1
|
Sawicka-Powierza J, Konstantynowicz J, Jablonska E, Zelazowska-Rutkowska B, Jelski W, Abramowicz P, Sasinowski C, Chlabicz S. The Association Between Long-Term Acenocoumarol Treatment and Vitamin D Deficiency. Front Endocrinol (Lausanne) 2018; 9:226. [PMID: 29780360 PMCID: PMC5945821 DOI: 10.3389/fendo.2018.00226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/20/2018] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Both vitamin D and K2 are involved in a number of metabolic processes, including bone metabolism; however, associations between the vitamins are not fully understood. The aim of the study was to evaluate serum concentrations of 25-hydroxyvitamin D [25(OH)D] in adult patients receiving long-term acenocoumarol (AC) treatment. PARTICIPANTS AND METHODS In this cross-sectional study, 58 Caucasian patients (31 women, 27 men) with a median age of 65 years receiving long-term AC therapy were evaluated and compared with 35 age- and gender-matched healthy controls. The AC treatment was used due to recurrent venous thromboembolism (34.5%), atrial fibrillation (31%), or mechanical heart valve prostheses (34.5%). Medical records and a questionnaire were used to obtain information about chronic diseases, smoking habits, and the duration of therapy and weekly dose of AC. Anthropometric measurements were performed, and serum concentration of 25(OH)D and total alkaline phosphatase (ALP) activity were measured. RESULTS Among the 58 patients receiving long-term AC treatment, a high proportion (46.6%) demonstrated significant vitamin D deficiency with concentrations of 25(OH)D lower than 20 ng/mL. The median concentration of 25(OH)D in subjects receiving AC was significantly lower compared to the control group [20.4 (17.4; 26.1) vs. 28.2 (24; 32.7); p < 0.001]. No differences were found between women and men receiving AC therapy. In patients receiving AC, a negative correlation was found between the concentration of 25(OH)D and the weekly dose of AC (r = -0.337, p = 0.01). Patients with concentrations of 25(OH)D < 20 ng/mL were found to have a significantly higher median dose of AC, compared to those with concentrations of 25(OH)D ≥ 20 ng/mL [21 (17; 31) vs. 17 (12; 28); p = 0.045]. CONCLUSION In conclusion, treatment with AC is associated with low 25-hydroxyvitamin D levels, although the path leading to this phenomenon is not entirely clear. Long-term administration of AC in adults may increase the risk of chronic vitamin D deficiency, thus, effective supplementation of vitamin D in these individuals needs careful consideration.
Collapse
Affiliation(s)
- Jolanta Sawicka-Powierza
- Department of Family Medicine, Medical University of Bialystok, Bialystok, Poland
- Department of Haematology, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Jolanta Sawicka-Powierza,
| | - Jerzy Konstantynowicz
- Department of Pediatrics, Rheumatology, Immunology, and Metabolic Bone Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Jablonska
- Department of Immunology, Medical University of Bialystok, Bialystok, Poland
| | | | - Wojciech Jelski
- Department of Biochemical Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Pawel Abramowicz
- Department of Pediatrics, Rheumatology, Immunology, and Metabolic Bone Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Caroline Sasinowski
- University Clinical Hospital, Medical University of Bialystok, Bialystok, Poland
| | - Slawomir Chlabicz
- Department of Family Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
2
|
van Goor MK, Verkaart S, van Dam TJ, Huynen MA, van der Wijst J. Interspecies differences in PTH-mediated PKA phosphorylation of the epithelial calcium channel TRPV5. Pflugers Arch 2017; 469:1301-1311. [PMID: 28534087 PMCID: PMC5590029 DOI: 10.1007/s00424-017-1996-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 11/26/2022]
Abstract
The epithelial calcium (Ca2+) channel TRPV5 (transient receptor potential vanilloid 5) is expressed in the distal convoluted tubule of the kidney and facilitates active Ca2+ reabsorption. This process is instrumental for the maintenance of Ca2+ homeostasis. Therefore, all aspects of TRPV5 function are tightly regulated by the calciotropic parathyroid hormone (PTH). Rabbit (rb)TRPV5 channel activity was shown to be stimulated upon PTH-mediated protein kinase A (PKA) phosphorylation. Since there is incomplete conservation of the PKA consensus motif (RR/QxT) across species, the aim of this study was to extend these findings to humans and characterize the expression and function of human (h)TRPV5. Functional differences between rbTRPV5 and hTRPV5 upon PTH stimulation were investigated using 45Ca2+ uptake assays, Fura-2 Ca2+ imaging, and cell surface biotinylation. While PTH treatment enhanced rbTRPV5 channel activity, it did not stimulate hTRPV5 activity. Mutation of the human RQxT motif into rabbit RRxT (hTRPV5 Q706R) partially restored the sensitivity to PTH. An ancestral sequence reconstruction of TRPV5 orthologues demonstrated that the change in the RRxT motif coincides with the creation of another putative PKA motif (RGAS to RRAS) in the amino terminus of hTRPV5. Interestingly, a constitutively phosphorylated hTRPV5 mutant (hTRPV5 S141D) displayed significantly decreased channel function, while its plasma membrane abundance was increased. Taken together, PTH-mediated stimulation of TRPV5, via PKA, is not conserved in humans. Our data suggest that PTH regulation of TRPV5 is altered in humans, an important observation for future studies that may add to new concepts on the role of PTH in renal Ca2+ handling.
Collapse
Affiliation(s)
- Mark K van Goor
- Department of Physiology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Sjoerd Verkaart
- Department of Physiology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Teunis J van Dam
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jenny van der Wijst
- Department of Physiology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
A Gate Hinge Controls the Epithelial Calcium Channel TRPV5. Sci Rep 2017; 7:45489. [PMID: 28374795 PMCID: PMC5379628 DOI: 10.1038/srep45489] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/27/2017] [Indexed: 12/03/2022] Open
Abstract
TRPV5 is unique within the large TRP channel family for displaying a high Ca2+ selectivity together with Ca2+-dependent inactivation. Our study aims to uncover novel insights into channel gating through in-depth structure-function analysis. We identify an exceptional tryptophan (W583) at the terminus of the intracellular pore that is unique for TRPV5 (and TRPV6). A combination of site-directed mutagenesis, biochemical and electrophysiological analysis, together with homology modeling, demonstrates that W583 is part of the gate for Ca2+ permeation. The W583 mutants show increased cell death due to profoundly enhanced Ca2+ influx, resulting from altered channel function. A glycine residue above W583 might act as flexible linker to rearrange the tryptophan gate. Furthermore, we hypothesize functional crosstalk between the pore region and carboxy terminus, involved in Ca2+-calmodulin-mediated inactivation. This study proposes a unique channel gating mechanism and delivers detailed molecular insight into the Ca2+ permeation pathway that can be extrapolated to other Ca2+-selective channels.
Collapse
|
4
|
Wang JY, Chen WM, Wen CS, Hung SC, Chen PW, Chiu JH. Du-Huo-Ji-Sheng-Tang and its active component Ligusticum chuanxiong promote osteogenic differentiation and decrease the aging process of human mesenchymal stem cells. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:64-72. [PMID: 28040510 DOI: 10.1016/j.jep.2016.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 09/01/2016] [Accepted: 12/10/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Postmenopausal osteoporosis is the most common bone disease worldwide. Information concerning the effects of herbal medicines on mesenchymal cell osteogenesis and senescence remains lacking. AIM OF THIS STUDY This study was designed to investigate the effects of Du-Huo-Ji-Sheng-Tang (DHJST), a Chinese herbal medicine and its active component Ligusticum chuanxiong on osteogenic differentiation and the aging process of human mesenchymal cells (hMSCs). MATERIALS & METHODS hMSCs were used as in vitro model and osteogenesis was induced by administration of either osteogenesis inducing medium (OIM) or dexamethasone-depleted OIM (DDOIM) for 1-week or 2 weeks and the results were evaluated by measuring the formation of mineralization nodules. The effects of the compound recipe DHJST and its active component L. chuanxiong on hMSCs osteogenesis-related gene expression was determined by real-time PCR that targeted bone morphogenetic protein-2 (BMP2), RUNX2, ALP, COL-1, osteopontin (OPN), and osteocalcin (OCN). Antibodies against BMP-related signaling pathway proteins, such as BMP-2, ERK, SMAD 1/5/8, and RUNX2, were also detected at the protein level by Western blotting. Finally, the cumulative growth curve and senescence of the hMSCs were evaluated in order to assess the aging process. RESULTS L. chuanxiong increased osteogenic activity in hMSCs and up-regulated BMP-2 and RUNX2 gene expression via the activation of SMAD 1/5/8 and ERK signaling. Furthermore DHJST also showed a trend towards promoting the same effects in the same system. In the absence of dexamethasone, DHJST did activate SMAD 1/5/8 and ERK signaling and hence increased RUNX2 protein expression in hMSCs. In addition, both DHJST and L. chuanxiong delayed the hMSCs aging process by decreasing cell senescence. CONCLUSIONS We concluded that DHJST and its active component L. chuanxiong are able to promote osteogenic activity and decrease hMSCs senescence as cells age.
