β. Moreover, BDKRB2 expression was significantly correlated with key biomarkers of EMT, especially with N-cadherin, snail, slug, vimentin, TWIST1, and TWIST2. Finally, higher BDKRB2 indicated significantly shorter survival for glioma patients. In conclusion, BDKRB2 was associated with more aggressive phenotypes of gliomas. Furthermore, BDKRB2 was involved in the EMT process and could serve as an independent prognosticator in glioma.
Collapse
|
7
|
Brito-Azevedo A, Pinto EC, de Cata Preta Corrêa GA, Bouskela E. SARS-CoV-2 infection causes pulmonary shunt by vasodilatation. J Med Virol 2020; 93:573-575. [PMID: 32706407 PMCID: PMC7404894 DOI: 10.1002/jmv.26342] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 11/24/2022]
Abstract
Patients with severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) may present a significant hypoxemia. The exactly mechanism of such hypoxemia in patients with coronavirus disease 2019 (COVID‐19) is not well described. It has been suggested that microthrombosis contributes to this mechanism, increasing pulmonary dead space. However, dead spaces would not be sensible to oxygen supplementation, and also, enlargement of pulmonary vessels it has been evidenced. Shunt mechanism by vasodilatation, instead, could explain decubitus dependence in oxygenation by blood redistribution as observed in these patients, and moreover, would be more sensible to oxygen supplementation than dead spaces. We hypothesized that SARS‐CoV‐2 causes an intrapulmonary vascular dilatation (IPVD), determining a shunt mechanism by vasodilatation. We performed contrast‐enhanced transthoracic echocardiography to search IPVD shunt in patients with confirmed COVID‐19, hospitalized in an intensive care unit. Ten patients were recruited; one patient was excluded due to low quality of echocardiographic image, and nine patients were included. IPVD was found in seven (78%) patients, with different grades, including patient with normal compliance and the one without invasive ventilation. We demonstrated that shunt by IPVD is present among patients with COVID‐19, and this mechanism is probably implicated in significant hypoxemia observed. Our study brings to light a novel pathophysiological process about Covid‐19 disease. We demonstrated that SARS‐CoV‐2 infection cause a shunt mechanism by intrapulmonary vasodilatation, and this finding can be implicated in important hypoxemia observed in these patients. We hypothesize that bradykinin probably has a key role in this process.
Collapse
Affiliation(s)
- Anderson Brito-Azevedo
- Transplant Department, Liver and Pancreas Unit, São Lucas Hospital, Rio de Janeiro, Brazil.,Internal Medicine Department, Adventista Silvestre Hospital, Rio de Janeiro, Brazil.,Biomedical Department, Laboratory for Clinical and Experimental Research on Vascular Biology (BioVasc), State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Costa Pinto
- Transplant Department, Liver and Pancreas Unit, São Lucas Hospital, Rio de Janeiro, Brazil.,Intensive Care Department, Intensive Care Unit, Panamericano Hospital, Rio de Janeiro, Brazil
| | | | - Eliete Bouskela
- Biomedical Department, Laboratory for Clinical and Experimental Research on Vascular Biology (BioVasc), State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Fagová Z, Domoráková I, Danková M, Mechírová E, Kunová A, Stebnický M. Ubiquitin and endogenous antioxidant enzymes participate in neuroprotection of the rabbit spinal cord after ischemia and bradykinin postconditioning. Acta Histochem 2019; 121:732-741. [PMID: 31270014 DOI: 10.1016/j.acthis.2019.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate neuroprotective effect of bradykinin postconditioning on the rabbit spinal cord after 20 min of ischemia and 3 days of reperfusion. Bradykinin was administered by single i.p. application at 1, 6, 12 or 24 h after ischemia. Assessment of neurological function of hind limbs (Tarlov score) was estimated. Quantitative analysis was evaluated by Fluoro Jade B method, NeuN and ubiquitin immunohistochemistry in anterior horn neurons of the spinal cord. Histomorphologically distribution of ubiquitin and endogenous antioxidant enzymes (SOD1, SOD2, catalase) immunoreaction was described. Bradykinin postconditioning showed decreased number of degenerated neurons, increased number of surviving neurons and increase in number of ubiquitin positive neurons in all bradykinin postconditioned groups versus ischemia/reperfusion group. According to our results bradykinin postconditioning applied 24 h after ischemia significantly decreased (p < 0.001) number of degenerated neurons versus ischemia/reperfusion group. The least effective time window for bradykinin postconditioning was at 12 h after ischemia. Tarlov score was significantly improved (p < 0.05) in groups with bradykinin postconditioning applied 1, 6 or 24 h after ischemia versus ischemia/reperfusion group. Tarlov score in group with bradykinin application 12 h after ischemia was significantly decreased (p < 0.05) versus sham control group. Neuronal immunoreaction of ubiquitin, SOD1, SOD2 and catalase influenced by bradykinin postconditioning was dependent on neuronal survival or degeneration. In conclusion, bradykinin postconditioning showed protective effect on neurons in anterior horns of the rabbit spinal cord and improved motor function of hind limbs.
Collapse
|
9
|
Zhou Y, Wang W, Wei R, Jiang G, Li F, Chen X, Wang X, Long S, Ma D, Xi L. Serum bradykinin levels as a diagnostic marker in cervical cancer with a potential mechanism to promote VEGF expression via BDKRB2. Int J Oncol 2019; 55:131-141. [PMID: 31059006 PMCID: PMC6561625 DOI: 10.3892/ijo.2019.4792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022] Open
Abstract
Bradykinin (BK) is one of the kinin peptides and preferentially binds to bradykinin B2 receptor (BDKRB2). A recent study indicated that BK played an important role in the occurrence and progression of cancer. In this study, we evaluated the serum BK levels in 130 cervical cancer (CC) cases (including 65 cases with pre- and post-surgery paired samples, another 65 cases with only pre-surgery samples), 35 cervical intraepithelial neoplasia (CIN) cases (pre- and post-surgery paired) and 35 control cases. We found that BK was overexpressed in patients with CC compared to patients with CIN and the control group. When combined with squamous cell carcinoma-related antigen (SCCA), the diagnostic efficacy of BK was prominently enhanced. Moreover, we detected the expression level of the BK receptor BDKRB2 in CC, CIN and normal cervical tissues and observed a higher expression in the CC and CIN tissues than in the normal cervix. We then explored the possible mechanisms of action of BK in promoting the progression of CC. When BK was added to the cell culture medium, human umbilical vein endothelial cell (HUVEC) angiogenesis increased and vascular endothelial growth factor (VEGF) expression in CC cell lines was also elevated. The BK antagonist, HOE140, exerted an opposite effect. The knockdown or the overexpression of BDKRB2 in CC cell lines further confirmed its oncogenic role in angiogenesis. Taken together, the findings of this study suggest that BK may be a diagnostic biomarker for CC and may notably improve the diagnostic efficacy when combined with SCCA. BK promotes the progression of CC by upregulating the expression of VEGF via BDKRB2 and subsequently facilitating angiogenesis.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rui Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Guiying Jiang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fei Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xi Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xueqian Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Sixiang Long
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ling Xi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
10
|
Wang J, Ji E, Lin C, Wang L, Dai L, Gao W. Effects of bradykinin on the survival of multiterritory perforator flaps in rats. World J Surg Oncol 2019; 17:44. [PMID: 30813916 PMCID: PMC6394035 DOI: 10.1186/s12957-019-1570-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/27/2019] [Indexed: 02/08/2023] Open
Abstract
Background Bradykinin, a vasoactive peptide, has many biological functions. For example, it accelerates angiogenesis. Thus, we studied the effects of bradykinin on the survival of perforator flaps. Methods Averagely, 50 male Sprague–Dawley rats were divided into control and bradykinin groups and underwent procedures to the multiterritory perforator flap. Areas of flap survival were tested 7 days later. Flap perfusion was evaluated by laser Doppler imaging. We assessed the extent of autophagy by determining LC3-II/I, Beclin 1, and p62. Flap angiogenesis was assessed by immunohistochemistry and H&E staining. We measured the level of vascular endothelial growth factor (VEGF) protein using western blot. We assessed oxidative stress by measuring the activity of superoxide dismutase (SOD) and malondialdehyde (MDA) levels. The apoptotic index was also evaluated by western blot, and we determined nitric oxide (NO) production using an NO assay kit. Results The bradykinin group exhibited significantly larger areas of flap survival, higher blood supply, and more neovascularization. The bradykinin group also had higher SOD activity, higher VEGF expression and NO content, and reduced MDA compared to the control group. Rats treated with bradykinin also had lower levels of apoptosis and autophagy relative to the control group. Conclusion Our results suggest that bradykinin promotes the survival of multiterritory perforator flaps by increasing angiogenesis, promoting the release of NO, suppressing apoptosis, reducing oxidative stress, and inhibiting autophagy.
