1
|
Fang C, Du H, Wang L, Liu B, Kong F. Mechanisms underlying key agronomic traits and implications for molecular breeding in soybean. J Genet Genomics 2024; 51:379-393. [PMID: 37717820 DOI: 10.1016/j.jgg.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Soybean (Glycine max [L.] Merr.) is an important crop that provides protein and vegetable oil for human consumption. As soybean is a photoperiod-sensitive crop, its cultivation and yield are limited by the photoperiodic conditions in the field. In contrast to other major crops, soybean has a special plant architecture and a special symbiotic nitrogen fixation system, representing two unique breeding directions. Thus, flowering time, plant architecture, and symbiotic nitrogen fixation are three critical or unique yield-determining factors. This review summarizes the progress made in our understanding of these three critical yield-determining factors in soybean. Meanwhile, we propose potential research directions to increase soybean production, discuss the application of genomics and genomic-assisted breeding, and explore research directions to address future challenges, particularly those posed by global climate changes.
Collapse
Affiliation(s)
- Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Lingshuang Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
2
|
Cheng HY, Wang W, Wang W, Yang MY, Zhou YY. Interkingdom Hormonal Regulations between Plants and Animals Provide New Insight into Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4-26. [PMID: 38156955 DOI: 10.1021/acs.jafc.3c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Food safety has become an attractive topic among consumers. Raw material production for food is also a focus of social attention. As hormones are widely used in agriculture and human disease control, consumers' concerns about the safety of hormone agents have never disappeared. The present review focuses on the interkingdom regulations of exogenous animal hormones in plants and phytohormones in animals, including physiology and stress resistance. We summarize these interactions to give the public, researchers, and policymakers some guidance and suggestions. Accumulated evidence demonstrates comprehensive hormonal regulation across plants and animals. Animal hormones, interacting with phytohormones, help regulate plant development and enhance environmental resistance. Correspondingly, phytohormones may also cause damage to the reproductive and urinary systems of animals. Notably, the disease-resistant role of phytohormones is revealed against neurodegenerative diseases, cardiovascular disease, cancer, and diabetes. These resistances derive from the control for abnormal cell cycle, energy balance, and activity of enzymes. Further exploration of these cross-kingdom mechanisms would surely be of greater benefit to human health and agriculture development.
Collapse
Affiliation(s)
- Hang-Yuan Cheng
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Wang
- Human Development Family Studies, Iowa State University, 2330 Palmer Building, Ames, Iowa 50010, United States
| | - Wei Wang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Mu-Yu Yang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Yu-Yi Zhou
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| |
Collapse
|
3
|
You Y, Luo B, Wang C, Dong H, Wang X, Hou P, Sun L, Li A. An ultrasensitive probe-free electrochemical immunosensor for gibberellins employing polydopamine-antibody nanoparticles modified electrode. Bioelectrochemistry 2023; 150:108331. [PMID: 36446196 DOI: 10.1016/j.bioelechem.2022.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Gibberellins (GA3) is an ubiquitous plant hormone, which plays a regulatory role in different growth stages of plants, so it is of great significance to develop a sensitive quantitative analysis method for GA3. In this study, carboxylated graphene oxide- carboxylated multi-walled carbon nanotubes-Fc (GO-MWNT-Fc) composite material and PDANPs-antibody (PDANPs-Ab) were sequentially modified to screen-printed electrodes (SPEs), and an ultrasensitive probe-free immunosensor for GA3 was developed. Fc was applied to generate electrochemical signals. GO-COOH and MWNT-COOH can increase the catalytic ability of the sensor and bind the PDANPs-Ab nanoparticles. PDANPs nanomaterial were synthetized by a facile self-polymerization and used to bind with antibody, so as to increase the antibody loading of the sensor. The as-prepared immunosensor has the widest detection range (100 aM-1 mM) and lowest detection limit (17.4 aM) for GA3 up to date. To our knowledge, it is the first electrochemical immunosensor for GA3. By changing the GA3 antibody to ABA antibody, a sensitive and selective immunosensor for ABA was also fabricated. This immunosensor platform is simple, sensitive, and low cost. It opens broad prospect in on-site applications for biosensors in detecting of various biomolecules in precision agriculture.