Collapse
Affiliation(s)
- Jir-You Wang
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC; Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
| | - Wei-Ming Chen
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Che-Sheng Wen
- Department of Orthopedics, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
| | - Shih-Chieh Hung
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Pei-Wen Chen
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Jen-Hwey Chiu
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC; Division of General Surgery, Departml;ent of Surgery, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC; Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
5
|
Starke S, Reimers J, Muscher-Banse AS, Schröder B, Breves G, Wilkens MR. Gastrointestinal transport of calcium and phosphate in lactating goats. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
de Baaij JHF, Hoenderop JGJ, Bindels RJM. Magnesium in man: implications for health and disease. Physiol Rev 2015; 95:1-46. [PMID: 25540137 DOI: 10.1152/physrev.00012.2014] [Citation(s) in RCA: 947] [Impact Index Per Article: 94.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Magnesium (Mg(2+)) is an essential ion to the human body, playing an instrumental role in supporting and sustaining health and life. As the second most abundant intracellular cation after potassium, it is involved in over 600 enzymatic reactions including energy metabolism and protein synthesis. Although Mg(2+) availability has been proven to be disturbed during several clinical situations, serum Mg(2+) values are not generally determined in patients. This review aims to provide an overview of the function of Mg(2+) in human health and disease. In short, Mg(2+) plays an important physiological role particularly in the brain, heart, and skeletal muscles. Moreover, Mg(2+) supplementation has been shown to be beneficial in treatment of, among others, preeclampsia, migraine, depression, coronary artery disease, and asthma. Over the last decade, several hereditary forms of hypomagnesemia have been deciphered, including mutations in transient receptor potential melastatin type 6 (TRPM6), claudin 16, and cyclin M2 (CNNM2). Recently, mutations in Mg(2+) transporter 1 (MagT1) were linked to T-cell deficiency underlining the important role of Mg(2+) in cell viability. Moreover, hypomagnesemia can be the consequence of the use of certain types of drugs, such as diuretics, epidermal growth factor receptor inhibitors, calcineurin inhibitors, and proton pump inhibitors. This review provides an extensive and comprehensive overview of Mg(2+) research over the last few decades, focusing on the regulation of Mg(2+) homeostasis in the intestine, kidney, and bone and disturbances which may result in hypomagnesemia.
Collapse
Affiliation(s)
- Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Lameris AL, Nevalainen PI, Reijnen D, Simons E, Eygensteyn J, Monnens L, Bindels RJM, Hoenderop JGJ. Segmental transport of Ca²⁺ and Mg²⁺ along the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2015; 308:G206-16. [PMID: 25477372 DOI: 10.1152/ajpgi.00093.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Calcium (Ca(2+)) and magnesium (Mg(2+)) ions are involved in many vital physiological functions. Since dietary intake is the only source of minerals for the body, intestinal absorption is essential for normal homeostatic levels. The aim of this study was to characterize the absorption of Ca(2+) as well as Mg(2+) along the gastrointestinal tract at a molecular and functional level. In both humans and mice the Ca(2+) channel transient receptor potential vanilloid subtype 6 (TRPV6) is expressed in the proximal intestinal segments, whereas Mg(2+) channel transient receptor potential melastatin subtype 6 (TRPM6) is expressed in the distal parts of the intestine. A method was established to measure the rate of Mg(2+) absorption from the intestine in a time-dependent manner by use of (25)Mg(2+). In addition, local absorption of Ca(2+) and Mg(2+) in different segments of the intestine of mice was determined by using surgically implanted intestinal cannulas. By these methods, it was demonstrated that intestinal absorption of Mg(2+) is regulated by dietary needs in a vitamin D-independent manner. Also, it was shown that at low luminal concentrations, favoring transcellular absorption, Ca(2+) transport mainly takes place in the proximal segments of the intestine, whereas Mg(2+) absorption predominantly occurs in the distal part of the gastrointestinal tract. Vitamin D treatment of mice increased serum Mg(2+) levels and 24-h urinary Mg(2+) excretion, but not intestinal absorption of (25)Mg(2+). Segmental cannulation of the intestine and time-dependent absorption studies using (25)Mg(2+) provide new ways to study intestinal Mg(2+) absorption.
Collapse
Affiliation(s)
- Anke L Lameris
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pasi I Nevalainen
- School of Medicine, University of Tampere, Tampere, Finland; Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Daphne Reijnen
- Central Animal Facility, Radboud University, Nijmegen, The Netherlands; and
| | - Ellen Simons
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jelle Eygensteyn
- Department of General Instrumentation, Faculty of Sciences, Radboud University, Nijmegen, The Netherlands
| | - Leo Monnens
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands;
| |
Collapse
|
8
|
van der Hagen EAE, Tudpor K, Verkaart S, Lavrijsen M, van der Kemp A, van Zeeland F, Bindels RJM, Hoenderop JGJ. β1-Adrenergic receptor signaling activates the epithelial calcium channel, transient receptor potential vanilloid type 5 (TRPV5), via the protein kinase A pathway. J Biol Chem 2014; 289:18489-96. [PMID: 24828496 DOI: 10.1074/jbc.m113.491274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Epinephrine and norepinephrine are present in the pro-urine. β-Adrenergic receptor (β-AR) blockers administered to counteract sympathetic overstimulation in patients with congestive heart failure have a negative inotropic effect, resulting in reduced cardiac contractility. Positive inotropes, β1-AR agonists, are used to improve cardiac functions. Active Ca(2+) reabsorption in the late distal convoluted and connecting tubules (DCT2/CNT) is initiated by Ca(2+) influx through the transient receptor potential vanilloid type 5 (TRPV5) Ca(2+) channel. Although it was reported that β-ARs are present in the DCT2/CNT region, their role in active Ca(2+) reabsorption remains elusive. Here we revealed that β1-AR, but not β2-AR, is localized with TRPV5 in DCT2/CNT. Subsequently, treatment of TRPV5-expressing mouse DCT2/CNT primary cell cultures with the β1-AR agonist dobutamine showed enhanced apical-to-basolateral transepithelial Ca(2+) transport. In human embryonic kidney (HEK293) cells, dobutamine was shown to stimulate cAMP production, signifying functional β1-AR expression. Fura-2 experiments demonstrated increased activity of TRPV5 in response to dobutamine, which could be prevented by the PKA inhibitor H89. Moreover, nonphosphorylable T709A-TRPV5 and phosphorylation-mimicking T709D-TRPV5 mutants were unresponsive to dobutamine. Surface biotinylation showed that dobutamine did not affect plasma membrane abundance of TRPV5. In conclusion, activation of β1-AR stimulates active Ca(2+) reabsorption in DCT2/CNT; an increase in TRPV5 activity via PKA phosphorylation of residue Thr-709 possibly plays an important role. These data explicate a calciotropic role in addition to the inotropic property of β1-AR.
Collapse
Affiliation(s)
- Eline A E van der Hagen
- From the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Kukiat Tudpor
- From the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Sjoerd Verkaart
- From the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Marla Lavrijsen
- From the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Annemiete van der Kemp
- From the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Femke van Zeeland
- From the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - René J M Bindels
- From the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- From the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
9
|
Proszkowiec-Weglarz M, Angel R. Calcium and phosphorus metabolism in broilers: Effect of homeostatic mechanism on calcium and phosphorus digestibility. J APPL POULTRY RES 2013. [DOI: 10.3382/japr.2012-00743] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
10
|
Abstract
Calcium is the most abundant cation in the human body, of which approximately 99% occurs in bone, contributing to its rigidity and strength. Bone also functions as a reservoir of Ca for its role in multiple physiologic and biochemical processes. This article aims to provide a thorough understanding of the absorptive mechanisms and factors affecting these processes to enable one to better appreciate an individual's Ca needs, and to provide a rationale for correcting Ca deficiencies. An overview of Ca requirements and suggested dosing regimens is presented, with discussion of various Ca preparations and potential toxicities of Ca treatment.
Collapse
Affiliation(s)
- Ronald D Emkey
- Pennsylvania Regional Center for Arthritis & Osteoporosis Research, 1200 Broadcasting Road, Suite 200, Wyomissing, PA 19610, USA.
| | | |
Collapse
|
11
|
Oliveira AG, Aquino DJQ, Mahecha GAB, Oliveira CA. Involvement of the transepithelial calcium transport disruption and the formation of epididymal stones in roosters. Reproduction 2012; 143:835-44. [PMID: 22454531 DOI: 10.1530/rep-12-0034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epididymal lithiasis is a dysfunction of unknown origin characterized by the formation of calcium stones into the lumen of efferent ductules of roosters. Affected animals present an imbalance in the hormonal responsive systems that regulate the expression of proteins involved in the transepithelial calcium transport, as TRPV6, CaBP-D28K, NCX1, and PMCA. Because the efferent ductules are the major site of fluid and calcium reabsorption in excurrent ducts, it was hypothesized that impairment in local calcium homeostasis would lead to lithiasis. To test this hypothesis, we addressed the expression of these proteins in the epididymal region of affected animals. The present study focused on the investigation of the occurrence, tissue distribution, and physiological impact of the transepithelial calcium transport in roosters under normal and pathological conditions. The results showed that affected roosters presented a significant increase in TRPV6 and CaBP-D28k levels, whereas NCX1 and PMCA were not changed. Such alterations were more conspicuous in the proximal efferent ductules, in which was also observed accumulation of calcium within the epithelial cells. These findings provided the first evidences for the involvement of alteration in the expression of proteins essential for calcium reabsorption as a plausible mechanism for the formation of calcium stones within efferent ductules.
