1
|
Nematisouldaragh D, Kirshenbaum E, Uzonna M, Kirshenbaum L, Rabinovich-Nikitin I. The Role of Retinoic-Acid-Related Orphan Receptor (RORs) in Cellular Homeostasis. Int J Mol Sci 2024; 25:11340. [PMID: 39518891 PMCID: PMC11545807 DOI: 10.3390/ijms252111340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Retinoic-acid-related orphan receptors (RORs) are transcription factors belonging to the nuclear receptor subfamily consisting of RORα, RORβ, and RORγ. By binding to the ROR response elements (ROREs) on target gene promoters, RORs regulate a wide variety of cellular processes, including autophagy, mitophagy, oxidative stress, and inflammation. The regulatory roles of RORs are observed in cardiac cells, hepatocytes, pulmonary epithelial cells, renal cells, immune cells, and cancer cells. A growing body of clinical and experimental evidence suggests that ROR expression levels are markedly reduced under different pathological and stress conditions, suggesting that RORs may play a critical role in the pathogenesis of a variety of disease states, including myocardial infarction, immune disorders, cancer, and metabolic syndrome. Reductions in RORs are also associated with inhibition of autophagy, increased reactive oxygen species (ROS), and increased cell death, underscoring the importance of RORs in the regulation of these processes. Herein, we highlight the relationship between RORs and homeostatic processes that influence cell viability. Understanding how these intricate processes are governed at the cellular level is of high scientific and clinical importance to develop new therapeutic strategies that modulate ROR expression and disease progression.
Collapse
Affiliation(s)
- Darya Nematisouldaragh
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Eryn Kirshenbaum
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Michael Uzonna
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Lorrie Kirshenbaum
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, MB R2H 2A6, Canada
| | - Inna Rabinovich-Nikitin
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
2
|
Hua X, Ficaro MK, Wallace NL, Dai J. Epidermal RORα Maintains Barrier Integrity and Prevents Allergic Inflammation by Regulating Late Differentiation and Lipid Metabolism. Int J Mol Sci 2024; 25:10698. [PMID: 39409027 PMCID: PMC11476758 DOI: 10.3390/ijms251910698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The skin epidermis provides a barrier that is imperative for preventing transepidermal water loss (TEWL) and protecting against environmental stimuli. The underlying molecular mechanisms for regulating barrier functions and sustaining its integrity remain unclear. RORα is a nuclear receptor highly expressed in the epidermis of normal skin. Clinical studies showed that the epidermal RORα expression is significantly reduced in the lesions of multiple inflammatory skin diseases. In this study, we investigate the central roles of RORα in stabilizing skin barrier function using mice with an epidermis-specific Rora gene deletion (RoraEKO). While lacking spontaneous skin lesions or dermatitis, RoraEKO mice exhibited an elevated TEWL rate and skin characteristics of barrier dysfunction. Immunostaining and Western blot analysis revealed low levels of cornified envelope proteins in the RoraEKO epidermis, suggesting disturbed late epidermal differentiation. In addition, an RNA-seq analysis showed the altered expression of genes related to "keratinization" and "lipid metabolism" in RORα deficient epidermis. A lipidomic analysis further uncovered an aberrant ceramide composition in the RoraEKO epidermis. Importantly, epidermal Rora ablation greatly exaggerated percutaneous allergic inflammatory responses to oxazolone in an allergic contact dermatitis (ACD) mouse model. Our results substantiate the essence of epidermal RORα in maintaining late keratinocyte differentiation and normal barrier function while suppressing cutaneous inflammation.
Collapse
Affiliation(s)
- Xiangmei Hua
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
| | - Maria K. Ficaro
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
| | - Nicole L. Wallace
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
| | - Jun Dai
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
- Carbone Cancer Center, The University of Wisconsin, Madison, WI 53705, USA
- Skin Disease Research Center, The University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
3
|
Howard JN, Levinger C, Deletsu S, Fromentin R, Chomont N, Bosque A. Isotretinoin promotes elimination of translation-competent HIV latent reservoirs in CD4T cells. PLoS Pathog 2024; 20:e1012601. [PMID: 39401241 PMCID: PMC11501018 DOI: 10.1371/journal.ppat.1012601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/24/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
Development of novel therapeutic strategies that reactivate latent HIV and sensitize reactivated cells to apoptosis is crucial towards elimination of the latent viral reservoir. Among the clinically relevant latency reversing agents (LRA) under investigation, the γc-cytokine IL-15 and the superagonist N-803 have been shown to reactivate latent HIV ex vivo and in vivo. However, their clinical benefit can be hindered by IL-15 promoting survival of infected cells. We previously identified a small molecule, HODHBt, that sensitizes latently infected cells to death upon reactivation with γc-cytokines through a STAT-dependent pathway. In here, we aimed to identify and evaluate FDA-approved compounds that could also sensitize HIV-infected cells to apoptosis. Using the Connectivity Map (CMap), we identified the retinol derivative 13-cis-retinoic acid (Isotretinoin) causes similar transcriptional changes as HODHBt. Isotretinoin enhances IL-15-mediated latency reversal without inducing proliferation of memory CD4 T cells. Ex vivo analysis of PBMCs from ACTG A5325, where Isotretinoin was administered to ART-suppressed people with HIV, showed that Isotretinoin treatment enhances IL-15-mediated latency reversal. Furthermore, we showed that a combination of IL-15 with Isotretinoin promotes the reduction of translation-competent reservoirs ex vivo. Mechanistically, combination of IL-15 and Isotretinoin increases caspase-3 activation specifically in HIV-infected cells but not uninfected cells. Our results suggest that Isotretinoin can be a novel approach to target and eliminate translation-competent HIV reservoirs.
Collapse
Affiliation(s)
- J. Natalie Howard
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington DC, United States of America
| | - Callie Levinger
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington DC, United States of America
| | - Selase Deletsu
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington DC, United States of America
| | - Rémi Fromentin
- Centre de recherche du CHUM et Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
| | - Nicolas Chomont
- Centre de recherche du CHUM et Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
| | - Alberto Bosque
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington DC, United States of America
| | | |
Collapse
|
4
|
Jiang L, Liu X, Liang X, Dai S, Wei H, Guo M, Chen Z, Xiao D, Chen Y. Structural characterization of the DNA binding mechanism of retinoic acid-related orphan receptor gamma. Structure 2024; 32:467-475.e3. [PMID: 38309263 DOI: 10.1016/j.str.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
Retinoic acid-related orphan receptor gamma (RORγ) plays critical roles in regulating various biological processes and has been linked to immunodeficiency disorders and cancers. DNA recognition is essential for RORγ to exert its functions. However, the underlying mechanism of the DNA binding by RORγ remains unclear. In this study, we present the crystal structure of the complex of RORγ1 DNA-binding domain (RORγ1-DBD)/direct repeat DNA element DR2 at 2.3 Å resolution. We demonstrate that RORγ1-DBD binds the DR2 motif as a homodimer, with the C-terminal extension (CTE) region of RORγ1-DBD contributing to the DNA recognition and the formation of dimeric interface. Further studies reveal that REV-ERB-DBD and RXR-DBD, also bind the DR2 site as a homodimer, while NR4A2-DBD binds DR2 as a monomer. Our research uncovers a binding mechanism of RORγ1 to the DR2 site and provides insights into the biological functions of RORγ1 and the broader RORs subfamily.
Collapse
Affiliation(s)
- Longying Jiang
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xueke Liu
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xujun Liang
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuyan Dai
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hudie Wei
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Guo
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhuchu Chen
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yongheng Chen
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Shen Y, Tang Q, Wang J, Zhou Z, Yin Y, Zhang Y, Zheng W, Wang X, Chen G, Sun J, Chen L. Targeting RORα in macrophages to boost diabetic bone regeneration. Cell Prolif 2023; 56:e13474. [PMID: 37051760 PMCID: PMC10542986 DOI: 10.1111/cpr.13474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Diabetes mellitus (DM) has become a serious threat to human health. Bone regeneration deficiency and nonunion caused by DM is perceived as a worldwide epidemic, with a very high socioeconomic impact on public health. Here, we find that targeted activation of retinoic acid-related orphan receptor α (RORα) by SR1078 in the early stage of bone defect repair can significantly promote in situ bone regeneration of DM rats. Bone regeneration relies on the activation of macrophage RORα in the early bone repair, but RORα of DM rats fails to upregulation as hyperglycemic inflammatory microenvironment induced IGF1-AMPK signalling deficiency. Mechanistic investigations suggest that RORα is vital for macrophage-induced migration and proliferation of bone mesenchymal stem cells (BMSCs) via a CCL3/IL-6 depending manner. In summary, our study identifies RORα expressed in macrophages during the early stage of bone defect repair is crucial for in situ bone regeneration, and offers a novel strategy for bone regeneration therapy and fracture repair in DM patients.