Collapse
Affiliation(s)
- Jieke Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Encheng Ji
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Chen Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Long Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Li Dai
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Weiyang Gao
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China.
| |
Collapse
|
11
|
Niewiarowska-Sendo A, Kozik A, Guevara-Lora I. Influence of bradykinin B2 receptor and dopamine D2 receptor on the oxidative stress, inflammatory response, and apoptotic process in human endothelial cells. PLoS One 2018; 13:e0206443. [PMID: 30427893 PMCID: PMC6241119 DOI: 10.1371/journal.pone.0206443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/13/2018] [Indexed: 01/11/2023] Open
Abstract
Endothelial dysfunction is a hallmark of a wide range of cardiovascular diseases and is often linked to oxidative stress and inflammation. Our earlier study reported the formation of a functional heterodimer between bradykinin receptor 2 (B2R) and dopamine receptor 2 (D2R) that may modulate cell responses, dependent on intracellular signaling. Here, for the first time, we showed a cooperative effect of these receptors on the modulation of processes involved in oxidative stress, inflammation, and apoptosis in endothelial cells. Sumanirole, a specific D2R agonist, was shown to diminish the excessive production of reactive oxygen species induced by bradykinin, a proinflammatory B2R-activating peptide. This effect was accompanied by modified activities of antioxidant enzymes and increased phosphorylation of endothelial nitric oxide synthase, leading to enhance NO production. In turn, endothelial cell co-stimulation with B2R and D2R agonists inhibited the release of interleukin-6 and endothelin-1 and modulated the expression of apoptosis markers, such as Bcl-2, Bcl-xL, Bax, and caspase 3/7 activity. All these observations argue that the D2R agonist counteracts the pro-oxidative, pro-inflammatory, and pro-apoptotic effects induced through B2R, finally markedly improving endothelial functions.
Collapse
Affiliation(s)
- Anna Niewiarowska-Sendo
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Ibeth Guevara-Lora
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
- * E-mail:
| |
Collapse
|
12
|
Vallejo-Ardila DL, Fifis T, Burrell LM, Walsh K, Christophi C. Renin-angiotensin inhibitors reprogram tumor immune microenvironment: A comprehensive view of the influences on anti-tumor immunity. Oncotarget 2018; 9:35500-35511. [PMID: 30464806 PMCID: PMC6231452 DOI: 10.18632/oncotarget.26174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/08/2018] [Indexed: 12/30/2022] Open
Abstract
Renin-angiotensin system inhibitors (RASi) have shown potential anti-tumor effects that may have a significant impact in cancer therapy. The components of the renin-angiotensin system (RAS) including both, conventional and alternative axis, appear to have contradictory effects on tumor biology. The mechanisms by which RASi impair tumor growth extend beyond their function of modulating tumor vasculature. The major focus of this review is to analyze other mechanisms by which RASi reprogram the tumor immune microenvironment. These involve impairing hypoxia and acidosis within the tumor stroma, regulating inflammatory signaling pathways and oxidative stress, modulating the function of the non-cellular components and immune cells, and regulating the cross-talk between kalli krein kinin system and RAS.
Collapse
Affiliation(s)
- Dora L Vallejo-Ardila
- Department of Surgery, Austin Health, University of Melbourne, Melbourne,VIC 3084, Australia
| | - Theodora Fifis
- Department of Surgery, Austin Health, University of Melbourne, Melbourne,VIC 3084, Australia
| | - Louise M Burrell
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC 3084, Australia.,Department of Cardiology, Austin Health, University of Melbourne, Melbourne, VIC 3084, Australia
| | - Katrina Walsh
- Department of Surgery, Austin Health, University of Melbourne, Melbourne,VIC 3084, Australia
| | - Christopher Christophi
- Department of Surgery, Austin Health, University of Melbourne, Melbourne,VIC 3084, Australia
| |
Collapse
|
13
|
Xu J, Fang J, Cheng Z, Fan L, Hu W, Zhou F, Shen H. Overexpression of the Kininogen-1 inhibits proliferation and induces apoptosis of glioma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:180. [PMID: 30068373 PMCID: PMC6090912 DOI: 10.1186/s13046-018-0833-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/06/2018] [Indexed: 12/22/2022]
Abstract
Background Glioma is the most common primary central nervous system tumor derived from glial cells. Kininogen-1 (KNG1) can exert antiangiogenic properties and inhibit proliferation of endothelial cells. The effect of KNG1 on the glioma is rarely reported, so our purpose in to explore its mechanism in glioma cells. Methods The differentially expressed genes (DEGs) were identified based on The Cancer Genome Atlas (TCGA) database. The KNG1-vector was transfected into the two glioma cells. The viability, apoptosis and cell cycle of glioma cells and microvessel density (MVD) were detected by cell counting kit-8 assay, flow cytometry and immunohistochemistry, respectively. The expression were measured by quantitative real-time PCR and Western blot, respectively. A tumor mouse model was established to determine apoptosis rate of brain tissue by terminal deoxynucleotidyl transfer-mediated dUTP nick end labeling (TUNEL) analysis. Results KNG1 was identified as the core gene and lowly expressed in the glioma cells. Overexpression of KNG1 inhibited cell viability and angiogenesis of glioma cells. Overexpression of KNG1 promoted the apoptosis and G1 phase cell cycle arrest of glioma cells. Moreover, the expressions of VEGF, cyclinD1, ki67, caspase-3/9 and XIAP were regulated by overexpression of KNG1. In addition, overexpression of KNG1 inhibited the activity of PI3K/Akt. Furthermore, overexpression of KNG1 decreased the tumor growth and promoted the apoptosis of decreased by overexpression of KNG1 in vivo. . Conclusions Overexpression of KNG1 suppresses glioma progression by inhibiting the proliferation and promoting apoptosis of glioma cells, providing a therapeutic strategy for the malignant glioma.
Collapse
Affiliation(s)
- Jinfang Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, Zhejiang Province, 310009, China
| | - Jun Fang
- Department of Radiotherapy, Zhejiang Cancer Hospital, No.1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang Province, 310022, China
| | - Zhonghao Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, Zhejiang Province, 310009, China
| | - Longlong Fan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, Zhejiang Province, 310009, China
| | - Weiwei Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, Zhejiang Province, 310009, China
| | - Feng Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, Zhejiang Province, 310009, China.
| | - Hong Shen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, Zhejiang Province, 310009, China
| |
Collapse
|
14
|
da Costa PLN, Wynne D, Fifis T, Nguyen L, Perini M, Christophi C. The kallikrein-Kinin system modulates the progression of colorectal liver metastases in a mouse model. BMC Cancer 2018; 18:382. [PMID: 29618333 PMCID: PMC5885419 DOI: 10.1186/s12885-018-4260-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/20/2018] [Indexed: 01/06/2023] Open
Abstract
Background The Kallikrein-Kinin System (KKS) has been found to play a role in tumor progression in several cancers. The KKS metabolic cascade depends on signalling through two cross talking receptors; bradykinin receptor 1 (B1R) and bradykinin receptor 2 (B2R). Activation of the Kinin receptor is responsible for multiple pathophysiologic functions including increase of vascular permeability and induction of host inflammatory responses that exert diverse effects on tumor growth. Methods B1R and B2R expression on mouse and human CRC cell lines was investigated. Changes in tumor growth and progression was assessed in male CBA mice bearing colorectal liver metastases (CRLM) following treatment with B1R or B2R blockers. In vitro cultures of human SW-480 and mouse colorectal cancer (MoCR) cell lines were examined for changes in their proliferation and migration properties following treatment with B1R or B2R blockers. Results Both colorectal cancer cell lines tested strongly positive for B1R and B2R expression. Inhibition of both receptors retarded tumor growth but only B1R blockade significantly reduced tumor load and increased tumor apoptosis. Blockade of either receptor reduced tumor vascularization in vivo and significantly inhibited proliferation and migration of colorectal cancer cells in vitro. Conclusion Taken together, the present study demonstrated that kinin receptor blockade inhibited tumor growth and reduced its invading properties suggesting that KKS manipulation could be a novel target in colorectal cancer therapy. Electronic supplementary material The online version of this article (10.1186/s12885-018-4260-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricia Luiza Nunes da Costa
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia.,Laboratório de Oncologia Experimental, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - David Wynne
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Theodora Fifis
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia.
| | - Linh Nguyen
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Marcos Perini
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Christopher Christophi
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia
| |
Collapse
|
15
|
Kuol N, Stojanovska L, Apostolopoulos V, Nurgali K. Role of the nervous system in cancer metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:5. [PMID: 29334991 PMCID: PMC5769535 DOI: 10.1186/s13046-018-0674-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/30/2017] [Indexed: 12/20/2022]
Abstract
Cancer remains as one of the leading cause of death worldwide. The development of cancer involves an intricate process, wherein many identified and unidentified factors play a role. Although most studies have focused on the genetic abnormalities which initiate and promote cancer, there is overwhelming evidence that tumors interact within their environment by direct cell-to-cell contact and with signaling molecules, suggesting that cancer cells can influence their microenvironment and bidirectionally communicate with other systems. However, only in recent years the role of the nervous system has been recognized as a major contributor to cancer development and metastasis. The nervous system governs functional activities of many organs, and, as tumors are not independent organs within an organism, this system is integrally involved in tumor growth and progression.
Collapse
Affiliation(s)
- Nyanbol Kuol
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia. .,Department of Medicine, Western Health, The University of Melbourne, Regenerative Medicine and Stem Cells Program, AIMSS, Melbourne, Australia.
| |
Collapse
|
16
|
Liu QS, Hao F, Sun Z, Long Y, Zhou Q, Jiang G. Perfluorohexadecanoic acid increases paracellular permeability in endothelial cells through the activation of plasma kallikrein-kinin system. CHEMOSPHERE 2018; 190:191-200. [PMID: 28987408 DOI: 10.1016/j.chemosphere.2017.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 06/07/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are ubiquitous and high persistent in human blood, thus potentially inducing a myriad of deleterious consequences. Plasma kallikrein-kinin system (KKS), which physiologically regulates vascular permeability, is vulnerable to exogenous stimulators, like PFASs with long-chain alkyl backbone substituted by electronegative fluorine. The study on the interactions of PFASs with the KKS and the subsequent effects on vascular permeability would be helpful to illustrate how the chemicals penetrate the biological vascular barriers to reach different tissues. In present study, three representative PFASs, including perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexadecanoic acid (PFHxDA), were investigated for their effects on the activation of the KKS, paracellular permeability in human retina endothelial cells (HRECs) and integrity of the adherens junctions. In contrast to either PFOS or PFOA, PFHxDA efficiently triggered KKS activation in a concentration-dependent manner based on protease activity assays. The plasma activated by PFHxDA significantly increased paracellular permeability of HRECs through the degradation of adherens junctions. As evidenced by the antagonistic effect of aprotinin, PFHxDA-involved effects on vascular permeability were mediated by KKS activation. The results herein firstly revealed the mechanistic pathway for PFHxDA induced effects on vascular endothelial cells. Regarding the possible structure-related activities of the chemicals, this finding would be of great help in the risk assessment of PFASs.
