1
|
Tsikas D, Gambaryan S. Nitrous anhydrase activity of carbonic anhydrase II: cysteine is required for nitric oxide (NO) dependent phosphorylation of VASP in human platelets. J Enzyme Inhib Med Chem 2021; 36:525-534. [PMID: 33508993 PMCID: PMC7875556 DOI: 10.1080/14756366.2021.1874946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The carbonic anhydrase (CA) family does not only catalyse the reversible hydration of CO2 to bicarbonate, but it also possesses esterase and phosphatase activity. Recently, bovine CA II and human CA II have been reported to convert inorganic nitrite (O=N-O−) to nitric oxide (NO) and nitrous anhydride (N2O3). Given the ability of NO to mediate vasodilation and inhibit platelet aggregation, this CA II activity would represent a bioactivation of nitrite. There are contradictory reports in the literature and the physiological role of CA II nitrite bioactivation is still disputed. Here, we provide new experimental data in support of the nitrous anhydrase activity of CA II and the key role L-cysteine in the bioactivation of nitrite by CA II. Using washed human platelets and by measuring VASP phosphorylation we provide evidence that exogenous nitrite (10 µM) is bioactivated to NO in a manner strongly depending on L-cysteine (100 and 200 µM). The process is not inhibitable by acetazolamide, a potent CA inhibitor. The contradictory results of recently published studies in this area are thoroughly discussed.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Hannover, Germany
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Petersburg, Russia
| |
Collapse
|
2
|
Tsikas D. Comment on the article Structure and mechanism of copper-carbonic anhydrase II: a nitrite reductase. IUCRJ 2021; 8:327-328. [PMID: 33708408 PMCID: PMC7924222 DOI: 10.1107/s2052252520016644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/23/2020] [Indexed: 05/15/2023]
Abstract
The paper discusses a recent paper [Andring et al. (2020). IUCrJ, 7, 287-293] on the nitrite reductase and nitrous anhydrase activity of carbonic anhydrase.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
- Correspondence e-mail:
| |
Collapse
|
3
|
Tsikas D. Extra-platelet low-molecular-mass thiols mediate the inhibitory action of S-nitrosoalbumin on human platelet aggregation via S-transnitrosylation of the platelet surface. Amino Acids 2021; 53:563-573. [PMID: 33586042 PMCID: PMC8107154 DOI: 10.1007/s00726-021-02950-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/30/2021] [Indexed: 12/31/2022]
Abstract
Nitrosylation of sulfhydryl (SH) groups of cysteine (Cys) moieties is an important post-translational modification (PTM), often on a par with phosphorylation. S-Nitrosoalbumin (ALB-Cys34SNO; SNALB) in plasma and S-nitrosohemoglobin (Hb-Cysβ93SNO; HbSNO) in red blood cells are considered the most abundant high-molecular-mass pools of nitric oxide (NO) bioactivity in the human circulation. SNALB per se is not an NO donor. Yet, it acts as a vasodilator and an inhibitor of platelet aggregation. SNALB can be formed by nitrosation of the sole reduced Cys group of albumin (Cys34) by nitrosating species such as nitrous acid (HONO) and nitrous anhydride (N2O3), two unstable intermediates of NO autoxidation. SNALB can also be formed by the transfer (S-transnitrosylation) of the nitrosyl group (NO+) of a low-molecular-mass (LMM) S-nitrosothiol (RSNO) to ALB-Cys34SH. In the present study, the effects of LMM thiols on the inhibitory potential of ALB-Cys34SNO on human washed platelets were investigated. ALB-Cys34SNO was prepared by reacting n-butylnitrite with albumin after selective extraction from plasma of a healthy donor on HiTrapBlue Sepharose cartridges. ALB-Cys34SNO was used in platelet aggregation measurements after extended purification on HiTrapBlue Sepharose and enrichment by ultrafiltration (cutoff, 20 kDa). All tested LMM cysteinyl thiols (R-CysSH) including L-cysteine and L-homocysteine (at 10 µM) were found to mediate the collagen-induced (1 µg/mL) aggregation of human washed platelets by SNALB (range, 0-10 µM) by cGMP-dependent and cGMP-independent mechanisms. The LMM thiols themselves did not affect platelet aggregation. It is assumed that the underlying mechanism involves S-transnitrosylation of SH groups of the platelet surface by LMM RSNO formed through the reaction of SNALB with the thiols: ALB-Cys34SNO + R-CysSH ↔ ALB-Cys34SH + R-CysSNO. Such S-transnitrosylation reactions may be accompanied by release of NO finally resulting in cGMP-dependent and cGMP-independent mechanisms.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
4
|
Yang T, Zelikin AN, Chandrawati R. Enzyme Mimics for the Catalytic Generation of Nitric Oxide from Endogenous Prodrugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907635. [PMID: 32372556 DOI: 10.1002/smll.201907635] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/19/2020] [Indexed: 06/11/2023]
Abstract
The highly diverse biological roles of nitric oxide (NO) in both physiological and pathophysiological processes have prompted great interest in the use of NO as a therapeutic agent in various biomedical applications. NO can exert either protective or deleterious effects depending on its concentration and the location where it is delivered or generated. This double-edged attribute, together with the short half-life of NO in biological systems, poses a major challenge to the realization of the full therapeutic potential of this molecule. Controlled release strategies show an admirable degree of precision with regard to the spatiotemporal dosing of NO but are disadvantaged by the finite NO deliverable payload. In turn, enzyme-prodrug therapy techniques afford enhanced deliverable payload but are troubled by the inherent low stability of natural enzymes, as well as the requirement to control pharmacokinetics for the exogenous prodrugs. The past decade has seen the advent of a new paradigm in controlled delivery of NO, namely localized bioconversion of the endogenous prodrugs of NO, specifically by enzyme mimics. These early developments are presented, successes of this strategy are highlighted, and possible future work on this avenue of research is critically discussed.