Collapse
Affiliation(s)
- Yang You
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
| | - Bin Luo
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Cheng Wang
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hongtu Dong
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaodong Wang
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Peichen Hou
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lijun Sun
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, Jiangsu 226019, China.
| | - Aixue Li
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
4
|
Ali A, Altaf MT, Nadeem MA, Karaköy T, Shah AN, Azeem H, Baloch FS, Baran N, Hussain T, Duangpan S, Aasim M, Boo KH, Abdelsalam NR, Hasan ME, Chung YS. Recent advancement in OMICS approaches to enhance abiotic stress tolerance in legumes. FRONTIERS IN PLANT SCIENCE 2022; 13:952759. [PMID: 36247536 PMCID: PMC9554552 DOI: 10.3389/fpls.2022.952759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
The world is facing rapid climate change and a fast-growing global population. It is believed that the world population will be 9.7 billion in 2050. However, recent agriculture production is not enough to feed the current population of 7.9 billion people, which is causing a huge hunger problem. Therefore, feeding the 9.7 billion population in 2050 will be a huge target. Climate change is becoming a huge threat to global agricultural production, and it is expected to become the worst threat to it in the upcoming years. Keeping this in view, it is very important to breed climate-resilient plants. Legumes are considered an important pillar of the agriculture production system and a great source of high-quality protein, minerals, and vitamins. During the last two decades, advancements in OMICs technology revolutionized plant breeding and emerged as a crop-saving tool in wake of the climate change. Various OMICs approaches like Next-Generation sequencing (NGS), Transcriptomics, Proteomics, and Metabolomics have been used in legumes under abiotic stresses. The scientific community successfully utilized these platforms and investigated the Quantitative Trait Loci (QTL), linked markers through genome-wide association studies, and developed KASP markers that can be helpful for the marker-assisted breeding of legumes. Gene-editing techniques have been successfully proven for soybean, cowpea, chickpea, and model legumes such as Medicago truncatula and Lotus japonicus. A number of efforts have been made to perform gene editing in legumes. Moreover, the scientific community did a great job of identifying various genes involved in the metabolic pathways and utilizing the resulted information in the development of climate-resilient legume cultivars at a rapid pace. Keeping in view, this review highlights the contribution of OMICs approaches to abiotic stresses in legumes. We envisage that the presented information will be helpful for the scientific community to develop climate-resilient legume cultivars.
Collapse
Affiliation(s)
- Amjad Ali
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Muhammad Tanveer Altaf
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Tolga Karaköy
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hajra Azeem
- Department of Plant Pathology, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Nurettin Baran
- Bitkisel Uretim ve Teknolojileri Bolumu, Uygulamali Bilimler Faku Itesi, Mus Alparslan Universitesi, Mus, Turkey
| | - Tajamul Hussain
- Laboratory of Plant Breeding and Climate Resilient Agriculture, Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Thailand
| | - Saowapa Duangpan
- Laboratory of Plant Breeding and Climate Resilient Agriculture, Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Thailand
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Kyung-Hwan Boo
- Subtropical/Tropical Organism Gene Bank, Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju, South Korea
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mohamed E. Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, South Korea
| |
Collapse
|
5
|
Classification and Expression Profile of the U-Box E3 Ubiquitin Ligase Enzyme Gene Family in Maize (Zea mays L.). PLANTS 2022; 11:plants11192459. [PMID: 36235327 PMCID: PMC9573083 DOI: 10.3390/plants11192459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022]
Abstract
The U-box E3 (PUB) family genes encode the E3 ubiquitin ligase enzyme, which determines substrate specific recognition during protein ubiquitination. They are widespread in plants and are critical for plant growth, development, and response to external stresses. However, there are few studies on the functional characteristic of PUB gene family in the important staple crop, maize (Zea mays L.). In this study, the PUB gene in maize was aimed to identify and classify through whole-genome screening. Phylogenetic tree, gene structure, conserved motif, chromosome location, gene duplication (GD), synteny, and cis-acting regulatory element of PUB member were analyzed. The expression profiles of ZmPUB gene family in maize during development and under abiotic stress and hormones treatment were analyzed by the RNA-seq data. A total of 79 PUB genes were identified in maize genome, and they were stratified into seven categories. There were 25 pairs of segmental duplications (SD) and 1 pair of tandem duplication (TD) identified in the maize PUB gene family. A close relationship was observed between the monocot plant maize and rice in PUB gene family. There were 94 kinds of cis-acting elements identified in the maize PUB gene family, which included 46 biotic- and abiotic-responsive elements, 19 hormone-responsive elements, 13 metabolic and growth-related elements. The expression profiles of maize PUB gene family showed characteristics of tissue specificity and response to abiotic stress and hormones treatment. These results provided an extensive overview of the maize PUB gene family.
