1
|
Shah DD, Chorawala MR, Pandya AJ, Kothari N, Prajapati BG, Parekh PS. Advancing the Battle against Cystic Fibrosis: Stem Cell and Gene Therapy Insights. Curr Med Sci 2024; 44:1155-1174. [PMID: 39676146 DOI: 10.1007/s11596-024-2936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/03/2024] [Indexed: 12/17/2024]
Abstract
Cystic fibrosis (CF) is a hereditary disorder characterized by mutations in the CFTR gene, leading to impaired chloride ion transport and subsequent thickening of mucus in various organs, particularly the lungs. Despite significant progress in CF management, current treatments focus mainly on symptom relief and do not address the underlying genetic defects. Stem cell and gene therapies present promising avenues for tackling CF at its root cause. Stem cells, including embryonic, induced pluripotent, mesenchymal, hematopoietic, and lung progenitor cells, offer regenerative potential by differentiating into specialized cells and modulating immune responses. Similarly, gene therapy aims to correct CFTR gene mutations by delivering functional copies of the gene into affected cells. Various approaches, such as viral and nonviral vectors, gene editing with CRISPR-Cas9, small interfering RNA (siRNA) therapy, and mRNA therapy, are being explored to achieve gene correction. Despite their potential, challenges such as safety concerns, ethical considerations, delivery system optimization, and long-term efficacy remain. This review provides a comprehensive overview of the current understanding of CF pathophysiology, the rationale for exploring stem cell and gene therapies, the types of therapies available, their mechanisms of action, and the challenges and future directions in the field. By addressing these challenges, stem cell and gene therapies hold promise for transforming CF management and improving the quality of life of affected individuals.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Aanshi J Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, 384012, India.
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | | |
Collapse
|
2
|
Durda-Masny M, Goździk-Spychalska J, John A, Czaiński W, Stróżewska W, Pawłowska N, Wlizło J, Batura-Gabryel H, Szwed A. The determinants of survival among adults with cystic fibrosis-a cohort study. J Physiol Anthropol 2021; 40:19. [PMID: 34749804 PMCID: PMC8573904 DOI: 10.1186/s40101-021-00269-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is one of the most common autosomal recessive diseases. Factors contributing to disease exacerbations and survival rate of CF patients are type of mutation in the CFTR gene, poor nutritional status, lung failure, and infection development by Pseudomonas aeruginosa. The study aimed to evaluate the relationship between the severity of mutation, nutritional status, lung function, and Pseudomonas aeruginosa prevalence and survival rate in adult patients with cystic fibrosis. METHODS A study of 124 (68 ♀ and 56 ♂) adults with CF aged 18-51 years were evaluated for (a) type of mutation in the CFTR gene, (b) nutritional status (BMI), (c) lung function (FEV1%), and (d) Pseudomonas aeruginosa prevalence. For statistical calculations, Kaplan-Meier analysis of survival, chi-squared test for multiple samples, and logistic regression were used. RESULTS The type of mutation (χ2 = 12.73, df = 3, p = 0.005), FEV1% (χ2 = 15.20, df = 2, p = 0.0005), Pseudomonas aeruginosa prevalence (χ2 = 11.48, df = 3, p = 0.009), and BMI (χ2 = 31.08, df = 4, p < 0.000) significantly differentiated the probability of survival of patients with CF. The shortest life expectancy was observed in patients with a severe type of mutation on both alleles, FEV1% < 40, subjects in whom Pseudomonas culture was extensively drug-resistant or pandrug-resistant, and patients whose BMI was lower than 18.5 kg/m2. The period from 30 to 40 years of age was the most critical in CF adults' lifespan. The risk of adults with CF death doubled with Pseudomonas aeruginosa prevalence (OR = 2.06, 95% CI 1.29; 2.28) and eightfold when the bacteria acquired antibiotic resistance (OR = 8.11, 95% CI 1.67; 38.15). CONCLUSIONS All factors included in the study were significantly related to the survival rate of patients with cystic fibrosis.
Collapse
Affiliation(s)
- Magdalena Durda-Masny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6 St, 61-614, Poznan, Poland
| | - Joanna Goździk-Spychalska
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569, Poznań, Poland
| | - Aleksandra John
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6 St, 61-614, Poznan, Poland
| | - Wojciech Czaiński
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569, Poznań, Poland
| | - Weronika Stróżewska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6 St, 61-614, Poznan, Poland
| | - Natalia Pawłowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6 St, 61-614, Poznan, Poland
| | - Jolanta Wlizło
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569, Poznań, Poland
| | - Halina Batura-Gabryel
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569, Poznań, Poland
| | - Anita Szwed
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6 St, 61-614, Poznan, Poland.
| |
Collapse
|
3
|
Gao K, He S, Kumar P, Farmer D, Zhou J, Wang A. Clonal isolation of endothelial colony-forming cells from early gestation chorionic villi of human placenta for fetal tissue regeneration. World J Stem Cells 2020; 12:123-138. [PMID: 32184937 PMCID: PMC7062038 DOI: 10.4252/wjsc.v12.i2.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/03/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Endothelial colony-forming cells (ECFCs) have been implicated in the process of vascularization, which includes vasculogenesis and angiogenesis. Vasculogenesis is a de novo formation of blood vessels, and is an essential physiological process that occurs during embryonic development and tissue regeneration. Angiogenesis is the growth of new capillaries from pre-existing blood vessels, which is observed both prenatally and postnatally. The placenta is an organ composed of a variety of fetal-derived cells, including ECFCs, and therefore has significant potential as a source of fetal ECFCs for tissue engineering.
AIM To investigate the possibility of isolating clonal ECFCs from human early gestation chorionic villi (CV-ECFCs) of the placenta, and assess their potential for tissue engineering.
METHODS The early gestation chorionic villus tissue was dissociated by enzyme digestion. Cells expressing CD31 were selected using magnetic-activated cell sorting, and plated in endothelial-specific growth medium. After 2-3 wks in culture, colonies displaying cobblestone-like morphology were manually picked using cloning cylinders. We characterized CV-ECFCs by flow cytometry, immunophenotyping, tube formation assay, and Dil-Ac-LDL uptake assay. Viral transduction of CV-ECFCs was performed using a Luciferase/tdTomato-containing lentiviral vector, and transduction efficiency was tested by fluorescent microscopy and flow cytometry. Compatibility of CV-ECFCs with a delivery vehicle was determined using an FDA approved, small intestinal submucosa extracellular matrix scaffold.
RESULTS After four passages in 6-8 wks of culture, we obtained a total number of 1.8 × 107 CV-ECFCs using 100 mg of early gestational chorionic villus tissue. Immunophenotypic analyses by flow cytometry demonstrated that CV-ECFCs highly expressed the endothelial markers CD31, CD144, CD146, CD105, CD309, only partially expressed CD34, and did not express CD45 and CD90. CV-ECFCs were capable of acetylated low-density lipoprotein uptake and tube formation, similar to cord blood-derived ECFCs (CB-ECFCs). CV-ECFCs can be transduced with a Luciferase/tdTomato-containing lentiviral vector at a transduction efficiency of 85.1%. Seeding CV-ECFCs on a small intestinal submucosa extracellular matrix scaffold confirmed that CV-ECFCs were compatible with the biomaterial scaffold.
CONCLUSION In summary, we established a magnetic sorting-assisted clonal isolation approach to derive CV-ECFCs. A substantial number of CV-ECFCs can be obtained within a short time frame, representing a promising novel source of ECFCs for fetal treatments.