Collapse
Affiliation(s)
- André Gustavo Oliveira
- Department of Morphology, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
12
|
The transient receptor potential channel TRPV6 is dynamically expressed in bone cells but is not crucial for bone mineralization in mice. J Cell Physiol 2012; 227:1951-9. [DOI: 10.1002/jcp.22923] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Little R, Muimo R, Robson L, Harris K, Grabowski PS. The transient receptor potential ion channel TRPV6 is expressed at low levels in osteoblasts and has little role in osteoblast calcium uptake. PLoS One 2011; 6:e28166. [PMID: 22163264 PMCID: PMC3226639 DOI: 10.1371/journal.pone.0028166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/02/2011] [Indexed: 11/26/2022] Open
Abstract
Background TRPV6 ion channels are key mediators of regulated transepithelial absorption of Ca2+ within the small intestine. Trpv6-/- mice were reported to have lower bone density than wild-type littermates and significant disturbances in calcium homeostasis that suggested a role for TRPV6 in osteoblasts during bone formation and mineralization. TRPV6 and molecules related to transepithelial Ca2+ transport have been reported to be expressed at high levels in human and mouse osteoblasts. Results Transmembrane ion currents in whole cell patch clamped SaOS-2 osteoblasts did not show sensitivity to ruthenium red, an inhibitor of TRPV5/6 ion channels, and 45Ca uptake was not significantly affected by ruthenium red in either SaOS-2 (P = 0.77) or TE-85 (P = 0.69) osteoblastic cells. In contrast, ion currents and 45Ca uptake were both significantly affected in a human bronchial epithelial cell line known to express TRPV6. TRPV6 was expressed at lower levels in osteoblastic cells than has been reported in some literature. In SaOS-2 TRPV6 mRNA was below the assay detection limit; in TE-85 TRPV6 mRNA was detected at 6.90±1.9 × 10−5 relative to B2M. In contrast, TRPV6 was detected at 7.7±3.0 × 10−2 and 2.38±0.28 × 10−4 the level of B2M in human carcinoma-derived cell lines LNCaP and CaCO-2 respectively. In murine primary calvarial osteoblasts TRPV6 was detected at 3.80±0.24 × 10−5 relative to GAPDH, in contrast with 4.3±1.5 × 10−2 relative to GAPDH in murine duodenum. By immunohistochemistry, TRPV6 was expressed mainly in myleocytic cells of the murine bone marrow and was observed only at low levels in murine osteoblasts, osteocytes or growth plate cartilage. Conclusions TRPV6 is expressed only at low levels in osteoblasts and plays little functional role in osteoblastic calcium uptake.
Collapse
Affiliation(s)
- Robert Little
- Department of Human Metabolism, The Mellanby Centre for Bone Research, The University of Sheffield, Sheffield, United Kingdom
| | - Richmond Muimo
- Department of Infection and Immunity, The University of Sheffield, Sheffield, United Kingdom
| | - Louise Robson
- Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Kate Harris
- Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Peter S. Grabowski
- Department of Human Metabolism, The Mellanby Centre for Bone Research, The University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Yan P, Li T, Bo M, Die L, Xing L. Inhibition of bone resorption by econazole in rat osteoclast-like cells through suppressing TRPV5. Arch Pharm Res 2011; 34:1007-13. [PMID: 21725822 DOI: 10.1007/s12272-011-0618-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/27/2010] [Accepted: 11/14/2010] [Indexed: 11/30/2022]
Abstract
Osteoclasts are primary bone resorption cells and intervention in osteoclast activation is considered an effective therapeutic approach to treatment of bone diseases involving osteoclasts. TRPV5 was detected in osteoclasts and it has been thought to take part in the transportation of the degraded calcium in the resorption lacuna, which is essential for bone resorption. The aim of the present study was to examine the effects of a modulator of calcium dynamics, econazole, on the expression of TRPV5 and bone resorption activity in rat osteoclast-like cells (OLCs). OLCs were obtained by co-culturing rat bone marrow cells with osteoblasts and then culturing with different concentrations of econazole (0.01, 0.1, 1.0, 10.0 μmol/L). Cell counting and staining protocols were used to determine whether econazole influenced the survival of OLCs. Expression of TRPV5 in response to econazole treatment was assessed by western blotting. Bone resorption activity of OLCs was determined by measuring the resorption area of dentin slices with a microscope and a digital image analysis system. Additionally, Ca(2+) inside OLCs was tested. We found that econazole inhibited expression of TRPV5 in a dose dependent manner while it had no influence on the survival of OLCs and it therefore inhibited bone resorption activity in rat OLCs. Ca(2+) inside OLCs increased, suggesting a limited compensatory mechanism to make up for inhibition of TRPV5 effects.
Collapse
Affiliation(s)
- Peng Yan
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | | | | | | | | |
Collapse
|
15
|
Allen PJ, Weihrauch D, Grandmaison V, Dasiewicz P, Peake SJ, Anderson WG. The influence of environmental calcium concentrations on calcium flux, compensatory drinking and epithelial calcium channel expression in a freshwater cartilaginous fish. ACTA ACUST UNITED AC 2011; 214:996-1006. [PMID: 21346128 DOI: 10.1242/jeb.041087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Calcium metabolism and mRNA levels of the epithelial calcium channel (ECaC) were examined in a freshwater cartilaginous fish, the lake sturgeon Acipenser fulvescens. Lake sturgeon were acclimated for ≥2 weeks to 0.1 (low), 0.4 (normal) or 3.3 (high) mmol l(-1) environmental calcium. Whole-body calcium flux was examined using (45)Ca as a radioactive marker. Net calcium flux was inward in all treatment groups; however, calcium influx was greatest in the low calcium environment and lowest in the high calcium environment, whereas efflux had the opposite relationship. A significant difference in the concentration of (45)Ca in the gastrointestinal tract (GIT) of fish in the low calcium environment led to the examination of drinking rate and calcium flux across the anterior-middle (mid) intestine. Drinking rate was not different between treatments; however, calcium influx across the mid-intestine in the low calcium treatment was significantly greater than that in both the normal and high calcium treatments. The lake sturgeon ECaC was 2831 bp in length, with a predicted protein sequence of 683 amino acids that shared a 66% identity with the closest sequenced ECaCs from the vertebrate phyla. ECaC mRNA levels were examined in the gills, kidney, pyloric caeca, mid-intestine and spiral intestine. Expression levels were highest in the gills, then the kidneys, and were orders of magnitude lower in the GIT. Contrary to existing models for calcium uptake in the teleost gill, ECaC expression was greatest in high calcium conditions and kidney ECaC expression was lowest in low calcium conditions, suggesting that cellular transport mechanisms for calcium may be distinctly different in these freshwater cartilaginous fishes.
Collapse
Affiliation(s)
- Peter J Allen
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | | | | | | | | | | |
Collapse
|
16
|
Oliveira AG, Oliveira CA. Epididymal lithiasis in roosters: in the middle of the way there was a stone. Life Sci 2011; 89:588-94. [PMID: 21621547 DOI: 10.1016/j.lfs.2011.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/19/2011] [Accepted: 04/27/2011] [Indexed: 11/28/2022]
Abstract
The epididymal region plays an important role in the reproduction of roosters, as it is the site of functions important in the maintenance of fertility, including fluid and calcium reabsorption and sperm surface modifications. About 10 years ago, a reproductive dysfunction characterized by the formation of luminal calcium stones in the epididymal region of roosters was described. This anomaly, known as epididymal lithiasis, is associated with a significant decrease in the fertility of affected roosters. This reproductive anomaly has been observed in multiple countries and is thought to negatively impact the poultry industry; however, the cause of epididymal lithiasis has not been fully determined. Several hypotheses have been proposed to explain the origin of epididymal lithiasis, including the presence of an infectious agent within the epididymal region, an autoimmune response, increased dietary calcium and vitamin D3 intake and the presence of genetic susceptibility factors; however, none of these has been proven to be the primary cause of the calcium stone formation. Nonetheless, considerable evidence suggests that regardless of the primary cause of epididymal lithiasis, this anomaly could result from a hormonal imbalance or a local impairment of calcium homeostasis in the epididymal region. The objectives of this mini-review are to 1) summarize the reproductive alterations observed in animals affected by epididymal lithiasis, 2) discuss the hypotheses proposed to explain the cause of luminal stone formation and 3) provide perspectives for future studies of this reproductive disorder.
Collapse
Affiliation(s)
- André G Oliveira
- Department of Morphology, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
17
|
Semenova SB, Vassilieva IO, Fomina AF, Runov AL, Negulyaev YA. Endogenous expression of TRPV5 and TRPV6 calcium channels in human leukemia K562 cells. Am J Physiol Cell Physiol 2009; 296:C1098-104. [DOI: 10.1152/ajpcell.00435.2008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In blood cells, changes in intracellular Ca2+ concentration ([Ca2+]i) are associated with multiple cellular events, including activation of cellular kinases and phosphatases, degranulation, regulation of cytoskeleton binding proteins, transcriptional control, and modulation of surface receptors. Although there is no doubt as to the significance of Ca2+ signaling in blood cells, there is sparse knowledge about the molecular identities of the plasmalemmal Ca2+ permeable channels that control Ca2+ fluxes across the plasma membrane and mediate changes in [Ca2+]i in blood cells. Using RNA expression analysis, we have shown that human leukemia K562 cells endogenously coexpress transient receptor potential vanilloid channels type 5 (TRPV5) and type 6 (TRPV6) mRNAs. Moreover, we demonstrated that TRPV5 and TRPV6 channel proteins are present in both the total lysates and the crude membrane preparations from leukemia cells. Immunoprecipitation revealed that a physical interaction between TRPV5 and TRPV6 may take place. Single-channel patch-clamp experiments demonstrated the presence of inwardly rectifying monovalent currents that displayed kinetic characteristics of unitary TRPV5 and/or TRPV6 currents and were blocked by extracellular Ca2+ and ruthenium red. Taken together, our data strongly indicate that human myeloid leukemia cells coexpress functional TRPV5 and TRPV6 calcium channels that may interact with each other and contribute into intracellular Ca2+ signaling.
Collapse
|
18
|
Abstract
1. Calcium (re)absorption occurs in epithelia, including the intestine, kidney, mammary glands, placenta and gills (in the case of fish). 2. Calcium is transported across epithelia by two transport mechanisms, paracellular and transcellular, and the movement is regulated by a complex array of transport processes that are mediated by hormonal, developmental and physiological factors involving the gastrointestinal tract, bone, kidney and the parathyroids. 3. Clear understanding of the calcium transport pathways and their endocrine regulation is critical for minimizing various metabolic and health disorders at different physiological stages. Here, we first briefly review the calcium transport mechanisms before discussing in detail the endocrine factors that regulate calcium transport in the epithelia.