Collapse
Affiliation(s)
- Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fang Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yanmin Long
- Institute of Environment and Health, Jianghan University, Wuhan, 430000, PR China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
17
|
Bayir E, Bilgi E, Urkmez AS. Implementation of Nanoparticles in Cancer Therapy. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cancer is a wide group of diseases and generally characterized by uncontrolled proliferation of cells whose metabolic activities are disrupted. Conventionally, chemotherapy, radiotherapy, and surgery are used in the treatment of cancer. However, in theory, even a single cancer cell may trigger recurrence. Therefore, these treatments cannot provide high survival rate for deadly types. Identification of alternative methods in treatment of cancers is inevitable because of adverse effects of conventional methods. In the last few decades, nanotechnology developed by scientists working in different disciplines—physics, chemistry, and biology—offers great opportunities. It is providing elimination of both circulating tumor cells and solid cancer cells by targeting cancer cells. In this chapter, inadequate parts of conventional treatment methods, nanoparticle types used in new treatment methods of cancer, and targeting methods of nanoparticles are summarized; furthermore, recommendations of future are provided.
Collapse
|
18
|
|
19
|
Abstract
Cancer pain sends a message. It is frightening to the patient. It heralds progression or recurrence to the oncologist. It is a biological readout of the cancer-nerve interaction for the scientist. Nerves have been considered bystanders within the cancer microenvironment. However, emerging information suggests that nerves are recruited and participate in the carcinogenic process. These newly formed fibers respond to mediators secreted by constituents of the cancer microenvironment. In this manner, these nerves serve as bellwethers and sensors embedded within the cancer. When we rigorously assess patients' cancer pain, we gain insight into the action of cancer. An enhanced understanding of cancer pain offers biological questions that if answered might not only provide relief from cancer pain but might also improve survival.
Collapse
|
20
|
Affiliation(s)
- Aftab Ahmad
- National Academy of Young Scientists (NAYS) Pakistan , Lahore , Pakistan ; Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST) , Ikoma , Japan
| | - Shoji Komai
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST) , Ikoma , Japan
| |
Collapse
|
21
|
Adamopoulos PG, Kontos CK, Papageorgiou SG, Pappa V, Scorilas A. KLKB1 mRNA overexpression: A novel molecular biomarker for the diagnosis of chronic lymphocytic leukemia. Clin Biochem 2015; 48:849-54. [PMID: 25891023 DOI: 10.1016/j.clinbiochem.2015.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Plasma kallikrein, also known as Fletcher factor or kallikrein B1 (KLKB1), is a serine endopeptidase, like its homologs tissue kallikrein and kallikrein-related peptidases (KLKs). Its physiological role is to catalyze the release of kinins and other vasoactive peptides. Several KLKs have been proposed as putative tumor biomarkers with significant diagnostic and/or prognostic value in human malignancies arising from solid tumors; the most prominent example is the worldwide use of KLK3 (prostate-specific antigen, PSA) in prostate cancer diagnostics. The aim of this study was to analyze KLKB1 mRNA expression in B-cell chronic lymphocytic leukemia (CLL) patients and to examine its diagnostic value as a novel molecular biomarker in CLL. DESIGN AND METHODS Total RNA was isolated from peripheral blood mononuclear cells of sixty-nine patients previously diagnosed with CLL and thirty-one healthy blood donors. After cDNA preparation, a sensitive and cost-effective quantitative real-time PCR (qRT-PCR) methodology was developed and applied for KLKB1 mRNA quantification. Last, we carried out a biostatistical analysis to assess the clinical significance of KLKB1 mRNA expression. RESULTS According to our findings, KLKB1 mRNA expression is significantly higher in CLL patients than in healthy blood donors. Furthermore, KLKB1 mRNA levels are negatively correlated with CD38 expression, an established prognostic biomarker in CLL. Most importantly, KLKB1 mRNA expression possesses important diagnostic value, distinguishing very efficiently CLL patients from non-leukemic population. CONCLUSIONS KLKB1 mRNA expression is a putative molecular biomarker in CLL, meriting investigation in large cohorts of CLL patients and non-leukemic controls.
Collapse
Affiliation(s)
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, University of Athens, Athens GR-15701, Greece
| | - Sotirios G Papageorgiou
- Second Department of Internal Medicine, Propaedeutic, University of Athens, University General Hospital "Attikon", Athens GR-12462, Greece
| | - Vassiliki Pappa
- Second Department of Internal Medicine, Propaedeutic, University of Athens, University General Hospital "Attikon", Athens GR-12462, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, University of Athens, Athens GR-15701, Greece.
| |
Collapse
|
22
|
Dammann K, Khare V, Gasche C. Republished: tracing PAKs from GI inflammation to cancer. Postgrad Med J 2014; 90:657-68. [PMID: 25335797 PMCID: PMC4222351 DOI: 10.1136/postgradmedj-2014-306768rep] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 12/20/2022]
Abstract
P-21 activated kinases (PAKs) are effectors of Rac1/Cdc42 which coordinate signals from the cell membrane to the nucleus. Activation of PAKs drive important signalling pathways including mitogen activated protein kinase, phospoinositide 3-kinase (PI3K/AKT), NF-κB and Wnt/β-catenin. Intestinal PAK1 expression increases with inflammation and malignant transformation, although the biological relevance of PAKs in the development and progression of GI disease is only incompletely understood. This review highlights the importance of altered PAK activation within GI inflammation, emphasises its effect on oncogenic signalling and discusses PAKs as therapeutic targets of chemoprevention.
Collapse
Affiliation(s)
- Kyle Dammann
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Qi L, Li SH, Si LB, Lu M, Tian H. Expression of THOP1 and its relationship to prognosis in non-small cell lung cancer. PLoS One 2014; 9:e106665. [PMID: 25180910 PMCID: PMC4152321 DOI: 10.1371/journal.pone.0106665] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/30/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The study was designed to detect the expression level of thimet oligopeptidase (THOP1) protein in non-small cell lung cancer (NSCLC) and investigate its correlation with clinicopathologic features and prognosis. METHODS Immunohistochemical staining was used to determine the expression of THOP1 protein in 120 NSCLC specimens and 53 distant normal lung tissues. Quantitative real-time PCR and western blotting were employed to measure the expression of THOP1 in 16 pairs of primary NSCLC and corresponding normal tissues. RESULTS Analysis of immunohistochemical staining suggested low THOP1 expression was found in 71 (59.2%) of the 120 NSCLC specimens and significantly correlated with positive lymph node metastasis (P = 0.048). However, low THOP1 expression was found in 22 (41.5%) of the 53 normal lung tissues. Chi-square test suggested that the expression of THOP1 was significantly higher in the normal lung tissues than that in the NSCLC specimens (P = 0.032). Real-Time PCR and western blotting showed that NSCLC specimens had decreased THOP1 mRNA and protein expression compared to corresponding normal tissues. Univariate analysis demonstrated that low THOP1 expression significantly predicted decreased 5-year disease-free survival (P = 0.038) and overall survival (P = 0.017). In addition, positive lymph node metastasis (P = 0.025) and advanced TNM stage (P = 0.009) significantly predicted decreased 5-year overall survival. However, multivariate Cox regression analysis showed that only low THOP1 expression retained its significance as an independent prognostic factor for unfavorable 5-year disease-free survival (P = 0.046) and overall survival (P = 0.021). CONCLUSIONS THOP1 may have clinical potentials to be employed as a promising biomarker to identify individuals with better prognosis and a novel antitumor agent for therapy of patients with NSCLC.
Collapse
Affiliation(s)
- Lei Qi
- Department of Thoracic Surgery, Qi Lu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Shu-hai Li
- Department of Thoracic Surgery, Qi Lu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Li-bo Si
- Department of Thoracic Surgery, Qi Lu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Ming Lu
- Department of Thoracic Surgery, Qi Lu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Hui Tian
- Department of Thoracic Surgery, Qi Lu Hospital, Shandong University, Jinan, Shandong Province, China
- * E-mail:
| |
Collapse
|
24
|
Moraes MS, Costa PE, Batista WL, Paschoalin T, Curcio MF, Borges RE, Taha MO, Fonseca FV, Stern A, Monteiro HP. Endothelium-derived nitric oxide (NO) activates the NO-epidermal growth factor receptor-mediated signaling pathway in bradykinin-stimulated angiogenesis. Arch Biochem Biophys 2014; 558:14-27. [DOI: 10.1016/j.abb.2014.06.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/08/2014] [Accepted: 06/11/2014] [Indexed: 12/22/2022]
|
25
|
Naidu N, Botha JH, Naidoo S. B1 but not B2 bradykinin receptor agonists promote DU145 prostate cancer cell proliferation and migration. Afr Health Sci 2014; 14:657-62. [PMID: 25352885 DOI: 10.4314/ahs.v14i3.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The kallikrein-kinin system (KKS) is an endogenous pathway involved in angiogenesis and tumourigenesis, both vital for cancer growth and progression. OBJECTIVES To investigate the effect of two bradykinin receptor (B1R and B2R) agonists on growth and motility of prostate tumour (DU145) and micro-vascular endothelial cells (dMVECs). METHODS Increasing concentrations of selective B1R and B2R agonists were added to cultured cells. Cell proliferation and migration were assessed using the 3-[4,5 dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) and modified Boyden Chamber assays, respectively. Where significant stimulation was found, the influence of an antagonist was also investigated. RESULTS Neither growth nor motility of endothelial cells was affected by either agonist. In DU145 cells, while the B2R agonist was without any significant effect, the B1R agonist stimulated proliferation and migration at concentrations of 10nM and 50nM respectively. Further, this effect was abrogated when cells were pre-incubated with a B1R antagonist. CONCLUSIONS Unlike the physiologically-active B2R, the pathologically-inducible B1R may be implicated in prostate tumourigenic events. The involvement of the KKS in malignant prostate pathology supports on-going exploration of bradykinin receptor antagonists as target candidates in the development of alternate approaches to cancer therapy.