Collapse
Affiliation(s)
- Kewa Gao
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Siqi He
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Diana Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Jianda Zhou
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95817, United States
| |
Collapse
|
4
|
Schieppati D, Germon R, Galli F, Rigamonti MG, Stucchi M, Boffito DC. Influence of frequency and amplitude on the mucus viscoelasticity of the novel mechano-acoustic Frequencer™. Respir Med 2019; 153:52-59. [PMID: 31163350 DOI: 10.1016/j.rmed.2019.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cystic fibrosis affects 1/3200 Caucasians. This genetic disease disturbs the ion and water homeostasis across epithelia, thus rendering mucus more viscous and harder to expel. Conventional treatments rely on the clapping method coupled with postural drainage. Despite the effectiveness of these procedures, they are invasive and enervating. METHODS Here we study a new mechano-acoustic treatment device to help patients expectorate excess mucus, the Frequencer™. We test both normal and pathological synthetic mucin solutions (1 % and 4 % by weight) in vitro. We varied the frequency applied (from 20 Hz to 60 Hz) as well as the amplitude (from 50 % to 100 % intensity). Moreover, we assessed the effect of NaCl on mucus rehydration. RESULTS A frequency of 40 Hz coupled with a 0.5 gL-1NaCl solution provokes partial mucus rehydration, regardless of the amplitude selected, as the work of adhesion measurements evidenced. CONCLUSIONS Mechanical solicitation is fundamental to help patients affected by cystic fibrosis expectorate mucus. With an operating frequency of 20 Hz to 65 Hz, the Frequencer™ provides a gentler therapy than traditional methods (conventional chest physiotherapy). The Frequencer™ proved to be effective in the homogenization of synthetic mucin solutions in vitro in 20 min and elicited improved effectiveness in a mucin-rich environment.
Collapse
Affiliation(s)
- Dalma Schieppati
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV Montréal, H3C 3A7, Québec, Canada
| | - Rémi Germon
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV Montréal, H3C 3A7, Québec, Canada
| | - Federico Galli
- Universitá degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133, Milano, Italy
| | - Marco Giulio Rigamonti
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV Montréal, H3C 3A7, Québec, Canada
| | - Marta Stucchi
- Universitá degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133, Milano, Italy
| | - Daria Camilla Boffito
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV Montréal, H3C 3A7, Québec, Canada.
| |
Collapse
|
5
|
Abstract
Cystic fibrosis is a genetic disease affecting more than 70,000 people worldwide. Caused by a mutation in the CFTR gene, cystic fibrosis can result in difficulty breathing, widespread bacterial infections, edema, malnutrition, pancreatitis, and death. Current drug-based treatments struggle to reach the site of action due to the thick mucus, and only manage symptoms such as blocked airways, lung infections, and limited ability to digest food. Nanotechnology opens up possibilities for improved treatment strategies by focusing on drug penetration through the mucus lining, eliminating resulting bacterial infections, and targeting the underlying genetic cause of the disease. In this review, we present recent nanoparticle developments for cystic fibrosis, challenges in nanomedicine therapeutics, and future research directions in gene editing and nonviral vectors for gene delivery.
Collapse
Affiliation(s)
- Victor Ong
- 1 Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Vincent Mei
- 1 Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Lin Cao
- 1 Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Kiana Lee
- 1 Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- 1 Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- 2 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
- 3 Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- 4 Division of Vascular Surgery and Endovascular Repair, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- 5 Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- 6 Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Figueiredo C, Carvalho Oliveira M, Chen-Wacker C, Jansson K, Höffler K, Yuzefovych Y, Pogozhykh O, Jin Z, Kühnel M, Jonigk D, Wiegmann B, Sommer W, Haverich A, Warnecke G, Blasczyk R. Immunoengineering of the Vascular Endothelium to Silence MHC Expression During Normothermic Ex Vivo Lung Perfusion. Hum Gene Ther 2018; 30:485-496. [PMID: 30261752 DOI: 10.1089/hum.2018.117] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Disparities at the major histocompatibility complex (MHC) antigens and associated minor antigens trigger harmful immune responses, leading to graft rejection after transplantation. We showed that MHC-silenced cells and tissues are efficiently protected against rejection. In complex vascularized organs, the endothelium is the major interface between donor and recipient. This study therefore aimed to reduce the immunogenicity of the lung by silencing MHC expression on the endothelium. In porcine lungs, short-hairpin RNAs targeting beta-2-microglobulin and class II-transactivator transcripts were delivered by lentiviral vectors during normothermic ex vivo perfusion to silence swine leukocyte antigen (SLA) I and II expression permanently. The results demonstrated the feasibility of genetically engineering all lung regions, achieving a targeted silencing effect for SLA I and II of 67% and 52%, respectively, without affecting cell viability or tissue integrity. This decrease in immunogenicity carries the potential to generate immunologically invisible organs to counteract the burden of rejection and immunosuppression.
Collapse
Affiliation(s)
- Constanca Figueiredo
- 1 Institute of Transfusion Medicine , Hannover Medical School, Hannover, Germany.,2 Excellence Cluster From Regenerative Biology to Reconstructive Therapy-REBIRTH , Hanover, Germany.,3 Transregional Collaborative Research Centre 127 , Hanover, Germany
| | - Marco Carvalho Oliveira
- 1 Institute of Transfusion Medicine , Hannover Medical School, Hannover, Germany.,3 Transregional Collaborative Research Centre 127 , Hanover, Germany
| | - Chen Chen-Wacker
- 1 Institute of Transfusion Medicine , Hannover Medical School, Hannover, Germany.,2 Excellence Cluster From Regenerative Biology to Reconstructive Therapy-REBIRTH , Hanover, Germany
| | - Katharina Jansson
- 4 Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany.,5 German Center for Lung Research , BREATH site, Hanover, Germany
| | - Klaus Höffler
- 4 Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Yuliia Yuzefovych
- 1 Institute of Transfusion Medicine , Hannover Medical School, Hannover, Germany.,2 Excellence Cluster From Regenerative Biology to Reconstructive Therapy-REBIRTH , Hanover, Germany
| | - Olena Pogozhykh
- 1 Institute of Transfusion Medicine , Hannover Medical School, Hannover, Germany.,2 Excellence Cluster From Regenerative Biology to Reconstructive Therapy-REBIRTH , Hanover, Germany
| | - Zhu Jin
- 1 Institute of Transfusion Medicine , Hannover Medical School, Hannover, Germany.,2 Excellence Cluster From Regenerative Biology to Reconstructive Therapy-REBIRTH , Hanover, Germany
| | - Mark Kühnel
- 5 German Center for Lung Research , BREATH site, Hanover, Germany .,6 Institute for Pathology , Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- 5 German Center for Lung Research , BREATH site, Hanover, Germany .,6 Institute for Pathology , Hannover Medical School, Hannover, Germany
| | - Bettina Wiegmann
- 4 Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany.,5 German Center for Lung Research , BREATH site, Hanover, Germany
| | - Wiebke Sommer
- 4 Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany.,5 German Center for Lung Research , BREATH site, Hanover, Germany
| | - Axel Haverich
- 2 Excellence Cluster From Regenerative Biology to Reconstructive Therapy-REBIRTH , Hanover, Germany.,3 Transregional Collaborative Research Centre 127 , Hanover, Germany.,4 Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany.,5 German Center for Lung Research , BREATH site, Hanover, Germany
| | - Gregor Warnecke
- 4 Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany.,5 German Center for Lung Research , BREATH site, Hanover, Germany
| | - Rainer Blasczyk
- 1 Institute of Transfusion Medicine , Hannover Medical School, Hannover, Germany.,2 Excellence Cluster From Regenerative Biology to Reconstructive Therapy-REBIRTH , Hanover, Germany.,3 Transregional Collaborative Research Centre 127 , Hanover, Germany
| |
Collapse
|
7
|
Damen M, Groenen AJJ, van Dongen SFM, Nolte RJM, Scholte BJ, Feiters MC. Transfection by cationic gemini lipids and surfactants. MEDCHEMCOMM 2018; 9:1404-1425. [PMID: 30288217 PMCID: PMC6148748 DOI: 10.1039/c8md00249e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022]
Abstract
Diseases that are linked to defective genes or mutations can in principle be cured by gene therapy, in which damaged or absent genes are either repaired or replaced by new DNA in the nucleus of the cell. Related to this, disorders associated with elevated protein expression levels can be treated by RNA interference via the delivery of siRNA to the cytoplasm of cells. Polynucleotides can be brought into cells by viruses, but this is not without risk for the patient. Alternatively, DNA and RNA can be delivered by transfection, i.e. by non-viral vector systems such as cationic surfactants, which are also referred to as cationic lipids. In this review, recent progress on cationic lipids as transfection vectors will be discussed, with special emphasis on geminis, surfactants with 2 head groups and 2 tails connected by a spacer.