Collapse
|
6
|
Song H, Lu Q, Guo X. Identification of candidate genes associated with JA under elevated CO 2 in carrot ( Daucus carota L.). BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1954090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Hongxia Song
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Qiang Lu
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Xiaoyu Guo
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, PR China
| |
Collapse
|
7
|
Tian C, Liu S, Jiang L, Tian S, Wang G. The expression characteristics of methyl jasmonate biosynthesis-related genes in Cymbidium faberi and influence of heterologous expression of CfJMT in Petunia hybrida. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:400-410. [PMID: 32278958 DOI: 10.1016/j.plaphy.2020.03.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/20/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Cymbidium faberi Rolfe (Orchidaceae) is an herbaceous plant native to China, where it has a long history of cultivation owing to its beautiful flower pattern and floral fragrance. Previously, we conducted a transcriptome analysis of the flower and vegetative buds to elucidate the mechanisms of flower development in C. faberi. In the present study, we found nine secondary metabolic pathways through the KEGG pathway database that were related to the biosynthesis of methyl jasmonate (MeJA) and other volatile organic compounds. qRT-PCR was performed to analyze the expression levels of four key genes in the MeJA pathway. Among these, CfJMT (jasmonic acid carboxyl methyltransferase) had higher transcript levels in sepals, petals and labella than in other tissues. CfJMT was cloned from the petals of full-bloom flowers of C. faberi. The predicted CfJMT protein sequence contains conserved jasmonic acid methyl transferase-7 domains, indicating that it belongs to the SABATH protein family. The CfJMT coding sequence driven by the CaMV35S promoter was successfully transformed into Petunia hybrida through an Agrobacterium-mediated method. Although MeJA could not be detected in either wild-type or transgenic petunia plants, the leaves of the transgenic plants were smaller than those of wild-type plants and pollen development was abnormal. These results indicate that heterologous expression of CfJMT may change the levels of endogenous jasmonic acid and other hormones, but that the content of MeJA is not increased significantly by transformation with CfJMT alone. Thus, other related genes and regulation factors may play important roles in this process.
Collapse
Affiliation(s)
- Chunling Tian
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Song Liu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Jiang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Silin Tian
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangdong Wang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Lin W, Huang W, Ning S, Gong X, Ye Q, Wei D. Comparative transcriptome analyses revealed differential strategies of roots and leaves from methyl jasmonate treatment Baphicacanthus cusia (Nees) Bremek and differentially expressed genes involved in tryptophan biosynthesis. PLoS One 2019; 14:e0212863. [PMID: 30865659 PMCID: PMC6415880 DOI: 10.1371/journal.pone.0212863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
Baphicacanthus cusia (Nees) Bremek (B. cusia) is an effective herb for the treatment of acute promyelocytic leukemia and psoriasis in traditional Chinese medicine. Methyl jasmonate (MeJA) is a well-known signaling phytohormone that triggers gene expression in secondary metabolism. Currently, MeJA-mediated biosynthesis of indigo and indirubin in B. cusia is not well understood. In this study, we analyzed the content of indigo and indirubin in leaf and root tissues of B. cusia with high-performance liquid chromatography and measured photosynthetic characteristics of leaves treated by MeJA using FluorCam6 Fluorometer and chlorophyll fluorescence using the portable photosynthesis system CIRAS-2. We performed de novo RNA-seq of B. cusia leaf and root transcriptional profiles to investigate differentially expressed genes (DEGs) in response to exogenous MeJA application. The amount of indigo in MeJA-treated leaves were higher than that in controled leaves (p = 0.004), and the amounts of indigo in treated roots was higher than that in controlled roots (p = 0.048); Chlorophyll fluorescence of leaves treated with MeJA were significantly decreased. Leaves treated with MeJA showed lower photosynthetic rate compared to the control in the absence of MeJA. Functional annotation of DEGs showed the DEGs related to growth and development processes were down-regulated in the treated leaves, while most of the unigenes involved in the defense response were up-regulated in treated roots. This coincided with the effects of MeJA on photosynthetic characteristics and chlorophyll fluorescence. The qRT-PCR results showed that MeJA appears to down-regulate the gene expression of tryptophan synthase β-subunits (trpA-β) in leaves but increased the gene expression of anthranilate synthase (trp 3) in roots responsible for increased indigo content. The results showed that MeJA suppressed leaf photosynthesis for B. cusia and this growth-defense trade-off may contribute to the improved adaptability of B. cusia in changing environments.