Collapse
Affiliation(s)
- Tao Yang
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Alexander N Zelikin
- Department of Chemistry and iNANO Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, C 8000, Denmark
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| |
Collapse
|
5
|
Yu H, Chaimbault P, Clarot I, Chen Z, Leroy P. Labeling nitrogen species with the stable isotope 15N for their measurement by separative methods coupled with mass spectrometry: A review. Talanta 2019; 191:491-503. [DOI: 10.1016/j.talanta.2018.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 02/09/2023]
|
6
|
GC-ECNICI-MS analysis of S-nitrosothiols and nitroprusside after treatment with aqueous sulphide (S2−) and derivatization with pentafluorobenzyl bromide: Evidence of S-transnitrosylation and formation of nitrite and nitrate. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1043:209-218. [DOI: 10.1016/j.jchromb.2016.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 01/31/2023]
|
7
|
Hanff E, Böhmer A, Zinke M, Gambaryan S, Schwarz A, Supuran CT, Tsikas D. Carbonic anhydrases are producers of S-nitrosothiols from inorganic nitrite and modulators of soluble guanylyl cyclase in human platelets. Amino Acids 2016; 48:1695-706. [PMID: 27129464 DOI: 10.1007/s00726-016-2234-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 04/08/2016] [Indexed: 12/29/2022]
Abstract
Nitric oxide (NO), S-nitrosoglutathione (GSNO) and S-nitrosocysteine are highly potent signaling molecules, acting both by cGMP-dependent and cGMP-independent mechanisms. The NO metabolite nitrite (NO2 (-)) is a major NO reservoir. Hemoglobin, xanthine oxidoreductase and carbonic anhydrase (CA) have been reported to reduce/convert nitrite to NO. We evaluated the role and the physiological importance of CA for an extra-platelet CA/nitrite/NO/cGMP pathway in human platelets. Authentic NO was analyzed by an NO-sensitive electrode. GSNO and GS(15)NO were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). cGMP was determined by LC-MS/MS or RIA. In reduced glutathione (GSH) containing aqueous buffer (pH 7.4), human and bovine erythrocytic CAII-mediated formation of GSNO from nitrite and GS(15)NO from (15)N-nitrite. In the presence of L-cysteine and GSH, this reaction was accompanied by NO release. Incubation of nitrite with bovine erythrocytic CAII and recombinant soluble guanylyl cyclase resulted in cGMP formation. Upon incubation of nitrite with bovine erythrocytic CAII and washed human platelets, cGMP and P-VASP(S239) were formed in the platelets. This study provides the first evidence that extra-platelet nitrite and erythrocytic CAII may modulate platelet function in a cGMP-dependent manner. The new nitrite-dependent CA activity may be a general principle and explain the cardioprotective effects of inorganic nitrite in the vasculature. We propose that nitrous acid (ONOH) is the primary CA-catalyzed reaction product of nitrite.
Collapse
Affiliation(s)
- Erik Hanff
- Centre of Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Anke Böhmer
- Centre of Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Maximilian Zinke
- Centre of Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Stepan Gambaryan
- Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.,Department of Cytology and Histology, S. Petersburg State University, Universitetskaya Nab 7/9, 199034, S. Petersburg, Russia
| | - Alexandra Schwarz
- Centre of Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Dimitrios Tsikas
- Centre of Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
8
|
Ismail A, Griveau S, d'Orlyé F, Varenne A, Bedioui F. Quantitation of Cu+-catalyzed Decomposition of S-Nitrosoglutathione Using Saville and Electrochemical Detection: a Pronounced Effect of Glutathione and Copper Concentrations. ELECTROANAL 2015. [DOI: 10.1002/elan.201500371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Tsikas D, Schmidt M, Böhmer A, Zoerner AA, Gutzki FM, Jordan J. UPLC-MS/MS measurement of S-nitrosoglutathione (GSNO) in human plasma solves the S-nitrosothiol concentration enigma. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 927:147-57. [PMID: 23453822 DOI: 10.1016/j.jchromb.2013.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 10/27/2022]
Abstract
We developed and validated a fast UPLC-MS/MS method with positive electrospray ionization (ESI+) for the quantitative determination of S-nitrosoglutathione (GSNO) in human plasma. We used a published protocol for the inactivation of plasma γ-glutamyltransferase (γGT) activity by using the γGT transition inhibitor serine/borate and the chelator EDTA for the stabilization of GSNO, and N-ethylmaleimide (NEM) to block SH groups and to avoid S-transnitrosylation reactions which may diminish GSNO concentration. S-[(15)N]Nitrosoglutathione (GS(15)NO) served as internal standard. Fresh blood was treated with NEM/serine/borate/EDTA, plasma spiked with GS(15)NO (50nM) was ultrafiltered (cut-off 10kDa) and 10μL aliquots of the ultrafiltrate were analyzed by UPLC-MS/MS. Five HILIC columns and an Acquity UPLC BH amide column were tested. The mobile phase was acetonitrile-water (70:30, v/v), contained 20mM ammonium formate, had a pH value of 7, and was pumped isocratically (0.5mL/min). The Nucleoshell column allowed better LC performance