Collapse
Affiliation(s)
- M Damen
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - A J J Groenen
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - S F M van Dongen
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - R J M Nolte
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - B J Scholte
- Departments of Pediatric pulmonology and Cell Biology , Erasmus MC, P. O. Box 2040 , 3000 CA Rotterdam , The Netherlands
| | - M C Feiters
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| |
Collapse
|
8
|
Santos-Carballal B, Fernández Fernández E, Goycoolea FM. Chitosan in Non-Viral Gene Delivery: Role of Structure, Characterization Methods, and Insights in Cancer and Rare Diseases Therapies. Polymers (Basel) 2018; 10:E444. [PMID: 30966479 PMCID: PMC6415274 DOI: 10.3390/polym10040444] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/23/2022] Open
Abstract
Non-viral gene delivery vectors have lagged far behind viral ones in the current pipeline of clinical trials of gene therapy nanomedicines. Even when non-viral nanovectors pose less safety risks than do viruses, their efficacy is much lower. Since the early studies to deliver pDNA, chitosan has been regarded as a highly attractive biopolymer to deliver nucleic acids intracellularly and induce a transgenic response resulting in either upregulation of protein expression (for pDNA, mRNA) or its downregulation (for siRNA or microRNA). This is explained as the consequence of a multi-step process involving condensation of nucleic acids, protection against degradation, stabilization in physiological conditions, cellular internalization, release from the endolysosome ("proton sponge" effect), unpacking and enabling the trafficking of pDNA to the nucleus or the siRNA to the RNA interference silencing complex (RISC). Given the multiple steps and complexity involved in the gene transfection process, there is a dearth of understanding of the role of chitosan's structural features (Mw and degree of acetylation, DA%) on each step that dictates the net transfection efficiency and its kinetics. The use of fully characterized chitosan samples along with the utilization of complementary biophysical and biological techniques is key to bridging this gap of knowledge and identifying the optimal chitosans for delivering a specific gene. Other aspects such as cell type and administration route are also at play. At the same time, the role of chitosan structural features on the morphology, size and surface composition of synthetic virus-like particles has barely been addressed. The ongoing revolution brought about by the recent discovery of CRISPR-Cas9 technology will undoubtedly be a game changer in this field in the short term. In the field of rare diseases, gene therapy is perhaps where the greatest potential lies and we anticipate that chitosans will be key players in the translation of research to the clinic.
Collapse
Affiliation(s)
| | - Elena Fernández Fernández
- Lung Biology Group, Department Clinical Microbiology, RCSI, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
| | | |
Collapse
|
9
|
Fernández Fernández E, Santos-Carballal B, de Santi C, Ramsey JM, MacLoughlin R, Cryan SA, Greene CM. Biopolymer-Based Nanoparticles for Cystic Fibrosis Lung Gene Therapy Studies. MATERIALS 2018; 11:ma11010122. [PMID: 29342838 PMCID: PMC5793620 DOI: 10.3390/ma11010122] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
Lung gene therapy for cystic fibrosis disease has not been successful due to several challenges such as the absence of an appropriate vector. Therefore, optimal delivery of emerging therapeutics to airway epithelial cells demands suitable non-viral systems. In this work, we describe the formulation and the physicochemical investigation of biocompatible and biodegradable polymeric nanoparticles (NPs), including PLGA and chitosan (animal and non-animal), as novel methods for the safe and efficient delivery of CFTR-specific locked nucleic acids (LNAs).
Collapse
Affiliation(s)
- Elena Fernández Fernández
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| | | | - Chiara de Santi
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| | - Joanne M Ramsey
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Ronan MacLoughlin
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin 2, Ireland.
- Aerogen Ltd., Galway Business Park, Dangan, Galway H91 HE94, Ireland.
| | - Sally-Ann Cryan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Catherine M Greene
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
10
|
Carlon MS, Vidović D, Birket S. Roadmap for an early gene therapy for cystic fibrosis airway disease. Prenat Diagn 2017; 37:1181-1190. [DOI: 10.1002/pd.5164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/12/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Marianne S. Carlon
- Molecular Virology and Gene Therapy; Department of Pharmaceutical and Pharmacological Sciences; KU Leuven Flanders Belgium
| | - Dragana Vidović
- Molecular Virology and Gene Therapy; Department of Pharmaceutical and Pharmacological Sciences; KU Leuven Flanders Belgium
- Current affiliation: Cellular Protein Chemistry, Faculty of Science; Utrecht University; The Netherlands
| | - Susan Birket
- Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
| |
Collapse
|
11
|
Sondhi D, Stiles KM, De BP, Crystal RG. Genetic Modification of the Lung Directed Toward Treatment of Human Disease. Hum Gene Ther 2017; 28:3-84. [PMID: 27927014 DOI: 10.1089/hum.2016.152] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.
Collapse
Affiliation(s)
- Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
12
|
Sharma A, Xu Y, Sung B, Vincent CT, Worgall T, Worgall S. Regulation of the Coxsackie and adenovirus receptor expression is dependent on cystic fibrosis transmembrane regulator in airway epithelial cells. Cell Microbiol 2016; 19. [PMID: 27527752 DOI: 10.1111/cmi.12654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 12/21/2022]
Abstract
The coxsackievirus and adenovirus receptor (CAR), in addition to serving as viral receptor, is a component of tight junctions and plays an important role in tissue homeostasis. Defects in the cystic fibrosis transmembrane regulator (CFTR) in lung epithelial cells are linked to inflammation and susceptibility for respiratory tract infections. Here, we demonstrate that CAR expression and infectivity with adenovirus (Ad) are increased in cystic fibrosis airway epithelial cells. Inhibition of CFTR or histone deacetylase (HDAC) enhanced CAR expression while CFTR overexpression or restoration of the diminished HDAC activity in cystic fibrosis cells reduced CAR expression. This connects the CFTR to CAR expression and infectivity with adenovirus through HDAC.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Yaqin Xu
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Biin Sung
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - C Theresa Vincent
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA.,Department of Pharmacology and Physiology, Karolinska Institute, Stockholm, Sweden
| | - Tilla Worgall
- Department of Pathology, Columbia University, New York, New York, USA
| | - Stefan Worgall
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA.,Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
13
|
Enhanced gene delivery to the lung using biodegradable polyunsaturated cationic phosphatidylcholine-detergent conjugates. Int J Pharm 2016; 511:205-218. [DOI: 10.1016/j.ijpharm.2016.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 12/31/2022]
|
14
|
Abstract
Cystic fibrosis (CF) is genetic autosomal recessive disease caused by reduced or absent function of CFTR protein. Treatments for patients with CF have primarily focused on the downstream end-organ consequences of defective CFTR. Since the discovery of the CFTR gene that causes CF in 1989 there have been tremendous advances in our understanding of the genetics and pathophysiology of CF. This has recently led to the development of new CFTR mutation-specific targeted therapies for select patients with CF. This review will discuss the characteristics of the CFTR gene, the CFTR mutations that cause CF and the new mutation specific pharmacological treatments including gene therapy that are contributing to the dawning of a new era in cystic fibrosis care.
Collapse
Affiliation(s)
- Suzanne C Carter
- National Referral Centre for Adult Cystic Fibrosis, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Edward F McKone
- National Referral Centre for Adult Cystic Fibrosis, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
15
|
Kim N, Duncan GA, Hanes J, Suk JS. Barriers to inhaled gene therapy of obstructive lung diseases: A review. J Control Release 2016; 240:465-488. [PMID: 27196742 DOI: 10.1016/j.jconrel.2016.05.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/29/2022]
Abstract
Knowledge of genetic origins of obstructive lung diseases has made inhaled gene therapy an attractive alternative to the current standards of care that are limited to managing disease symptoms. Initial lung gene therapy clinical trials occurred in the early 1990s following the discovery of the genetic defect responsible for cystic fibrosis (CF), a monogenic disorder. However, despite over two decades of intensive effort, gene therapy has yet to help patients with CF or any other obstructive lung disease. The slow progress is due in part to poor understanding of the biological barriers to inhaled gene therapy. Encouragingly, clinical trials have shown that inhaled gene therapy with various viral vectors and non-viral gene vectors is well tolerated by patients, and continued research has provided valuable lessons and resources that may lead to future success of this therapeutic strategy. In this review, we first introduce representative obstructive lung diseases and examine limitations of currently available therapeutic options. We then review key components for successful execution of inhaled gene therapy, including gene delivery systems, primary physiological barriers and strategies to overcome them, and advances in preclinical disease models with which the most promising systems may be identified for human clinical trials.