Collapse
Affiliation(s)
- Wenjin Lin
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, Fujian, China
| | - Wei Huang
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shuju Ning
- School of Crop science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaogui Gong
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qi Ye
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Daozhi Wei
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
9
|
Xu Q, Wang S, Hong H, Zhou Y. Transcriptomic profiling of the flower scent biosynthesis pathway of Cymbidium faberi Rolfe and functional characterization of its jasmonic acid carboxyl methyltransferase gene. BMC Genomics 2019; 20:125. [PMID: 30744548 PMCID: PMC6371524 DOI: 10.1186/s12864-019-5501-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/31/2019] [Indexed: 01/12/2023] Open
Abstract
Background Cymbidium faberi, one of the most famous oriental orchids, has a distinct flower scent, which increases its economic value. However, the molecular mechanism of the flower scent biosynthesis was unclear prior to this study. Methyl jasmonate (MeJA) is one of the main volatile organic compounds (VOC) produced by the flowers of C. faberi. In this study, unigene 79,363 from comparative transcriptome analysis was selected for further investigation. Results A transcriptome comparison between blooming and withered flowers of C. faberi yielded a total of 9409 differentially expressed genes (DEGs), 558 of which were assigned to 258 pathways. The top ten pathways included α-linolenic acid metabolism, pyruvate metabolism and fatty acid degradation, which contributed to the conversion of α-linolenic acid to MeJA. One of the DEGs, jasmonic acid carboxyl methyltransferase (CfJMT, Unigene 79,363) was highly expressed in the blooming flower of C. faberi, but was barely detected in leaves and roots. Although the ectopic expression of CfJMT in tomato could not increase the MeJA content, the expression levels of endogenous MeJA biosynthesis genes were influenced, especially in the wound treatment, indicating that CfJMT may participate in the response to abiotic stresses. Conclusion This study provides a basis for elucidating the molecular mechanism of flower scent biosynthesis in C. faberi, which is beneficial for the genetically informed breeding of new cultivars of the economically valuable oriental orchids. Electronic supplementary material The online version of this article (10.1186/s12864-019-5501-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Xu
- Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China.,College of Bioscience and Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China.,Present Address: Hainan Key Laboratory for the Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, 570228, People's Republic of China
| | - Songtai Wang
- Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China.,College of Bioscience and Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China
| | - Huazhu Hong
- Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China.,College of Bioscience and Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China
| | - Yin Zhou
- Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China. .,College of Bioscience and Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, People's Republic of China.
| |
Collapse
|
10
|
Pigolev AV, Miroshnichenko DN, Pushin AS, Terentyev VV, Boutanayev AM, Dolgov SV, Savchenko TV. Overexpression of Arabidopsis OPR3 in Hexaploid Wheat ( Triticum aestivum L.) Alters Plant Development and Freezing Tolerance. Int J Mol Sci 2018; 19:E3989. [PMID: 30544968 PMCID: PMC6320827 DOI: 10.3390/ijms19123989] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 01/09/2023] Open
Abstract
Jasmonates are plant hormones that are involved in the regulation of different aspects of plant life, wherein their functions and molecular mechanisms of action in wheat are still poorly studied. With the aim of gaining more insights into the role of jasmonic acid (JA) in wheat growth, development, and responses to environmental stresses, we have generated transgenic bread wheat plants overexpressing Arabidopsis 12-OXOPHYTODIENOATE REDUCTASE 3 (AtOPR3), one of the key genes of the JA biosynthesis pathway. Analysis of transgenic plants showed that AtOPR3 overexpression affects wheat development, including germination, growth, flowering time, senescence, and alters tolerance to environmental stresses. Transgenic wheat plants with high AtOPR3 expression levels have increased basal levels of JA, and up-regulated expression of ALLENE OXIDE SYNTHASE, a jasmonate biosynthesis pathway gene that is known to be regulated by a positive feedback loop that maintains and boosts JA levels. Transgenic wheat plants with high AtOPR3 expression levels are characterized by delayed germination, slower growth, late flowering and senescence, and improved tolerance to short-term freezing. The work demonstrates that genetic modification of the jasmonate pathway is a suitable tool for the modulation of developmental traits and stress responses in wheat.
Collapse
Affiliation(s)
- Alexey V Pigolev
- Institute of Basic Biological Problems RAS, Pushchino 142290, Russia.
| | - Dmitry N Miroshnichenko
- Institute of Basic Biological Problems RAS, Pushchino 142290, Russia.