Collapse
Affiliation(s)
- N Naidu
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - J H Botha
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - S Naidoo
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| |
Collapse
|
26
|
Abstract
P-21 activated kinases (PAKs) are effectors of Rac1/Cdc42 which coordinate signals from the cell membrane to the nucleus. Activation of PAKs drive important signalling pathways including mitogen activated protein kinase, phospoinositide 3-kinase (PI3K/AKT), NF-κB and Wnt/β-catenin. Intestinal PAK1 expression increases with inflammation and malignant transformation, although the biological relevance of PAKs in the development and progression of GI disease is only incompletely understood. This review highlights the importance of altered PAK activation within GI inflammation, emphasises its effect on oncogenic signalling and discusses PAKs as therapeutic targets of chemoprevention.
Collapse
Affiliation(s)
- Kyle Dammann
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
d'Arcy R, Tirelli N. Fishing for fire: strategies for biological targeting and criteria for material design in anti-inflammatory therapies. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3264] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Richard d'Arcy
- School of Medicine/Institute of Inflammation and Repair; University of Manchester; Manchester M13 9PT UK
| | - Nicola Tirelli
- School of Medicine/Institute of Inflammation and Repair; University of Manchester; Manchester M13 9PT UK
- School of Materials; University of Manchester; Manchester M13 9PT UK
| |
Collapse
|
28
|
Impact of extracellular RNA on endothelial barrier function. Cell Tissue Res 2014; 355:635-45. [DOI: 10.1007/s00441-014-1850-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/13/2014] [Indexed: 11/25/2022]
|
29
|
da Costa PLN, Sirois P, Tannock IF, Chammas R. The role of kinin receptors in cancer and therapeutic opportunities. Cancer Lett 2013; 345:27-38. [PMID: 24333733 DOI: 10.1016/j.canlet.2013.12.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 12/20/2022]
Abstract
Kinins are generated within inflammatory tissue microenvironments, where they exert diverse functions, including cell proliferation, leukocyte activation, cell migration, endothelial cell activation and nociception. These pleiotropic functions depend on signaling through two cross talking receptors, the constitutively expressed kinin receptor 2 (B2R) and the inducible kinin receptor 1 (B1R). We have reviewed evidence, which supports the concept that kinin receptors, especially kinin receptor 1, are promising targets for cancer therapy, since (1) many tumor cells express aberrantly high levels of these receptors; (2) some cancers produce kinins and use them as autocrine factors to stimulate their growth; (3) activation of kinin receptors leads to activation of macrophages, dendritic cells and other cells from the tumor microenvironment; (4) kinins have pro-angiogenic properties; (5) kinin receptors have been implicated in cancer migration, invasion and metastasis; and (6) selective antagonists for either B1R or B2R have shown anti-proliferative, anti-inflammatory, anti-angiogenic and anti-migratory properties. The multiple cross talks between kinin receptors and renin-angiotensin system (RAS) as well as its implications for targeting KKS or RAS for the treatment of malignancies are also discussed. It is expected that B1R antagonists would interfere less with housekeeping functions and therefore would be attractive compounds to treat selected types of cancer. Reliable clinical studies are needed to establish the translatability of these data to human settings and the usefulness of kinin receptor antagonists.
Collapse
Affiliation(s)
- Patrícia L N da Costa
- Laboratório de Oncologia Experimental, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, Brazil
| | - Pierre Sirois
- CHUL Research Center, Laval University, Quebec City, Canada
| | - Ian F Tannock
- Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada
| | - Roger Chammas
- Laboratório de Oncologia Experimental, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, Brazil.
| |
Collapse
|
30
|
Kashuba E, Bailey J, Allsup D, Cawkwell L. The kinin-kallikrein system: physiological roles, pathophysiology and its relationship to cancer biomarkers. Biomarkers 2013; 18:279-96. [PMID: 23672534 DOI: 10.3109/1354750x.2013.787544] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The kinin-kallikrein system (KKS) is an endogenous multiprotein cascade, the activation of which leads to triggering of the intrinsic coagulation pathway and enzymatic hydrolysis of kininogens with the consequent release of bradykinin-related peptides. This system plays a crucial role in inflammation, vasodilation, smooth muscle contraction, cardioprotection, vascular permeability, blood pressure control, coagulation and pain. In this review, we will outline the physiology and pathophysiology of the KKS and also highlight the association of this system with carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- Elena Kashuba
- Postgraduate Medical Institute, University of Hull, Hull, UK
| | | | | | | |
Collapse
|
31
|
Proniewicz E, Skołuba D, Ignatjev I, Niaura G, Sobolewski D, Prahl A, Proniewicz LM. Influence of applied potential on bradykinin adsorption onto Ag, Au, and Cu electrodes. JOURNAL OF RAMAN SPECTROSCOPY 2013; 44:655-664. [DOI: 10.1002/jrs.4246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Surface‐enhanced Raman scattering, electrochemistry, and generalized two‐dimensional correlation analysis (G2DCA) methods were used to characterize bradykinin (BK), a hormone which is known to be involved in small‐cell and non‐small‐cell lung carcinoma and prostate cancer. BK was deposited onto Ag, Au, and Cu electrode surfaces under different applied electrode potentials (−1.000 V to 0.200 V) in aqueous solutions. Based on the analysis of the enhancement, the broadening, and the shifts in the wavenumbers of individual bands, specific conclusions were drawn regarding the peptide geometry and changes in this geometry that occurred when the electrode type and applied electrode potential were varied. Briefly, BK deposited onto the Ag, Au, and Cu electrode surfaces showed bands that were due to the vibrations of moieties in contact with or in close proximity to the electrode surfaces and were thus located on the same side of the polypeptide backbone. These moieties included the Phe, Arg, and Pro residues. The findings for adsorbed BK were fully supported by G2DCA, which also allowed us to determine the order in which changes occurred when the electrode potential was changed. In addition, it was found that at negative electrode potentials, the Phe rings and methylene groups interact with Ag electrode surface. No such interaction was observed for Au and Cu electrodes. Copyright © 2013 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Edyta Proniewicz
- Faculty of Chemistry Jagiellonian University ul. Ingardena 3 30‐060 Krakow Poland
| | - Dominika Skołuba
- Faculty of Chemistry Jagiellonian University ul. Ingardena 3 30‐060 Krakow Poland
| | - Ilja Ignatjev
- Institute of Chemistry Center for Physical Sciences and Technology A. Gostauto 9 LT‐01108 Vilnius Lithuania
| | - Gediminas Niaura
- Institute of Chemistry Center for Physical Sciences and Technology A. Gostauto 9 LT‐01108 Vilnius Lithuania
| | - Dariusz Sobolewski
- Faculty of Chemistry University of Gdansk Sobieskiego 18 80‐952 Gdansk Poland
| | - Adam Prahl
- Faculty of Chemistry University of Gdansk Sobieskiego 18 80‐952 Gdansk Poland
| | | |
Collapse
|
32
|
Li S, Sun Y, Gao D. Role of the nervous system in cancer metastasis. Oncol Lett 2013; 5:1101-1111. [PMID: 23599747 PMCID: PMC3629128 DOI: 10.3892/ol.2013.1168] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/17/2012] [Indexed: 12/17/2022] Open
Abstract
The notion that tumors lack innervation was proposed several years ago. However, nerve fibers are irregulatedly found in some tumor tissues. Their terminals interaction with cancer cells are considered to be neuro-neoplastic synapses. Moreover, neural-related factors, which are important players in the development and activity of the nervous system, have been found in cancer cells. Thus, they establish a direct connection between the nervous system and tumor cells. They modulate the process of metastasis, including degradation of base membranes, cancer cell invasion, migration, extravasation and colonization. Peripheral nerve invasion provides another pathway for the spread of cancer cells when blood and lymphatic metastases are absent, which is based on the interactions between the microenvironments of nerve fibers and tumor cells. The nervous system also modulates angiogenesis, the tumor microenvironment, bone marrow, immune functions and inflammatory pathways to influence metastases. Denervation of the tumor has been reported to enhance cancer metastasis. Stress, social isolation and other emotional factors may increase distant metastasis through releasing hormones from the brain, the hypothalamic-pituitary-adrenal axis and autonomic nervous system. Disruption of circadian rhythms will also promote cancer metastasis through direct and indirect actions of the nervous system. Therefore, the nervous system plays an important role in cancer metastasis.