Collapse
Affiliation(s)
- Namho Kim
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregg A Duncan
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Justin Hanes
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Environmental and Health Sciences, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jung Soo Suk
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
16
|
Fernández Fernández E, Santos-Carballal B, Weber WM, Goycoolea FM. Chitosan as a non-viral co-transfection system in a cystic fibrosis cell line. Int J Pharm 2016; 502:1-9. [DOI: 10.1016/j.ijpharm.2016.01.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/17/2016] [Accepted: 01/30/2016] [Indexed: 01/28/2023]
|
17
|
Wright KF, Bryant LD, Morley S, Hewison J, Duff AJA, Peckham D. Presenting life with cystic fibrosis: a Q-methodological approach to developing balanced, experience-based prenatal screening information. Health Expect 2015; 18:1349-62. [PMID: 23910894 PMCID: PMC5060888 DOI: 10.1111/hex.12113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2013] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is one of the most common life-threatening genetically inherited conditions and prenatal screening for CF is available in many countries. Genetic counsellors and other health professionals are expected to provide information about the condition in a way that facilitates personal decision making. Knowing what information to deliver about complex genetic conditions to support informed screening decisions can be challenging for health professionals. OBJECTIVE To solicit views from those with personal experience with CF on which aspects of the condition they consider most important to include in prenatal screening materials. METHODS Q-methodology; an approach to systematically explore variations in viewpoint that combines factor analytic techniques with qualitative approaches to pattern interpretation. SETTING AND PARTICIPANTS Twelve adults with CF and 18 parents of affected children were recruited from a regional centre in the UK. RESULTS Five distinct viewpoints on the items most and least important to include in screening information were identified: Factor 1 the normality of life with CF and increasing life expectancy; Factor 2 the hardships and reduced lifespan. Factor 3 medical interventions and the importance of societal support. Factor 4 longer-term consequences of CF. Factor 5 the ability to adjust to the condition. DISCUSSION The identification of five different views on what represented the most and least important information to include about CF highlights the challenge of portraying a complex genetic condition in a balanced and accurate manner. Novel ways in which Q-methodology findings can be used to meet this challenge are presented.
Collapse
Affiliation(s)
| | - Louise D Bryant
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Stephen Morley
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Jenny Hewison
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
18
|
The search for a common structural moiety among selected pharmacological correctors of the mutant CFTR chloride channel. Future Med Chem 2015; 6:1857-68. [PMID: 25495980 DOI: 10.4155/fmc.14.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The F508del mutation impairs the trafficking of CFTR from endoplasmic reticulum to plasma membrane and is responsible of a severe form of cystic fibrosis. Trafficking can be improved by small organic molecules called 'correctors'. MATERIALS & METHODS By different synthetic ways, we prepared 4-chloroanisole and 2-(4-chloroanisol-2-yl)aminothiazole derivatives. Such compounds were ineffective as correctors but we could find a sign of activity in an intermediate. In the meantime, we found a common pharmacophoric moiety present in four known correctors. RESULTS Following this structural indication, we synthesized a small set of new molecules endowed with a significant, even if not great, F508del-CFTR rescue activity. CONCLUSION The cited structural feature seems interesting in the search of new correctors. To corroborate this observation, later on we found a new pyrazine derivative (Novartis) endowed with a potent activity as corrector and having the cited common design.
Collapse
|
19
|
Zhao K, Rong G, Guo C, Luo X, Kang H, Sun Y, Dai C, Wang X, Wang X, Jin Z, Cui S, Sun Q. Synthesis, characterization, and immune efficacy of layered double hydroxide@SiO2 nanoparticles with shell-core structure as a delivery carrier for Newcastle disease virus DNA vaccine. Int J Nanomedicine 2015; 10:2895-911. [PMID: 25926734 PMCID: PMC4403701 DOI: 10.2147/ijn.s76312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Layered double hydroxide (LDH)@SiO2 nanoparticles were developed as a delivery carrier for the plasmid DNA expressing the Newcastle disease virus F gene. The LDH was hydrotalcite-like materials. The plasmid DNA encapsulated in the LDH@SiO2 nanoparticles (pFDNA-LDH@SiO2-NPs) was prepared by the coprecipitation method, and the properties of pFDNA-LDH@SiO2-NPs were characterized by transmission electron microscopy, zeta potential analyzer, Fourier transform infrared spectroscopy, and X-ray diffraction analysis. The results demonstrated that the pFDNA-LDH@SiO2-NPs had a regular morphology and high stability with a mean diameter of 371.93 nm, loading capacity of 39.66%±0.45%, and a zeta potential of +31.63 mV. A release assay in vitro showed that up to 91.36% of the total plasmid DNA could be sustainably released from the pFDNA-LDH@SiO2-NPs within 288 hours. The LDH@SiO2 nanoparticles had very low toxicity. Additionally, their high transfection efficiency in vitro was detected by fluorescent microscopy. Intranasal immunization of specific pathogen-free chickens with pFDNA-LDH@SiO2-NPs induced stronger cellular, humoral, and mucosal immune responses and achieved a greater sustained release effect than intramuscular naked plasmid DNA, and the protective efficacy after challenge with the strain F48E9 with highly virulent (mean death time of chicken embryos ≤60 hours, intracerebral pathogenicity index in 1 -day-old chickens >1.6) was 100%. Based on the results, LDH@SiO2 nanoparticles can be used as a delivery carrier for mucosal immunity of Newcastle disease DNA vaccine, and have great application potential in the future.
Collapse
Affiliation(s)
- Kai Zhao
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People's Republic of China
| | - Guangyu Rong
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People's Republic of China ; Department of Avian Infectious Disease, Shanghai Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Chen Guo
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People's Republic of China
| | - Xiaomei Luo
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People's Republic of China
| | - Hong Kang
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People's Republic of China
| | - Yanwei Sun
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People's Republic of China ; Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Chunxiao Dai
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, Heilongjiang University, Harbin, People's Republic of China
| | - Xiaohua Wang
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People's Republic of China
| | - Xin Wang
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People's Republic of China
| | - Zheng Jin
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, Heilongjiang University, Harbin, People's Republic of China
| | - Shangjin Cui
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Qingshen Sun
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People's Republic of China
| |
Collapse
|
20
|
Yan Z, Stewart ZA, Sinn PL, Olsen JC, Hu J, McCray PB, Engelhardt JF. Ferret and pig models of cystic fibrosis: prospects and promise for gene therapy. HUM GENE THER CL DEV 2015; 26:38-49. [PMID: 25675143 PMCID: PMC4367511 DOI: 10.1089/humc.2014.154] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 12/26/2014] [Indexed: 12/13/2022] Open
Abstract
Large animal models of genetic diseases are rapidly becoming integral to biomedical research as technologies to manipulate the mammalian genome improve. The creation of cystic fibrosis (CF) ferrets and pigs is an example of such progress in animal modeling, with the disease phenotypes in the ferret and pig models more reflective of human CF disease than mouse models. The ferret and pig CF models also provide unique opportunities to develop and assess the effectiveness of gene and cell therapies to treat affected organs. In this review, we examine the organ disease phenotypes in these new CF models and the opportunities to test gene therapies at various stages of disease progression in affected organs. We then discuss the progress in developing recombinant replication-defective adenoviral, adeno-associated viral, and lentiviral vectors to target genes to the lung and pancreas in ferrets and pigs, the two most affected organs in CF. Through this review, we hope to convey the potential of these new animal models for developing CF gene and cell therapies.