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino 142290, Russia.
| | - Alexander S Pushin
- Institute of Basic Biological Problems RAS, Pushchino 142290, Russia.
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino 142290, Russia.
| | | | | | - Sergey V Dolgov
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino 142290, Russia.
| | | |
Collapse
|
11
|
Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S. Jasmonates: Multifunctional Roles in Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:813. [PMID: 27379115 PMCID: PMC4908892 DOI: 10.3389/fpls.2016.00813] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/25/2016] [Indexed: 05/18/2023]
Abstract
Jasmonates (JAs) [Jasmonic acid (JA) and methyl jasmonates (MeJAs)] are known to take part in various physiological processes. Exogenous application of JAs so far tested on different plants under abiotic stresses particularly salinity, drought, and temperature (low/high) conditions have proved effective in improving plant stress tolerance. However, its extent of effectiveness entirely depends on the type of plant species tested or its concentration. The effects of introgression or silencing of different JA- and Me-JA-related genes have been summarized in this review, which have shown a substantial role in improving crop yield and quality in different plants under stress or non-stress conditions. Regulation of JAs synthesis is impaired in stressed as well as unstressed plant cells/tissues, which is believed to be associated with a variety of metabolic events including signal transduction. Although, mitogen activated protein kinases (MAPKs) are important components of JA signaling and biosynthesis pathways, nitric oxide, ROS, calcium, ABA, ethylene, and salicylic acid are also important mediators of plant growth and development during JA signal transduction and synthesis. The exploration of other signaling molecules can be beneficial to examine the details of underlying molecular mechanisms of JA signal transduction. Much work is to be done in near future to find the proper answers of the questions like action of JA related metabolites, and identification of universal JA receptors etc. Complete signaling pathways involving MAPKs, CDPK, TGA, SIPK, WIPK, and WRKY transcription factors are yet to be investigated to understand the complete mechanism of action of JAs.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, S.P. CollegeSrinagar, India
- Department of Botany and Microbiology, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Saiema Rasool
- Forest Biotech Lab, Department of Forest Management, Faculty of Forestry, Universiti Putra MalaysiaSelangor, Malaysia
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and TechnologyIslamabad, Pakistan
| | - Subzar A. Sheikh
- Department of Botany, Govt. Degree College (Boys), AnantnagAnantnag, India
| | - Nudrat A. Akram
- Department of Botany, GC University FaisalabadFaisalabad, Pakistan
| | - Muhammad Ashraf
- Department of Botany and Microbiology, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
- Pakistan Science FoundationIslamabad, Pakistan
| | - A. M. Kazi
- Department of Botany, University of SargodhaSargodha, Pakistan
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| |
Collapse
|
12
|
Bensmihen S. Hormonal Control of Lateral Root and Nodule Development in Legumes. PLANTS (BASEL, SWITZERLAND) 2015; 4:523-47. [PMID: 27135340 PMCID: PMC4844399 DOI: 10.3390/plants4030523] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 11/23/2022]
Abstract
Many plants can establish symbioses with nitrogen-fixing bacteria, some of which lead to nodulation, including legumes. Indeed, in the rhizobium/legume symbiosis, new root organs, called nodules, are formed by the plant in order to host the rhizobia in protective conditions, optimized for nitrogen fixation. In this way, these plants can benefit from the reduction of atmospheric dinitrogen into ammonia by the hosted bacteria, and in exchange the plant provides the rhizobia with a carbon source. Since this symbiosis is costly for the plant it is highly regulated. Both legume nodule and lateral root organogenesis involve divisions of the root inner tissues, and both developmental programs are tightly controlled by plant hormones. In fact, most of the major plant hormones, such as auxin, cytokinins, abscisic acid, and strigolactones, control both lateral root formation and nodule organogenesis, but often in an opposite manner. This suggests that the sensitivity of legume plants to some phytohormones could be linked to the antagonism that exists between the processes of nodulation and lateral root formation. Here, we will review the implication of some major phytohormones in lateral root formation in legumes, compare them with their roles in nodulation, and discuss specificities and divergences from non-legume eudicot plants such as Arabidopsis thaliana.
Collapse
Affiliation(s)
- Sandra Bensmihen
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France.