Collapse
Affiliation(s)
- Yufeng Shen
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
- Department of Stomatology, The First Affiliated Hospital, School of MedicineShihezi UniversityShihezi 832000China
| | - Qingming Tang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Jiajia Wang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Zheng Zhou
- Department of Stomatology, The First Affiliated Hospital, School of MedicineShihezi UniversityShihezi 832000China
| | - Ying Yin
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Yifan Zhang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Wenhao Zheng
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Xinyuan Wang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Guangjin Chen
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Jiwei Sun
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Lili Chen
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| |
Collapse
|
6
|
Hua X, Blosch CD, Dorsey H, Ficaro MK, Wallace NL, Hsung RP, Dai J. Epidermal Loss of RORα Enhances Skin Inflammation in a MC903-Induced Mouse Model of Atopic Dermatitis. Int J Mol Sci 2023; 24:10241. [PMID: 37373387 DOI: 10.3390/ijms241210241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease featuring skin barrier dysfunction and immune dysregulation. Previously, we reported that the retinoid-related orphan nuclear receptor RORα was highly expressed in the epidermis of normal skin. We also found that it positively regulated the expression of differentiation markers and skin barrier-related genes in human keratinocytes. In contrast, epidermal RORα expression was downregulated in the skin lesions of several inflammatory skin diseases, including AD. In this study, we generated mouse strains with epidermis-specific Rora ablation to understand the roles of epidermal RORα in regulating AD pathogenesis. Although Rora deficiency did not cause overt macroscopic skin abnormalities at the steady state, it greatly amplified MC903-elicited AD-like symptoms by intensifying skin scaliness, increasing epidermal hyperproliferation and barrier impairment, and elevating dermal immune infiltrates, proinflammatory cytokines, and chemokines. Despite the normal appearance at the steady state, Rora-deficient skin showed microscopic abnormalities, including mild epidermal hyperplasia, increased TEWL, and elevated mRNA expression of Krt16, Sprr2a, and Tslp genes, indicating subclinical impairment of epidermal barrier functions. Our results substantiate the importance of epidermal RORα in partially suppressing AD development by maintaining normal keratinocyte differentiation and skin barrier function.
Collapse
Affiliation(s)
- Xiangmei Hua
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Conrad Dean Blosch
- Biomedical Research Model Services, University of Wisconsin, Madison, WI 53705, USA
| | - Hannah Dorsey
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Maria K Ficaro
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Nicole L Wallace
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Richard P Hsung
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Jun Dai
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
7
|
Shuai Y, Liu B, Rong L, Shao B, Chen B, Jin L. OSGIN2 regulates osteogenesis of jawbone BMSCs in osteoporotic rats. BMC Mol Cell Biol 2022; 23:22. [PMID: 35729522 PMCID: PMC9215015 DOI: 10.1186/s12860-022-00423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background Augmentation of oxidative stress after estrogen deficiency leading to functional deficiency of jawbone bone marrow mesenchymal stem cells (BMSCs) causes jawbone loss in osteoporosis. OSGIN2, an oxidative stress induced factor, has been found to be associated with skeletal diseases. This study aims to investigate the function of OSGIN2 in jawbone BMSCs of osteoporotic rats. Jawbone BMSCs were used. Results Oxidative stress was increased in jawbone BMSCs of osteoporotic rats, meanwhile OSGIN2 was also up-regulated. Osteogenesis of jawbone BMSCs was declined under oxidative stress, while silence of OSGIN2 ameliorated the osteogenic deficiency. RORα and its downstream osteogenic markers (BSP and OCN) decreased under oxidative stress, while knocking-down of OSGIN2 restored their expressions. Inhibition of OSGIN2 improved the osteogenesis of jawbone BMSCs under oxidative stress, whereas down-regulation of RORα offset the effect. Intra-jawbone infusion of si-OSGIN2 rescued jawbone loss and promoted new bone deposition of osteoporotic rats. Conclusions Oxidative stress is redundant in osteoporosis, which results in up-regulation of OSGIN2. OSGIN2 restricts osteogenic ability of jawbone BMSCs via regulating RORα, while silencing of OSGIN2 rescues the osteogenic deficiency of osteoporotic rats. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-022-00423-8.
Collapse
|
8
|
Guo X, Wang H, Xu J, Hua H. Impacts of vitamin A deficiency on biological rhythms: Insights from the literature. Front Nutr 2022; 9:886244. [PMID: 36466383 PMCID: PMC9718491 DOI: 10.3389/fnut.2022.886244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/02/2022] [Indexed: 03/21/2024] Open
Abstract
Vitamin A is essential for brain function, in addition to its important roles in vision, immunity, and reproduction. Previous studies have shown that retinoic acid (RA), the bioactive form of vitamin A, is involved in the regulation of various intracellular responses related to biological rhythms. RA is reported to affect the circadian rhythm by binding to RA receptors, such as receptors in the circadian feedback loops in the mammalian suprachiasmatic nucleus. However, evidence of the impacts of vitamin A deficiency (VAD) on biological rhythms is limited, and most of the related studies were conducted on animals. In this review, we described the physiological functions of biological rhythms and physiological pathways/molecular mechanisms regulating the biological rhythms. We then discussed the current understanding of the associations of VAD with biological rhythm disorders/diseases (sleep disorders, impairments in learning/memory, emotional disorders, and other immune or metabolism diseases) and summarized the currently proposed mechanisms (mainly by retinoid nuclear receptors and related proteins) for the associations. This review may help recognize the role of VAD in biological rhythm disorders and stimulate clinical or epidemiological studies to confirm the findings of related animal studies.
Collapse
Affiliation(s)
- Xiangrong Guo
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- MOE-Shanghai Key Lab of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Xu
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Hua
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Maduranga Karunarathne WAH, Choi YH, Park SR, Lee CM, Kim GY. Bisphenol A inhibits osteogenic activity and causes bone resorption via the activation of retinoic acid-related orphan receptor α. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129458. [PMID: 35780740 DOI: 10.1016/j.jhazmat.2022.129458] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) has deleterious effects on bone metabolism; however, its underlying mechanism has not yet been comprehensively understood. Here, we investigated whether RORα plays an important role in BPA-induced bone resorption both in vitro and in vivo. We found that BPA (0.1-1 μM) inhibited osteogenic activity (including ALP activity and mineralization), decreased the expression levels of osteoblast markers (such as RUNX2, OSX, and ALP) in human MG-63 osteoblast-like osteosarcoma cells, and inhibited spontaneous vertebral formation in zebrafish larvae. Additionally, BPA diminished β-glycerophosphate-induced osteoblast differentiation and vertebral formation, while simultaneously downregulating the expression levels of RUNX2a, OSX, and ALP. Furthermore, molecular docking data showed that a hydroxyl group of BPA dominantly binds to the H3 (ALA70) and/or H5 (ARG107) of RORα-ligand binding domain with hydrogen bonding (ALA330 and/or ARG367 in the full length of RORα, respectively), which another hydroxyl group of BPA fits into H3, H6, and H7 elements with non-covalent interactions, resulting in the activation of RORα. However, an RORα inverse agonist potently inhibited BPA-induced anti-osteogenic activity and vertebral formation in zebrafish larvae, concomitant with inhibition of osteogenic gene expression. Overall, our findings reveal that BPA inhibits osteoblast differentiation and bone formation by activating RORα. These results suggest that BPA exposure (0.1-1 μM) can cause various bone-resorptive diseases, such as osteoporosis.
Collapse
Affiliation(s)
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Sang Rul Park
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Chang-Min Lee
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
10
|
Pregnane X receptor (PXR) represses osteoblast differentiation through repression of the Hedgehog signaling pathway. Exp Cell Res 2022; 416:113156. [PMID: 35421365 DOI: 10.1016/j.yexcr.2022.113156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022]
Abstract
The pregnane X receptor (PXR, NR1I2) belongs to the nuclear receptor family and functions as a xenobiotic and endobiotic sensor by binding to various molecules through its relatively flexible ligand-binding domain. In addition to these well-known canonical roles, we previously reported that PXR represses osteoblast differentiation. However, the mechanisms underlying the PXR-mediated repression of osteoblast differentiation remains unknown. In this study, we analyzed the changes in global gene expression profiles induced by PXR in calvarial osteoblasts cultured in standard fetal bovine serum (in which PXR induces repression of differentiation), and in those cultured in charcoal-stripped fetal bovine serum (in which PXR does not induce repression of differentiation). The comparison revealed that PXR attenuated the Hedgehog-mediated signaling in culture conditions that induced PXR-mediated repression of differentiation. Real-time PCR analysis showed that PXR repressed the Hedgehog signaling-induced genes such as Gli1 and Hhip, and conversely induced the Hedgehog signaling-repressed genes such as Cdon, Boc, and Gas1. Activation of Smo-mediated signaling in osteoblasts following treatment with a Smo agonist (SAG) significantly restored Gli-mediated transcriptional activity and osteoblast differentiation. Our results demonstrate the osteoblast-autonomous effects of PXR and identify a novel regulation of Hedgehog signaling by nuclear receptors.
Collapse
|
11
|
Ma S, Patel SA, Abe Y, Chen N, Patel PR, Cho BS, Abbasi N, Zeng S, Schnabl B, Chang JT, Huang WJM. RORγt phosphorylation protects against T cell-mediated inflammation. Cell Rep 2022; 38:110520. [PMID: 35294872 PMCID: PMC8982147 DOI: 10.1016/j.celrep.2022.110520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/03/2022] [Accepted: 02/18/2022] [Indexed: 01/13/2023] Open
Abstract
RAR-related orphan receptor-γ (RORγt) is an essential transcription factor for thymic T cell development, secondary lymphoid tissue organogenesis, and peripheral immune cell differentiation. Serine 182 phosphorylation is a major post-translational modification (PTM) on RORγt. However, the in vivo contribution of this PTM in health and disease settings is unclear. We report that this PTM is not involved in thymic T cell development and effector T cell differentiation. Instead, it is a critical regulator of inflammation downstream of IL-1β signaling and extracellular signal regulated kinases (ERKs) activation. ERKs phosphorylation of serine 182 on RORgt serves to simultaneously restrict Th17 hyperactivation and promote anti-inflammatory cytokine IL-10 production in RORγt+ Treg cells. Phospho-null RORγtS182A knockin mice experience exacerbated inflammation in models of colitis and experimental autoimmune encephalomyelitis (EAE). In summary, the IL-1β-ERK-RORγtS182 circuit protects against T cell-mediated inflammation and provides potential therapeutic targets to combat autoimmune diseases. A balanced mucosal T cell population is essential for tissue homeostasis and wound healing post-injury and infection. In this study, Ma et al. report a surprising role for the phosphorylated transcription factor RORγt as a cell-intrinsic regulator for maintaining mucosal T cell heterogeneity and promoting inflammation resolution.