and higher MS sensitivity. The retention time of GSNO was about 1.1min. Quantification was performed by selected-reaction monitoring the mass transition m/z 337 ([M+H](+))→m/z 307 ([M+H(14)NO](+)) for GSNO (i.e., GS(14)NO) and m/z 338 ([M+H](+))→m/z 307 ([M+H(15)NO](+)) for GS(15)NO. NEM/serine/borate/EDTA was found to stabilize GSNO in human plasma. The method was validated in human plasma (range, 0-300nM) using 50nM GS(15)NO. Accuracy and precision were in generally acceptable ranges. A considerable matrix effect was observed, which was however outweighed by the internal standard GS(15)NO. In freshly prepared plasma from heparinized blood donated by 10 healthy subjects, no endogenous GSNO was determined above 2.8nM, the limit of quantitation (LOQ) of the method. This study challenges previously reported GSNO plasma concentrations being far above the present method LOQ value and predicts that the concentration of low-molecular-mass and high-molecular-mass S-nitrosothiols are in the upper pM- and lower nM-range, respectively.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Clinical Pharmacology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Colombo G, Clerici M, Giustarini D, Rossi R, Milzani A, Dalle-Donne I. Redox albuminomics: oxidized albumin in human diseases. Antioxid Redox Signal 2012; 17:1515-27. [PMID: 22587567 DOI: 10.1089/ars.2012.4702] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Albumin is the major contributor to colloid oncotic pressure and also serves as an important carrier protein of many endogenous and exogenous molecules throughout the body. In blood and extravascular fluids, albumin is susceptible to different oxidative modifications, especially thiol oxidation and carbonylation. Because of its metal-binding properties and the redox properties of its Cys34 thiol, albumin displays an important antioxidant activity. As albumin is the predominant protein in most body fluids, its Cys34 represents the largest fraction of free thiols within body fluids. RECENT ADVANCES Evidence that albumin oxidation takes place in vivo has been reported only recently. Different redox proteomic, mass spectrometric, and chromatographic techniques have shown albumin redox modifications in various human pathophysiological conditions. As a whole, most data here presented demonstrate that massive albumin oxidation occurs in vivo in different biological fluids and, to some extent, that this process is correlated to organ dysfunction. CRITICAL ISSUES Recent reports suggest that the albumin redox state may serve as a global biomarker for the redox state in the body in various human diseases. However, further study is required to elucidate the exact relationship between albumin oxidation and pathology. In addition, it is unknown if some albumin oxidized forms may also have diagnostic uses. FUTURE DIRECTIONS Application of specific redox proteomics techniques for the characterization of oxidized albumin forms in screening studies is required. A further challenge will be to analyze how these oxidative albumin modifications are related to real impact to the body.
Collapse
|
11
|
Tsikas D, Niemann J. Nitric oxide, peroxynitrite, S-nitrosothiols and thiols are unlikely to exert their effects on recombinant cyclooxygenase-1 and cyclooxygenase-2 activity in vitro by modifying cysteine moieties. Nitric Oxide 2012; 26:192-4. [PMID: 22252119 DOI: 10.1016/j.niox.2012.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 01/22/2023]
|
12
|
Ishibashi T, Miwa T, Nishizawa N, Shinkawa I, Yoshida J, Kawada T, Nishio M. Role of Plasma S-Nitrosothiols in Regulation of Blood Pressure in Anesthetized Rabbits with Special References to Hypotensive Effects of Acetylcholine and Nitrovasodilators. Biol Pharm Bull 2011; 34:1307-13. [PMID: 21804223 DOI: 10.1248/bpb.34.1307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takaharu Ishibashi
- Pharmacology, School of Nursing, Kanazawa Medical University
- Department of Pharmacology, School of Medicine, Kanazawa Medical University
| | - Tomoko Miwa
- Department of Pharmacology, School of Medicine, Kanazawa Medical University
| | - Naoki Nishizawa
- Department of Pharmacology, School of Medicine, Kanazawa Medical University
| | - Ikumi Shinkawa
- Department of Pharmacology, School of Medicine, Kanazawa Medical University
| | - Junko Yoshida
- Department of Pharmacology, School of Medicine, Kanazawa Medical University
| | - Tomie Kawada
- Department of Clinical Pharmacology, Faculty of Pharmacy, Musashino University
| | - Matomo Nishio
- Department of Pharmacology, School of Medicine, Kanazawa Medical University
| |
Collapse
|
13
|
Bramanti E, Angeli V, Paolicchi A, Pompella A. The determination of S-nitrosothiols in biological samples—Procedures, problems and precautions. Life Sci 2011; 88:126-9. [DOI: 10.1016/j.lfs.2010.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/23/2010] [Accepted: 10/19/2010] [Indexed: 12/31/2022]
|
14
|