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326 Castanet-Tolosan, France.
| |
Collapse
|
13
|
Dar TA, Uddin M, Khan MMA, Hakeem K, Jaleel H. Jasmonates counter plant stress: A Review. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2015; 115:49-57. [PMID: 0 DOI: 10.1016/j.envexpbot.2015.02.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
14
|
Gibbs DJ, Voß U, Harding SA, Fannon J, Moody LA, Yamada E, Swarup K, Nibau C, Bassel GW, Choudhary A, Lavenus J, Bradshaw SJ, Stekel DJ, Bennett MJ, Coates JC. AtMYB93 is a novel negative regulator of lateral root development in Arabidopsis. THE NEW PHYTOLOGIST 2014; 203:1194-1207. [PMID: 24902892 PMCID: PMC4286813 DOI: 10.1111/nph.12879] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/07/2014] [Indexed: 05/18/2023]
Abstract
Plant root system plasticity is critical for survival in changing environmental conditions. One important aspect of root architecture is lateral root development, a complex process regulated by hormone, environmental and protein signalling pathways. Here we show, using molecular genetic approaches, that the MYB transcription factor AtMYB93 is a novel negative regulator of lateral root development in Arabidopsis. We identify AtMYB93 as an interaction partner of the lateral-root-promoting ARABIDILLO proteins. Atmyb93 mutants have faster lateral root developmental progression and enhanced lateral root densities, while AtMYB93-overexpressing lines display the opposite phenotype. AtMYB93 is expressed strongly, specifically and transiently in the endodermal cells overlying early lateral root primordia and is additionally induced by auxin in the basal meristem of the primary root. Furthermore, Atmyb93 mutant lateral root development is insensitive to auxin, indicating that AtMYB93 is required for normal auxin responses during lateral root development. We propose that AtMYB93 is part of a novel auxin-induced negative feedback loop stimulated in a select few endodermal cells early during lateral root development, ensuring that lateral roots only develop when absolutely required. Putative AtMYB93 homologues are detected throughout flowering plants and represent promising targets for manipulating root systems in diverse crop species.
Collapse
Affiliation(s)
- Daniel J Gibbs
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ute Voß
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Susan A Harding
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jessica Fannon
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Laura A Moody
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Erika Yamada
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kamal Swarup
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Candida Nibau
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - George W Bassel
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Anushree Choudhary
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Julien Lavenus
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Susan J Bradshaw
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Dov J Stekel
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
15
|
Gibbs DJ, Coates JC. AtMYB93 is an endodermis-specific transcriptional regulator of lateral root development in arabidopsis. PLANT SIGNALING & BEHAVIOR 2014; 9:e970406. [PMID: 25482809 PMCID: PMC4622915 DOI: 10.4161/15592316.2014.970406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant root systems are critical for survival, acting as the primary interface for nutrient and water acquisition, as well as anchoring the plant to the ground. As plants grow, their root systems become more elaborate, which is largely mediated by the formation of root branches, or lateral roots. Lateral roots initiate deep within the root in the pericycle cell layer, and their development is controlled by a wide range of internal signaling factors and environmental cues, as well as mechanical feedback from the surrounding cells. The endodermal cell layer, which overlies the pericycle, has emerged as an important tissue regulating LR initiation and formation. We recently identified the AtMYB93 transcription factor as a negative regulator of lateral root development in Arabidopsis. Interestingly, AtMYB93 expression is highly restricted to the few endodermal cells overlying developing lateral root primordia, suggesting that this transcriptional regulator might play a key role in mediating the effect of the endodermis on lateral root development. Here we discuss our recent findings in the wider context of root system development - with a particular focus on the role of the endodermis - and propose several potential models to explain AtMYB93 function during lateral root organogenesis.
Collapse
Affiliation(s)
- Daniel J Gibbs
- School of Biosciences; University of Birmingham; Edgbaston, UK
| | - Juliet C Coates
- School of Biosciences; University of Birmingham; Edgbaston, UK
- Correspondence to: Juliet C Coates;
| |
Collapse
|
16
|
Santino A, Taurino M, De Domenico S, Bonsegna S, Poltronieri P, Pastor V, Flors V. Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. PLANT CELL REPORTS 2013; 32:1085-98. [PMID: 23584548 DOI: 10.1007/s00299-013-1441-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 05/23/2023]
Abstract
Plants frequently live in environments characterized by the presence of simultaneous and different stresses. The intricate and finely tuned molecular mechanisms activated by plants in response to abiotic and biotic environmental factors are not well understood, and less is known about the integrative signals and convergence points activated by plants in response to multiple (a)biotic stresses. Phytohormones play a key role in plant development and response to (a)biotic stresses. Among these, one of the most important signaling molecules is an oxylipin, the plant hormone jasmonic acid. Oxylipins are derived from oxygenation of polyunsaturated fatty acids. Jasmonic acid and its volatile derivative methyl jasmonate have been considered for a long time to be the bioactive forms due to their physiological effects and abundance in the plant. However, more recent studies showed unambiguously that they are only precursors of the active forms represented by some amino acid conjugates. Upon developmental or environmental stimuli, jasmonates are synthesized and accumulate transiently. Upon perception, jasmonate signal transduction process is finely tuned by a complex mechanism comprising specific repressor proteins which in turn control a number of transcription factors regulating the expression of jasmonate responsive genes. We discuss the latest discoveries about the role of jasmonates in plants resistance mechanism against biotic and abiotic stresses. Finally, the deep interplay of different phytohormones in stresses signaling will be also discussed.