Collapse
Affiliation(s)
- Shengyun Ma
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Shefali A Patel
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yohei Abe
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Nicholas Chen
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Parth R Patel
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Benjamin S Cho
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Nazia Abbasi
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Suling Zeng
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - John T Chang
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Wendy Jia Men Huang
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Matsuoka H, Michihara A. Identification of the RORα Transcriptional Network Contributes to the Search for Therapeutic Targets in Atherosclerosis. Biol Pharm Bull 2021; 44:1607-1616. [PMID: 34719639 DOI: 10.1248/bpb.b21-00426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The retinoic acid receptor-related orphan receptor α (RORα) is involved in the regulation of several physiological processes, including development, metabolism, and circadian rhythm. RORα-deficient mice display profound atherosclerosis, in which hypoalphalipoproteinemia is reportedly associated with decreased plasma levels of high-density lipoprotein, increased levels of inflammatory cytokines, and ischemia/reperfusion-induced damage. The recent characterization of endogenous ligands (including cholesterol, oxysterols, provitamin D3, and their derivatives), mediators, and initiation complexes associated with the transcriptional regulation of these orphan nuclear receptors has facilitated the development of synthetic ligands. These findings have also highlighted the potential of application of RORα as a therapeutic target for several diseases, including diabetes, dyslipidemia, and atherosclerosis. In this review, the current literature related to the structure and function of RORα, its genetic inter-individual differences, and its potential as a therapeutic target in atherosclerosis is discussed.
Collapse
Affiliation(s)
- Hiroshi Matsuoka
- Laboratory of Genomic Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| | - Akihiro Michihara
- Laboratory of Genomic Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| |
Collapse
|
13
|
Meng H, Ruan J, Tian X, Li L, Chen W, Meng F. High retinoic acid receptor-related orphan receptor A gene expression in peripheral blood leukocytes may be related to acute myocardial infarction. J Int Med Res 2021; 49:3000605211019663. [PMID: 34101510 PMCID: PMC8191083 DOI: 10.1177/03000605211019663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE This study aimed to investigate whether differential expression of the retinoic acid receptor-related orphan receptor A (RORA) gene is related to occurrence of acute myocardial infarction (AMI). METHODS This was a retrospective study. White blood cells of 93 patients with acute myocardial infarction and 74 patients with stable coronary artery disease were collected. Reverse transcription quantitative polymerase chain reaction and western blotting were used to measure RORA mRNA and protein expression, respectively. RESULTS RORA mRNA expression levels in peripheral blood leukocytes in patients with AMI were 1.57 times higher than those in patients with stable coronary artery disease. Protein RORA levels in peripheral blood of patients with AMI were increased. Binary logistic regression analysis showed that high expression of RORA was an independent risk factor for AMI, and it increased the risk of AMI by 2.990 times. CONCLUSION RORA expression levels in patients with AMI is significantly higher than that in patients with stable coronary artery disease. High expression of RORA is related to AMI and it may be an independent risk factor for AMI.
Collapse
Affiliation(s)
- Heyu Meng
- Department of Cardiology, Third Hospital of Jilin University, Jilin Provincial Cardiovascular Research Institute, Jilin, China
| | - Jianjun Ruan
- Department of Cardiology, Third Hospital of Jilin University, Jilin Provincial Cardiovascular Research Institute, Jilin, China
| | - Xiaomin Tian
- Department of Cardiology, Third Hospital of Jilin University, Jilin Provincial Cardiovascular Research Institute, Jilin, China
| | - Lihong Li
- Department of Cardiology, Third Hospital of Jilin University, Jilin Provincial Cardiovascular Research Institute, Jilin, China
| | - Weiwei Chen
- Department of Cardiology, Third Hospital of Jilin University, Jilin Provincial Cardiovascular Research Institute, Jilin, China
| | - Fanbo Meng
- Department of Cardiology, Third Hospital of Jilin University, Jilin Provincial Cardiovascular Research Institute, Jilin, China
| |
Collapse
|
14
|
Gamba P, Giannelli S, Staurenghi E, Testa G, Sottero B, Biasi F, Poli G, Leonarduzzi G. The Controversial Role of 24-S-Hydroxycholesterol in Alzheimer's Disease. Antioxidants (Basel) 2021; 10:antiox10050740. [PMID: 34067119 PMCID: PMC8151638 DOI: 10.3390/antiox10050740] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/19/2023] Open
Abstract
The development of Alzheimer’s disease (AD) is influenced by several events, among which the dysregulation of cholesterol metabolism in the brain plays a major role. Maintenance of brain cholesterol homeostasis is essential for neuronal functioning and brain development. To maintain the steady-state level, excess brain cholesterol is converted into the more hydrophilic metabolite 24-S-hydroxycholesterol (24-OHC), also called cerebrosterol, by the neuron-specific enzyme CYP46A1. A growing bulk of evidence suggests that cholesterol oxidation products, named oxysterols, are the link connecting altered cholesterol metabolism to AD. It has been shown that the levels of some oxysterols, including 27-hydroxycholesterol, 7β-hydroxycholesterol and 7-ketocholesterol, significantly increase in AD brains contributing to disease progression. In contrast, 24-OHC levels decrease, likely due to neuronal loss. Among the different brain oxysterols, 24-OHC is certainly the one whose role is most controversial. It is the dominant oxysterol in the brain and evidence shows that it represents a signaling molecule of great importance for brain function. However, numerous studies highlighted the potential role of 24-OHC in favoring AD development, since it promotes neuroinflammation, amyloid β (Aβ) peptide production, oxidative stress and cell death. In parallel, 24-OHC has been shown to exert several beneficial effects against AD progression, such as preventing tau hyperphosphorylation and Aβ production. In this review we focus on the current knowledge of the controversial role of 24-OHC in AD pathogenesis, reporting a detailed overview of the findings about its levels in different AD biological samples and its noxious or neuroprotective effects in the brain. Given the relevant role of 24-OHC in AD pathophysiology, its targeting could be useful for disease prevention or slowing down its progression.
Collapse
|
15
|
Ma H, Kang J, Fan W, He H, Huang F. ROR: Nuclear Receptor for Melatonin or Not? Molecules 2021; 26:molecules26092693. [PMID: 34064466 PMCID: PMC8124216 DOI: 10.3390/molecules26092693] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Whether the retinoic acid-related orphan receptor (ROR) is a nuclear receptor of melatonin remains controversial. ROR is inextricably linked to melatonin in terms of its expression, function, and mechanism of action. Additionally, studies have illustrated that melatonin functions analogous to ROR ligands, thereby modulating the transcriptional activity of ROR. However, studies supporting these interactions have since been withdrawn. Furthermore, recent crystallographic evidence does not support the view that ROR is a nuclear receptor of melatonin. Some other studies have proposed that melatonin indirectly regulates ROR activity rather than directly binding to ROR. This review aims to delve into the complex relationship of the ROR receptor with melatonin in terms of its structure, expression, function, and mechanism. Thus, we provide the latest evidence and views on direct binding as well as indirect regulation of ROR by melatonin, dissecting both viewpoints in-depth to provide a more comprehensive perspective on this issue.
Collapse
Affiliation(s)
- Haozhen Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Jun Kang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
- Correspondence: (H.H.); (F.H.); Tel.: +86-20-8733-0570 (H.H. & F.H.)
| | - Fang Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Correspondence: (H.H.); (F.H.); Tel.: +86-20-8733-0570 (H.H. & F.H.)
| |
Collapse
|
16
|
Kang J, Chen H, Zhang F, Yan T, Fan W, Jiang L, He H, Huang F. RORα Regulates Odontoblastic Differentiation and Mediates the Pro-Odontogenic Effect of Melatonin on Dental Papilla Cells. Molecules 2021; 26:1098. [PMID: 33669807 PMCID: PMC7922395 DOI: 10.3390/molecules26041098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/28/2022] Open
Abstract
Dental papilla cells (DPCs), precursors of odontoblasts, are considered promising seed cells for tissue engineering. Emerging evidence suggests that melatonin promotes odontoblastic differentiation of DPCs and affects tooth development, although the precise mechanisms remain unknown. Retinoid acid receptor-related orphan receptor α (RORα) is a nuclear receptor for melatonin that plays a critical role in cell differentiation and embryonic development. This study aimed to explore the role of RORα in odontoblastic differentiation and determine whether melatonin exerts its pro-odontogenic effect via RORα. Herein, we observed that RORα was expressed in DPCs and was significantly increased during odontoblastic differentiation in vitro and in vivo. The overexpression of RORα upregulated the expression of odontogenic markers, alkaline phosphatase (ALP) activity and mineralized nodules formation (p < 0.05). In contrast, odontoblastic differentiation of DPCs was suppressed by RORα knockdown. Moreover, we found that melatonin elevated the expression of odontogenic markers, which was accompanied by the upregulation of RORα (p < 0.001). Utilising small interfering RNA, we further demonstrated that RORα inhibition attenuated melatonin-induced odontogenic gene expression, ALP activity and matrix mineralisation (p < 0.01). Collectively, these results provide the first evidence that RORα can promote odontoblastic differentiation of DPCs and mediate the pro-odontogenic effect of melatonin.