Collapse
Affiliation(s)
- Sha Li
- Department of Radiation Oncology, Lanzhou General Hospital of PLA, Lanzhou, Gansu 730050
| | | | | |
Collapse
|
33
|
Sgnaolin V, Pereira TCB, Bogo MR, Zanin R, Battastini AMO, Morrone FB, Campos MM. Functional and molecular characterization of kinin B1 and B 2 receptors in human bladder cancer: implication of the PI3Kγ pathway. Invest New Drugs 2012; 31:812-22. [PMID: 23224295 DOI: 10.1007/s10637-012-9907-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/13/2012] [Indexed: 11/28/2022]
Abstract
Kinins and their receptors have been recently implicated in cancer. Using functional and molecular approaches, we investigated the relevance of kinin B1 and B2 receptors in bladder cancer. Functional studies were conducted using bladder cancer cell lines, and human biopsies were employed for molecular studies. Both B1 des-Arg(9)-BK and B2 BK receptor agonists stimulated the proliferation of grade 3-derived T24 bladder cancer cells. Furthermore, treatment with B1 and B2 receptor antagonists (SSR240612 and HOE140) markedly inhibited the proliferation of T24 cells. Only higher concentrations of BK increased the proliferation of the grade 1 bladder cancer cell line RT4, while des-Arg(9)-BK completely failed to induce its proliferation. Real-time PCR revealed that the mRNA expression of kinin receptors, particularly B1 receptors, was increased in T24 cells relative to RT4 cells. Data from bladder cancer human biopsies revealed that B1 receptor expression was increased in all tumor samples and under conditions of chronic inflammation. We also show novel evidence demonstrating that the pharmacological inhibition of PI3Kγ (phosphatidylinositol 3-kinase) with AS252424, concentration-dependently reduced T24 cell proliferation induced by BK or des-Arg(9)-BK. Finally, the incubation of T24 cells with kinin agonists led to a marked activation of the PI3K/AKT and ERK 1/2 signaling pathways, whereas p38 MAP kinase remained unaffected. Kinin receptors, especially B1 receptors, appear to be implicated in bladder cancer progression. It is tempting to suggest that selective kinin antagonists might represent potential alternative therapies for bladder cancer.
Collapse
Affiliation(s)
- V Sgnaolin
- Prostgraduate Program in Medicine and Health Sciences, Pontificia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6681, Partenon, 90619-900 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
34
|
Expression patterns of kinin-dependent genes in endometrial cancer. Int J Gynecol Cancer 2012; 22:937-44. [PMID: 22706224 DOI: 10.1097/igc.0b013e318259d8da] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE The present study has focused on the identification of the differences between expression patterns of kinin-dependent genes in endometrial cancer with the use of real-time quantitative reverse transcription polymerase chain reaction and oligonucleotide microarray. MATERIALS AND METHODS The study group consisted of 50 endometrium samples collected from women with endometrial cancer. Gene expression of kinin receptors BR1 and BR2 was evaluated with real-time quantitative reverse transcription polymerase chain reaction. The analysis of the expression profile of genes related to the kinin mitogenic signal transduction pathway was performed using HG-U133A oligonucleotide microarrays. RESULTS The transcriptional activity of the B1 receptor for kinins increased in patients with grade 1 (G1) and grade 2 (G2) endometrial cancer when compared to the control group, whereas it decreased in patients with grade 3 (G3) endometrial cancer. The expression of the B2 receptor showed a growing trend reaching the peak in the G2, whereas G3 was characterized by a decrease in the gene transcriptional activity. Significant differential gene expression was recorded for GNB1, PRKAR1A, KRAS, MAP2K2, GNG5, MAPK1, ADCY9, GNG11, JUN, PRKCA, PRKACB, FOS, PLCB4, ADCY8, and GNG12. CONCLUSION The expression changes in kinin-dependent genes might cause disturbance in the underlying biological processes, which could be important for the pathogenesis of endometrial cancer. This will eventually help to improve treatment strategies for patients with endometrial cancer in the future.
Collapse
|
35
|
Fernandes PD, Gomes NDM, Sirois P. The bradykinin B1 receptor antagonist R-954 inhibits Ehrlich tumor growth in rodents. Peptides 2011; 32:1849-54. [PMID: 21835216 DOI: 10.1016/j.peptides.2011.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 07/24/2011] [Accepted: 07/25/2011] [Indexed: 11/19/2022]
Abstract
The present study investigated the effects of a new bradykinin B(1) receptor antagonist, R-954, on the development of Ehrlich ascitic tumor (EAT) induced by the intraperitoneal inoculation of EAT cells in mice and the formation of a solid tumor by the subcutaneous injection of the cells in rat paw. The development of the tumor was associated with an increase in mouse total cell counts in bone marrow (10.8-fold), ascitic fluid (14.6-fold), and blood (12.6-fold). R-954 (2mg/kg, s.c.) significantly reduced the ascitic fluid volume (63.7%) and the mouse weight gain (30.5%) after 10 consecutive days of treatment. The B(1) antagonist as well as the anti-neoplasic drug vincristine also significantly inhibited the increase in total cell count in bone marrow, ascitic fluid, and blood. R-954 reduced significantly the total protein extravasation (57.3%), the production of nitric oxide (56%), PGE(2) production (82%), and TNFα release (85.7%) in mice peritoneal cavity whereas vincristine reduced the release of these inflammatory mediators by 84-94%. The increase in paw edema after intraplantar injection of EAT cells was reduced by approximately 52% by either R-954 or vincristine treatment. In conclusion, this study presents for the first time the antitumoral activity of a new bradykinin B(1) receptor antagonist on ascitic and solid tumors induced by Ehrlich cell inoculation in mice and rats.
Collapse
Affiliation(s)
- Patricia Dias Fernandes
- Laboratório de Farmacologia da Inflamação e do Óxido Nítrico, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373. Prédio do CCS, bloco J, sala 10, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
36
|
IRX1 influences peritoneal spreading and metastasis via inhibiting BDKRB2-dependent neovascularization on gastric cancer. Oncogene 2011; 30:4498-508. [PMID: 21602894 PMCID: PMC3208739 DOI: 10.1038/onc.2011.154] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The overexpression of IRX1 gene correlates with the growth arrest in gastric cancer. Furthermore, overexpression of IRX1 gene suppresses peritoneal spreading and long distance metastasis. To explore the precise mechanisms, we investigated whether restoring IRX1 expression affects the angiogenesis or vasculogenic mimicry (VM). Human umbilical vein endothelial cells (HUVECs) and chick embryo and SGC-7901 gastric cancer cells were used for angiogenesis and VM analysis. Small interfering RNA was used for analyzing the function of BDKRB2, a downstream target gene of IRX1. As results, the remarkable suppression on peritoneal spreading and pulmonary metastasis of SGC-7901 cells by IRX1 transfectant correlates to reduced angiogenesis as well as VM formation. Using the supernatant from SGC-7901/IRX1 cells, we found a strong inhibiting effect on angiogenesis both in vitro and in chick embryo. SGC-7901/IRX1 cells revealed strong inhibiting effect on VM formation too. By gene-specific RNA interference for BDKRB2, or its effector PAK1, we got an effective inhibition on tube formation, cell proliferation, cell migration and invasion in vitro. In conclusion, enforcing IRX1 expression effectively suppresses peritoneal spreading and pulmonary metastasis via anti-angiogenesis and anti-VM mechanisms, in addition to previously found cell growth and invasion. BDKRB2 and its downstream effector might be potential targets for anti-cancer strategy.
Collapse
|
37
|
Gao L, Smith RS, Chen LM, Chai KX, Chao L, Chao J. Tissue kallikrein promotes prostate cancer cell migration and invasion via a protease-activated receptor-1-dependent signaling pathway. Biol Chem 2011; 391:803-12. [PMID: 20482314 DOI: 10.1515/bc.2010.084] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We recently demonstrated that tissue kallikrein (TK) promotes keratinocyte migration through activation of protease-activated receptor-1 (PAR(1)) and transactivation of the epi-dermal growth factor receptor (EGFR). In this study, we investigated the potential role of PAR(1) in mediating the effect of TK on cancer cell migration, invasion and proliferation. Our results show that TK promotes DU145 prostate cancer cell migration in a concentration-dependent manner, but has no effect on A549 lung cancer cells. Active TK markedly increases DU145 cell migration and invasion, which are blocked by aprotinin but minimally affected by icatibant; kinin treatment has little effect. TK-induced cell migration and invasion are abolished by inhibition of PAR(1) using a pharmacological inhibitor or RNA interference. The effect of TK on cell migration and invasion are also blocked by inhibitors of protein kinase C, c-Src, matrix metalloproteinase, EGFR and extracellular signal-regulated kinase (ERK). Moreover, TK stimulates ERK phosphorylation, which is inhibited by an EGFR antagonist. Additionally, TK but not kinin stimulates DU145 cell proliferation through activation of the kinin B2 receptor, but not PAR(1) and EGFR. These results indicate differential signaling pathways mediated by TK in promoting prostate cancer cell migration and invasion via PAR(1) activation, and proliferation via kinin B2 receptor stimulation.