Li H, Grigoryan H, Funk WE, Lu SS, Rose S, Williams ER, Rappaport SM. Profiling Cys34 adducts of human serum albumin by fixed-step selected reaction monitoring. Mol Cell Proteomics 2010; 10:M110.004606. [PMID: 21193536 DOI: 10.1074/mcp.m110.004606] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A method is described for profiling putative adducts (or other unknown covalent modifications) at the Cys34 locus of human serum albumin (HSA), which represents the preferred reaction site for small electrophilic species in human serum. By comparing profiles of putative HSA-Cys34 adducts across populations of interest it is theoretically possible to explore environmental causes of degenerative diseases and cancer caused by both exogenous and endogenous chemicals. We report a novel application of selected-reaction-monitoring (SRM) mass spectrometry, termed fixed-step SRM (FS-SRM), that allows detection of essentially all HSA-Cys34 modifications over a specified range of mass increases (added masses). After tryptic digestion, HSA-Cys34 adducts are contained in the third largest peptide (T3), which contains 21 amino acids and an average mass of 2433.87 Da. The FS-SRM method does not require that exact masses of T3 adducts be known in advance but rather uses a theoretical list of T3-adduct m/z values separated by a fixed increment of 1.5. In terms of added masses, each triply charged parent ion represents a bin of ±2.3 Da between 9.1 Da and 351.1 Da. Synthetic T3 adducts were used to optimize FS-SRM and to establish screening rules based upon selected b- and y-series fragment ions. An isotopically labeled T3 adduct is added to protein digests to facilitate quantification of putative adducts. We used FS-SRM to generate putative adduct profiles from six archived specimens of HSA that had been pooled by gender, race, and smoking status. An average of 66 putative adduct hits (out of a possible 77) were detected in these samples. Putative adducts covered a wide range of concentrations, were most abundant in the mass range below 100 Da, and were more abundant in smokers than in nonsmokers. With minor modifications, the FS-SRM methodology can be applied to other nucleophilic sites and proteins.
Collapse
Affiliation(s)
- He Li
- Center for Exposure Biology, Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Tsikas D, Dehnert S, Urban K, Surdacki A, Meyer HH. GC-MS analysis of S-nitrosothiols after conversion to S-nitroso-N-acetyl cysteine ethyl ester and in-injector nitrosation of ethyl acetate. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3442-55. [PMID: 19595646 DOI: 10.1016/j.jchromb.2009.06.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/19/2009] [Accepted: 06/23/2009] [Indexed: 02/07/2023]
Abstract
S-Nitrosothiols from low-molecular-mass and high-molecular-mass thiols, including glutathione, albumin and hemoglobin, are endogenous potent vasodilators and inhibitors of platelet aggregation. By utilizing the S-transnitrosation reaction and by using the lipophilic (pK(L) 0.78) and strong nucleophilic synthetic thiol N-acetyl cysteine ethyl ester (NACET) we have developed a GC-MS method for the analysis of S-nitrosothiols and their (15)N- or (2)H-(15)N-labelled analogs as S-nitroso-N-acetyl cysteine ethyl ester (SNACET) and S(15)NACET or d(3)-S(15)NACET derivatives, respectively, after their extraction with ethyl acetate. Injection of ethyl acetate solutions of S-nitrosothiols produced two main reaction products, compound X and compound Y, within the injector in dependence on its temperature. Quantification was performed by selected-ion monitoring of m/z 46 (i.e., [NO(2)](-)) for SNACET and m/z 47 (i.e., [(15)NO(2)](-)) for S(15)NACET/d(3)-S(15)NACET for compound X, and m/z 157 for SNACET and m/z 160 for d(3)-S(15)NACET for compound Y. In this article we describe the development, validation and in vitro and in vivo applications of the method to aqueous buffered solutions, human and rabbit plasma. Given the ester functionality of SNACET/S(15)NACET/d(3)-S(15)NACET, stability studies were performed using metal chelators and esterase inhibitors. The method was found to be suitable for the quantitative determination of various S-nitrosothiols including SNACET externally added to human plasma (0-10microM). Nitrite contamination in ethyl acetate was found to interfere. Our results suggest that the concentration of endogenous S-nitrosothiols in human plasma does not exceed about 200nM in total. Oral administration of S(15)NACET to rabbits (40-63micromol/kg body weight) resulted in formation of ALB-S(15)NO, [(15)N]nitrite and [(15)N]nitrate in plasma.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW To understand the principles and limits of the methodologies used for the measurement of S-nitrosylated proteins. RECENT FINDINGS Among methods for studying protein S-nitrosylation, chemoluminescence and biotin switch assay have rapidly gained popularity. However, recent findings have attempted to highlight potential pitfalls for these methods. Many assays for biological S-nitrosylated proteins are used near the limit of detection and pretreatment of the biological samples can modify the S-NO bond. These results suggest that additional controls are essential in order to identify S-nitrosylated proteins and results should be quantitatively validated using more than one methodology. SUMMARY Protein S-nitrosylation is emerging as a key mechanism by which nitric oxide regulates cell signalling. This review focuses on existing methodologies for the measurement of S-nitrosylated proteins in biological matrices and the potential pitfalls of each method.