Collapse
Affiliation(s)
- Jun Kang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (J.K.); (H.C.); (F.Z.); (T.Y.); (W.F.); (L.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Haoling Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (J.K.); (H.C.); (F.Z.); (T.Y.); (W.F.); (L.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Fuping Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (J.K.); (H.C.); (F.Z.); (T.Y.); (W.F.); (L.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Tong Yan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (J.K.); (H.C.); (F.Z.); (T.Y.); (W.F.); (L.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (J.K.); (H.C.); (F.Z.); (T.Y.); (W.F.); (L.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Liulin Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (J.K.); (H.C.); (F.Z.); (T.Y.); (W.F.); (L.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Fang Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (J.K.); (H.C.); (F.Z.); (T.Y.); (W.F.); (L.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| |
Collapse
|
17
|
Samanta S. Potential Impacts of Prebiotics and Probiotics in Cancer Prevention. Anticancer Agents Med Chem 2020; 22:605-628. [PMID: 33305713 DOI: 10.2174/1871520621999201210220442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is a serious problem throughout the world. The pathophysiology of cancer is multifactorial and is also related to gut microbiota. Intestinal microbes are the useful resident of the healthy human. They play various aspects of human health including nutritional biotransformation, flushing of the pathogens, toxin neutralization, immune response, and onco-suppression. Disruption in the interactions among the gut microbiota, intestinal epithelium, and the host immune system are associated with gastrointestinal disorders, neurodegenerative diseases, metabolic syndrome, and cancer. Probiotic bacteria (Lactobacillus spp., Bifidobacterium spp.) have been regarded as beneficial to health and shown to play a significant role in immunomodulation and displayed preventive role against obesity, diabetes, liver disease, inflammatory bowel disease, tumor progression, and cancer. OBJECTIVE The involvement of gut microorganisms in cancer development and prevention has been recognized as a balancing factor. The events of dysbiosis emphasize metabolic disorder and carcinogenesis. The gut flora potentiates immunomodulation and minimizes the limitations of usual chemotherapy. The significant role of prebiotics and probiotics on the improvement of immunomodulation and antitumor properties has been considered. METHODS I had reviewed the literature on the multidimensional activities of prebiotics and probiotics from the NCBI website database PubMed, Springer Nature, Science Direct (Elsevier), Google Scholar database to search relevant articles. Specifically, I had focused on the role of prebiotics and probiotics in immunomodulation and cancer prevention. RESULTS Prebiotics are the nondigestible fermentable sugars that selectively influence the growth of probiotic organisms that exert immunomodulation over the cancerous growth. The oncostatic properties of bacteria are mediated through the recruitment of cytotoxic T cells, natural killer cells, and oxidative stress-induced apoptosis in the tumor microenvironment. Moreover, approaches have also been taken to use probiotics as an adjuvant in cancer therapy. CONCLUSION The present review has indicated that dysbiosis is the crucial factor in many pathological situations including cancer. Applications of prebiotics and probiotics exhibit the immune-surveillance as oncostatic effects. These events increase the possibilities of new therapeutic strategies for cancer prevention.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, Paschim Medinipur, 721101, West Bengal,. India
| |
Collapse
|
18
|
L'homme L, Sermikli BP, Molendi-Coste O, Fleury S, Quemener S, Le Maître M, Joseph ML, Pineau L, Duhem C, Gross B, Vallez E, Tailleux A, Staels B, Dombrowicz D. Deletion of the nuclear receptor RORα in macrophages does not modify the development of obesity, insulin resistance and NASH. Sci Rep 2020; 10:21095. [PMID: 33273527 PMCID: PMC7713245 DOI: 10.1038/s41598-020-77858-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/02/2020] [Indexed: 11/09/2022] Open
Abstract
Retinoic acid receptor-related orphan receptor-alpha (RORα) is a transcription factor from the nuclear receptor family expressed by immune cells and involved in the development of obesity, insulin resistance (IR) and non-alcoholic steatohepatitis (NASH). It was recently reported that mice deficient for RORα in macrophages develop more severe NASH upon high fat diet (HFD) feeding due to altered Kupffer cell function. To better understand the role of RORα in obesity and IR, we independently generated a macrophage RORα-deficient mouse line. We report that RORα deletion in macrophages does not impact on HFD-induced obesity and IR. Surprisingly, we did not confirm an effect on NASH development upon HFD feeding nor in the more severe and obesity-independent choline-deficient, L-amino acid-defined diet model. Our results therefore show that RORα deletion in macrophages does not alter the development of obesity and IR and question its role in NASH.
Collapse
Affiliation(s)
- Laurent L'homme
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Benan Pelin Sermikli
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Olivier Molendi-Coste
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Sébastien Fleury
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Sandrine Quemener
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Mathilde Le Maître
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Marie-Laure Joseph
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Laurent Pineau
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Christian Duhem
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Barbara Gross
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Emmanuelle Vallez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Anne Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - David Dombrowicz
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France.
| |
Collapse
|
19
|
Wang Y, Yutuc E, Griffiths WJ. Neuro-oxysterols and neuro-sterols as ligands to nuclear receptors, GPCRs, ligand-gated ion channels and other protein receptors. Br J Pharmacol 2020; 178:3176-3193. [PMID: 32621622 DOI: 10.1111/bph.15191] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022] Open
Abstract
The brain is the most cholesterol rich organ in the body containing about 25% of the body's free cholesterol. Cholesterol cannot pass the blood-brain barrier and be imported or exported; instead, it is synthesised in situ and metabolised to oxysterols, oxidised forms of cholesterol, which can pass the blood-brain barrier. 24S-Hydroxycholesterol is the dominant oxysterol in the brain after parturition, but during development, a myriad of other oxysterols are produced, which persist as minor oxysterols after birth. During both development and in later life, sterols and oxysterols interact with a variety of different receptors, including nuclear receptors, membrane bound GPCRs, the oxysterol/sterol sensing proteins INSIG and SCAP, and the ligand-gated ion channel NMDA receptors found in nerve cells. In this review, we summarise the different oxysterols and sterols found in the CNS whose biological activity is transmitted via these different classes of protein receptors. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Yuqin Wang
- Swansea University Medical School, Swansea, UK
| | - Eylan Yutuc
- Swansea University Medical School, Swansea, UK
| | | |
Collapse
|
20
|
RORα Regulates Cholesterol Metabolism of CD8 + T Cells for Anticancer Immunity. Cancers (Basel) 2020; 12:cancers12071733. [PMID: 32610705 PMCID: PMC7407186 DOI: 10.3390/cancers12071733] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Retinoic acid-related orphan receptor α (RORα) functions as a transcription factor for various biological processes, including circadian rhythm, inflammation, cancer, and lipid metabolism. Here, we demonstrate that RORα is crucial for maintaining cholesterol homeostasis in CD8+ T cells by attenuating NF-κB transcriptional activity. Cholesterol sulfate, the established natural agonist of RORα, exhibits cellular cytotoxicity on, and increased effector responses in, CD8+ T cells. Transcript analysis reveals that the suppression of RORα leads to the upregulation of NF-κB target genes in T cells. Chromatin immunoprecipitation analysis was used to determine the corecruitment of RORα and histone deacetylase (HDAC) on NF-κB target promoters and the subsequent dismissal of coactivators for transcriptional repression. We demonstrate that RORα/HDAC-mediated attenuation of NF-κB signaling controls the balance of cholesterol metabolism in CD8+ T cells, and that therapeutic strategies targeting this epigenetic regulation could be beneficial to the treatment of solid tumors including colon cancers.
Collapse
|
21
|
Gege C, Albers M, Kinzel O, Kleymann G, Schlüter T, Steeneck C, Hoffmann T, Xue X, Cummings MD, Spurlino J, Milligan C, Fourie AM, Edwards JP, Leonard K, Coe K, Scott B, Pippel D, Goldberg SD. Optimization and biological evaluation of thiazole-bis-amide inverse agonists of RORγt. Bioorg Med Chem Lett 2020; 30:127205. [DOI: 10.1016/j.bmcl.2020.127205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/22/2023]
|
22
|
Retinoid-related orphan nuclear receptor alpha (RORα)-deficient mice display morphological testicular defects. J Transl Med 2019; 99:1835-1849. [PMID: 31409890 DOI: 10.1038/s41374-019-0299-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
The role of retinoid-related orphan receptor, one of the transcription factors reported in testis, in testicular function is unclear, so this study was performed to evaluate the qualitative and quantitative changes in the testicular structure of RORα-deficient mice using light-, electron-microscopy, and immunohistochemistry. Among the most striking alterations observed in the testis of the mutant mice were hypospermatogenesis, marked reduction in volume proportions of interstitial tissues and number of Leydig cells, significant decrease in the diameter of seminiferous tubules and height of their epithelium, vacuolation in the epithelium of the seminiferous tubules with occurrence of mast cells, appearance of delay spermiation signs, and changes in sperm morphology. Moreover, the testis of mutant mice showed symplasts, in addition to appearance of multinucleated giant bromophenol-positive cells. ATPase activity was limited to spermatogonia and some primary spermatocytes, with higher alkaline phosphatase expression. Stronger vimentin reaction was immunolocalized to spermatogonia, spermatids, Leydig cells, and Sertoli cells. The expression of CD117 (C-kit, stem cell growth factor receptor) was limited to spermatogonia, primary spermatocytes, and Leydig cells. Seminiferous tubules showed overexpression of vascular endothelial growth factor (VEGF). Transmission electron microscopy examination of the mutant mice revealed abnormal Sertoli cells, hypertrophied spermatogonia, spermatocytes with degenerated mitochondria, and incompletely developed sperms. In conclusion, RORα is one of the essential proteins that regulate testicular structure.