Collapse
Affiliation(s)
- Lin Gao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
38
|
Khan ST, Pixley RA, Liu Y, Bakdash N, Gordon B, Agelan A, Huang Y, Achary MP, Colman RW. Inhibition of metastasis of syngeneic murine melanoma in vivo and vasculogenesis in vitro by monoclonal antibody C11C1 targeted to domain 5 of high molecular weight kininogen. Cancer Immunol Immunother 2010; 59:1885-93. [PMID: 20811885 PMCID: PMC11030835 DOI: 10.1007/s00262-010-0915-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 08/23/2010] [Indexed: 01/24/2023]
Abstract
Metastasis of malignant tumors is a major cause of morbidity and mortality. Inhibition of tumor growth in distant organs is of clinical importance. We have demonstrated that C11C1, a murine monoclonal antibody to the light chain region of high molecular weight kininogen (HK), reduces growth of murine multiple myeloma in normal mice and human colon cancer in nude mice. C11C1 inhibits angiogenesis by reducing tumor microvascular density by blocking binding of HK to endothelial cells. We now evaluate the anti-metastatic effect of C11C1 on C57BL/6 mouse lung metastatic model using B16F10 melanoma cells. The tail veins of mice were injected with 0.5 × 10(6) cells of melanoma B16F10. One group received C11C1 and the other received saline (control) intraperitoneally. When mice were killed at 28 days, 6 of 10 control mice had detectable metastatic pulmonary nodules which stained positive with an antibody against S-100 protein, a tumor antigen present in malignant melanoma cells. In the C11C1 groups, none of the mice showed metastatic foci in their lungs. We showed that C11C1 inhibits endothelial cell tube formation in a 3-D collagen fibrinogen gel model by inhibiting the rate of cleavage of HK by plasma kallikrein without changing the binding affinity for HK. These studies demonstrate that a monoclonal antibody to HK has the potential to prevent metastasis with minimal side effects.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/therapeutic use
- Cell Line, Tumor
- Female
- Humans
- Kininogen, High-Molecular-Weight/immunology
- Kininogen, High-Molecular-Weight/metabolism
- Lung Neoplasms/prevention & control
- Lung Neoplasms/secondary
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/secondary
- Mice
- Mice, Inbred C57BL
- Neovascularization, Pathologic/prevention & control
- Protein Structure, Tertiary
Collapse
Affiliation(s)
- Sabina T. Khan
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, 3400 N. Broad Street, OMS 418, Philadelphia, PA 19140 USA
| | - Robin A. Pixley
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, 3400 N. Broad Street, OMS 418, Philadelphia, PA 19140 USA
| | - Yuchuan Liu
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, 3400 N. Broad Street, OMS 418, Philadelphia, PA 19140 USA
| | - Nadia Bakdash
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, 3400 N. Broad Street, OMS 418, Philadelphia, PA 19140 USA
| | - Brigitte Gordon
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, 3400 N. Broad Street, OMS 418, Philadelphia, PA 19140 USA
| | - Alexis Agelan
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, 3400 N. Broad Street, OMS 418, Philadelphia, PA 19140 USA
| | - Yajue Huang
- Department of Pathology, Temple University School of Medicine, Philadelphia, PA 19140 USA
| | - Mohan P. Achary
- Department of Radiation Oncology, Temple University School of Medicine, Philadelphia, PA 19140 USA
| | - Robert W. Colman
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, 3400 N. Broad Street, OMS 418, Philadelphia, PA 19140 USA
| |
Collapse
|
39
|
Guo X, Liu W, Pan Y, Ni P, Ji J, Guo L, Zhang J, Wu J, Jiang J, Chen X, Cai Q, Li J, Zhang J, Gu Q, Liu B, Zhu Z, Yu Y. Homeobox gene IRX1 is a tumor suppressor gene in gastric carcinoma. Oncogene 2010; 29:3908-20. [PMID: 20440264 DOI: 10.1038/onc.2010.143] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The IRX1 tumor suppressor gene is located on 5p15.33, a cancer susceptibility locus. Loss of heterozygosity of 5p15.33 in gastric cancer was identified in our previous work. In this study, we analyzed the molecular features and function of IRX1. We found that IRX1 expression was lost or reduced in gastric cancer. However, no mutations were identified in IRX1-encoding regions. IRX1 transcription was suppressed by hypermethylation, and the expression of IRX1 mRNA was partially restored in gastric cancer cells after 5-Aza-dC treatment. Restoring IRX1 expression in SGC-7901 and NCI-N87 gastric cancer cells inhibited growth, invasion and tumorigenesis in vitro and in vivo. We identified a number of target genes by global microarray analysis after IRX1 transfection combined with real-time PCR and chromatin immunoprecipitation assay. BDKRB2, an angiogenesis-related gene, HIST2H2BE and FGF7, cell proliferation and invasion-related genes, were identified as direct IRX1 target genes. The hypermethylation of IRX1 was not only detected in primary gastric cancer tissues but also in the peripheral blood of gastric cancer patients, suggesting IRX1 could potentially serve as a biomarker for gastric cancer.
Collapse
Affiliation(s)
- X Guo
- Department of Surgery of Shanghai Ruijin Hospital and Shanghai Institute of Digestive Surgery, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Katori M, Majima M. A Novel Category of Anti-Hypertensive Drugs for Treating Salt-Sensitive Hypertension on the Basis of a New Development Concept. Pharmaceuticals (Basel) 2010; 3:59-109. [PMID: 27713243 PMCID: PMC3991021 DOI: 10.3390/ph3010059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/24/2009] [Accepted: 01/06/2010] [Indexed: 12/20/2022] Open
Abstract
Terrestrial animals must conserve water and NaCl to survive dry environments. The kidney reabsorbs 95% of the sodium filtered from the glomeruli before sodium reaches the distal connecting tubules. Excess sodium intake requires the renal kallikrein-kinin system for additional excretion. Renal kallikrein is secreted from the distal connecting tubule cells of the kidney, and its substrates, low molecular kininogen, from the principal cells of the cortical collecting ducts (CD). Formed kinins inhibit reabsorption of NaCl through bradykinin (BK)-B₂ receptors, localized along the CD. Degradation pathway of BK by kinin-destroying enzymes in urine differs completely from that in plasma, so that ACE inhibitors are ineffective. Urinary BK is destroyed mainly by a carboxypeptidase-Y-like exopeptidase (CPY) and partly by a neutral endopeptidase (NEP). Inhibitors of CPY and NEP, ebelactone B and poststatin, respectively, were found. Renal kallikrein secretion is accelerated by potassium and ATP-sensitive potassium (KATP) channel blockers, such as PNU-37883A. Ebelactone B prevents DOCA-salt hypertension in rats. Only high salt intake causes hypertension in animals deficient in BK-B2 receptors, tissue kallikrein, or kininogen. Hypertensive patients, and spontaneously hypertensive rats, excrete less kallikrein than normal subjects, irrespective of races, and become salt-sensitive. Ebelactone B, poststatin, and KATP channel blockers could become novel antihypertensive drugs by increase in urinary kinin levels. Roles of kinin in cardiovascular diseases were discussed.
Collapse
Affiliation(s)
- Makoto Katori
- Department of Pharmacology, School of Medicine, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan.
| | - Masataka Majima
- Department of Pharmacology, School of Medicine, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan
| |
Collapse
|
41
|
Clapp C, Thebault S, Jeziorski MC, Martínez De La Escalera G. Peptide hormone regulation of angiogenesis. Physiol Rev 2009; 89:1177-215. [PMID: 19789380 DOI: 10.1152/physrev.00024.2009] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is now apparent that regulation of blood vessel growth contributes to the classical actions of hormones on development, growth, and reproduction. Endothelial cells are ideally positioned to respond to hormones, which act in concert with locally produced chemical mediators to regulate their growth, motility, function, and survival. Hormones affect angiogenesis either directly through actions on endothelial cells or indirectly by regulating proangiogenic factors like vascular endothelial growth factor. Importantly, the local microenvironment of endothelial cells can determine the outcome of hormone action on angiogenesis. Members of the growth hormone/prolactin/placental lactogen, the renin-angiotensin, and the kallikrein-kinin systems that exert stimulatory effects on angiogenesis can acquire antiangiogenic properties after undergoing proteolytic cleavage. In view of the opposing effects of hormonal fragments and precursor molecules, the regulation of the proteases responsible for specific protein cleavage represents an efficient mechanism for balancing angiogenesis. This review presents an overview of the actions on angiogenesis of the above-mentioned peptide hormonal families and addresses how specific proteolysis alters the final outcome of these actions in the context of health and disease.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| | | | | | | |
Collapse
|
42
|
Sanchez de Miguel L, Neysari S, Jakob S, Petrimpol M, Butz N, Banfi A, Zaugg CE, Humar R, Battegay EJ. B2-kinin receptor plays a key role in B1-, angiotensin converting enzyme inhibitor-, and vascular endothelial growth factor-stimulated in vitro angiogenesis in the hypoxic mouse heart. Cardiovasc Res 2008; 80:106-13. [PMID: 18566101 DOI: 10.1093/cvr/cvn170] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Angiotensin converting enzyme (ACE) inhibition reduces heart disease and vascular stiffness in hypertension and leads to kinin accumulation. In this study, we analysed the role and importance of two kinin receptor subtypes in angiogenesis during ACE inhibition in an in vitro model of angiogenesis of the mouse heart. METHODS AND RESULTS First, we analysed the angiogenic properties of bradykinin and enalapril on wild-type C57Bl/6 and B2 receptor(-/-) mouse heart under normoxia (21% O(2)) and hypoxia (1% O(2)) in vitro and the contribution of B1 and B2 kinin receptors to this effect. Bradykinin induced dose-dependent endothelial sprout formation in vitro in adult mouse heart only under hypoxia (1.7 fold, n = 6, P < 0.05). The B2 receptor mediated sprouting that was induced by bradykinin and vascular endothelial growth factor (VEGF(164); n = 6, P < 0.05), but did not mediate sprouting that was induced by growth factors bFGF or PDGF-BB. Enalapril induced sprouting through both the B1 and B2 kinin receptors, but it required the presence of the B2 receptor in both scenarios and was dependent on BK synthesis. B1-receptor agonists induced sprout formation via the B1 receptor (2.5 fold, n = 6, P < 0.05), but it required the presence of the B2 receptor for them to do so. Both B2-receptor and B1-receptor agonist-induced angiogenesis required nitric oxide biosynthesis. CONCLUSION The kinin B2 receptor plays a crucial role in angiogenesis that is induced by different vasoactive molecules, namely bradykinin, ACE inhibitors, B1-stimulating kinin metabolites, and VEGF164 in an in vitro model of angiogenesis of mouse heart under hypoxia. Therapeutic treatment of hypertensive patients by using ACE inhibitors may potentially benefit the ischaemic heart through inducing B2-dependent heart neovascularization.