Collapse
Affiliation(s)
- Didier Borderie
- Laboratoire de biochimie A, Hôpital Cochin APHP, 27 rue du faubourg Saint Jacques, France.
| | | |
Collapse
|
17
|
A critical review and discussion of analytical methods in the l-arginine/nitric oxide area of basic and clinical research. Anal Biochem 2008; 379:139-63. [DOI: 10.1016/j.ab.2008.04.018] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 12/21/2022]
|
18
|
Abstract
S-Nitrosylation is a ubiquitous signaling process in biological systems. Research regarding this signaling has been hampered, however, by assays that lack sensitivity and specificity. In particular, iodine-based assays for S-nitrosothiols (1) produce nitrosyliodide, a potent nitrosating agent that can be lost to reactions in the biological sample being studied; (2) require pretreatment of biological samples with several reagents that react with proteins, artifactually forming or breaking S-NO bonds before the assay; and (3) are not sensitive or specific for nitrogen oxides in biological samples, reporting a wide range of different concentrations and falsely reporting NO-modified proteins, to be nitrite. These data, therefore, suggest that iodine-based assays should never be used for biological S-nitrosothiols. There are other assays that provide reasonably sensitive and accurate data regarding biological S-nitrosothiols, including assays based on mass spectrometry, spectrophotometry, chemiluminescence, fluorescence, and immunostaining. Each assay, however, has limitations and should be quantitatively complemented by separate assays. Continued improvement in assays will facilitate improved understanding of S-nitrosylation signaling.
Collapse
Affiliation(s)
- Lisa A Palmer
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | |
Collapse
|
19
|
Determination of S-Nitrosothiols in Biological and Clinical Samples Using Electron Paramagnetic Resonance Spectrometry with Spin Trapping. Methods Enzymol 2008; 441:151-60. [DOI: 10.1016/s0076-6879(08)01208-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Gow A, Doctor A, Mannick J, Gaston B. S-Nitrosothiol measurements in biological systems. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 851:140-51. [PMID: 17379583 PMCID: PMC1949323 DOI: 10.1016/j.jchromb.2007.01.052] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 01/23/2007] [Accepted: 01/25/2007] [Indexed: 11/24/2022]
Abstract
S-Nitrosothiol (SNO) cysteine modifications are regulated signaling reactions that dramatically affect, and are affected by, protein conformation. The lability of the SNO bond can make SNO-modified proteins cumbersome to measure accurately. Here, we review methodologies for detecting SNO modifications in biology. There are three caveats. (1) Many assays for biological SNOs are used near the limit of detection: standard curves must be in the biologically relevant concentration range. (2) The assays that are most reliable are those that modify SNO protein or peptide chemistry the least. (3) Each result should be quantitatively validated using more than one assay. Improved assays are needed and are in development.
Collapse
Affiliation(s)
- Andrew Gow
- School of Pharmacology and Toxicology, Rutgers University, 160 Frelinghuysen Road Piscataway, NJ 08854
| | - Allan Doctor
- Departments of Pediatrics and Biochemistry & Molecular Biophysics, Washington University in St. Louis, Campus Box 8116, 1 Children’s Place, Suite 5S20, St. Louis, MO 63110
| | - Joan Mannick
- Infectious Diseases and Immunology, Department of Internal Medicine University of Massachusetts School of Medicine, 55 Lake Avenue, North Worcester, MA 01655
| | - Benjamin Gaston
- Department of Pediatrics, University of Virginia Health System, 409 Lane Rd, Charlottesville, VA 22908
| |
Collapse
|
21
|
Oettl K, Stauber RE. Physiological and pathological changes in the redox state of human serum albumin critically influence its binding properties. Br J Pharmacol 2007; 151:580-90. [PMID: 17471184 PMCID: PMC2013999 DOI: 10.1038/sj.bjp.0707251] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Binding and transport of a number of endogenous and exogenous compounds is an important function of the main plasma protein, albumin. In vivo and in vitro, albumin may be oxidatively modified in different ways with different agents at different sites. These modifications have various consequences on the physiological functions of albumin. Diabetes mellitus, liver diseases and nephropathy are just a few examples of disorders in which oxidative stress is involved and altered albumin functions have been described. This review is focussed on the consequences of oxidative modification on the binding properties of albumin. These range from no effect to decreased or increased binding affinities depending on the ligand under investigation and the type of modification. Indicators for modification include glycosylation, disulphide formation or the content of carbonyl groups. The redox state of albumin can affect the binding properties in several ways, including altered conformation and consequently altered affinities at binding sites and altered binding when the binding reaction itself is redox sensitive. The physiological or pathophysiological concentrations of different oxidatively modified albumin molecules vary over a wide range and are crucial in assessing the clinical relevance of altered ligand binding properties of a particularly modified albumin species in various disease conditions.
Collapse
Affiliation(s)
- K Oettl
- Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, Graz, Austria.
| | | |
Collapse
|
22
|
MacArthur PH, Shiva S, Gladwin MT. Measurement of circulating nitrite and S-nitrosothiols by reductive chemiluminescence. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 851:93-105. [PMID: 17208057 DOI: 10.1016/j.jchromb.2006.12.012] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 12/05/2006] [Accepted: 12/07/2006] [Indexed: 12/21/2022]
Abstract
Considerable disparities in the reported levels of basal human nitrite and S-nitrosothiols (RSNO) in blood have brought methods of quantifying these nitric oxide (NO) metabolites to the forefront of NO biology. Ozone-based chemiluminescence is commonly used and is a robust method for measuring these species when combined with proper reductive chemistry. The goal of this article is to review existing methodologies for the measurement of nitrite and RSNO by reductive chemiluminescence. Specifically, we discuss in detail the measurement of nitrite and RSNO in biological matrices using tri-iodide and copper(I)/cysteine-based reduction methods coupled to chemiluminescence. The underlying reaction mechanisms, as well as the potential pitfalls of each method are discussed.