Collapse
Affiliation(s)
- Ramesh C Khanal
- Department of Food Science, University of Arkansas, Fayetteville, Arizona, Utah State University, Logan, Utah, USA
| | | |
Collapse
|
19
|
Goodman WG, Quarles LD. Development and progression of secondary hyperparathyroidism in chronic kidney disease: lessons from molecular genetics. Kidney Int 2008; 74:276-88. [PMID: 17568787 DOI: 10.1038/sj.ki.5002287] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The identification of the calcium-sensing receptor (CaSR) and the clarification of its role as the major regulator of parathyroid gland function have important implications for understanding the pathogenesis and evolution of secondary hyperthyroidism in chronic kidney disease (CKD). Signaling through the CaSR has direct effects on three discrete components of parathyroid gland function, which include parathyroid hormone (PTH) secretion, PTH synthesis, and parathyroid gland hyperplasia. Disturbances in calcium and vitamin D metabolism that arise owing to CKD diminish the level of activation of the CaSR, leading to increases in PTH secretion, PTH synthesis, and parathyroid gland hyperplasia. Each represents a physiological adaptive response by the parathyroid glands to maintain plasma calcium homeostasis. Studies of genetically modified mice indicate that signal transduction via the CaSR is a key determinant of parathyroid cell proliferation and parathyroid gland hyperplasia. Because enlargement of the parathyroid glands has important implications for disease progression and disease severity, it is possible that clinical management strategies that maintain adequate calcium-dependent signaling through the CaSR will ultimately prove useful in diminishing parathyroid gland hyperplasia and in modifying disease progression.
Collapse
Affiliation(s)
- William G Goodman
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| | | |
Collapse
|
20
|
Gao Y, Wheatly MG. Molecular characterization of an epithelial Ca2+ channel-like gene from crayfish Procambarus clarkii. ACTA ACUST UNITED AC 2008; 210:1813-24. [PMID: 17488945 DOI: 10.1242/jeb.02761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study describes the cloning, sequencing and functional characterization of an epithelial Ca(2+) channel (ECaC)-like gene isolated from antennal gland (kidney) of the freshwater crayfish Procambarus clarkii. The full-length cDNA consisted of 2687 bp with an open reading frame of 2169 bp encoding a protein of 722 amino acids with a predicted molecular mass of 81.7 kDa. Crayfish ECaC had 76-78% identity at the mRNA level (80-82% amino acid identity) with published fish sequences and 56-62% identity at the mRNA level (52-60% amino acid identity) with mammalian ECaCs. Secondary structure of the crayfish ECaC closely resembled that of cloned ECaCs. Postmolt ECaC expression was exclusively restricted to epithelia associated with Ca(2+) influx and was virtually undetectable in non-epithelial tissues (eggs, muscle). Compared with expression levels in hepatopancreas, expression in gill was 10-fold greater and expression was highest in antennal gland (15-fold greater than in hepatopancreas). Compared with baseline expression levels in intermolt stage, expression of ECaC in antennal gland increased 7.4- and 23.8-fold, respectively, in pre- and postmolt stages of the molting cycle. This increase was localized primarily in the labyrinth and nephridial canal, regions of the antennal gland associated with renal Ca(2+) reabsorption. The ECaC in crayfish appears to be expressed in epithelia associated with unidirectional Ca(2+) influx and relative expression is correlated with rate of Ca(2+) influx.
Collapse
Affiliation(s)
- Yongping Gao
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA
| | | |
Collapse
|
21
|
KIRIHATA Y, KAWARABAYASHI T, IMANISHI S, SUGIMOTO M, KUME SI. Coumestrol Decreases Intestinal Alkaline Phosphatase Activity in Post-delivery Mice but does not Affect Vitamin D Receptor and Calcium Channels in Post-delivery and Neonatal Mice. J Reprod Dev 2008; 54:35-41. [DOI: 10.1262/jrd.19095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yuka KIRIHATA
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University
| | - Tetsu KAWARABAYASHI
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University
| | - Satoshi IMANISHI
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University
| | - Miki SUGIMOTO
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University
| | - Shin-Ichi KUME
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
22
|
Molecular actions of 1,25-dihydroxyvitamin D3 on genes involved in calcium homeostasis. J Bone Miner Res 2007; 22 Suppl 2:V16-9. [PMID: 18290714 DOI: 10.1359/jbmr.07s207] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] functions in vertebrate organisms as a primary regulator of calcium and phosphorus homeostasis, an activity that is achieved through direct actions on gene expression in intestine, kidney, and bone. Recent studies have identified novel genes such as TRPV5, TRPV6, and RANKL whose products are integral to the maintenance of extracellular calcium. The objective of this progress report/review is to describe our recent results that identify the mechanisms of 1,25(OH)(2)D(3) action on the expression of TRPV6 and RANKL. A series of molecular, cellular, and in vivo studies have been conducted to define the molecular mechanisms that control the expression of TRPV6 and RANKL. Cell culture-based assays, chromatin immunoprecipitation (ChIP) and ChIP-DNA microarray (ChIP-chip) methods, and a series of molecular techniques were used to identify and characterize upstream regions of mouse and human TRPV6 and RANKL genes. We discovered that these genes were regulated by at least five separate enhancer regions. In the TRPV6 gene, these enhancers were all located within 5 kb of the transcriptional start site (TSS), and each contained one or more vitamin D regulatory elements (VDREs). In the RANKL gene, these regulatory regions span over 80 kb of upstream sequence, the most distal 76 kb from the TSS. This regulatory region is central to the regulation of RANKL expression in vitro and in vivo. Our studies identified key regulatory regions within the TRPV6 and RANKL genes that are essential for their individual expression in the intestine and bone, respectively.
Collapse
|
23
|
Oz OK, Hajibeigi A, Howard K, Cummins CL, van Abel M, Bindels RJ, Word RA, Kuro-o M, Pak CYC, Zerwekh JE. Aromatase deficiency causes altered expression of molecules critical for calcium reabsorption in the kidneys of female mice *. J Bone Miner Res 2007; 22:1893-902. [PMID: 17708714 DOI: 10.1359/jbmr.070808] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Kidney stones increase after menopause, suggesting a role for estrogen deficiency. ArKO mice have hypercalciuria and lower levels of calcium transport proteins, whereas levels of the klotho protein are elevated. Thus, estrogen deficiency is sufficient to cause altered renal calcium handling. INTRODUCTION The incidence of renal stones increases in women after menopause, implicating a possible role for estrogen deficiency. We used the aromatase deficient (ArKO) mouse, a model of estrogen deficiency, to test the hypothesis that estrogen deficiency would increase urinary calcium excretion and alter the expression of molecular regulators of renal calcium reabsorption. MATERIALS AND METHODS Adult female wildtype (WT), ArKO, and estradiol-treated ArKO mice (n = 5-12/group) were used to measure urinary calcium in the fed and fasting states, relative expression level of some genes involved in calcium reabsorption in the distal convoluted tubule by real-time PCR, and protein expression by Western blotting or immunohistochemistry. Plasma membrane calcium ATPase (PMCA) activity was measured in kidney membrane preparations. ANOVA was used to test for differences between groups followed by posthoc analysis with Dunnett's test. RESULTS Compared with WT, urinary Ca:Cr ratios were elevated in ArKO mice, renal mRNA levels of transient receptor potential cation channel vallinoid subfamily member 5 (TRPV5), TRPV6, calbindin-D28k, the Na+/Ca+ exchanger (NCX1), and the PMCA1b were significantly decreased, and klotho mRNA and protein levels were elevated. Estradiol treatment of ArKO mice normalized urinary calcium excretion, renal mRNA levels of TRPV5, calbindin-D(28k), PMCA1b, and klotho, as well as protein levels of calbindin-D28k and Klotho. ArKO mice treated with estradiol had significantly greater PMCA activity than either untreated ArKO mice or WT mice. CONCLUSIONS Estrogen deficiency caused by aromatase inactivation is sufficient for renal calcium loss. Changes in estradiol levels are associated with coordinated changes in expression of many proteins involved in distal tubule calcium reabsorption. Estradiol seems to act at the genomic level by increasing or decreasing (klotho) protein expression and nongenomically by increasing PMCA activity. PMCA, not NCX1, is likely responsible for extruding calcium in response to in vivo estradiol hormonal challenge. These data provide potential mechanisms for regulation of renal calcium handling in response to changes in serum estrogen levels.
Collapse
Affiliation(s)
- Orhan K Oz
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9153, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
VanHouten JN, Wysolmerski JJ. Transcellular calcium transport in mammary epithelial cells. J Mammary Gland Biol Neoplasia 2007; 12:223-35. [PMID: 17999165 DOI: 10.1007/s10911-007-9057-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022] Open
Abstract
The time-honored paradigm for mammary gland transepithelial calcium transport into milk is centered on the view that most, if not all, calcium enters milk through the secretory pathway, and no ionic calcium directly crosses the apical plasma membrane. Data from several recent studies all strongly suggest that most calcium, in fact, is extruded across the apical plasma membrane directly by the plasma membrane calcium-ATPase isoform 2 (PMCA2). In this review we break down transcellular calcium transport into the tasks of calcium entry, calcium sequestration and compartmentalization, and calcium extrusion. We compare and contrast the steps of calcium transport into milk by mammary epithelial cells, and the specific molecules that might perform these tasks, with well-characterized calcium transport mechanisms in other epithelia, such as the kidney, small intestine, and salivary gland. Finally, we suggest an updated model for calcium transport into milk that incorporates calcium transport across the apical plasma membrane.