Collapse
|
43
|
Paschoalin T, Carmona AK, Rodrigues EG, Oliveira V, Monteiro HP, Juliano MA, Juliano L, Travassos LR. Characterization of thimet oligopeptidase and neurolysin activities in B16F10-Nex2 tumor cells and their involvement in angiogenesis and tumor growth. Mol Cancer 2007; 6:44. [PMID: 17620116 PMCID: PMC1965469 DOI: 10.1186/1476-4598-6-44] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 07/09/2007] [Indexed: 01/01/2023] Open
Abstract
Background Angiogenesis is a fundamental process that allows tumor growth by providing nutrients and oxygen to the tumor cells. Beyond the oxygen diffusion limit from a capillary blood vessel, tumor cells become apoptotic. Angiogenesis results from a balance of pro- and anti-angiogenic stimuli. Endogenous inhibitors regulate enzyme activities that promote angiogenesis. Tumor cells may express pro-angiogenic factors and hydrolytic enzymes but also kinin-degrading oligopeptidases which have been investigated. Results Angiogenesis induced by B16F10-Nex2 melanoma cells was studied in a co-culture with HUVEC on Matrigel. A stimulating effect on angiogenesis was observed in the presence of B16F10-Nex2 lysate and plasma membrane. In contrast, the B16F10-Nex2 culture supernatant inhibited angiogenesis in a dose-dependent manner. This effect was abolished by the endo-oligopeptidase inhibitor, JA-2. Thimet oligopeptidase (TOP) and neurolysin activities were then investigated in B16F10-Nex2 melanoma cells aiming at gene sequencing, enzyme distribution and activity, influence on tumor development, substrate specificity, hydrolytic products and susceptibility to inhibitors. Fluorescence resonance energy transfer (FRET) peptides as well as neurotensin and bradykinin were used as substrates. The hydrolytic activities in B16F10-Nex2 culture supernatant were totally inhibited by o-phenanthrolin, JA-2 and partially by Pro-Ile. Leupeptin, PMSF, E-64, Z-Pro-Prolinal and captopril failed to inhibit these hydrolytic activities. Genes encoding M3A enzymes in melanoma cells were cloned and sequenced being highly similar to mouse genes. A decreased proliferation of B16F10-Nex2 cells was observed in vitro with specific inhibitors of these oligopeptidases. Active rTOP but not the inactive protein inhibited melanoma cell development in vivo increasing significantly the survival of mice challenged with the tumor cells. On Matrigel, rTOP inhibited the bradykinin – induced angiogenesis. A possible regulation of the homologous tumor enzyme in the perivascular microenvironment is suggested based on the observed rTOP inhibition by an S-nitrosothiol NO donor. Conclusion Data show that melanoma cells secrete endo-oligopeptidases which have an important role in tumor proliferation in vitro and in vivo. rTOP inhibited growth of subcutaneously injected B16F10-Nex2 cells in mice. TOP from tumor cells and bradykinin in endothelial cells are two antagonist factors that may control angiogenesis essential for melanoma growth. A regulatory role of NO or S-nitrosothiols is suggested.
Collapse
MESH Headings
- Angiogenic Proteins/antagonists & inhibitors
- Angiogenic Proteins/metabolism
- Animals
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Bradykinin/metabolism
- Cell Extracts
- Cell Line, Tumor
- Cell Membrane/enzymology
- Cell Proliferation/drug effects
- Cloning, Molecular
- Coculture Techniques
- Collagen
- Culture Media, Conditioned/metabolism
- Dipeptides/pharmacology
- Dose-Response Relationship, Drug
- Drug Combinations
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Female
- Hydrolysis
- Laminin
- Leucine/analogs & derivatives
- Leucine/pharmacology
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/pathology
- Metalloendopeptidases/antagonists & inhibitors
- Metalloendopeptidases/genetics
- Metalloendopeptidases/metabolism
- Mice
- Mice, Inbred C57BL
- Neovascularization, Pathologic/enzymology
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Neurotensin/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Donors/pharmacology
- Oligopeptides/pharmacology
- Peptides/metabolism
- Phenanthrolines/pharmacology
- Protease Inhibitors/pharmacology
- Proteoglycans
- S-Nitroso-N-Acetylpenicillamine/pharmacology
- Substrate Specificity
Collapse
Affiliation(s)
- Thaysa Paschoalin
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit (UNONEX), Federal University of São Paulo, São Paulo, Brazil
| | - Adriana K Carmona
- Department of Biophysics Federal University of São Paulo, São Paulo, Brazil
| | - Elaine G Rodrigues
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit (UNONEX), Federal University of São Paulo, São Paulo, Brazil
| | - Vitor Oliveira
- Department of Biophysics Federal University of São Paulo, São Paulo, Brazil
| | - Hugo P Monteiro
- Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - Maria A Juliano
- Department of Biophysics Federal University of São Paulo, São Paulo, Brazil
| | - Luiz Juliano
- Department of Biophysics Federal University of São Paulo, São Paulo, Brazil
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit (UNONEX), Federal University of São Paulo, São Paulo, Brazil
- UNONEX, Department of Microbiology, Immunology and Parasitology (UNIFESP), Rua Botucatu, 862, 8° andar, São Paulo, SP 04023-062, Brazil
| |
Collapse
|
44
|
Ghebrehiwet B, CebadaMora C, Tantral L, Jesty J, Peerschke EIB. gC1qR/p33 serves as a molecular bridge between the complement and contact activation systems and is an important catalyst in inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 586:95-105. [PMID: 16893067 DOI: 10.1007/0-387-34134-x_7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The receptor for the globular heads of C1q, gC1qR/p33, is a ubiquitously expressed protein, which is distributed both intracellularly and on the cell-surface protein. In addition to C1q, this molecule also is able to bind several other biologically important plasma ligands, including high-molecular-weight kininogen (HK), factor XII (FXII), and multimeric vitronectin. Previous studies have shown that incubation of FXII, prekallikrein, and HK with gC1qR leads to a zinc-dependent and FXII-dependent conversion of prekallikrein to kallikrein, a requisite for kinin generation. In addition, these studies showed that normal plasma, but not plasma deficient in FXII, PK, or HK, activate upon binding to endothelial cells (EC), and that this activation could be inhibited by antibody to gClqR. In these studies, we show that incubation of serum with microtiter plate bound gC1qR results in complement activation, as evidenced by the binding and activation of C1 and generation of C4d. However, neither Clq-deficient serum nor a truncated form of gC1qR (gC1qRA74-96), supported complement activation. Taken together, the data strongly suggest that at sites of inflammation, such as vasculitis and atherosclerosis, where gC1qR as well as its two important plasma ligands, C1q and HK, have been shown to be simultaneously present, soluble or cell-surface-expressed gC1qR may contribute to the inflammatory process by modulating complement activation, kinin generation, and perhaps even initiation of clotting via the contact system. Based on these and other published data, we propose a model of inflammation in which atherogenic factors (e.g., immune complexes, virus, or bacteria) are perceived not only to convert the endothelium into a procoagulant and proinflammatory surface, but also to induce enhanced expression of cell surface molecules such as gC1qR. Enhanced expression of gC1qR in turn leads to: (i) high-affinity C1q binding and cell production of proinflammatory factors, and (ii) high-affinity HK binding and facilitation of the assembly of contact activation proteins leading to generation of bradykinin and possibly coagulation through activation of FXI.
Collapse
|
45
|
Stewart JM, Gera L, Chan DC, York EJ, Simkeviciene V, Bunn PA, Taraseviciene-Stewart L. Combination cancer chemotherapy with one compound: pluripotent bradykinin antagonists. Peptides 2005; 26:1288-91. [PMID: 15878795 DOI: 10.1016/j.peptides.2005.03.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lung and prostate cancers are major health problems worldwide. Treatments with standard chemotherapy agents are relatively ineffective. Combination chemotherapy gives better treatment than a single agent because the drugs can inhibit the cancer in different pathways, but new therapeutic agents are needed for the treatment of both tumor types. Bradykinin (BK) antagonists offer advantages of combination therapy in one compound. These promising multitargeted anti-cancer compounds selectively stimulate apoptosis in cancers and also inhibit both angiogenesis and matrix metalloprotease (MMP) action in treated lung and prostate tumors in nude mice. The highly potent, metabolism-resistant bradykinin antagonist peptide dimer, B-9870 [SUIM-(DArg-Arg-Pro-Hyp-Gly-Igl-Ser-DIgl-Oic-Arg)2] (SUIM=suberimidyl; Hyp=4-hydroxyproline; Igl=alpha-(2-indanyl)glycine; Oic=octahydroindole-2-carboxylic acid) and its non-peptide mimetic, BKM-570 [2,3,4,5,6-pentafluorocinnamoyl-(o-2,6-dichlorobenzyl)-L-tyrosine-N-(4-amino-2,2,6,6-tetramethylpiperidyl)amide] are superior to the widely used but toxic chemotherapeutic drugs cisplatin and taxotere. In certain combinations, they act synergistically with standard anti-cancer drugs. Due to its structure and biological activity, BKM-570 is an attractive lead compound for derivatization and evaluation for lung and prostate cancer drugs.