Collapse
Affiliation(s)
- Peter H MacArthur
- Vascular Medicine Branch, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
23
|
Giustarini D, Milzani A, Dalle-Donne I, Rossi R. Detection of S-nitrosothiols in biological fluids: a comparison among the most widely applied methodologies. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 851:124-39. [PMID: 17035104 DOI: 10.1016/j.jchromb.2006.09.031] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2006] [Revised: 09/15/2006] [Accepted: 09/20/2006] [Indexed: 12/21/2022]
Abstract
Many different methodologies have been applied for the detection of S-nitrosothiols (RSNOs) in human biological fluids. One unsatisfactory outcome of the last 14 years of research focused on this issue is that a general consensus on reference values for physiological RSNO concentration in human blood is still missing. Consequently, both RSNO physiological function and their role in disease have not yet been clarified. Here, a summary of the values measured for RSNOs in erythrocytes, plasma, and other biological fluids is provided, together with a critical review of the most widely used analytical methods. Furthermore, some possible methodological drawbacks, responsible for the highlighted discrepancies, are evidenced.
Collapse
Affiliation(s)
- Daniela Giustarini
- Department of Neuroscience, Pharmacology Section, Via A. Moro 4, University of Siena, 53100 Siena, Italy
| | | | | | | |
Collapse
|
24
|
David-Dufilho M, Brunet A, Bedioui F. Electrochemical Investigation of the Role of Reducing Agents in Copper-Catalyzed Nitric Oxide Release from S-Nitrosoglutathione. ELECTROANAL 2006. [DOI: 10.1002/elan.200603581] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Singel DJ, Stamler JS. Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohemoglobin. Annu Rev Physiol 2005; 67:99-145. [PMID: 15709954 DOI: 10.1146/annurev.physiol.67.060603.090918] [Citation(s) in RCA: 359] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Blood flow in the microcirculation is regulated by physiological oxygen (O2) gradients that are coupled to vasoconstriction or vasodilation, the domain of nitric oxide (NO) bioactivity. The mechanism by which the O2 content of blood elicits NO signaling to regulate blood flow, however, is a major unanswered question in vascular biology. While the hemoglobin in red blood cells (RBCs) would appear to be an ideal sensor, conventional wisdom about its chemistry with NO poses a problem for understanding how it could elicit vasodilation. Experiments from several laboratories have, nevertheless, very recently established that RBCs provide a novel NO vasodilator activity in which hemoglobin acts as an O2 sensor and O2-responsive NO signal transducer, thereby regulating both peripheral and pulmonary vascular tone. This article reviews these studies, together with biochemical studies, that illuminate the complexity and adaptive responsiveness of NO reactions with hemoglobin. Evidence for the pivotal role of S-nitroso (SNO) hemoglobin in mediating this response is discussed. Collectively, the reviewed work sets the stage for a new understanding of RBC-derived relaxing activity in auto-regulation of blood flow and O2 delivery and of RBC dysfunction in disorders characterized by tissue O2 deficits, such as sickle cell disease, sepsis, diabetes, and heart failure.
Collapse
Affiliation(s)
- David J Singel
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA.
| | | |
Collapse
|
26
|
Orie NN, Vallance P, Jones DP, Moore KP. S-nitroso-albumin carries a thiol-labile pool of nitric oxide, which causes venodilation in the rat. Am J Physiol Heart Circ Physiol 2005; 289:H916-23. [PMID: 15821033 DOI: 10.1152/ajpheart.01014.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is now established that S-nitroso-albumin (SNO-albumin) circulates at low nanomolar concentrations under physiological conditions, but concentrations may increase to micromolar levels during disease states (e.g., cirrhosis or endotoxemia). This study tested the hypothesis that high concentrations of SNO-albumin observed in some diseases modulate vascular function and that it acts as a stable reservoir of nitric oxide (NO), releasing this molecule when the concentrations of low-molecular-weight thiols are increased. SNO-albumin was infused into rats to increase the plasma concentration from <50 nmol/l to approximately 4 micromol/l. This caused a 29 +/- 6% drop in blood pressure, 20 +/- 4% decrease in aortic blood flow, and a 25 +/- 14% reduction of renal blood flow within 10 min. These observations were in striking contrast to those of an infused arterial vasodilator (hydralazine), which increased aortic blood flow, and suggested that SNO-albumin acts primarily as a venodilator in vivo. This was confirmed by the observations that glyceryl trinitrate (a venodilator) led to similar hemodynamic changes and that the hemodynamic effects of SNO-albumin are reversed by infusion of colloid. Infusion of N-acetylcysteine into animals with artificially elevated plasma SNO-albumin concentrations led to the rapid decomposition of SNO-albumin in vivo and reproduced the hemodynamic effects of SNO-albumin infusion. These data demonstrate that SNO-albumin acts primarily as a venodilator in vivo and represents a stable reservoir of NO that can release NO when the concentrations of low-molecular-weight thiols are elevated.