Collapse
Affiliation(s)
- Joshua N VanHouten
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208020, New Haven, CT 06520-8020, USA.
| | | |
Collapse
|
25
|
Meyer MB, Zella LA, Nerenz RD, Pike JW. Characterizing early events associated with the activation of target genes by 1,25-dihydroxyvitamin D3 in mouse kidney and intestine in vivo. J Biol Chem 2007; 282:22344-52. [PMID: 17556365 DOI: 10.1074/jbc.m703475200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this report, we explore the interaction of the vitamin D receptor (VDR) at regulatory sites within both the Cyp24a1 and the Trpv6 genes using chromatin immunoprecipitation techniques in a mouse model in vivo. We show that exogenous 1,25(OH)(2)D(3) induces rapid VDR and RXR (retinoid X receptor) binding to the Cyp24a1 gene in both the kidney and the intestine and to the Trpv6 gene in the intestine. Separate studies of Trpv6 in vitro suggest that VDR binding occurs directly to VDR response elements located -2 and -4 kb upstream of the TSS. VDR binding is dose-dependent, demonstrating EC(50) values that are comparable with those for the induction of both Cyp24a1 and Trpv6 mRNA. Importantly, interaction of the VDR with these targets results in rapid changes in histone 4 acetylation as well as the recruitment of RNA polymerase II. The presence of both VDR and RNA polymerase II at these sites declines between 3-6 h, whereas the changes observed in acetylation decrease more slowly. Finally, we show that whereas mediator protein 1 is recruited to the Cyp24a1 promoter in the intestine, this coactivator is apparently not required for Trpv6 activation. These studies provide the first evidence for 1,25(OH)(2)D(3)-induced VDR interaction at key target genes in vivo, revealing the consequences of that interaction on the Cyp24a1 and Trpv6 genes.
Collapse
Affiliation(s)
- Mark B Meyer
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
26
|
Cantiello HF, Montalbetti N, Li Q, Chen XZ. The Cytoskeletal Connection to Ion Channels as a Potential Mechanosensory Mechanism: Lessons from Polycystin-2 (TRPP2). CURRENT TOPICS IN MEMBRANES 2007; 59:233-96. [PMID: 25168140 DOI: 10.1016/s1063-5823(06)59010-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mechanosensitivity of ion channels, or the ability to transfer mechanical forces into a gating mechanism of channel regulation, is split into two main working (not mutually exclusive) hypotheses. One is that elastic and/or structural changes in membrane properties act as a transducing mechanism of channel regulation. The other hypothesis involves tertiary elements, such as the cytoskeleton which, itself by dynamic interactions with the ion channel, may convey conformational changes, including those ascribed to mechanical forces. This hypothesis is supported by numerous instances of regulatory changes in channel behavior by alterations in cytoskeletal structures/interactions. However, only recently, the molecular nature of these interactions has slowly emerged. Recently, a surge of evidence has emerged to indicate that transient receptor potential (TRP) channels are key elements in the transduction of a variety of environmental signals. This chapter describes the molecular linkage and regulatory elements of polycystin-2 (PC2), a TRP-type (TRPP2) nonselective cation channel whose mutations cause autosomal dominant polycystic kidney disease (ADPKD). The chapter focuses on the involvement of cytoskeletal structures in the regulation of PC2 and discusses how these connections are the transducing mechanism of environmental signals to its channel function.
Collapse
Affiliation(s)
- Horacio F Cantiello
- Renal Unit, Massachusetts General Hospital East, Charlestown, Massachusetts 02129; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115; Laboratorio de Canales Iónicos, Departamento de Fisicoquímica y Química Analítica, Facultad de Farmacia y Bioquímica, Buenos Aires 1113, Argentina
| | - Nicolás Montalbetti
- Laboratorio de Canales Iónicos, Departamento de Fisicoquímica y Química Analítica, Facultad de Farmacia y Bioquímica, Buenos Aires 1113, Argentina
| | - Qiang Li
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| | - Xing-Zhen Chen
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| |
Collapse
|
27
|
Domoto T, Miyama Y, Suzuki H, Teratani T, Arai K, Sugiyama T, Takayama T, Mugiya S, Ozono S, Nozawa R. Evaluation of S100A10, annexin II and B-FABP expression as markers for renal cell carcinoma. Cancer Sci 2007; 98:77-82. [PMID: 17083565 PMCID: PMC11159138 DOI: 10.1111/j.1349-7006.2006.00355.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
This study aimed to analyze expression of S100A10, annexin II and B-FABP genes in renal cell carcinoma (RCC) and their potential value as tumor markers. Furthermore, any correlation between the gene expression and prognostic indicators of RCC was analyzed. Expression of each gene was estimated by RT-PCR in the non-neoplastic (normal) and tumorous parts of resected kidney samples. Also, each antigen was immunostained in RCC and normal kidney tissues. Expression of the S100A10 gene averaged 2.5-fold higher in the tumor than that in the normal tissues (n = 47), after standardization against that of beta-actin. However, expression of annexin II, a natural ligand of S100A10, was only 1.64-fold higher. In the tissue sections of RCC, S100A10 and annexin II were immunostained in membranes. In the normal renal epithelia, however, both antigens were stained in the Bowman's capsule and the tubules from Henle's loop through the collecting duct system, but not in the proximal tubules, from where most RCC are derived. In contrast, expression of the B-FABP gene was 20-fold higher in the tumor. No B-FABP was immunohistochemically detected in normal kidney sections, but it was stained in the cytoplasm of RCC tissue sections. S100A10 and B-FABP genes were overexpressed regardless of nuclear grade and stage of RCC. Immunopositivity in RCC tissues (n = 13) was 100% for S100A10 and annexin II, and 70% for B-FABP; however, no clear relationship was observed in either antigen with nuclear grade and stage. It was found that all three performed well as RCC markers. B-FABP was most specific to RCC, as it was expressed little in normal kidney tissues.
Collapse
Affiliation(s)
- Tomohiro Domoto
- Laboratory of Host Defense, University of Shizuoka, Shizuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lee CT, Lien YHH, Lai LW, Chen JB, Lin CR, Chen HC. Increased renal calcium and magnesium transporter abundance in streptozotocin-induced diabetes mellitus. Kidney Int 2006; 69:1786-91. [PMID: 16557223 DOI: 10.1038/sj.ki.5000344] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes is associated with renal calcium and magnesium wasting, but the molecular mechanisms of these defects are unknown. We measured renal calcium and magnesium handling and investigated the effects of diabetes on calcium and magnesium transporters in the thick ascending limb and distal convoluted tubule in streptozotocin (STZ)-induced diabetic rats. Rats were killed 2 weeks after inducing diabetes, gene expression of calcium and magnesium transporters in the kidney was determined by real-time polymerase chain reaction, and the abundance of protein was assessed by immunoblotting. Our results showed that diabetic rats had significant increase in the fractional excretion for calcium and magnesium (both P < 0.01), but not for sodium. Reverse transcriptase-polymerase chain reaction revealed significant increases in messenger RNA abundance of transient potential receptor (TRP) V5 (223 +/- 10%), TRPV6 (177 +/- 9%), calbindin-D28k (231 +/- 8%), and TRPM6 (165 +/- 8%) in diabetic rats. Sodium chloride cotransporter was also increased (207 +/- 10%). No change was found in paracellin-1 (cortex: 108 +/- 8%; medulla: 110 +/- 10%). Immunofluorescent studies of renal sections showed significant increase in calbindin-D28k (238 +/- 10%) and TRPV5 (211 +/- 10%), but no changes in paracellin-1 in Western blotting (cortex: 110 +/- 7%; medulla: 99 +/- 7%). Insulin administration completely corrected the hyperglycemia-associated hypercalciuria and hypermagnesiuria, and reversed the increase of calcium and magnesium transporter abundance. In conclusion, our results demonstrated increased renal calcium and magnesium transporter abundance in STZ-induced diabetic rats, which may represent a compensatory adaptation for the increased load of calcium and magnesium to the distal tubule.
Collapse
Affiliation(s)
- C-T Lee
- Division of Nephrology, Department of Medicine, Chang-Gung Memorial Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Ion channels are pore-forming transmembrane proteins that allow ions to permeate biological membranes. Pore structure plays a crucial role in determining the ion permeation and selectivity properties of particular channels. In the past few decades, efforts have been undertaken to identify key elements of the pore regions of different classes of ion channels. In this review, we summarize current knowledge about permeation and selectivity of channel proteins from the transient receptor potential (TRP) superfamily. Whereas all TRP channels are permeable for cations, only two TRP channels are impermeable for Ca2+ (TRPM4, TRPM5), and two others are highly Ca2+ permeable (TRPV5, TRPV6). Despite the great advances in the TRP channel field during the past decade, only a limited number of reports have dealt with functional characterization of pore properties, biophysical aspects of cation permeation, or description of pore structures of TRP channels. This review gives an overview of available experimental and theoretical data and discusses the functional impact of pore-structure modifications on TRP channel properties.
Collapse
Affiliation(s)
- Grzegorz Owsianik
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
30
|
Owsianik G, D'hoedt D, Voets T, Nilius B. Structure–function relationship of the TRP channel superfamily. Rev Physiol Biochem Pharmacol 2006. [DOI: 10.1007/s10254-005-0006-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Homann V, Kinne-Saffran E, Arnold WH, Gaengler P, Kinne RKH. Calcium transport in human salivary glands: a proposed model of calcium secretion into saliva. Histochem Cell Biol 2005; 125:583-91. [PMID: 16270201 DOI: 10.1007/s00418-005-0100-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2005] [Indexed: 10/25/2022]
Abstract
Salivary calcium plays a vital role in bio-mineralization of dental enamel and exposed dentin. In order to elucidate the yet unknown cellular and molecular mechanisms of calcium secretion in human salivary glands the presence of various relevant plasma membrane transport systems for calcium were investigated. Using an RT-PCR approach, expression of the epithelial calcium channel (CaT-Like), the calcium binding protein (calbindin-2), the endoplasmic reticulum pumps (SERCA-2 and -3), and the plasma membrane calcium ATPases (PMCA-1, -2, and -4), were found in parotid and submandibular glands. Immunohistochemistry revealed that CaT-Like is located in the basolateral plasma membrane of acinar cells; while calbindin-2, SERCA-2 and SERCA-3 were found inside the acinar cells; and PMCA-2 was found in the apical membrane and in the secretory canaliculi between the cells. Based on these findings, we propose the following model of calcium secretion in human salivary glands: (1) calcium enters the acinar cell at the basolateral side via calcium channel CaT-Like (calcium influx); (2) intracellular calcium is taken up into the endoplasmic reticulum by SERCA-2 and possibly SERCA3 or bound to calbindin-2 (intracellular calcium pool); and (3) calcium is secreted by PMCAs at the apical plasma membrane (calcium efflux).