Collapse
Affiliation(s)
- Angelo Santino
- Institute of Sciences of Food Production C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy.
| | | | | | | | | | | | | |
Collapse
|
17
|
Jung JKH, McCouch S. Getting to the roots of it: Genetic and hormonal control of root architecture. FRONTIERS IN PLANT SCIENCE 2013; 4:186. [PMID: 23785372 PMCID: PMC3685011 DOI: 10.3389/fpls.2013.00186] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/22/2013] [Indexed: 05/17/2023]
Abstract
Root system architecture (RSA) - the spatial configuration of a root system - is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants.
Collapse
Affiliation(s)
| | - Susan McCouch
- Department of Plant Breeding and Genetics, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
18
|
Jung JKH, McCouch S. Getting to the roots of it: Genetic and hormonal control of root architecture. FRONTIERS IN PLANT SCIENCE 2013. [PMID: 23785372 DOI: 10.3389/fpls.2013.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Root system architecture (RSA) - the spatial configuration of a root system - is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants.
Collapse
Affiliation(s)
- Janelle K H Jung
- Department of Plant Breeding and Genetics, Cornell University Ithaca, NY, USA
| | | |
Collapse
|
19
|
Jung JKH, McCouch S. Getting to the roots of it: Genetic and hormonal control of root architecture. FRONTIERS IN PLANT SCIENCE 2013. [PMID: 23785372 DOI: 10.3389/fpls.2013.00186/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Root system architecture (RSA) - the spatial configuration of a root system - is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants.
Collapse
Affiliation(s)
- Janelle K H Jung
- Department of Plant Breeding and Genetics, Cornell University Ithaca, NY, USA
| | | |
Collapse
|
20
|
Homrich MS, Wiebke-Strohm B, Weber RLM, Bodanese-Zanettini MH. Soybean genetic transformation: A valuable tool for the functional study of genes and the production of agronomically improved plants. Genet Mol Biol 2012; 35:998-1010. [PMID: 23412849 PMCID: PMC3571417 DOI: 10.1590/s1415-47572012000600015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Transgenic plants represent an invaluable tool for molecular, genetic, biochemical and physiological studies by gene overexpression or silencing, transposon-based mutagenesis, protein sub-cellular localization and/or promoter characterization as well as a breakthrough for breeding programs, allowing the production of novel and genetically diverse genotypes. However, the stable transformation of soybean cannot yet be considered to be routine because it depends on the ability to combine efficient transformation and regeneration techniques. Two methods have been used with relative success to produce completely and stably transformed plants: particle bombardment and the Agrobacterium tumefaciens system. In addition, transformation by Agrobacterium rhizogenes has been used as a powerful tool for functional studies. Most available information on gene function is based on heterologous expression systems. However, as the activity of many promoters or proteins frequently depends on specific interactions that only occur in homologous backgrounds, a final confirmation based on a homologous expression system is desirable. With respect to soybean biotech improvement, transgenic lines with agronomical, nutritional and pharmaceutical traits have been obtained, including herbicide-tolerant soybeans, which represented the principal biotech crop in 2011, occupying 47% of the global biotech area.