Collapse
Affiliation(s)
- Nelson N Orie
- Centre for Hepatology, Dept. of Medicine, Royal Free and Univ. College Medical School, Univ. College London, London NW3 2PF, UK
| | | | | | | |
Collapse
|
27
|
Rayner BS, Wu BJ, Raftery M, Stocker R, Witting PK. Human S-Nitroso Oxymyoglobin Is a Store of Vasoactive Nitric Oxide. J Biol Chem 2005; 280:9985-93. [PMID: 15644316 DOI: 10.1074/jbc.m410564200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide (.NO) regulates vascular function, and myoglobin (Mb) is a heme protein present in skeletal, cardiac, and smooth muscle, where it facilitates O(2) transfer. Human ferric Mb binds .NO to yield nitrosylheme and S-nitroso (S-NO) Mb (Witting, P. K., Douglas, D. J., and Mauk, A. G. (2001) J. Biol. Chem. 276, 3991-3998). Here we show that human ferrous oxy-myoglobin (oxyMb) oxidizes .NO, with a second order rate constant k = 2.8 +/- 0.1 x 10(7) M(-1).s(-1) as determined by stopped-flow spectroscopy. Mixtures containing oxyMb and S-nitrosoglutathione or S-nitrosocysteine added at 1.5-2 moles of S-nitrosothiol/mol oxyMb yielded S-NO oxyMb through trans-nitrosation equilibria as confirmed with mass spectrometry. Rate constants for the equilibrium reactions were k(forward) = 110 +/- 3 and k(reverse) = 16 +/- 3 M(-1).s(-1) for S-nitrosoglutathione and k(forward) = 293 +/- 5 and k(reverse) = 20 +/- 2 M(-1).s(-1) for S-nitrosocysteine. Incubation of S-NO oxyMb with Cu(2+) ions stimulated .NO release as measured with a .NO electrode. Similarly, Cu(2+) released .NO from Mb immunoprecipitated from cultured human vascular smooth muscle cells (VSMCs) that were pre-treated with diethylaminenonoate. No .NO release was observed from VSMCs treated with vehicle alone or immunoprecipitates obtained from porcine aortic endothelial cells with and without diethylaminenonoate treatment. Importantly, pre-constricted aortic rings relaxed in the presence of S-NO oxyMb in a cyclic GMP-dependent process. These data indicate that human oxyMb rapidly oxidizes .NO and that biologically relevant S-nitrosothiols can trans-(S)nitrosate human oxyMb. Furthermore, S-NO oxyMb can be isolated from cultured human VSMCs exposed to an exogenous .NO donor at physiologic concentration. The potential biologic implications of S-NO oxyMb acting as a source of .NO are discussed.
Collapse
Affiliation(s)
- Benjamin S Rayner
- Centre for Vascular Research and Biomedical Mass Spectrometry Unit, University of New South Wales, Sydney 2052, New South Wales, Australia
| | | | | | | | | |
Collapse
|
28
|
Foster MW, Pawloski JR, Singel DJ, Stamler JS. Role of Circulating
S
-Nitrosothiols in Control of Blood Pressure. Hypertension 2005; 45:15-7. [PMID: 15557388 DOI: 10.1161/01.hyp.0000150160.41992.71] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Giustarini D, Milzani A, Colombo R, Dalle-Donne I, Rossi R. Nitric oxide, S-nitrosothiols and hemoglobin: is methodology the key? Trends Pharmacol Sci 2004; 25:311-6. [PMID: 15165746 DOI: 10.1016/j.tips.2004.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Two main hypotheses describe the role of hemoglobin in the regulation of nitric oxide (NO) bioavailability. It has been suggested that hemoglobin interacts with circulating NO, forming Fe-nitrosyl hemoglobin and then S-nitrosothiols, which deliver NO extracellularly by an allosterically regulated mechanism. Alternatively, the existence of diffusional barriers that protect NO from hemoglobin-mediated degradation has been proposed. The reliability of each model in vivo is supported by the detection of physiological hematic levels of S-nitrosohemoglobin. However, the measured concentrations of S-nitrosohemoglobin are largely divergent between the two models. Moreover, recent reports suggest that circulating levels of S-nitrosohemoglobin in human blood could be significantly lower than assessed previously. We suggest that solving the methodological controversies that make the field of NO research a 'minefield', even for skilled analysts, is fundamental to understanding the role of S-nitrosothiols in the vasculature.
Collapse
Affiliation(s)
- Daniela Giustarini
- Department of Neuroscience, Pharmacology Section, Via A. Moro 4, University of Siena, 53100 Siena, Italy
| | | | | | | | | |
Collapse
|
30
|
Tsikas D, Frölich JC, Kielstein JT. Nitric oxide synthesis in chronic renal failure. Are plasma S-nitrosothiol levels elevated? Clin Chim Acta 2004; 339:195-7. [PMID: 14687910 DOI: 10.1016/j.cccn.2003.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
|
32
|
Giustarini D, Milzani A, Colombo R, Dalle-Donne I, Rossi R. Nitric oxide and S-nitrosothiols in human blood. Clin Chim Acta 2003; 330:85-98. [PMID: 12636927 DOI: 10.1016/s0009-8981(03)00046-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The hypothesis that endothelial-derived relaxing factor (EDRF) is nitric oxide has stimulated a wealth of research into the significance of this novel intriguing molecule. Given its short life, many storage forms of NO as well as targets have been postulated. Among these, a pool of derivatives of NO (S-nitrosothiols, RSNOs) covalently bound to SH groups of proteins and low molecular weight thiols (e.g., glutathione) have been identified in various biological systems. The importance of RSNOs results from the very similar biological actions exhibited by both NO and RSNOs in vivo as well as in vitro. In particular, it has been observed that in the bloodstream, these molecules are able to provoke vasodilatation with a consequent fall in blood pressure and an antithrombotic effect by inhibition of platelet aggregation. Many hypotheses have been postulated about the biochemical species and the mechanisms involved in these processes, but many aspects have not yet been clarified. In addition, some RSNOs have been recently proposed to be clinical parameters, whose levels may vary under some pathological conditions. The therapeutic utility of RSNOs as an alternative to classic NO donors has also been suggested.Here, we provide a critical analysis of the main reports about the biochemical, physiological, pathological and therapeutic properties of RSNOs in the cardiovascular system. Particular attention is addressed to conflicting results and to discrepancies in the methodologies and models utilized. The numerous unanswered questions concerning the role of RSNOs in the control of vascular tone are discussed.