Collapse
|
23
|
Sakai K, Yamamoto Y, Ikeuchi T. Vertebrates originally possess four functional subtypes of G protein-coupled melatonin receptor. Sci Rep 2019; 9:9465. [PMID: 31263128 PMCID: PMC6602942 DOI: 10.1038/s41598-019-45925-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/18/2019] [Indexed: 01/28/2023] Open
Abstract
Melatonin receptors (MTNRs) belonging to the G protein-coupled receptor family are considered to consist of three subtypes in vertebrates: MTNR1a, MTNR1b and MTNR1c. Additionally, MTNR1a-like genes have been identified in teleostean species as a fish-specific subtype of MTNR1a. However, similar molecules to this MTNR1a-like gene can be found in some reptiles upon searching the DNA database. We hypothesized that a vertebrate can essentially have four functional subtypes of MTNR as ohnologs. Thus, in the present study we examined the molecular phylogeny, expression patterns and pharmacological profile(s) using the teleost medaka (Oryzias latipes). The four conserved subtypes of MTNR (MTNR1a, MTNR1b, MTNR1c and MTNR1a-like) in vertebrates were classified based on synteny and phylogenetic analysis. The fourth MTNR, termed MTNR1a-like, could be classified as MTNR1d. It was observed by using RT-qPCR that expression patterns differed amongst these subtypes. Moreover, mtnr1a, mtnr1c and mtnr1a-like/mtnr1d expression was elevated during short days compared to long days in diencephalons. All the subtypes were activated by melatonin and transduced signals into the Gi pathway, to perform a cAMP-responsive reporter gene assay. It was shown that MTNR originally consisted of four subtypes: MTNR1a, MTNR1b, MTNR1c and MTNR1d. These subtypes were functional, at least in fish, although some organisms, including mammals, have lost one or two subtypes.
Collapse
Affiliation(s)
- Kotowa Sakai
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, 1266, Tamura, Nagahama, Shiga, 526-0829, Japan
| | - Yuya Yamamoto
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, 1266, Tamura, Nagahama, Shiga, 526-0829, Japan
| | - Toshitaka Ikeuchi
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, 1266, Tamura, Nagahama, Shiga, 526-0829, Japan.
| |
Collapse
|
24
|
Markiewicz A, Brożyna AA, Podgórska E, Elas M, Urbańska K, Jetten AM, Slominski AT, Jóźwicki W, Orłowska-Heitzman J, Dyduch G, Romanowska-Dixon B. Vitamin D receptors (VDR), hydroxylases CYP27B1 and CYP24A1 and retinoid-related orphan receptors (ROR) level in human uveal tract and ocular melanoma with different melanization levels. Sci Rep 2019; 9:9142. [PMID: 31235702 PMCID: PMC6591242 DOI: 10.1038/s41598-019-45161-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/23/2019] [Indexed: 12/27/2022] Open
Abstract
In recent years, a significant number of studies have investigated the preventive role of vitamin D in a number of different neoplasms. In this study, we analyze various components of the vitamin D signaling pathways in the human uveal tract and uveal melanoma, including analysis of the expression of vitamin D receptors (VDR), the activating and inactivating hydroxylases, respectively, CYP27B1 and CYP24A1, and the retinoic acid-related orphan receptors (ROR) α (RORα) and γ (RORγ) in these tissues. We further analyzed the expression of VDR, CYP27B1, CYP24A1, and ROR in relation to melanin levels, clinical stage and prognosis. Our study indicated that the uveal melanoma melanin level inversely correlated with VDR expression. We further showed that vitamin D is metabolized in uveal melanoma. This is significant because until now there has been no paper published, that would describe presence of VDR, hydroxylases CYP27B1 and CYP24A1, and RORα and RORγ in the human uveal tract and uveal melanomas. The outcomes of our research can contribute to the development of new diagnostic and therapeutic methods in uveal tract disorders, especially in uveal melanoma. The presented associations between vitamin D signaling elements and uveal melanoma in comparison to uveal tract encourage future clinical research with larger patients' population.
Collapse
Affiliation(s)
- Anna Markiewicz
- Department of Ophthalmology and Ocular Oncology, Medical College, Jagiellonian University in Kraków, 31-501, Kraków, Poland.
| | - Anna A Brożyna
- Department of Human Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, 87-100, Toruń, Poland
| | - Ewa Podgórska
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007, Kraków, Poland
| | - Martyna Elas
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007, Kraków, Poland
| | - Krystyna Urbańska
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007, Kraków, Poland
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| | - Wojciech Jóźwicki
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, 85-796, Bydgoszcz, Poland
| | - Jolanta Orłowska-Heitzman
- Clinical and Experimental Pathomorphology, Jagiellonian University, Medical College, 31-531, Kraków, Poland
| | - Grzegorz Dyduch
- Clinical and Experimental Pathomorphology, Jagiellonian University, Medical College, 31-531, Kraków, Poland
| | - Bożena Romanowska-Dixon
- Department of Ophthalmology and Ocular Oncology, Medical College, Jagiellonian University in Kraków, 31-501, Kraków, Poland
| |
Collapse
|
25
|
Brożyna AA, Jóźwicki W, Skobowiat C, Jetten A, Slominski AT. RORα and RORγ expression inversely correlates with human melanoma progression. Oncotarget 2018; 7:63261-63282. [PMID: 27542227 PMCID: PMC5325362 DOI: 10.18632/oncotarget.11211] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/18/2016] [Indexed: 12/21/2022] Open
Abstract
The retinoic acid-related orphan receptors (RORs) regulate several physiological and pathological processes, including immune functions, development and cancer. To study the potential role of RORs in melanoma progression, we analysed RORα and RORγ expression in nevi and primary melanomas and non-lesional skin and metastases in relation to melanoma clinico-pathomorphological features. The expression of RORα and RORγ was lower in melanomas than in nevi and decreased during melanoma progression, with lowest levels found in primary melanomas at stages III and IV and in melanoma metastases. Their expression correlated with pathomorphological pTNM parameters being low in aggressive tumors and being high in tumors showing histological markers of good prognosis. Higher nuclear levels of RORα and RORγ and of cytoplasmic RORγ correlated with significantly longer overall and disease free survival time. Highly pigmented melanomas showed significantly lower level of nuclear RORs. This study shows that human melanoma development and aggressiveness is associated with decreased expression of RORα and RORγ, suggesting that RORs could be important in melanoma progression and host responses against the tumor. Furthermore, it suggests that RORα and RORγ might constitute a novel druggable target in anti-melanoma management using tumor suppressor gene therapy restoring their normal functions.
Collapse
Affiliation(s)
- Anna A Brożyna
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland.,Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Wojciech Jóźwicki
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland.,Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Cezary Skobowiat
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Anton Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Andrzej T Slominski
- Department of Dermatology, Cancer Chemoprevention Program, University of Alabama at Birmingham, AL, USA.,Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, AL, USA.,Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
26
|
Gautier C, Guenin SP, Riest-Fery I, Perry TJ, Legros C, Nosjean O, Simonneaux V, Grützner F, Boutin JA. Characterization of the Mel1c melatoninergic receptor in platypus (Ornithorhynchus anatinus). PLoS One 2018. [PMID: 29529033 PMCID: PMC5846726 DOI: 10.1371/journal.pone.0191904] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Melatonin is a neurohormone produced in both animals and plants. It binds at least three G-protein-coupled receptors: MT1 and MT2, and Mel1cGPR. Mammalian GPR50 evolved from the reptilian/avian Mel1c and lost its capacity to bind melatonin in all the therian mammal species that have been tested. In order to determine if binding is lost in the oldest surviving mammalian lineage of monotremes we investigated whether the melatonin receptor has the ability to bind melatonin in the platypus (Ornithorhynchus anatinus), and evaluated its pharmacological profile. Sequence and phylogenetic analysis showed that platypus has in fact retained the ancestral Mel1c and has the capacity to bind melatonin similar to other mammalian melatonin receptors (MT1 and MT2), with an affinity in the 1 nM range. We also investigated the binding of a set of melatoninergic ligands used previously to characterize the molecular pharmacology of the melatonin receptors from sheep, rats, mice, and humans and found that the general profiles of these compounds make Mel1c resemble human MT1 more than MT2. This work shows that the loss of GPR50 binding evolved after the divergence of monotremes less than 190MYA in therian mammals.
Collapse
MESH Headings
- Animals
- Base Sequence
- COS Cells
- Chlorocebus aethiops
- Cloning, Molecular/methods
- Melatonin/metabolism
- Phylogeny
- Platypus/genetics
- Platypus/metabolism
- Protein Binding
- Receptor, Melatonin, MT1/chemistry
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/chemistry
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Receptors, Melatonin/chemistry
- Receptors, Melatonin/genetics
- Receptors, Melatonin/metabolism
Collapse
Affiliation(s)
- Célia Gautier
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, Croissy sur Seine, France
- Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Sophie-Penelope Guenin
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, Croissy sur Seine, France
| | - Isabelle Riest-Fery
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, Croissy sur Seine, France
| | - Tahlia Jade Perry
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Céline Legros
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, Croissy sur Seine, France
| | - Olivier Nosjean
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, Croissy sur Seine, France
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Valerie Simonneaux
- Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Frank Grützner
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Jean A. Boutin
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, Croissy sur Seine, France
- Institut de Recherches Internationales Servier, Suresnes, France
- * E-mail:
| |
Collapse
|
27
|
Type 1 metabotropic glutamate receptor and its signaling molecules as therapeutic targets for the treatment of cerebellar disorders. Curr Opin Pharmacol 2018. [DOI: 10.1016/j.coph.2018.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Sayad A, Salmani T, Hemmesi MK, Ganji M, Ghafouri-Fard S, Hatami M, Soudyab M, Taheri M. Down-regulation of RORA gene expression in the blood of multiple sclerosis patients. Hum Antibodies 2018; 26:219-224. [PMID: 29889063 DOI: 10.3233/hab-180341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by recurrent episodes of demyelination and loss of oligodendrocytes. The demyelination process is caused by various subsets of CD4+ T cells with a Th1 and Th17 phenotype. The retinoid acid-related orphan receptor A (RORA) is expressed in Th17 cells and promote Th17 differentiation. In this study, we compared the expression level of RORA gene in the blood of 50 relapsing-remitting MS (RRMS) patients who were treated with IFN-β and 50 healthy controls by TaqMan Quantitative Real-Time PCR.We found that RORA expression was significantly down-regulated in MS patients compared with controls (P= 0.006). However, there was no significant correlation between RORA gene expression and Kurtzke Expanded Disability Status Scale (EDSS). Our findings suggest a possible contribution of IFN-β in the downregulation of RORA. In addition, RORA downregulation may be a potential indicator of positive response to interferon beta treatment of multiple sclerosis patients.