Collapse
Affiliation(s)
- John M Stewart
- Department of Biochemistry and Molecular Genetics, Cancer Center, and Pulmonary Hypertension Center, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Taraseviciene-Stewart L, Scerbavicius R, Stewart JM, Gera L, Demura Y, Cool C, Kasper M, Voelkel NF. Treatment of severe pulmonary hypertension: a bradykinin receptor 2 agonist B9972 causes reduction of pulmonary artery pressure and right ventricular hypertrophy. Peptides 2005; 26:1292-300. [PMID: 15878794 DOI: 10.1016/j.peptides.2005.03.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Bradykinin is an important modulator of endothelial cell function and has also a powerful cardioprotective effect. Here we report that treatment of severely pulmonary hypertensive rats (that recapitulate several of the physiological and pathological characteristics of the human pulmonary vascular disease, including dramatic right ventricular hypertrophy, pericardial effusion and death) with a newly synthesized long-acting bradykinin B2 receptor agonist B9972 caused reduction of the pulmonary artery pressure (PAP=51+/-2.0 versus 68+/-2.8 of untreated animals) and of right ventricular hypertrophy (Rv/Lv+S=0.55+/-0.02 versus 0.73+/-0.03 of untreated rats) and activation of Akt. Long-term stimulation with B9972 in our animal model of SPH resulted in decreased expression of the B2 receptor in lung vasculature. Treatment with B9972 decreased the number of plexiform lesions in the lungs by inducing cell apoptosis in the obliterated vessels and by restoring caveolin-1 expression. B9972 also promoted eNOS activation. In vitro B9972 caused activation of caspase-3 as well as Erk and induction of prostacyclin production in rat pulmonary microvascular EC. Taken together our data suggest that a stable bradykinin B2 agonist B9972 demonstrates the capacity to reduce severe pulmonary hypertension, right ventricular hypertrophy and induce apoptosis of hyperproliferative cells in pre-capillary pulmonary arterioles.
Collapse
Affiliation(s)
- Laimute Taraseviciene-Stewart
- Pulmonary Hypertension Center, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Health Sciences Center, Box C272, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Guo YL, Colman RW. Two faces of high-molecular-weight kininogen (HK) in angiogenesis: bradykinin turns it on and cleaved HK (HKa) turns it off. J Thromb Haemost 2005; 3:670-6. [PMID: 15733059 DOI: 10.1111/j.1538-7836.2005.01218.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
High-molecular-weight kininogen (HK) is a plasma protein that possesses multiple physiological functions. Originally identified as a precursor of bradykinin, a bioactive peptide that regulates many cardiovascular processes, it is now recognized that HK plays important roles in fibrinolysis, thrombosis, and inflammation. HK binds to endothelial cells where it can be cleaved by plasma kallikrein to release bradykinin (BK). The remaining portion of the molecule, cleaved HK, is designated cleaved high-molecular-weight kininogen or HKa. While BK has been intensively studied, the physiological implication of the generation of HKa is not clear. Recent studies have revealed that HKa inhibits angiogenesis while BK promotes angiogenesis. These findings represent novel functions of the kallikrein-kinin system that have not yet been fully appreciated. In this review, we will briefly discuss the recent progress in the studies of the molecular mechanisms that mediate the antiangiogenic effect of HKa and the proangiogenic activity of BK.
Collapse
Affiliation(s)
- Y-L Guo
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | | |
Collapse
|
48
|
Calixto JB, Medeiros R, Fernandes ES, Ferreira J, Cabrini DA, Campos MM. Kinin B1 receptors: key G-protein-coupled receptors and their role in inflammatory and painful processes. Br J Pharmacol 2004; 143:803-18. [PMID: 15520046 PMCID: PMC1575942 DOI: 10.1038/sj.bjp.0706012] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 08/03/2004] [Accepted: 09/10/2004] [Indexed: 01/25/2023] Open
Abstract
Kinins are a family of peptides implicated in several pathophysiological events. Most of their effects are likely mediated by the activation of two G-protein-coupled receptors: B(1) and B(2). Whereas B(2) receptors are constitutive entities, B(1) receptors behave as key inducible molecules that may be upregulated under some special circumstances. In this context, several recent reports have investigated the importance of B(1) receptor activation in certain disease models. Furthermore, research on B(1) receptors in the last years has been mainly focused in determining the mechanisms and pathways involved in the process of induction. This was essentially favoured by the advances obtained in molecular biology studies, as well as in the design of selective and stable peptide and nonpeptide kinin B(1) receptor antagonists. Likewise, development of kinin B(1) receptor knockout mice greatly helped to extend the evidence about the relevance of B(1) receptors during pathological states. In the present review, we attempted to remark the main advances achieved in the last 5 years about the participation of kinin B(1) receptors in painful and inflammatory disorders. We have also aimed to point out some groups of chronic diseases, such as diabetes, arthritis, cancer or neuropathic pain, in which the strategic development of nonpeptidic oral-available and selective B(1) receptor antagonists could have a potential relevant therapeutic interest.
Collapse
Affiliation(s)
- João B Calixto
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88049-900 Florianópolis, SC, Brazil.
| | | | | | | | | | | |
Collapse
|
49
|
Song JS, Sainz IM, Cosenza SC, Isordia-Salas I, Bior A, Bradford HN, Guo YL, Pixley RA, Reddy EP, Colman RW. Inhibition of tumor angiogenesis in vivo by a monoclonal antibody targeted to domain 5 of high molecular weight kininogen. Blood 2004; 104:2065-72. [PMID: 15161672 DOI: 10.1182/blood-2004-02-0449] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractWe have shown that human high molecular weight kininogen is proangiogenic due to release of bradykinin. We now determined the ability of a murine monoclonal antibody to the light chain of high molecular weight kininogen, C11C1, to inhibit tumor growth compared to isotype-matched murine IgG. Monoclonal antibody C11C1 efficiently blocks binding of high molecular weight kininogen to endothelial cells in a concentration-dependent manner. The antibody significantly inhibited growth of human colon carcinoma cells in a nude mouse xenograft assay and was accompanied by a significant reduction in the mean microvascular density compared to the IgG control group. We also showed that a hybridoma producing monoclonal antibody C11C1 injected intramuscularly exhibited markedly smaller tumor mass in a syngeneic host compared to a hybridoma producing a monoclonal antibody to the high molecular weight kininogen heavy chain or to an unrelated plasma protein. In addition, tumor inhibition by purified monoclonal antibody C11C1 was not due to direct antitumor effect because there was no decrease of tumor cell growth in vitro in contrast to the in vivo inhibition. Our results indicate that monoclonal antibody C11C1 inhibits angiogenesis and human tumor cell growth in vivo and has therapeutic potential for treatment of human cancer. (Blood. 2004;104:2065-2072)
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Apoptosis
- Bradykinin/chemistry
- Cell Division
- Cell Line, Tumor
- Dose-Response Relationship, Immunologic
- Endothelium, Vascular/cytology
- Endothelium, Vascular/immunology
- Factor XII/metabolism
- HEPES/chemistry
- Humans
- Hybridomas/chemistry
- Hybridomas/metabolism
- Hybridomas/pathology
- Immunoglobulin G/chemistry
- Immunohistochemistry
- Immunotherapy/methods
- Kininogen, High-Molecular-Weight/chemistry
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Transplantation
- Neoplasms/therapy
- Neovascularization, Pathologic
- Protein Structure, Tertiary
- Surface Plasmon Resonance
- Time Factors
Collapse
Affiliation(s)
- James S Song
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ikeda Y, Hayashi I, Kamoshita E, Yamazaki A, Endo H, Ishihara K, Yamashina S, Tsutsumi Y, Matsubara H, Majima M. Host stromal bradykinin B2 receptor signaling facilitates tumor-associated angiogenesis and tumor growth. Cancer Res 2004; 64:5178-85. [PMID: 15289322 DOI: 10.1158/0008-5472.can-03-3589] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We evaluated the significance of the host kallikrein-kinin system in tumor angiogenesis and tumor growth using two rodent models genetically deficient in a kallikrein-kinin system. Inoculation of Walker 256 carcinoma cells into the s.c. tissues of the back of normal Brown Norway Kitasato rats (BN-Ki rats) resulted in the rapid development of solid tumors with marked angiogenesis. By contrast, in kininogen-deficient Brown Norway Katholiek rats (BN-Ka rats), which cannot generate intrinsic bradykinin (BK), the weights of the tumors and the extent of angiogenesis were significantly less than those in BN-Ki rats. Daily administration of B(2) receptor antagonists significantly reduced angiogenesis and tumor weights in BN-Ki rats to levels similar to those in BN-Ka rats but did not do so in BN-Ka rats. Angiogenesis and tumor growth were significantly suppressed in B(2) receptor knockout mice bearing sarcoma 180 compared with their wild-type counterparts. Immunoreactive vascular endothelial growth factor (VEGF) was localized in Walker tumor stroma more extensively in BN-Ki rats than in BN-Ka rats, although immunoreactive B(2) receptor also was detected in the stroma to the same extent in both types of rats. Cultured stromal fibroblasts isolated from BN-Ki rats and BN-Ka rats produced VEGF in response to BK (10(-8)-10(-6) m), and this stimulatory effect of BK was abolished with a B(2) receptor antagonist, Hoe140 (10(-5) m). These results suggest that BK generated from kininogens supplied from the host may facilitate tumor-associated angiogenesis and tumor growth by stimulating stromal B(2) signaling to up-regulate VEGF production mainly in fibroblasts.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Blood Vessels/drug effects
- Blood Vessels/metabolism
- Bradykinin B2 Receptor Antagonists
- Carcinoma 256, Walker/blood supply
- Carcinoma 256, Walker/pathology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Kallikrein-Kinin System
- Kininogens/deficiency
- Kininogens/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neovascularization, Pathologic/etiology
- Quinolines/administration & dosage
- Quinolines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred BN
- Receptor, Bradykinin B2/genetics
- Receptor, Bradykinin B2/metabolism
- Sarcoma 180/blood supply
- Sarcoma 180/pathology
- Signal Transduction
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Yasuhiro Ikeda
- Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, Kanagawa 228-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|