Collapse
Affiliation(s)
- Milena Schenkel Homrich
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Beatriz Wiebke-Strohm
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Centro de Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ricardo Luís Mayer Weber
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Helena Bodanese-Zanettini
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
21
|
Stitz M, Baldwin IT, Gaquerel E. Diverting the flux of the JA pathway in Nicotiana attenuata compromises the plant's defense metabolism and fitness in nature and glasshouse. PLoS One 2011; 6:e25925. [PMID: 22022469 PMCID: PMC3189938 DOI: 10.1371/journal.pone.0025925] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/13/2011] [Indexed: 11/23/2022] Open
Abstract
A plant's inducible defenses against herbivores as well as certain developmental processes are known to be controlled by the jasmonic acid (JA) pathway. We have previously shown that ectopically expressing Arabidopsis thaliana JA O-methyltransferase in Nicotiana attenuata (35S-jmt) strongly reduces the herbivory-elicited jasmonate bursts by acting as metabolic sink that redirects free JA towards methylation; here we examine the consequences of this metabolic sink on N. attenuata's secondary metabolism and performance in nature. In the glasshouse, 35S-jmt plants produced fewer seed capsules due to shorter floral styles, which could be restored to wild type (WT) levels after hand-pollination, and were more susceptible to Manduca sexta larvae attack. When transplanted into the Great Basin Desert in Utah, 35S-jmt plants grew as well as WT empty vector, but were highly attacked by native herbivores of different feeding guilds: leaf chewers, miners, and single cell feeders. This greater susceptibility was strongly associated with reduced emissions of volatile organic compounds (hexenylesters, monoterpenes and sesquiterpenes) and profound alterations in the production of direct defenses (trypsin proteinase inhibitors [TPI], nicotine, diterpene glycosides [DTGs] and phenylpropanoid-polyamine conjugates) as revealed by a combination of targeted and metabolomics analyses of field collected samples. Complementation experiments with JA-Ile, whose formation is outcompeted in 35S-jmt plants by the methylation reaction, restored the local TPI activation to WT levels and partially complemented nicotine and DTG levels in elicited but not systemic leaves. These findings demonstrate that MeJA, the major JA metabolite in 35S-jmt plants, is not an active signal in defense activation and highlights the value of creating JA sinks to disrupt JA signaling, without interrupting the complete octadecanoid pathway, in order to investigate the regulation of plants' defense metabolism in nature.
Collapse
Affiliation(s)
- Michael Stitz
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, Germany
| | - Ian T. Baldwin
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, Germany
| | - Emmanuel Gaquerel
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, Germany
| |
Collapse
|
22
|
Kim EH, Kim YS, Park SH, Koo YJ, Choi YD, Chung YY, Lee IJ, Kim JK. Methyl jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice. PLANT PHYSIOLOGY 2009; 149:1751-60. [PMID: 19211695 PMCID: PMC2663756 DOI: 10.1104/pp.108.134684] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 02/04/2009] [Indexed: 05/18/2023]
Abstract
Jasmonic acid (JA) is involved in plant development and the defense response. Transgenic overexpression of the Arabidopsis (Arabidopsis thaliana) jasmonic acid carboxyl methyltransferase gene (AtJMT) linked to the Ubi1 promoter increased levels of methyl jasmonate (MeJA) by 6-fold in young panicles. Grain yield was greatly reduced in Ubi1:AtJMT plants due to a lower numbers of spikelets and lower filling rates than were observed for nontransgenic (NT) controls. Ubi1:AtJMT plants had altered numbers of spikelet organs, including the lemma/palea, lodicule, anther, and pistil. The loss of grain yield and alteration in spikelet organ numbers were reproduced by treating NT plants with exogenous MeJA, indicating that increased levels of MeJA in Ubi1:AtJMT panicles inhibited spikelet development. Interestingly, MeJA levels were increased by 19-fold in young NT panicles upon exposure to drought conditions, resulting in a loss of grain yield that was similar to that observed in Ubi1:AtJMT plants. Levels of abscisic acid (ABA) were increased by 1.9- and 1.4-fold in Ubi1:AtJMT and drought-treated NT panicles, respectively. The ABA increase in Ubi1:AtJMT panicles grown in nondrought conditions suggests that MeJA, rather than drought stress, induces ABA biosynthesis under drought conditions. Using microarray and quantitative polymerase chain reaction analyses, we identified seven genes that were regulated in both Ubi1:AtJMT and drought-treated NT panicles. Two genes, OsJMT1 and OsSDR (for short-chain alcohol dehydrogenase), are involved in MeJA and ABA biosynthesis, respectively, in rice (Oryza sativa). Overall, our results suggest that plants produce MeJA during drought stress, which in turn stimulates the production of ABA, together leading to a loss of grain yield.
Collapse
Affiliation(s)
- Eun Hye Kim
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449-728, Korea
| | | | | | | | | | | | | | | |
Collapse
|