Collapse
Affiliation(s)
- Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebali Salmani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maziar Ganji
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Hatami
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Soudyab
- Department of Medical Genetics, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taheri
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Koch SC, Del Barrio MG, Dalet A, Gatto G, Günther T, Zhang J, Seidler B, Saur D, Schüle R, Goulding M. RORβ Spinal Interneurons Gate Sensory Transmission during Locomotion to Secure a Fluid Walking Gait. Neuron 2017; 96:1419-1431.e5. [PMID: 29224725 PMCID: PMC5828033 DOI: 10.1016/j.neuron.2017.11.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/27/2017] [Accepted: 11/08/2017] [Indexed: 01/17/2023]
Abstract
Animals depend on sensory feedback from mechanosensory afferents for the dynamic control of movement. This sensory feedback needs to be selectively modulated in a task- and context-dependent manner. Here, we show that inhibitory interneurons (INs) expressing the RORβ orphan nuclear receptor gate sensory feedback to the spinal motor system during walking and are required for the production of a fluid locomotor rhythm. Genetic manipulations that abrogate inhibitory RORβ IN function result in an ataxic gait characterized by exaggerated flexion movements and marked alterations to the step cycle. Inactivation of RORβ in inhibitory neurons leads to reduced presynaptic inhibition and changes to sensory-evoked reflexes, arguing that the RORβ inhibitory INs function to suppress the sensory transmission pathways that activate flexor motor reflexes and interfere with the ongoing locomotor program. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Stephanie C Koch
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marta Garcia Del Barrio
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Antoine Dalet
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Graziana Gatto
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thomas Günther
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany
| | - Jingming Zhang
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Barbara Seidler
- Department of Medicine II, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
| | - Dieter Saur
- Department of Medicine II, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany; Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Roland Schüle
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
30
|
Nitta K, Matsuzaki Y, Konno A, Hirai H. Minimal Purkinje Cell-Specific PCP2/L7 Promoter Virally Available for Rodents and Non-human Primates. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 6:159-170. [PMID: 28828391 PMCID: PMC5552061 DOI: 10.1016/j.omtm.2017.07.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/24/2017] [Indexed: 01/10/2023]
Abstract
Cell-type-specific promoters in combination with viral vectors and gene-editing technology permit efficient gene manipulation in specific cell populations. Cerebellar Purkinje cells play a pivotal role in cerebellar functions. Although the Purkinje cell-specific L7 promoter is widely used for the generation of transgenic mice, it remains unsuitable for viral vectors because of its large size (3 kb) and exceedingly weak promoter activity. Here, we found that the 0.8-kb region (named here as L7-6) upstream of the transcription initiation codon in the first exon was alone sufficient as a Purkinje cell-specific promoter, presenting a far stronger promoter activity over the original 3-kb L7 promoter with a sustained significant specificity to Purkinje cells. Intravenous injection of adeno-associated virus vectors that are highly permeable to the blood-brain barrier confirmed the Purkinje cell specificity of the L7-6 in the CNS. The features of the L7-6 were also preserved in the marmoset, a non-human primate. The high sequence homology of the L7-6 among mouse, marmoset, and human suggests the preservation of the promoter strength and Purkinje cell specificity features also in humans. These findings suggest that L7-6 will facilitate the cerebellar research targeting the pathophysiology and gene therapy of cerebellar disorders.
Collapse
Affiliation(s)
- Keisuke Nitta
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.,Department of Ophthalmology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Yasunori Matsuzaki
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Ayumu Konno
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.,Research Program for Neural Signalling, Division of Endocrinology, Metabolism and Signal Research, Gunma University Initiative for Advanced Research, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
31
|
Ren J, Li B. The Functional Stability of FOXP3 and RORγt in Treg and Th17 and Their Therapeutic Applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:155-189. [PMID: 28215223 DOI: 10.1016/bs.apcsb.2016.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The balance of CD4+CD25+FOXP3+ regulatory T cells (Tregs) and effector T cells plays a key role in maintaining immune homeostasis, while the imbalance of them is related to many inflammatory diseases in both human and mice. Here we discuss about the plasticity of Tregs and Th17 cells, and the related human diseases resulted from the imbalance of them. Further, we will focus on the mechanisms regulating the plasticity between Tregs and Th17 cells and the potential therapeutic strategies by targeting regulators of the expression and activity of FOXP3 and RORγt or regulators of Treg/Th17 balance in autoimmune diseases, allergy, infection, and cancer.
Collapse
Affiliation(s)
- J Ren
- Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Universities and Colleges Admissions Service, Shanghai, PR China
| | - B Li
- Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Universities and Colleges Admissions Service, Shanghai, PR China; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
32
|
Gege C. RORγt inhibitors as potential back-ups for the phase II candidate VTP-43742 from Vitae Pharmaceuticals: patent evaluation of WO2016061160 and US20160122345. Expert Opin Ther Pat 2016; 27:1-8. [PMID: 27852111 DOI: 10.1080/13543776.2017.1262350] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Retinoic acid receptor-related orphan nuclear receptor gamma t (RORγt or RORc2) is a key transcription factor for the differentiation of naïve proinflammatory CD4+ T cells and the production of T helper-17 (TH17) cells. Inhibiting RORγt activity is thought to be beneficial in targeting a variety of inflammatory and autoimmune disorders. Recently Vitae Pharmaceuticals (to be acquired by Allergan) reported positive top-line results from a Phase 2a clinical trial of RORγt inhibitor VTP-43742 in psoriatic patients. The compound was reported to demonstrate a clear signal of efficacy over a short four-week period and no drug-related cardiac abnormalities were observed; however, in the 700 mg dose group reversible transaminase elevations were observed in four patients, which prompted the company to cancel testing VTP-43742 at a initially planned third, higher dose. In Vitae Pharmaceuticals latest patent applications, WO2016061160 and US20160122345, potential dihydropyrrolopyridine back-up compounds of clinical candidate VTP-43742 (covered in WO2015116904) are disclosed. In light of the recently announced RORγt back-up molecule VTP-45489, the improvements of the new compounds are discussed and their potential impact is elucidated.
Collapse
Affiliation(s)
- Christian Gege
- a Phenex Pharmaceuticals AG , Waldhofer Straße 104, 69123 Heidelberg , Germany
| |
Collapse
|
33
|
Fuchinoue K, Fukui A, Chiba H, Kamoi M, Funamizu A, Taima A, Fukuhara R, Mizunuma H. Expression of retinoid-related orphan receptor (ROR)γt on NK22 cells in the peripheral blood and uterine endometrium of women with unexplained recurrent pregnancy loss and unexplained infertility. J Obstet Gynaecol Res 2016; 42:1541-1552. [PMID: 27374797 DOI: 10.1111/jog.13075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 05/07/2016] [Indexed: 01/23/2023]
Abstract
AIM Recently, NK22 cells, a subset of interleukin (IL)-22-producing natural killer (NK) cells, were identified. We have previously reported the higher percentage of NK22 cells in women suffering recurrent pregnancy loss (RPL). Moreover, we have also reported lower expression of NKp46, a kind of natural cytotoxicity receptor (NCR), on NK cells and the changes of NK cell producing cytokines in women who experience RPL. NK22 cells express NCRs, such as NKp44 or NKp46. Retinoid-related orphan receptor γt (RORγt) is known as a regulator of NK22 cells; however, in NK22 cells of peripheral blood (PB) and the uterine endometrium (UE), the relationship between NCRs and RORγt is unclear. We investigate RORγt expression NK22 cells in the PB and UE of women with unexplained infertility (uI) or unexplained RPL (uRPL). METHODS Lymphocytes were extracted from PB and UE, derived from women with uI or uRPL. Expression of RORγt and NCRs in NK cells and NK cell-produced cytokines were analyzed by flow cytometry. RESULTS CD56+ /NKp46+ /RORγt+ cells were positively correlated with CD56+ /IL-22+ cells in both PB and UE. CD56bright /NKp46bright /RORγt+ cells were significantly higher in uRPL than in uI, and endometrial CD56bright /NKp46bright /RORγt+ cells were positively correlated with PB. In UE, CD56bright /RORγt+ cells were negatively correlated with CD56bright /interferon-γ+ and CD56bright /tumor necrosis factor-α+ cells of uRPL. CONCLUSION RORγt may be associated with NK22 cells in reproduction. Particularly, higher expression of RORγt may be associated with elevated NK22 cells in uRPL.