Collapse
Affiliation(s)
- Daniela Giustarini
- Pharmacology Section, Department of Neuroscience, University of Siena, Via A. Moro 4, Italy
| | | | | | | | | |
Collapse
|
33
|
Tsikas D, Schwedhelm E, Stutzer FK, Gutzki FM, Rode I, Mehls C, Frölich JC. Accurate quantification of basal plasma levels of 3-nitrotyrosine and 3-nitrotyrosinoalbumin by gas chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 784:77-90. [PMID: 12504185 DOI: 10.1016/s1570-0232(02)00751-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Measurement of 3-nitro-L-tyrosine (NO(2)Tyr) and protein-related 3-nitro-L-tyrosine in human plasma is associated with numerous methodological problems which result in highly divergent basal plasma levels often ranging within two orders of magnitude. Recently, we have described an interference-free GC-tandem MS-based method for NO(2)Tyr which yielded the lowest basal plasma NO(2)Tyr levels reported thus far. This method was extended to quantify protein-associated 3-nitrotyrosine and in particular 3-nitrotyrosinated albumin (NO(2)TyrALB) in human plasma. NO(2)TyrALB and albumin (ALB) were extracted from plasma by affinity column extraction and digested enzymatically at neutral pH. 3-Nitro- L-[2H(3)]tyrosine was used as internal standard. In plasma of 18 healthy young volunteers the molar ratio of NO(2)TyrALB to albumin-derived tyrosine (TyrALB), i.e. NO(2)TyrALB/TyrALB, was determined to be 1.55+/-0.54x1:10(6) (mean+/-SD). The plasma concentration of NO(2)TyrALB was estimated as 24+/-4 nM. The NO(2)Tyr plasma levels in these volunteers were determined to be 0.73+/-0.53 nM. In the same volunteers, NO(2)TyrALB/TyrALB, NO(2)TyrALB and NO(2)Tyr were measured 15 days later and the corresponding values were determined to be 1.25+/-0.58x1:10(6), 25+/-6 nM and 0.69+/-0.16 nM. For comparison, NO(2)Tyr and NO(2)TyrALB were measured in six plasma samples from healthy volunteers by GC-MS and GC-tandem MS. Different values were found for NO(2)Tyr, i.e. 5.4+/-2.8 versus 2.7+/-1.5 nM, and comparable values for NO(2)TyrALB/TyrALB, i.e. 0.5+/-0.2x1:10(6) versus 0.4+/-0.1x1:10(6), by these methods. The ratio of the values measured by GC-MS to those measured by GC-tandem MS were 2.9+/-3.1 for NO(2)Tyr and 1.2+/-0.2 for NO(2)TyrALB/TyrALB. The present GC-tandem MS method provides accurate values of NO(2)Tyr and NO(2)TyrALB in human plasma.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Clinical Pharmacology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Nitric oxide (NO)-mediated nitrosation reactions are involved in cell signaling and pathology. Recent efforts have focused on elucidating the role of S-nitrosothiols (RSNO) in different biological systems, including human plasma, where they are believed to represent a transport and buffer system that controls intercellular NO exchange. Although RSNOs have been implicated in cardiovascular disease processes, it is yet unclear what their true physiological concentration is, whether a change in plasma concentration is causally related to the underlying pathology or purely epiphenomenological, and to what extent other nitrosyl adducts may be formed under the same conditions. Therefore, using gas phase chemiluminescence and liquid chromatography we sought to quantify the basal plasma levels of NO-related metabolites in 18 healthy volunteers. We find that in addition to the oxidative products of NO metabolism, nitrite (0.20 +/- 0.02 micromol/l nitrite) and nitrate (14.4 +/- 1.7 micromol/l), on average human plasma contains an approximately 5-fold higher concentration of N-nitroso species (32.3 +/- 5.0 nmol/l) than RSNOs (7.2 +/- 1.1 nmol/l). Both N- and S-nitroso moieties appear to be associated with the albumin fraction. This is the first report on the constitutive presence of a high-molecular-weight N-nitroso compound in the human circulation, raising the question as to its origin and potential physiological role. Our findings may not only have important implications for the transport of NO in vivo, but also for cardiovascular disease diagnostics and the risk assessment of nitrosamine-related carcinogenesis in man.
Collapse
Affiliation(s)
- Tienush Rassaf
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | |
Collapse
|