Collapse
Affiliation(s)
- Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa School of Medicine, Iowa City, IA 52242
- Center for Gene Therapy of Cystic Fibrosis, University of Iowa School of Medicine, Iowa City, IA 52242
| | - Zoe A. Stewart
- Department of Surgery, University of Iowa School of Medicine, Iowa City, IA 52242
| | - Patrick L. Sinn
- Center for Gene Therapy of Cystic Fibrosis, University of Iowa School of Medicine, Iowa City, IA 52242
- Department of Pediatrics, University of Iowa School of Medicine, Iowa City, IA 52242
| | - John C. Olsen
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jim Hu
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children and University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Paul B. McCray
- Center for Gene Therapy of Cystic Fibrosis, University of Iowa School of Medicine, Iowa City, IA 52242
- Department of Pediatrics, University of Iowa School of Medicine, Iowa City, IA 52242
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa School of Medicine, Iowa City, IA 52242
- Center for Gene Therapy of Cystic Fibrosis, University of Iowa School of Medicine, Iowa City, IA 52242
- Department of Internal Medicine, University of Iowa School of Medicine, Iowa City, IA 52242
| |
Collapse
|
21
|
Farmer DL. Standing on the shoulders of giants: a scientific journey from Singapore to stem cells. J Pediatr Surg 2015; 50:15-22. [PMID: 25598087 DOI: 10.1016/j.jpedsurg.2014.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 10/06/2014] [Indexed: 12/18/2022]
Abstract
Cellular therapy was introduced in the early 1980s as adoptive immunotherapy for cancer and has now expanded to stem cell treatment for a wide variety of indications. During the same period, the concept of the fetus as a patient evolved from fantasy to everyday reality. The intersection of these two fields offers great potential for cures in childhood diseases. The fetal treatment of spina bifida is one such disease. Global surgery has also emerged as a cost effective approach to reducing the worldwide burden of childhood disease.
Collapse
Affiliation(s)
- Diana Lee Farmer
- Department of Surgery, UC Davis Children's Hospital, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
22
|
Yan Z, Stewart ZA, Sinn PL, Olsen JC, Hu J, McCray, Jr. PB, Engelhardt JF. Ferret and Pig Models of Cystic Fibrosis: Prospects and Promise for Gene Therapy. HUM GENE THER CL DEV 2014. [DOI: 10.1089/hum.2014.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Improved stability and efficacy of chitosan/pDNA complexes for gene delivery. Biotechnol Lett 2014; 37:557-65. [PMID: 25388452 DOI: 10.1007/s10529-014-1727-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
Among polymeric polycations, chitosan has emerged as a powerful carrier for gene delivery. Only a few studies have focused on the stability of the chitosan/DNA complex under storage, although this is imperative for nanomedicinal applications. Here, we synthesized polyelectrolyte complexes at a charge ratio of 10 using 50 kDa chitosan and plasmid (p)DNA that encodes a GFP reporter. These preparations were stable up to 3 months at 4 °C and showed reproducible transfection efficiencies in vitro in HEK293 cells. In addition, we developed a methodology that increases the in vitro transfection efficiency of chitosan/pDNA complexes by 150% with respect to standard procedures. Notably, intracellular pDNA release and transfected cells peaked 5 days following transection of mitotically active cells. These new developments in formulation technology enhance the potential for polymeric nanoparticle-mediated gene therapy.
Collapse
|
24
|
Tang JB, Chen CH, Zhou YL, McKeever C, Liu PY. Regulatory effects of introduction of an exogenous FGF2 gene on other growth factor genes in a healing tendon. Wound Repair Regen 2014; 22:111-8. [PMID: 24393159 DOI: 10.1111/wrr.12129] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 10/10/2013] [Indexed: 11/30/2022]
Abstract
In this study of a tendon injury model, we investigated how injection of a vector incorporating one growth factor gene changes expression levels of multiple growth factor genes in the healing process. The flexor tendon of chicken toes was completely cut and repaired surgically. The tendons in the experimental arm were injected with an adeno-associated virus-2 vector incorporating basic fibroblast growth-factor gene, whereas the tendons in the control arm were not injected or injected with sham vectors. Using real-time polymerase chain reaction, we found that, within the tendon healing period, a set of growth factor genes-transforming growth factor-β1, vascular endothelial growth factor, and connective tissue growth factor-were significantly up-regulated. Expression of the platelet-derived growth factor-B gene was not changed, and the insulin-like growth factor was down-regulated. A tendon marker gene, scleraxis, was significantly up-regulated in the period. Our study revealed an intriguing finding that introduction of one growth factor gene in the healing tendon modulated expression of multiple growth factor genes. We believe this study may have significant implications in determining the approach of gene therapy, and the findings substantiate that gene therapy using a single growth factor could affect multiple growth factors.
Collapse
Affiliation(s)
- Jin Bo Tang
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; Medical Research Center for Tissue Repair and Reconstruction of Jiangsu, Nantong, Jiangsu, China; Department of Plastic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
| | | | | | | | | |
Collapse
|
25
|
Bangel-Ruland N, Tomczak K, Fernández Fernández E, Leier G, Leciejewski B, Rudolph C, Rosenecker J, Weber WM. Cystic fibrosis transmembrane conductance regulator-mRNA delivery: a novel alternative for cystic fibrosis gene therapy. J Gene Med 2014; 15:414-26. [PMID: 24123772 DOI: 10.1002/jgm.2748] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 10/04/2013] [Accepted: 10/06/2013] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is the most frequent lethal genetic disease in the Caucasian population. CF is caused by a defective gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP- and ATP-dependent Cl(-) channel and central regulatory protein in epithelia. CFTR influences the fluid composition of the mucus in the respiratory tract. The most common mutation inducing CF, ΔF508, impairs CFTR processing within the cell and thus prevents functional CFTR expression in the apical membrane. The present study aimed to investigate the functional restoration of CFTR in human CF airway epithelia after transfection with optimized wild-type (wt)CFTR-mRNA. METHODS We used primary cultured human nasal epithelial (HNE) cells and the human bronchial epithelial cell line CFBE41o(-) that stably expresses ΔF508-CFTR and carried out transepithelial Ussing chamber measurements after transfection with optimized wtCFTR-mRNA. We confirmed the data obtained using immunofluorescence and protein biochemical approaches. RESULTS Transfection of the CFBE41o(-) cells with wtCFTR-mRNA restored cAMP-induced CFTR currents similar to the values seen in control cells (16HBE14o(-)). Using immunofluorescence approaches, we demonstrated that a considerable amount of CFTR is located at the apical surface in the CF cells after transfection. Western blot analyses of wtCFTR-mRNA transfected CFBE41o(-) cells confirmed these findings. Furthermore, we demonstrated physiological relevance by using primary cultured HNE cells and showed an almost two-fold increase in the cAMP-stimulated CFTR current after transfection. CONCLUSIONS From these data, we conclude that CFTR-mRNA transfection could comprise a novel alternative for gene therapy to restore impaired CFTR function.
Collapse
|
26
|
Nagai Y, Limberis MP, Zhang H. Modulation of Treg function improves adenovirus vector-mediated gene expression in the airway. Gene Ther 2014; 21:219-24. [PMID: 24385144 PMCID: PMC3946346 DOI: 10.1038/gt.2013.78] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 11/01/2013] [Accepted: 11/18/2013] [Indexed: 12/22/2022]
Abstract
Virus vector-mediated gene transfer has been developed as a treatment for cystic fibrosis (CF) airway disease, a lethal inherited disorder caused by somatic mutations in the cystic fibrosis transmembrane conductance regulator gene. The pathological proinflammatory environment of CF as well as the naïve and adaptive immunity induced by the virus vector itself limits the effectiveness of gene therapy for CF airway. Here, we report the use of an HDAC inhibitor, valproic acid (VPA), to enhance the activity of the regulatory T cells (T(reg)) and to improve the expression of virus vector-mediated gene transfer to the respiratory epithelium. Our study demonstrates the potential utility of VPA, a drug used for over 50 years in humans as an anticonvulsant and mood-stabilizer, in controlling inflammation and improving the efficacy of gene transfer in CF airway.