Collapse
Affiliation(s)
- Veronika Homann
- Abteilung Epithelphysiologie, Max-Planck-Institut für molekulare Physiologie, 44139, Dortmund, Germany
| | | | | | | | | |
Collapse
|
32
|
Kim BJ, Lim HH, Yang DK, Jun JY, Chang IY, Park CS, So I, Stanfield PR, Kim KW. Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity. Gastroenterology 2005; 129:1504-17. [PMID: 16285951 DOI: 10.1053/j.gastro.2005.08.016] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 08/10/2005] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Interstitial cells of Cajal are pacemakers in the gastrointestinal tract, regulating rhythmicity by activating nonselective cation channels. In Caenorhabditis elegans, the melastatin-type transient receptor potential (TRPM) channel, especially TRPM7, was suggested as being involved in defecation rhythm. The aim here was to show that the nonselective cation channel in interstitial cells of Cajal in mouse small intestine has properties essentially identical to those of murine TRPM7, heterologously expressed in human embryonic kidney cells. METHODS The patch-clamp technique for whole-cell recording was used in cultured or single interstitial cells of Cajal. TRPM7-specific small interfering RNAs were used for specific inhibition of TRPM7. RESULTS Electrophysiological and pharmacological properties of the nonselective cation channel in interstitial cells of Cajal were the same as those of TRPM7. Reverse-transcription polymerase chain reaction, Western blotting, and immunohistochemistry all showed abundant and localized expression of TRPM7 messenger RNA and protein in mouse small intestine. Treatment of primary cultured interstitial cells of Cajal with TRPM7-specific small interfering RNA resulted in inhibition of pacemaking activity. CONCLUSIONS TRPM7 is required for intestinal pacemaking. The protein is a likely potential target for pharmacological treatment of motor disorders of the gut.
Collapse
Affiliation(s)
- Byung Joo Kim
- Department of Physiology and Biophysics, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu W, Murcia NS, Duan Y, Weinbaum S, Yoder BK, Schwiebert E, Satlin LM. Mechanoregulation of intracellular Ca2+ concentration is attenuated in collecting duct of monocilium-impaired orpk mice. Am J Physiol Renal Physiol 2005; 289:F978-88. [PMID: 15972389 DOI: 10.1152/ajprenal.00260.2004] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is characterized by the progressive dilatation of collecting ducts, the nephron segments responsible for the final renal regulation of sodium, potassium, acid-base, and water balance. Murine models of ARPKD possess mutations in genes encoding cilia-associated proteins, including Tg737 in orpk mice. New findings implicate defects in structure/function of primary cilia as central to the development of polycystic kidney disease. Our group (Liu W, Xu S, Woda C, Kim P, Weinbaum S, and Satlin LM, Am J Physiol Renal Physiol 285: F998-F1012, 2003) recently reported that increases in luminal flow rate in rabbit collecting ducts increase intracellular Ca(2+) concentration ([Ca(2+)](i)) in cells therein. We thus hypothesized that fluid shear acting on the apical membrane or hydrodynamic bending moments acting on the cilium increase renal epithelial [Ca(2+)](i). To further explore this, we tested whether flow-induced [Ca(2+)](i) transients in collecting ducts from mutant orpk mice, which possess structurally abnormal cilia, differ from those in controls. Isolated segments from 1- and 2-wk-old mice were microperfused in vitro and loaded with fura 2; [Ca(2+)](i) was measured by digital ratio fluorometry before and after the rate of luminal flow was increased. All collecting ducts responded to an increase in flow with an increase in [Ca(2+)](i), a response that appeared to be dependent on luminal Ca(2+) entry. However, the magnitude of the increase in [Ca(2+)](i) in 2- but not 1-wk-old mutant orpk animals was blunted. We speculate that this defect in mechano-induced Ca(2+) signaling in orpk mice leads to aberrant structure and function of the collecting duct in ARPKD.
Collapse
Affiliation(s)
- Wen Liu
- Department of Pediatrics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Bazzini C, Vezzoli V, Sironi C, Dossena S, Ravasio A, De Biasi S, Garavaglia M, Rodighiero S, Meyer G, Fascio U, Fürst J, Ritter M, Bottà G, Paulmichl M. Thiazide-sensitive NaCl-cotransporter in the Intestine. J Biol Chem 2005; 280:19902-10. [PMID: 15781471 DOI: 10.1074/jbc.m411961200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thiazides, such as hydrochlorothiazide (HCTZ), are used to control blood pressure and to reduce renal calcium excretion. These effects are a result of interactions with the NaCl-cotransporter (NCC). This is demonstrated by the fact that mutations within the NCC protein lead to salt-resistant hypotension and hypocalciuria, paralleled by an increase in bone mineral density. These symptoms are also known as Gitelman syndrome. It has become increasingly evident that the effect of HCTZ on blood pressure and calcium homeostasis cannot be attributed exclusively to kidney functions, where the primary action of HCTZ on NCC is postulated to occur. We demonstrated the presence of the NCC transporter in the rat small intestine (ileum and jejunum) and human HT-29 cells, by using reverse transcription-PCR, Northern blot, Western blot, and immunofluorescence. Furthermore, we show that HCTZ modulates Ca(2+) uptake by intestinal cells, while affecting the electrical parameters of the cellular membrane, thus suggesting a functional interaction between NCC and the epithelial voltage-dependent calcium channel. The experiments presented here support the hypothesis of a direct involvement of the intestinal cells in the interaction between HCTZ and NaCl, as well as calcium homeostasis.
Collapse
Affiliation(s)
- Claudia Bazzini
- Department of Biomolecular Sciences and Biotechnology, Università degli Studi di Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vriens J, Owsianik G, Voets T, Droogmans G, Nilius B. Invertebrate TRP proteins as functional models for mammalian channels. Pflugers Arch 2005; 449:213-26. [PMID: 15480752 DOI: 10.1007/s00424-004-1314-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transient receptor potential (TRP) channels constitute a large and diverse family of channel proteins that are expressed in many tissues and cell types in both vertebrates and invertebrates. While the biophysical features of many of the mammalian TRP channels have been described, relatively little is known about their biological roles. Invertebrate TRPs offer valuable genetic handles for characterizing the functions of these cation channels in vivo. Importantly, studies in model organisms can help to identify fundamental mechanisms involved in normal cellular functions and human disease. In this review, we give an overview of the different TRP channels known in the two most utilized invertebrate models, the nematode Caenorhabditis elegans and the fruit-fly Drosophila melanogaster, and discuss briefly the heuristic impact of these invertebrate channels with respect to TRP function in mammals.
Collapse
Affiliation(s)
- Joris Vriens
- Department of Physiology, Campus Gasthuisberg, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
36
|
Zheng W, Xie Y, Li G, Kong J, Feng JQ, Li YC. Critical Role of Calbindin-D28k in Calcium Homeostasis Revealed by Mice Lacking Both Vitamin D Receptor and Calbindin-D28k. J Biol Chem 2004; 279:52406-13. [PMID: 15456794 DOI: 10.1074/jbc.m405562200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Calbindin (CaBP)-D28k and CaBP-D9k are cytosolic vitamin D-dependent calcium-binding proteins long thought to play an important role in transepithelial calcium transport. However, recent genetic studies suggest that CaBP-D28k is not essential for calcium metabolism. Genetic ablation of this gene in mice leads to no calcemic abnormalities. Genetic inactivation of the vitamin D receptor (VDR) gene leads to hypocalcemia, secondary hyperparathyroidism, rickets, and osteomalacia, accompanied by 90% reduction in renal CaBP-D9k expression but little change in CaBP-D28k. To address whether the role of CaBP-D28k in calcium homeostasis is compensated by CaBP-D9k, we generated VDR/CaBP-D28k double knockout (KO) mice, which expressed no CaBP-D28k and only 10% of CaBP-D9k in the kidney. On a regular diet, the double KO mice were more growth-retarded and 42% smaller in body weight than VDRKO mice and died prematurely at 2.5-3 months of age. Compared with VDRKO mice, the double KO mice had higher urinary calcium excretion and developed more severe secondary hyperparathyroidism and rachitic skeletal phenotype, which were manifested by larger parathyroid glands, higher serum parathyroid hormone levels, much lower bone mineral density, and more distorted growth plate with more osteoid formation in the trabecular region. On high calcium, high lactose diet, blood-ionized calcium levels were normalized in both VDRKO and the double KO mice; however, in contrast to VDRKO mice, the skeletal abnormalities were not completely corrected in the double KO mice. These results directly demonstrate that CaBP-D28k plays a critical role in maintaining calcium homeostasis and skeletal mineralization and suggest that its calcemic role can be mostly compensated by CaBP-D9k.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
37
|
Ecay TW, Stewart JR, Blackburn DG. Expression of calbindin-D28K by yolk sac and chorioallantoic membranes of the corn snake,Elaphe guttata. ACTA ACUST UNITED AC 2004; 302:517-25. [PMID: 15468049 DOI: 10.1002/jez.b.21015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The yolk splanchnopleure and chorioallantoic membrane of oviparous reptiles transport calcium from the yolk and eggshell to the developing embryo. Among oviparous amniotes, the mechanism of calcium mobilization to embryos has been studied only in domestic fowl, in which the mechanism of calcium transport of the yolk splanchnopleure differs from the chorioallantoic membrane. Transport of calcium is facilitated by calbindin-D(28K) in endodermal cells of the yolk splanchnopleure of chickens but the chorioallantoic membrane does not express calbindin-D(28K). We used immunoblotting to assay for calbindin-D(28K) expression in yolk splanchnopleure and chorioallantoic membrane of the corn snake, Elaphe guttata, to test the hypothesis that the mechanism of calcium transport by extraembryonic membranes of snakes is similar to birds. High calbindin-D(28K) expression was detected in samples of yolk splanchnopleure and chorioallantoic membrane during late embryonic stages. We conclude that calbindin-D(28K) is expressed in these extraembryonic membranes to facilitate transport of calcium and that the mechanism of calcium transport of the chorioallantoic membrane of the corn snake differs from that of the chicken. Further, we conclude that calbindin-D(28K) expression is developmentally regulated and increases during later embryonic stages in the corn snake.