Collapse
MESH Headings
- Abortion, Habitual/blood
- Abortion, Habitual/metabolism
- Adult
- Cytokines/metabolism
- Endometrium/metabolism
- Female
- Humans
- Infertility, Female/blood
- Infertility, Female/metabolism
- Interleukins/metabolism
- Killer Cells, Natural/metabolism
- Lymphocytes/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/blood
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Pregnancy
- Receptors, Natural Cytotoxicity Triggering/metabolism
- Interleukin-22
Collapse
Affiliation(s)
- Kohei Fuchinoue
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Atsushi Fukui
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Aomori, Japan.
| | - Hitomi Chiba
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Mai Kamoi
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Ayano Funamizu
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Ayako Taima
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Rie Fukuhara
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Hideki Mizunuma
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| |
Collapse
|
34
|
Post-translational regulation of RORγt—A therapeutic target for the modulation of interleukin-17-mediated responses in autoimmune diseases. Cytokine Growth Factor Rev 2016; 30:1-17. [DOI: 10.1016/j.cytogfr.2016.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 01/16/2023]
|
35
|
Olivares AM, Moreno-Ramos OA, Haider NB. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases. J Exp Neurosci 2016; 9:93-121. [PMID: 27168725 PMCID: PMC4859451 DOI: 10.4137/jen.s25480] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/13/2022] Open
Abstract
The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration.
Collapse
Affiliation(s)
- Ana Maria Olivares
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Oscar Andrés Moreno-Ramos
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Gege C. Retinoid-related orphan receptor gamma t (RORγt) inhibitors from Vitae Pharmaceuticals (WO2015116904) and structure proposal for their Phase I candidate VTP-43742. Expert Opin Ther Pat 2016; 26:737-44. [PMID: 26895086 DOI: 10.1517/13543776.2016.1153066] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Retinoic acid receptor-related orphan nuclear receptor gamma t (RORγt or RORC2) is a key transcription factor for the differentiation of naïve proinflammatory CD4(+) T cells and the production of T helper-17 (TH17) cells. Inhibiting RORγt activity is thought to be beneficial in targeting a variety of inflammatory and autoimmune disorders, however current candidates remain to be validated in the clinic. Recently Vitae Pharmaceuticals successfully finished its Phase 1 single ascending dose clinical study with their proprietary RORγt inverse agonist VTP-43742. On the basis of the reported promising results, Vitae Pharmaceuticals could currently be considered as having the leading clinical candidate in the RORγt inverse agonist category. This prompts the interest on the exact chemical structure of their clinical candidate. The first relevant patent application (WO2014179564) from Vitae Pharmaceuticals describes RORγt inverse agonists with a 5,6-dihydro-4H-pyrrolo[3,4-d]thiazole core, while in the second and latest patent application (WO2015116904) this element has changed towards a 6,7-dihydro-5H-pyrrolo[3,4-b]pyridine core. By combining information from Vitae's patent applications and trustworthy online information, the potential elucidation of the chemical structure of clinical candidate VTP-43742 is described.
Collapse
|
37
|
Chi H, Bøgwald J, Dalmo RA, Zhang W, Hu YH. Th17 master transcription factors RORα and RORγ regulate the expression of IL-17C, IL-17D and IL-17F in Cynoglossus semilaevis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:169-178. [PMID: 26547017 DOI: 10.1016/j.dci.2015.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/01/2015] [Accepted: 11/01/2015] [Indexed: 06/05/2023]
Abstract
The RAR-related orphan receptors (RORs) are members of the nuclear receptor family of intracellular transcription factors. In this study, we examined the regulatory properties of RORα (CsRORα) and RORγ (CsRORγ) in tongue sole (Cynoglossus semilaevis). CsRORα and CsRORγ expression was detected in major lymphoid organs and altered to significant extents after bacterial and viral infection. CsRORα enhanced the activities of CsIL-17C, CsIL-17D, and CsIL-17F promoters, which contain CsRORα and CsRORγ binding sites. CsRORγ also upregulated the promoter activities of CsIL-17D and CsIL-17F but not CsIL-17C. CsRORα and CsRORγ proteins were detected in the nucleus, and overexpression of CsRORα in tongue sole significantly increased the expression of CsIL-17C, CsIL-17D, and CsIL-17F, whereas overexpression of CsRORγ significantly increased the expression of CsIL-17C and CsIL-17F but no CsIL-17D. These results indicate that RORα and RORγ in teleost regulate the expression of IL-17 members in different manners.
Collapse
Affiliation(s)
- Heng Chi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jarl Bøgwald
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, Tromsø N-9037, Norway
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, Tromsø N-9037, Norway
| | - Wenjie Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yong-hua Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
38
|
Cook DN, Kang HS, Jetten AM. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism. NUCLEAR RECEPTOR RESEARCH 2015; 2. [PMID: 26878025 PMCID: PMC4750502 DOI: 10.11131/2015/101185] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs). We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated.
Collapse
Affiliation(s)
- Donald N Cook
- Immunogenetics Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Hong Soon Kang
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
39
|
Gege C. Retinoid-related orphan receptor γ t modulators: comparison of Glenmark’s me-too patent application (WO2015008234) with the originator application from Merck Sharp and Dohme (WO2012106995). Expert Opin Ther Pat 2015; 25:1215-21. [DOI: 10.1517/13543776.2015.1065816] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
40
|
Cook DN, Kang HS, Jetten AM. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism. NUCLEAR RECEPTOR RESEARCH 2015. [PMID: 26878025 DOI: 10.1038/nbt.3121.chip-nexus] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs). We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated.
Collapse
Affiliation(s)
- Donald N Cook
- Immunogenetics Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Hong Soon Kang
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
41
|
van Niel MB, Fauber BP, Cartwright M, Gaines S, Killen JC, René O, Ward SI, de Leon Boenig G, Deng Y, Eidenschenk C, Everett C, Gancia E, Ganguli A, Gobbi A, Hawkins J, Johnson AR, Kiefer JR, La H, Lockey P, Norman M, Ouyang W, Qin A, Wakes N, Waszkowycz B, Wong H. A reversed sulfonamide series of selective RORc inverse agonists. Bioorg Med Chem Lett 2014; 24:5769-5776. [PMID: 25453817 DOI: 10.1016/j.bmcl.2014.10.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/09/2014] [Accepted: 10/14/2014] [Indexed: 12/21/2022]
Abstract
The identification of a new series of RORc inverse agonists is described. Comprehensive structure-activity relationship studies of this reversed sulfonamide series identified potent RORc inverse agonists in biochemical and cellular assays which were also selective against a panel of nuclear receptors. Our work has contributed a compound that may serve as a useful in vitro tool to delineate the complex biological pathways involved in signalling through RORc. An X-ray co-crystal structure of an analogue with RORc has also provided useful insights into the binding interactions of the new series.
Collapse
Affiliation(s)
- Monique B van Niel
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom.
| | | | - Matthew Cartwright
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Simon Gaines
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Jonathan C Killen
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Olivier René
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stuart I Ward
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | - Yuzhong Deng
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | - Emanuela Gancia
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Arunima Ganguli
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Alberto Gobbi
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Julie Hawkins
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Adam R Johnson
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - James R Kiefer
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hank La
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Peter Lockey
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Maxine Norman
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Wenjun Ouyang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ann Qin
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nicole Wakes
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Bohdan Waszkowycz
- Argenta, Early Discovery, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Harvey Wong
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
42
|
Nuclear receptors in nematode development: Natural experiments made by a phylum. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:224-37. [PMID: 24984201 DOI: 10.1016/j.bbagrm.2014.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/21/2022]
Abstract
The development of complex multicellular organisms is dependent on regulatory decisions that are necessary for the establishment of specific differentiation and metabolic cellular states. Nuclear receptors (NRs) form a large family of transcription factors that play critical roles in the regulation of development and metabolism of Metazoa. Based on their DNA binding and ligand binding domains, NRs are divided into eight NR subfamilies from which representatives of six subfamilies are present in both deuterostomes and protostomes indicating their early evolutionary origin. In some nematode species, especially in Caenorhabditis, the family of NRs expanded to a large number of genes strikingly exceeding the number of NR genes in vertebrates or insects. Nematode NRs, including the multiplied Caenorhabditis genes, show clear relation to vertebrate and insect homologues belonging to six of the eight main NR subfamilies. This review summarizes advances in research of nematode NRs and their developmental functions. Nematode NRs can reveal evolutionarily conserved mechanisms that regulate specific developmental and metabolic processes as well as new regulatory adaptations. They represent the results of a large number of natural experiments with structural and functional potential of NRs for the evolution of the phylum. The conserved and divergent character of nematode NRs adds a new dimension to our understanding of the general biology of regulation by NRs. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
|
43
|
Tian Y, Wu Y, Ni B. Signaling Pathways and Epigenetic Regulations in the Control ofRORγtExpression in T Helper 17 Cells. Int Rev Immunol 2014; 34:305-17. [DOI: 10.3109/08830185.2014.911858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Affiliation(s)
- Pengxiang Huang
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Vikas Chandra
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Fraydoon Rastinejad
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| |
Collapse
|
45
|
The retinoid-related orphan receptor RORα promotes keratinocyte differentiation via FOXN1. PLoS One 2013; 8:e70392. [PMID: 23922987 PMCID: PMC3726659 DOI: 10.1371/journal.pone.0070392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/21/2013] [Indexed: 01/16/2023] Open
Abstract
RORα is a retinoid-related orphan nuclear receptor that regulates inflammation, lipid metabolism, and cellular differentiation of several non-epithelial tissues. In spite of its high expression in skin epithelium, its functions in this tissue remain unclear. Using gain- and loss-of-function approaches to alter RORα gene expression in human keratinocytes (HKCs), we have found that this transcription factor functions as a regulator of epidermal differentiation. Among the 4 RORα isoforms, RORα4 is prominently expressed by keratinocytes in a manner that increases with differentiation. In contrast, RORα levels are significantly lower in skin squamous cell carcinoma tumors (SCCs) and cell lines. Increasing the levels of RORα4 in HKCs enhanced the expression of structural proteins associated with early and late differentiation, as well as genes involved in lipid barrier formation. Gene silencing of RORα impaired the ability of keratinocytes to differentiate in an in vivo epidermal cyst model. The pro-differentiation function of RORα is mediated at least in part by FOXN1, a well-known pro-differentiation transcription factor that we establish as a novel direct target of RORα in keratinocytes. Our results point to RORα as a novel node in the keratinocyte differentiation network and further suggest that the identification of RORα ligands may prove useful for treating skin disorders that are associated with abnormal keratinocyte differentiation, including cancer.