Collapse
Affiliation(s)
- Y Nagai
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - M P Limberis
- 1] Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA [2] Gene Therapy Program, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - H Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
27
|
Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in PLGA nanoparticles. PLoS One 2013; 8:e82648. [PMID: 24386106 PMCID: PMC3873271 DOI: 10.1371/journal.pone.0082648] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/05/2013] [Indexed: 11/28/2022] Open
Abstract
Background Although the Newcastle disease virus (NDV) inactivated vaccines and attenuated live vaccines have been used to prevent and control Newcastle disease (ND) for years, there are some disadvantages. Recently, newly developed DNA vaccines have the potential to overcome these disadvantages. The low delivery efficiency, however, hindered the application of DNA vaccines for ND in practice. Methodology/Principal Findings The eukaryotic expression plasmid pVAX1-F (o) DNA that expressed the F gene of NDV encapsulated in PLGA nanoparticles (pFNDV-PLGA-NPs) were prepared by a double emulsion-solvent evaporation method and optimal preparation conditions of the pFNDV-PLGA-NPs were determined. Under the optimal conditions, the pFNDV-PLGA-NPs were produced in good morphology and had high stability with a mean diameter of 433.5±7.5 nm, with encapsulation efficiency of 91.8±0.3% and a Zeta potential of +2.7 mV. Release assay in vitro showed that the fusion gene plasmid DNA could be sustainably released from the pFNDV-PLGA-NPs up to 93.14% of the total amount. Cell transfection test indicated that the vaccine expressed and maintained its bioactivity. Immunization results showed that better immune responses of SPF chickens immunized with the pFNDV-PLGA-NPs were induced compared to the chickens immunized with the DNA vaccine alone. In addition, the safety of mucosal immunity delivery system of the pFNDV-PLGA-NPs was also tested in an in vitro cytotoxicity assay. Conclusions/Significance The pFNDV-PLGA-NPs could induce stronger cellular, humoral, and mucosal immune responses and reached the sustained release effect. These results laid a foundation for further development of vaccines and drugs in PLGA nanoparticles.
Collapse
|
28
|
Tian Y, Chen J, Zahtabi F, Keijzer R, Xing M. Nanomedicine as an innovative therapeutic strategy for pediatric lung diseases. Pediatr Pulmonol 2013; 48:1098-111. [PMID: 23997035 DOI: 10.1002/ppul.22657] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 06/07/2012] [Indexed: 02/06/2023]
Abstract
Nanomedicine is a rapidly emerging technology and represents an innovative field for therapy. Nanomaterials have intrinsically defined features for biomedical applications due to the high specific surface area, the amazing diversity, versatility in structure and function and the possibility of surface charge. In particular, the functionalization of targeting or stimuli-responsive unit on the surface of these materials gives them specific targeted therapeutic properties. There are many pediatric lung diseases that could potentially benefit from nanomedicine. Herein, we aim to review various drug carrier systems and release systems specifically targeting pediatric lung diseases. The injection of nanomedicine into in vivo models and their elimination will also be discussed. Finally, the potential toxicity of nanomaterials will be addressed.
Collapse
Affiliation(s)
- Ye Tian
- Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba; Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
29
|
McKiernan PJ, Cunningham O, Greene CM, Cryan SA. Targeting miRNA-based medicines to cystic fibrosis airway epithelial cells using nanotechnology. Int J Nanomedicine 2013; 8:3907-15. [PMID: 24143095 PMCID: PMC3798151 DOI: 10.2147/ijn.s47551] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cystic fibrosis (CF) is an inherited disorder characterized by chronic airway inflammation. microRNAs (miRNAs) are endogenous small RNAs which act on messenger (m) RNA at a post transcriptional level, and there is a growing understanding that altered expression of miRNA is involved in the CF phenotype. Modulation of miRNA by replacement using miRNA mimics (premiRs) presents a new therapeutic paradigm for CF, but effective and safe methods of delivery to the CF epithelium are limiting clinical translation. Herein, polymeric nanoparticles are investigated for delivery of miRNA mimics into CF airway epithelial cells, using miR-126 as a proof-of-concept premiR cargo to determine efficiency. Two polymers, polyethyleneimine (PEI) and chitosan, were used to prepare miRNA nanomedicines, characterized for their size, surface (zeta) potential, and RNA complexation efficiency, and screened for delivery and cytotoxicity in CFBE41o- (human F508del cystic fibrosis transmembrane conductance regulator bronchial epithelial) cells using a novel high content analysis method. RNA extraction was carried out 24 hours post transfection, and miR-126 and TOM1 (target of Myb1) expression (a validated miR-126 target) was assessed. Manufacture was optimized to produce small nanoparticles that effectively complexed miRNA. Using high content analysis, PEI-based nanoparticles were more effective than chitosan-based nanoparticles in facilitating uptake of miRNA into CFBE41o- cells and this was confirmed in miR-126 assays. PEI-premiR-126 nanoparticles at low nitrogen/phosphate (N/P) ratios resulted in significant knockdown of TOM1 in CFBE41o- cells, with the most significant reduction of 66% in TOM1 expression elicited at an N/P ratio of 1:1 while chitosan-based miR-126 nanomedicines failed to facilitate statistically significant knockdown of TOM1 and both nanoparticles appeared relatively nontoxic. miRNA nanomedicine uptake can be qualitatively and quantitatively assessed rapidly by high content analysis and is highly polymer-dependent but, interestingly, there is not a direct correlation between the levels of miRNA uptake and the downstream gene knockdown. Polymeric nanoparticles can deliver premiRs effectively to CFBEs in order to modulate gene expression but must be tailored specifically for miRNA delivery.
Collapse
Affiliation(s)
- Paul J McKiernan
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | | | | | | |
Collapse
|
30
|
Abstract
Cystic fibrosis (CF) is an autosomal recessive monogenetic disease that afflicts nearly 70 000 patients worldwide. The mutation results in the accumulation of viscous mucus in multiple organs especially in the lungs, liver and pancreas. High associated morbidity and mortality is caused by CF due to the lack of effective therapies. It is widely accepted that morbidity and mortality caused by CF is primarily due to the respiratory manifestations of the disease. Consequently, several approaches were recently developed for treatment of lung complications of CF. However, the lack of effective methods for delivery and especially targeted delivery of therapeutics specifically to lung tissues and cells limits the efficiency of the therapy. Local pulmonary delivery of therapeutics has two major advantages over systemic application. First, it enhances the accumulation of therapeutics specifically in the lungs and therefore increases the efficiency of the treatment. Second, local lung delivery substantially prevents the penetration of the delivered drug into the systemic circulation limiting adverse side effects of the treatment on other organs and tissues. This review is focused on different approaches to the treatment of respiratory manifestations of CF as well as on methods of pulmonary delivery of therapeutics.
Collapse
Affiliation(s)
- Ronak Savla
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, NJ , USA
| | | |
Collapse
|
31
|
Murphy SV, Atala A. Cell therapy for cystic fibrosis. J Tissue Eng Regen Med 2013; 9:210-23. [DOI: 10.1002/term.1746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/11/2013] [Accepted: 03/16/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Sean V. Murphy
- Wake Forest Institute for Regenerative Medicine; Wake Forest University Health Sciences; Winston-Salem NC USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine; Wake Forest University Health Sciences; Winston-Salem NC USA
| |
Collapse
|
32
|
Aarbiou J, Copreni E, Buijs-Offerman RM, van der Wegen P, Castellani S, Carbone A, Tilesi F, Fradiani P, Hiemstra PS, Yueksekdag G, Diana A, Rosenecker J, Ascenzioni F, Conese M, Scholte BJ. Lentiviral small hairpin RNA delivery reduces apical sodium channel activity in differentiated human airway epithelial cells. J Gene Med 2013; 14:733-45. [PMID: 23074129 DOI: 10.1002/jgm.2672] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/27/2012] [Accepted: 10/07/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Epithelial sodium channel (ENaC) hyperactivity has been implicated in the pathogenesis of cystic fibrosis (CF) by dysregulation of fluid and electrolytes in the airways. In the present study, we show proof-of-principle for ENaC inhibition by lentiviral-mediated RNA interference. METHODS Immortalized normal (H441) and CF mutant (CFBE) airway cells, and differentiated human bronchial epithelial cells in air liquid interface culture (HBEC-ALI) were transduced with a vesicular stomatitis virus G glycoprotein pseudotyped lentiviral (LV) vector expressing a short hairpin RNA (shRNA) targeting the α subunit of ENaC (ENaCα), and a marker gene. Efficacy of ENaCα down-regulation was assayed by the real-time polymerase chain reaction (PCR), membrane potential assay, western blotting, short-circuit currents and fluid absorption. Off-target effects were investigated by a lab-on-a-chip quantitative PCR array. RESULTS Transduction to near one hundred percentage efficiency of H441, CFBE and HBEC-ALI was achieved by the addition of the LV vector before differentiation and polarization. Transduction resulted in the inhibition of ENaCα mRNA and antigen expression, and a proportional decrease in ENaC-dependent short circuit current and fluid transport. No effect on transepithelial resistance or cAMP-induced secretion responses was observed in HBEC-ALI. The production of interferon α and pro-inflammatory cytokine mRNA, indicating Toll-like receptor 3 or RNA-induced silencing complex mediated off-target effects, was not observed in HBEC-ALI transduced with this vector. CONCLUSIONS We have established a generic method for studying the effect of RNA interference in HBEC-ALI using standard lentiviral vectors. Down-regulation of ENaCα by lentiviral shRNA expression vectors as shown in the absence off-target effects has potential therapeutic value in the treatment of cystic fibrosis.