Collapse
Affiliation(s)
- Tom W Ecay
- Department of Physiology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, USA.
| | | | | |
Collapse
|
38
|
Affiliation(s)
- R H Wasserman
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
39
|
Hirose S, Kaneko T, Naito N, Takei Y. Molecular biology of major components of chloride cells. Comp Biochem Physiol B Biochem Mol Biol 2004; 136:593-620. [PMID: 14662288 DOI: 10.1016/s1096-4959(03)00287-2] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Current understanding of chloride cells (CCs) is briefly reviewed with emphasis on molecular aspects of their channels, transporters and regulators. Seawater-type and freshwater-type CCs have been identified based on their shape, location and response to different ionic conditions. Among the freshwater-type CCs, subpopulations are emerging that are implicated in the uptake of Na(+), Cl(-) and Ca(2+), respectively, and can be distinguished by their shape of apical crypt and affinity for lectins. The major function of the seawater CC is transcellular secretion of Cl(-), which is accomplished by four major channels and transporters: (1). CFTR Cl(-) channel, (2). Na(+),K(+)-ATPase, (3). Na(+)/K(+)/2Cl(-) cotransporter and (4). a K(+) channel. The first three components have been cloned and characterized, but concerning the K(+) channel that is essential for the continued generation of the driving force by Na(+),K(+)-ATPase, only one candidate is identified. Although controversial, freshwater CCs seem to perform the uptake of Na(+), Cl(-) and Ca(2+) in a manner analogous to but slightly different from that seen in the absorptive epithelia of mammalian kidney and intestine since freshwater CCs face larger concentration gradients than ordinary epithelial cells. The components involved in these processes are beginning to be cloned, but their CC localization remains to be established definitively. The most important yet controversial issue is the mechanism of Na(+) uptake. Two models have been postulated: (i). the original one involves amiloride-sensitive electroneutral Na(+)/H(+) exchanger (NHE) with the driving force generated by Na(+),K(+)-ATPase and carbonic anhydrase (CA) and (ii). the current model suggests that Na(+) uptake occurs through an amiloride-sensitive epithelial sodium channel (ENaC) electrogenically coupled to H(+)-ATPase. While fish ENaC remains to be identified by molecular cloning and database mining, fish NHE has been cloned and shown to be highly expressed on the apical membrane of CCs, reviving the original model. The CC is also involved in acid-base regulation. Analysis using Osorezan dace (Tribolodon hakonensis) living in a pH 3.5 lake demonstrated marked inductions of Na(+),K(+)-ATPase, CA-II, NHE3, Na(+)/HCO(3)(-) cotransporter-1 and aquaporin-3 in the CCs on acidification, leading to a working hypothesis for the mechanism of Na(+) retention and acid-base regulation.
Collapse
Affiliation(s)
- Shigehisa Hirose
- Department of Biological Sciences, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | | | | | | |
Collapse
|
40
|
Abstract
Microfluorimetry and patch-clamp experiments were performed on TRPV6-expressing HEK cells to determine whether this Ca(2+)-sensing Ca(2+) channel is constitutively active. Intact cells loaded with fura-2 had an elevated intracellular free Ca(2+) concentration ([Ca(2+)](i)), which decreased to the same level such as in non-transfected cells if external Ca(2+) was chelated by EGTA. Whole cell recordings from non-transfected HEK cells and cells expressing human TRPV6 revealed the presence of a basal inward current in both types of cells when the internal solution contained 0.1 mm EGTA and 100 nm [Ca(2+)](i) or if the cytosolic Ca(2+) buffering remained undisturbed in perforated patch-clamp experiments. If recombinantly expressed TRPV6 forms open channels, one would expect Ca(2+)-induced current inhibition, because TRPV6 is negatively regulated by internal Ca(2+). However, dialyzing solutions with high [Ca(2+)] such as 1 microm into TRPV6-expressing cells did not block the basal inward current, which was not different from the recordings from non-transfected cells. In contrast, dialyzing 0.5 mm EGTA into TRPV6-expressing cells readily activated Ca(2+) inward currents, which were undetectable in non-transfected cells. Interestingly, monovalent cations permeated the TRPV6 channels under conditions where no Ca(2+) permeation was detectable, indicating that divalent cations block TRPV6 channels from the extracellular side. Like human TRPV6, the truncated human TRPV6(Delta695-725), which lacks the C-terminal domain required for Ca(2+)-calmodulin binding, does not form constitutive active channels, whereas the human TRPV6(D542A), carrying a point mutation in the presumed pore region, does not function as a channel. In summary, no constitutive open TRPV6 channels were detected in patch-clamp experiments from transfected HEK cells. However, channel activity is highly regulated by intracellular and extracellular divalent cations.
Collapse
Affiliation(s)
- Matthias Bödding
- Experimentelle und klinische Pharmakologie und Toxikologie, Universität des Saarlandes, D-66421 Homburg, Germany.
| | | |
Collapse
|
41
|
Abstract
Autosomal dominant PKD (ADPKD) is a common lethal genetic disorder characterized by progressive development of fluid-filled cysts in the kidney and other target organs. ADPKD is caused by mutations in the PKD1 and PKD2 genes, encoding the transmembrane proteins polycystin-1 (PC1) and polycystin-2 (PC2), respectively. Although the function and putative interacting ligands of PC1 are largely unknown, recent evidence indicates that PC2 behaves as a TRP-type Ca2+-permeable nonselective cation channel. The PC2 channel is implicated in the transient increase in cytosolic Ca2+in renal epithelial cells and may be linked to the activation of subsequent signaling pathways. Recent studies also indicate that PC1 functionally interacts with PC2 such that the PC1-PC2 channel complex is an obligatory novel signaling pathway implicated in the transduction of environmental signals into cellular events. The present review purposely avoids issues of regulation of PC2 expression and trafficking and focuses instead on the evidence for the TRP-type cation channel function of PC2. How its role as a cation channel may unmask mechanisms that trigger Ca2+transport and regulation is the focus of attention. PC2 channel function may be essential in renal cell function and kidney development. Nonrenal-targeted expression of PC2 and related proteins, including the cardiovascular system, also suggests previously unforeseeable roles in signal transduction.
Collapse
Affiliation(s)
- Horacio F Cantiello
- Renal Unit, Massachusetts General Hospital East, 149 13th St., Charlestown, MA 02129, USA.
| |
Collapse
|
42
|
Kip SN, Strehler EE. Vitamin D3upregulates plasma membrane Ca2+-ATPase expression and potentiates apico-basal Ca2+flux in MDCK cells. Am J Physiol Renal Physiol 2004; 286:F363-9. [PMID: 14583431 DOI: 10.1152/ajprenal.00076.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plasma membrane Ca2+-ATPases (PMCAs) are a ubiquitous system for the expulsion of Ca2+from eukaryotic cells. In tight monolayers of polarized Madin-Darby canine kidney (MDCK) cells representing a distal kidney tubule model, PMCAs are responsible for about one-third of the vectorial Ca2+transport under resting conditions, with the remainder being provided by the Na+/Ca2+exchanger. Vitamin D3(VitD) is known to increase PMCA expression and activity in Ca2+-transporting tissues such as the intestine, as well as in osteoblasts and Madin-Darby bovine kidney epithelial cells. We found that VitD upregulated the expression of the PMCAs (mainly PMCA4b) in MDCK cell lysates at the RNA and protein level in a time- and dose-dependent manner. Interestingly, VitD caused a decrease of the PMCAs in the apical plasma membrane fraction and a concomitant increase of the pumps in the basolateral membrane. Functional studies demonstrated that transcellular45Ca2+flux from the apical-to-basolateral compartment was significantly enhanced by VitD. These findings demonstrate that VitD is a positive regulator of the PMCAs in MDCK epithelial cells. The correlation of decreased apical/increased basolateral expression of the PMCAs with an increase in transcellular Ca2+flux from the apical (urine) toward the basolateral (blood) compartment indicates the physiological relevance of VitD function in kidney tubular Ca2+reabsorption.
Collapse
Affiliation(s)
- Sertac N Kip
- Department of Biochemistry, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
43
|
Smets I, Caplanusi A, Despa S, Molnar Z, Radu M, VandeVen M, Ameloot M, Steels P. Ca2+ uptake in mitochondria occurs via the reverse action of the Na+/Ca2+ exchanger in metabolically inhibited MDCK cells. Am J Physiol Renal Physiol 2003; 286:F784-94. [PMID: 14665432 DOI: 10.1152/ajprenal.00284.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In ischemic or hypoxic tissues, elevated Ca2+ levels have emerged as one of the main damaging agents among other Ca2+-independent mechanisms of cellular injury. Because mitochondria, besides the endoplasmic reticulum, play a key role in the maintainance of cellular Ca2+ homeostasis, alterations in the mitochondrial Ca2+ content ([Ca2+]m) were monitored in addition to changes in cytosolic Ca2+ concentration ([Ca2+]i) during metabolic inhibition (MI) in renal epithelial Madin-Darby canine kidney (MDCK) cells. [Ca2+]i and [Ca2+]m were monitored via, respectively, fura 2 and rhod 2 measurements. MI induced an increase in [Ca2+]i reaching 631+/-78 nM in approximately 20 min, followed by a decrease to 118+/-9 nM in the next approximately 25 min. A pronounced drop in cellular ATP levels and a rapid increase in intracellular Na+ concentrations in the first 20 min of MI excluded Ca2+ efflux in the second phase via plasma membrane ATPases or Na+/Ca2+ exchangers (NCE). Mitochondrial rhod 2 intensities increased to 434+/-46% of the control value during MI, indicating that mitochondria sequester Ca2+ during MI. The mitochondrial potential (deltapsim) was lost in 20 min of MI, excluding mitochondrial Ca2+ uptake via the deltapsim-dependent mitochondrial Ca2+ uniporter after 20 min of MI. Under Na+-free conditions, or when CGP-37157, a specific inhibitor of the mitochondrial NCE, was used, no drop in [Ca2+]i was seen during MI, whereas the MI-induced increase in mitochondrial rhod 2 fluorescence was strongly reduced. To our knowledge, this study is the first to report that in metabolically inhibited renal epithelial cells mitochondria take up Ca2+ via the NCE acting in the reverse mode.