Collapse
|
46
|
Qi ZX, Wang LY, Fan YC, Zhang JJ, Li T, Wang K. Increased peripheral RORα and RORγt mRNA expression is associated with acute-on-chronic hepatitis B liver failure. J Viral Hepat 2012; 19:811-22. [PMID: 23043388 DOI: 10.1111/j.1365-2893.2012.01603.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
T helper cells17 (Th17) have accurate but inconclusive roles in the pathogenesis of acute-on-chronic hepatitis B liver failure (ACHBLF). Retinoic acid-related orphan receptor γ t(RORγt) and RORα are two lineage-specific nuclear receptors directly mediating Th17 differentiation. This study was aimed to evaluate the gene expression of RORα and RORγt and their potential role in ACHBLF. Forty patients with liver failure, 30 with chronic hepatitis B (CHB) and 20 healthy controls were studied. The mRNA levels of RORα and RORγt in peripheral mononuclear cells were determined by quantitative real-time polymerase chain reaction. The frequency of peripheral Th17 cells was determined using flow cytometry. The serum levels of interleukin-6(IL-6), transforming growth factor -β (TGF-β), interleukin-17(IL-17), interleukin-23(IL-23) and interferon-γ (IFN-γ) were measured by enzyme-linked immunosorbent assay. The frequency of peripheral Th17 cells in patients with liver failure was significantly increased compared to patients with CHB and controls. The peripheral mRNA levels of RORα and RORγt in hepatitis B-associated acute-on-chronic liver failure were significantly higher than in patients with CHB and controls as were the serum levels of IL-6 and TGF-β. The serum level of IFN-γ in patients with acute-on-chronic liver failure from HBV was significantly higher than patients with CHB but lower than controls. In patients with acute-on-chronic liver failure associated with HBV, RORγt, IL-6 and IL-23 were positively correlated with the frequency of Th17 cells, while RORα, TGF-β and IFN-γ had no correlation with the latter. The mRNA level of RORγt was positively correlated with model of end-stage liver disease (MELD) score, but there was no correlation of RORα and MELD score. RORγt plays an important role in the pathogenesis of acute-on-chronic HBV-associated liver failure and might be considered to be a candidate factor consistent with the severity of disease.
Collapse
Affiliation(s)
- Z-X Qi
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
47
|
Monte MM, Wang T, Costa MM, Harun NO, Secombes CJ. Cloning and expression analysis of two ROR-γ homologues (ROR-γa1 and ROR-γa2) in rainbow trout Oncorhynchus mykiss. FISH & SHELLFISH IMMUNOLOGY 2012; 33:365-374. [PMID: 22634748 DOI: 10.1016/j.fsi.2012.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 06/01/2023]
Abstract
This paper describes the cloning and characterisation of two retinoid-related orphan receptor (ROR)-γ homologues (ROR-γa1 and -γa2) in rainbow trout (Oncorhynchus mykiss). The coding region predicted for both homologues consists of 1410 base pairs (bp), which translate into two 469 amino acid (aa) proteins. The trout ROR-γs revealed a high conservation of both DNA- and ligand-binding domains (functional regions of the nuclear receptor family), and shared a high homology to mammalian ROR-γt. A phylogenetic tree containing ROR family members confirmed that both trout homologues clustered within the ROR-γ group. Both results suggested that these molecules are likely to be ROR-γ homologues, more similar to the mammalian splice variant ROR-γt than the full length ROR-γ. Expression analysis of tissues obtained from healthy fish revealed highest constitutive expression of trout ROR-γ in muscle, followed by the brain, heart and skin. This suggests that these genes may play an important role in such tissues. In vitro studies, using trout cell lines, demonstrated that ROR-γ is induced significantly by LPS and down-regulated by the presence of PolyI:C and recombinant interferon (IFN)-γ. Moreover, analysis of this gene in head kidney macrophages and mixed primary leucocyte cultures indicated that differences were apparent between the different cell types/sources used, indicating that its expression may be cell-type dependent. Additional studies to investigate the regulation of this gene in vivo demonstrated that its expression was significantly higher in vaccinated vs unvaccinated fish following bacterial (Yersinia ruckeri) challenge but it was down-regulated after a viral (VHSV) infection. This suggests a potential role of trout ROR-γ, a putative T(H)17 transcription factor, in protection against extracellular bacteria.
Collapse
Affiliation(s)
- Milena M Monte
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
| | | | | | | | | |
Collapse
|
48
|
Purwar R, Schlapbach C, Xiao S, Kang HS, Elyaman W, Jiang X, Jetten AM, Khoury SJ, Fuhlbrigge RC, Kuchroo VK, Clark RA, Kupper TS. Robust tumor immunity to melanoma mediated by interleukin-9-producing T cells. Nat Med 2012; 18:1248-53. [PMID: 22772464 PMCID: PMC3518666 DOI: 10.1038/nm.2856] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 06/08/2012] [Indexed: 12/12/2022]
Abstract
Interleukin-9 is a T cell cytokine that acts through a γC-family receptor on target cells. We determined that T cells from mice deficient in the TH17 pathway genes ROR-γ and IL-23R produced abundant IL-9, and observed significant growth inhibition of B16F10 melanoma tumor in these mice. IL-9 blocking antibodies reversed this tumor growth inhibition, and enhanced tumor growth in normal mice. IL9R−/− mice showed accelerated tumor growth, while administration of rIL-9 to tumor bearing mice inhibited tumor growth. Adoptive transfer of tumor antigen-specific TH9 cells blocked tumor growth; this was reversed by anti-IL-9. Exogenous rIL-9 inhibited tumor growth in Rag1−/− mice, but not in mast cell deficient mice, suggesting a T cell independent process. Finally, we found TH9 cells in normal human skin and blood, and low IL-9 production from melanoma tumor infiltrating lymphocytes. These results suggest a role for IL-9 in tumor immunity, and suggest therapeutic strategies.
Collapse
Affiliation(s)
- Rahul Purwar
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fitzsimmons RL, Lau P, Muscat GEO. Retinoid-related orphan receptor alpha and the regulation of lipid homeostasis. J Steroid Biochem Mol Biol 2012; 130:159-68. [PMID: 21723946 DOI: 10.1016/j.jsbmb.2011.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
Many nuclear hormone receptors (NRs) control lipid, glucose and energy homeostasis in an organ specific manner. Concordantly, dysfunctional NR signalling results in metabolic disease. The Retinoic acid receptor-related orphan receptor alpha (RORα), a member of the NR1F subgroup, is expressed in metabolic tissues. Previous studies identified the role of this NR in dyslipidemia, apo-lipoprotein metabolism and atherosclerosis. Recent data is underscoring the significant role of this orphan NR in the regulation of phase I/II metabolism (bile acids, xenobiotics, steroids etc.), adiposity, insulin signalling, and glucose tolerance. Moreover, oxygenated sterols, have been demonstrated to function as native ligands and inverse agonists. This review focuses on the rapidly emerging and evolving role of RORα in the control of lipid and glucose homeostasis in major mass metabolic tissues. Article from the special issue orphan receptors.
Collapse
Affiliation(s)
- Rebecca L Fitzsimmons
- Obesity Research Centre, Institute for Molecular Bioscience, University of Queensland, Services Rd St. Lucia, Queensland, 4072 Australia
| | | | | |
Collapse
|
50
|
Ranhotra HS. The interplay between retinoic acid receptor-related orphan receptors and human diseases. J Recept Signal Transduct Res 2012; 32:181-9. [PMID: 22686165 DOI: 10.3109/10799893.2012.692120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The retinoic acid receptor-related orphan receptors (RORs) are an important subfamily of transcriptional regulators of the nuclear receptors superfamily. Their discovery over a decade ago by gene cloning strategy have revealed three major isoforms of these orphan receptors in animals. Generation and analyses of isoform-specific ROR null mice have provided revealed-vital roles for the RORs in animals. The RORs undoubtedly participate in a host of biological functions such a metabolism, immunity, development and differentiation, angiogenesis, circadian clock, xenobiotic/drug metabolism and other tissue physiologies for optimal animal survival. Moreover, intense work in the last one decade also revealed a host of human diseases being modulated by the RORs. A number of diseases, such as cancer, autoimmune diseases, inflammation, osteoporosis, metabolic syndrome etc., strongly support the involvement of RORs in their onset and progression. By involving in such diseases, the RORs are indeed a critical factor for optimal cell function and are being intensely investigated as novel targets for drug interventions in the treatment of various diseases. This review focuses on the current knowledge and status about RORs in a number of human disease conditions.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Orphan Nuclear Receptors Laboratory, Department of Biochemistry, St. Edmund's College, Shillong, Meghalaya, India.
| |
Collapse
|