Collapse
Affiliation(s)
- Jamil Aarbiou
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Conese M, Carbone A, Castellani S, Di Gioia S. Paracrine effects and heterogeneity of marrow-derived stem/progenitor cells: relevance for the treatment of respiratory diseases. Cells Tissues Organs 2013; 197:445-73. [PMID: 23652321 DOI: 10.1159/000348831] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2013] [Indexed: 11/19/2022] Open
Abstract
Stem cell-based treatment may represent a hope for the treatment of acute lung injury and pulmonary fibrosis, and other chronic lung diseases, such as cystic fibrosis, asthma and chronic obstructive pulmonary disease (COPD). It is well established in preclinical models that bone marrow-derived stem and progenitor cells exert beneficial effects on inflammation, immune responses and repairing of damage in virtually all lung-borne diseases. While it was initially thought that the positive outcome was due to a direct engraftment of these cells into the lung as endothelial and epithelial cells, paracrine factors are now considered the main mechanism through which stem and progenitor cells exert their therapeutic effect. This knowledge has led to the clinical use of marrow cells in pulmonary hypertension with endothelial progenitor cells (EPCs) and in COPD with mesenchymal stromal (stem) cells (MSCs). Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells, MSCs, EPCs and fibrocytes, encompass a wide array of cell subsets with different capacities of engraftment and injured tissue-regenerating potential. The characterization/isolation of the stem cell subpopulations represents a major challenge to improve the efficacy of transplantation protocols used in regenerative medicine and applied to lung disorders.
Collapse
Affiliation(s)
- Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | | | | | | |
Collapse
|
34
|
Prickett M, Jain M. Gene therapy in cystic fibrosis. Transl Res 2013; 161:255-64. [PMID: 23273902 DOI: 10.1016/j.trsl.2012.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 11/29/2012] [Accepted: 12/01/2012] [Indexed: 02/03/2023]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane regulator (CFTR) gene and is the most common life-shortening genetic defect in Caucasians. Life expectancy in CF has improved substantially over the last 75 years because of treatments aimed at end-organ complications. Since the CFTR gene was discovered in 1989 more than 1900 mutations have been reported to cause CF and significant effort has been put forth into gene therapy to find a mutation independent "cure" for CF. Gene-based approaches have not yet led to a viable therapy but have provided insights into hurdles that limit the efficacy of gene therapy. This review will address the nomenclature of CFTR mutations, attempts at viral and nonviral gene therapy, and recent advances in mutation-specific molecules.
Collapse
Affiliation(s)
- Michelle Prickett
- Northwestern University Feinberg School of Medicine, Division of Pulmonary and Critical Care Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
35
|
Leonard A, Leal T, Lebecque P. [Mucoviscidosis: CFTR mutation-specific therapy: a ray of sunshine in a cloudy sky]. Arch Pediatr 2012. [PMID: 23199563 DOI: 10.1016/j.arcped.2012.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is a need to find a cure for pulmonary disease in cystic fibrosis (CF), though full benefit of this approach will be restricted to those patients with well-preserved lungs. The most promising route is currently that of a pharmacological mutation-specific approach aiming at correcting the mechanism by which mutations lead to impairment of chloride conductance across respiratory epithelial cells. In the past 14years, 7 candidate drugs (CPX, 4PBA, gentamicin, PTC124, VX-770 or Ivacaftor, VX-809 or Lumacaftor, and Miglustat) have been investigated in CF patients. A postulate of 14 out of the 15 published studies has been that an effective agent had to improve total chloride secretion as assessed in vivo by nasal potential difference measurements. The present review casts a critical look at these studies. Apparent inconsistencies are discussed as well as possible limitations of nasal potential difference measurements as outcome parameters in these trials. Primarily targeting a mutation carried by less than 2% of French CF patients, the 2 Ivacaftor studies could well be a milestone on the long road toward a cure for CF. However, further data on safety and long-term efficacy are obviously needed and the current price of this medication in the US would make it unaffordable for European patients.
Collapse
Affiliation(s)
- A Leonard
- Unité de pneumologie pédiatrique et mucoviscidose, cliniques Saint-Luc, université de Louvain, Bruxelles, Belgique.
| | | | | |
Collapse
|
36
|
Wang C, Ravi S, Martinez G, Chinnasamy V, Raulji P, Howell M, Davis Y, Seehra MS, Mohapatra S. Dual-purpose magnetic micelles for MRI and gene delivery. J Control Release 2012; 163:82-92. [PMID: 22561339 PMCID: PMC3632302 DOI: 10.1016/j.jconrel.2012.04.030] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 12/14/2022]
Abstract
Gene therapy is a promising therapeutic approach for treating disease, but the efficient delivery of genes to desired locations with minimal side effects remains a challenge. In addition to gene therapy, it is also highly desirable to provide sensitive imaging information in patients for disease diagnosis, screening and post-therapy monitoring. Here, we report on the development of dual-purpose chitosan and polyethyleneimine (PEI) coated magnetic micelles (CP-mag-micelles) that can deliver nucleic acid-based therapeutic agents and also provide magnetic resonance imaging (MRI). These 'theranostic' CP-mag-micelles are composed of monodisperse hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) loaded into the cores of micelles that are self-assembled from a block copolymer of poly (D, L-lactide) (PLA) and monomethoxy polyethylene glycol (mPEG). For efficient loading and protection of the nucleic acids the micelles were coated with cationic polymers, such as chitosan and PEI. The morphology and size distribution of the CP-mag-micelles were characterized and their potential for use as an MRI-probe was tested using an MRI scanner. The T(2) relaxivity of mag-micelles was similar to CP-mag-micelles confirming that coating with cationic polymers did not alter magnetism. Nanoparticles coated with chitosan:PEI at a weight ratio of 5:5 showed higher transfection efficiency in HEK293, 3T3 and PC3 cells than with weight ratios of 3:7 or 7:3. CP-mag-micelles are biocompatible, can be delivered to various organs and are safe. A single injection of CP-mag-micelles carrying reporter plasmids in vivo expressed genes for at least one week. Collectively, our results demonstrate that a structural reinforcement of SPIONs loaded in the core of an mPEG-PLA micelle coated with cationic polymers provides efficient DNA delivery and enhanced MRI potential, and affords a promising candidate for theranostics in the future.