Collapse
Affiliation(s)
- Ilse Smets
- MBW-Dept. of Physiology, Limburgs Universitair Centrum/Transnationale Universiteit Limburg, Biomedisch Onderzoeksinstituut, Universitaire Campus Gebouw D, B-3590 Diepenbeek, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Diepens RJW, den Dekker E, Bens M, Weidema AF, Vandewalle A, Bindels RJM, Hoenderop JGJ. Characterization of a murine renal distal convoluted tubule cell line for the study of transcellular calcium transport. Am J Physiol Renal Physiol 2003; 286:F483-9. [PMID: 14625201 DOI: 10.1152/ajprenal.00231.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To unravel the molecular regulation of renal transcellular Ca(2+) transport, a murine distal convoluted tubule (mpkDCT) cell line derived from distal convoluted tubules (DCT) microdissected from a SV-PK/Tag transgenic mouse was characterized. This cell line originated from DCT only, as mRNA encoding for the DCT marker thiazide-sensitive Na(+)/Cl(-) cotransporter was expressed, whereas mRNA encoding for the connecting tubule and collecting duct marker aquaporin-2 was not detected, as determined by reverse-transcriptase PCR. mpkDCT cells expressed mRNA encoding the Ca(2+) channels TRPV5 and TRPV6 and other key players necessary for transcellular Ca(2+) transport, i.e., calbindin-D(9k), calbindin-D(28k), plasma membrane Ca(2+)-ATPase isoform 1b, and Na(+)/Ca(2+) exchanger 1. Primary cultures of DCT cells exhibited net transcellular Ca(2+) transport of 0.4 +/- 0.1 nmol.h(-1).cm(-2), whereas net transcellular Ca(2+) transport across mpkDCT cells was significantly higher at 2.4 +/- 0.4 nmol.h(-1).cm(-2). Transcellular Ca(2+) transport across mpkDCT cells was completely inhibited by ruthenium red, an inhibitor of TRPV5 and TRPV6, but not by the voltage-operated Ca(2+) channel inhibitors felodipine and verapamil. With the use of patch-clamp analysis, the IC(50) of ruthenium red on Na(+) currents was between the values measured for TRPV5- and TRPV6-expressing HEK 293 cells, suggesting that TRPV5 and/or TRPV6 is possibly active in mpkDCT cells. Forskolin in combination with IBMX, 1,25-dihydroxyvitamin D(3), and 1-deamino-8-d-arginine vasopressin increased transcellular Ca(2+) transport, whereas PMA and parathyroid hormone had no significant effect. In conclusion, the murine mpkDCT cell line provides a unique cell model in which to study the molecular regulation of transcellular Ca(2+) transport in the kidney in vitro.
Collapse
Affiliation(s)
- Robin J W Diepens
- Department of Physiology, Nijmegen Center for Molecualr Life Sciences, University Medical Center, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
45
|
Gao X, Wu L, O'Neil RG. Temperature-modulated diversity of TRPV4 channel gating: activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. J Biol Chem 2003; 278:27129-37. [PMID: 12738791 DOI: 10.1074/jbc.m302517200] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TRPV4 calcium-permeable channel was cloned from mouse kidney M-1 cells, and the effect of temperature modulation on channel gating/activation by physical and chemical signals was evaluated. A TRPV4 cDNA construct with a C-terminal V5 epitope was stably transfected into human embryonic kidney (HEK) 293 and Chinese hamster ovary cells resulting in high levels of expression at the plasma membrane. Channel activation was assessed from changes in calcium influx (fura-2 fluorescence measurements) or whole cell currents (patch clamp analysis). At room temperature (22-24 degrees C), exposure of TRPV4-transfected cells to hypotonic medium (225 mOsm/liter) or a non-protein kinase C (PKC)-activating phorbol ester derivative, 4alpha-phorbol 12,13-decanoate (100 nm), induces modest channel activation, whereas phorbol 12-myristate 13-acetate (100 nm), a PKC-activating phorbol ester, and shear stress (3-20 dyne/cm2) had minimal or no effect on channel activation. In contrast, at elevated temperatures (37 degrees C) the channel was rapidly activated by all stimuli. Inhibition of PKC by calphostin C (50 nm) or staurosporine (500 nm) abolished phorbol 12-myristate 13-acetate-induced activation of the channel without affecting the response to other stimuli. Ruthenium red (1 microm) effectively blocked the channel activity by all stimuli. It is concluded that temperature is a critical modulator of TRPV4 channel gating, leading to activation of the channel by a diverse range of microenvironmental chemical and physical signals utilizing a least two transduction pathways, one PKC-dependent and one PKC-independent. The convergence of multiple signals and transduction pathways on the same channel indicate that the channel functions as a molecular integrator of microenvironmental chemical and physical signals.
Collapse
Affiliation(s)
- Xiaochong Gao
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | |
Collapse
|
46
|
van Abel M, Hoenderop JGJ, van der Kemp AWCM, van Leeuwen JPTM, Bindels RJM. Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection. Am J Physiol Gastrointest Liver Physiol 2003; 285:G78-85. [PMID: 12620887 DOI: 10.1152/ajpgi.00036.2003] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The epithelial Ca2+ channels TRPV5 and TRPV6 are localized to the brush border membrane of intestinal cells and constitute the postulated rate-limiting entry step of active Ca2+ absorption. The aim of the present study was to investigate the hormonal regulation of these channels. To this end, the effect of 17beta-estradiol (17beta-E2), 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], and dietary Ca2+ on the expression of the duodenal Ca2+ transport proteins was investigated in vivo and analyzed using realtime quantitative PCR. Supplementation with 17beta-E2 increased duodenal gene expression of TRPV5 and TRPV6 but also calbindin-D9K and plasma membrane Ca2+-ATPase (PMCA1b) in ovariectomized rats. 25-Hydroxyvitamin D3-1alpha-hydroxylase (1alpha-OHase) knockout mice are characterized by hyperparathyroidism, rickets, hypocalcemia, and undetectable levels of 1,25(OH)2D3 and were used to study the 1,25(OH)2D3-dependency of the stimulatory effects of 17beta-E2. Treatment with 17beta-E2 upregulated mRNA levels of duodenal TRPV6 in these 1alpha-OHase knockout mice, which was accompanied by increased serum Ca2+ concentrations from 1.69 +/- 0.10 to 2.03 +/- 0.12 mM (P < 0.05). In addition, high dietary Ca2+ intake normalized serum Ca2+ in these mice and upregulated expression of genes encoding the duodenal Ca2+ transport proteins except for PMCA1b. Supplementation with 1,25(OH)2D3 resulted in increased expression of TRPV6, calbindin-D9K, and PMCA1b and normalization of serum Ca2+. Expression levels of duodenal TRPV5 mRNA are below detection limits in these 1alpha-OHase knockout mice, but supplementation with 1,25(OH)2D3 upregulated the expression to significant levels. In conclusion, TRPV5 and TRPV6 are regulated by 17beta-E2 and 1,25(OH)2D3, whereas dietary Ca2+ is positively involved in the regulation of TRPV6 only.
Collapse
Affiliation(s)
- Monique van Abel
- Department of Cell Physiology, Niujmegen Center for Molecular Life Sciences, University Medical Center Nijmegen, P. O. Box 9101, NL-6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Hirnet D, Olausson J, Fecher-Trost C, Bödding M, Nastainczyk W, Wissenbach U, Flockerzi V, Freichel M. The TRPV6 gene, cDNA and protein. Cell Calcium 2003; 33:509-18. [PMID: 12765696 DOI: 10.1016/s0143-4160(03)00066-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mouse TRPV6 gene is localized on chromosome 6 and extends over 15.66kb. The encoded protein comprises 727 amino acid residues with a calculated relative molecular mass of 83,210Da. TRPV6 is glycosylated and both variants, the glycosylated and the de-glycosylated proteins, are recognized by various polyclonal and monoclonal antibodies, which were raised against TRPV6. Like human TRPV6, mouse TRPV6 binds calmodulin in the presence, but not in the absence of Ca2+. TRPV6 is abundantly expressed in mouse pancreas and placenta, and to a much lesser extend in mouse stomach and kidney. No transcript expression was detected in poly(A)+RNA isolated from heart, brain, intestine, esophagus or aortic endothelial cells.
Collapse
Affiliation(s)
- Daniela Hirnet
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, D 66421 Homburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Inoue R, Hanano T, Shi J, Mori Y, Ito Y. Transient receptor potential protein as a novel non-voltage-gated Ca2+ entry channel involved in diverse pathophysiological functions. J Pharmacol Sci 2003; 91:271-6. [PMID: 12719655 DOI: 10.1254/jphs.91.271] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In both excitable and non-excitable cells, many chemical and physical stimuli elicit continuous Ca2+ influx through yet poorly understood pathways distinct from voltage-gated Ca2+ channels, leading to activation and modulation of various cellular functions. The molecular entities of these pathways have long been enigmatic, but important clues have been obtained from recent investigations on the Drosophila transient receptor potential (TRP) protein and its mammalian homologues. TRP proteins function as non-voltage-gated Ca2+ channels that are constitutively active or gated by a multitude of stimuli including light, pheromones, lipids, temperature, acid, osmolarity, and oxidative stress; and thus they may play divergent roles in cell pathophysiology. This short paper briefly overviews the current knowledge about these channels with a main focus on their possible linkage with in vivo function.
Collapse
Affiliation(s)
- Ryuji Inoue
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|