Collapse
Affiliation(s)
- Chunyan Wang
- Molecular Medicine Department, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
- Nanomedicine Research Center, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
| | - Sowndharya Ravi
- Molecular Medicine Department, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
| | - Gary.V. Martinez
- H.Lee Moffit Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Vignesh Chinnasamy
- Molecular Medicine Department, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
| | - Payal Raulji
- Molecular Medicine Department, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
| | - Mark Howell
- Molecular Medicine Department, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
| | - Yvonne Davis
- Molecular Medicine Department, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
| | - Mohindar S. Seehra
- Department of Physics, West Virginia University, Morgantown, WV, 26506, USA
| | - Subhra Mohapatra
- Molecular Medicine Department, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
- Nanomedicine Research Center, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
| |
Collapse
|
37
|
Fields RJ, Cheng CJ, Quijano E, Weller C, Kristofik N, Duong N, Hoimes C, Egan ME, Saltzman WM. Surface modified poly(β amino ester)-containing nanoparticles for plasmid DNA delivery. J Control Release 2012; 164:41-8. [PMID: 23041278 DOI: 10.1016/j.jconrel.2012.09.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 09/24/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
Abstract
The use of biodegradable polymers provides a potentially safe and effective alternative to viral and liposomal vectors for the delivery of plasmid DNA to cells for gene therapy applications. In this work we describe the formulation of a novel nanoparticle (NP) system containing a blend of poly(lactic-co-glycolic acid) and a representative poly(beta-amino) ester (PLGA and PBAE respectively) for use as gene delivery vehicles. Particles of different weight/weight (wt/wt) ratios of the two polymers were characterized for size, morphology, plasmid DNA (pDNA) loading and surface charge. NPs containing PBAE were more effective at cellular internalization and transfection (COS-7 and CFBE41o-) than NPs lacking the PBAE polymer. However, along with these delivery benefits, PBAE exhibited cytotoxic effects that presented an engineering challenge. Surface coating of these blended particles with the cell-penetrating peptides (CPPs) mTAT, bPrPp and MPG via a PEGylated phospholipid linker (DSPE-PEG2000) resulted in NPs that reduced surface charge and cellular toxicity to levels comparable with NPs formulated with only PLGA. Additionally, these coated nanoparticles showed an improvement in pDNA loading, intracellular uptake and transfection efficiency, when compared to NPs lacking the surface coating. Although all particles with a CPP coating outperformed unmodified NPs, respectively, bPrPp and MPG coating resulted in 3 and 4.5× more pDNA loading than unmodified particles and approximately an order of magnitude improvement on transfection efficiency in CFBE41o- cells. These results demonstrate that surface-modified PBAE containing NPs are a highly effective and minimally toxic platform for pDNA delivery.
Collapse
Affiliation(s)
- Rachel J Fields
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Human amnion epithelial cells induced to express functional cystic fibrosis transmembrane conductance regulator. PLoS One 2012; 7:e46533. [PMID: 23029546 PMCID: PMC3460882 DOI: 10.1371/journal.pone.0046533] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 09/05/2012] [Indexed: 11/19/2022] Open
Abstract
Cystic fibrosis, an autosomal recessive disorder caused by a mutation in a gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), remains a leading cause of childhood respiratory morbidity and mortality. The respiratory consequences of cystic fibrosis include the generation of thick, tenacious mucus that impairs lung clearance, predisposing the individual to repeated and persistent infections, progressive lung damage and shortened lifespan. Currently there is no cure for cystic fibrosis. With this in mind, we investigated the ability of human amnion epithelial cells (hAECs) to express functional CFTR. We found that hAECs formed 3-dimensional structures and expressed the CFTR gene and protein after culture in Small Airway Growth Medium (SAGM). We also observed a polarized CFTR distribution on the membrane of hAECs cultured in SAGM, similar to that observed in polarized airway cells in vivo. Further, hAECs induced to express CFTR possessed functional iodide/chloride (I−/Cl−) ion channels that were inhibited by the CFTR-inhibitor CFTR-172, indicating the presence of functional CFTR ion channels. These data suggest that hAECs may be a promising source for the development of a cellular therapy for cystic fibrosis.
Collapse
|
39
|
Keswani SG, Balaji S, Le L, Leung A, Katz AB, Lim FY, Habli M, Jones HN, Wilson JM, Crombleholme TM. Pseudotyped AAV vector-mediated gene transfer in a human fetal trachea xenograft model: implications for in utero gene therapy for cystic fibrosis. PLoS One 2012; 7:e43633. [PMID: 22937069 PMCID: PMC3427158 DOI: 10.1371/journal.pone.0043633] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 07/23/2012] [Indexed: 12/31/2022] Open
Abstract
Background Lung disease including airway infection and inflammation currently causes the majority of morbidities and mortalities associated with cystic fibrosis (CF), making the airway epithelium and the submucosal glands (SMG) novel target cells for gene therapy in CF. These target cells are relatively inaccessible to postnatal gene transfer limiting the success of gene therapy. Our previous work in a human-fetal trachea xenograft model suggests the potential benefit for treating CF in utero. In this study, we aim to validate adeno-associated virus serotype 2 (AAV2) gene transfer in a human fetal trachea xenograft model and to compare transduction efficiencies of pseudotyping AAV2 vectors in fetal xenografts and postnatal xenograft controls. Methodology/Principal Findings Human fetal trachea or postnatal bronchus controls were xenografted onto immunocompromised SCID mice for a four-week engraftment period. After injection of AAV2/2, 2/1, 2/5, 2/7 or 2/8 with a LacZ reporter into both types of xenografts, we analyzed for transgene expression in the respiratory epithelium and SMGs. At 1 month, transduction by AAV2/2 and AAV2/8 in respiratory epithelium and SMG cells was significantly greater than that of AAV2/1, 2/5, and 2/7 in xenograft tracheas. Efficiency in SMG transduction was significantly greater in AAV2/8 than AAV2/2. At 3 months, AAV2/2 and AAV2/8 transgene expression was >99% of respiratory epithelium and SMG. At 1 month, transduction efficiency of AAV2/2 and AAV2/8 was significantly less in adult postnatal bronchial xenografts than in fetal tracheal xenografts. Conclusions/Significance Based on the effectiveness of AAV vectors in SMG transduction, our findings suggest the potential utility of pseudotyped AAV vectors for treatment of cystic fibrosis. The human fetal trachea xenograft model may serve as an effective tool for further development of fetal gene therapy strategies for the in utero treatment of cystic fibrosis.
Collapse
Affiliation(s)
- Sundeep G Keswani
- Center for Molecular Fetal Therapy, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mesenchymal stem cell therapy and lung diseases. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 130:105-29. [PMID: 22772131 DOI: 10.1007/10_2012_140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs), a distinct population of adult stem cells, have amassed significant interest from both medical and scientific communities. An inherent multipotent differentiation potential offers a cell therapy option for various diseases, including those of the musculoskeletal, neuronal, cardiovascular and pulmonary systems. MSCs also secrete an array of paracrine factors implicated in the mitigation of pathological conditions through anti-inflammatory, anti-apoptotic and immunomodulatory mechanisms. The safety and efficacy of MSCs in human application have been confirmed through small- and large-scale clinical trials. However, achieving the optimal clinical benefit from MSC-mediated regenerative therapy approaches is entirely dependent upon adequate understanding of their healing/regeneration mechanisms and selection of appropriate clinical conditions. MSC-mediated acute alveolar injury repair. A cartoon depiction of an injured alveolus with associated inflammation and AEC apoptosis. Proposed routes of MSC delivery into injured alveoli could be by either intratracheal or intravenous routes, for instance. Following delivery a proposed mechanism of MSC action is to inhibit/reduce alveolar inflammation by abrogation of IL-1_-depenedent Tlymphocyte proliferation and suppression of TNF-_ secretion via macrophage activation following on from stimulation by MSC-secreted IL-1 receptor antagonist (IL-1RN). The inflammatory environment also stimulates MSC to secrete prostaglandin-E2 (PGE2) which can stimulate activated macrophages to secrete the anti-inflammatory cytokine IL-10. Inhibition of AEC apoptosis following injury can also be promoted via MSC stimulated up-regulation of the anti-apoptotic Bcl-2 gene. MSC-secreted KGF can stimulate AECII proliferation and migration propagating alveolar epithelial restitution. Alveolar structural engraftment of MSC is a rare event.
Collapse
|
41
|
Abstract
With knowledge of the molecular behaviour of the cystic fibrosis transmembrane conductance regulator (CFTR), its physiological role and dysfunction in cystic fibrosis (CF), therapeutic strategies are now being developed that target the root cause of CF rather than disease symptoms. Here, we review progress towards the development of rational new therapies for CF. We highlight the discovery of small molecules that rescue the cell surface expression and defective channel gating of CF mutants, termed CFTR correctors and CFTR potentiators, respectively. We draw attention to alternative approaches to restore epithelial ion transport to CF epithelia, including inhibitors of the epithelial Na(+) channel (ENaC) and activators of the Ca(2+)-activated Cl(-) channel TMEM16A. The expertise required to translate small molecules identified in the laboratory to drugs for CF patients depends on our ability to coordinate drug development at an international level and our ability to provide pertinent biological information using suitable disease models.
Collapse
|
42
|
Sheppard DN. EuroCareCF: working together to improve patient care and therapy development. J Cyst Fibros 2011; 10 Suppl 2:S1-4. [PMID: 21658628 DOI: 10.1016/s1569-1993(11)00089-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|