1
|
Li M, Jiao Y. Cereal genetics: Novel modulators of spikelet number and flowering time. Curr Biol 2024; 34:R528-R530. [PMID: 38834023 DOI: 10.1016/j.cub.2024.04.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The spikelet is the unit component of the spike and the site of grain production in Triticeae crops. Two new studies revealed that plant-specific transcription factors ALOG1 and PDB1 participate in modulating spikelet number and flowering time in barley and wheat.
Collapse
Affiliation(s)
- Mingjiu Li
- Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Peking University Institute of Advanced Agricultural Sciences, Shandong, China.
| | - Yuling Jiao
- Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Peking University Institute of Advanced Agricultural Sciences, Shandong, China; School of Life Sciences, State Key Laboratory for Protein and Plant Gene Research, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
2
|
Fang H, Chen H, Wang J, Li N, Zhang L, Wei C. G1 Interacts with OsMADS1 to Regulate the Development of the Sterile Lemma in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:505. [PMID: 38498476 PMCID: PMC10892649 DOI: 10.3390/plants13040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 03/20/2024]
Abstract
Flower development, as the basis for plant seed development, is principally conserved in angiosperms. At present, a number of genes regulating flower organ differentiation have been identified, and an ABCDE model has also been proposed. In contrast, the mechanism that regulates the development of the sterile lemma remains unclear. In this study, we identified and characterized a rice floral organ mutant, M15, in which the sterile lemma transformed into a lemma-like organ. Positional cloning combined with a complementary experiment demonstrated that the mutant phenotype was restored by LONG STERILE LEMMA1/(G1). G1 was expressed constitutively in various tissues, with the highest expression levels detected in the sterile lemma and young panicle. G1 is a nucleus-localized protein and functions as a homomer. Biochemical assays showed that G1 physically interacted with OsMADS1 both in vitro and in vivo. Interestingly, the expression of G1 in M15 decreased, while the expression level of OsMADS1 increased compared with the wild type. We demonstrate that G1 plays a key role in sterile lemma development through cooperating with OsMADS1. The above results have implications for further research on the molecular mechanisms underlying flower development and may have potential applications in crop improvement strategies.
Collapse
Affiliation(s)
- Huimin Fang
- Guangling College, Yangzhou University, Yangzhou 225000, China; (H.F.); (J.W.)
| | - Hualan Chen
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.C.); (N.L.); (L.Z.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Jianing Wang
- Guangling College, Yangzhou University, Yangzhou 225000, China; (H.F.); (J.W.)
| | - Ning Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.C.); (N.L.); (L.Z.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Long Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.C.); (N.L.); (L.Z.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.C.); (N.L.); (L.Z.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Do VG, Lee Y, Kim S, Yang S, Park J, Do G. Introducing MdTFL1 Promotes Heading Date and Produces Semi-Draft Phenotype in Rice. Int J Mol Sci 2023; 24:10365. [PMID: 37373512 DOI: 10.3390/ijms241210365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Flowering time (in rice, termed the heading date), plant height, and grain number are crucial agronomic traits for rice productivity. The heading date is controlled via environmental factors (day length and temperature) and genetic factors (floral genes). TERMINAL FLOWER 1 (TFL1) encodes a protein that controls meristem identity and participates in regulating flowering. In this study, a transgenic approach was used to promote the heading date in rice. We isolated and cloned apple MdTFL1 for early flowering in rice. Transgenic rice plants with antisense MdTFL1 showed an early heading date compared with wild-type plants. A gene expression analysis suggested that introducing MdTFL1 upregulated multiple endogenous floral meristem identity genes, including the (early) heading date gene family FLOWERING LOCUS T and MADS-box transcription factors, thereby shortening vegetable development. Antisense MdTFL1 also produced a wide range of phenotypic changes, including a change in overall plant organelles that affected an array of traits, especially grain productivity. The transgenic rice exhibited a semi-draft phenotype, increased leaf inclination angle, restricted flag leaf length, reduced spikelet fertility, and fewer grains per panicle. MdTFL1 plays a central role in regulating flowering and in various physiological aspects. These findings emphasize the role of TFL1 in regulating flowering in shortened breeding and expanding its function to produce plants with semi-draft phenotypes.
Collapse
Affiliation(s)
- Van Giap Do
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Gunwi 39000, Republic of Korea
| | - Youngsuk Lee
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Gunwi 39000, Republic of Korea
| | - Seonae Kim
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Gunwi 39000, Republic of Korea
| | - Sangjin Yang
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Gunwi 39000, Republic of Korea
| | - Juhyeon Park
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Gunwi 39000, Republic of Korea
| | - Gyungran Do
- Planning and Coordination Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| |
Collapse
|
4
|
Luo X, Wei Y, Zheng Y, Wei L, Wu F, Cai Q, Xie H, Zhang J. Analysis of co-expression and gene regulatory networks associated with sterile lemma development in rice. BMC PLANT BIOLOGY 2023; 23:11. [PMID: 36604645 PMCID: PMC9817312 DOI: 10.1186/s12870-022-04012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The sterile lemma is a unique organ of the rice (Oryza sativa L.) spikelet. However, the characteristics and origin of the rice sterile lemma have not been determined unequivocally, so it is important to elucidate the molecular mechanism of the development of the sterile lemma. RESULTS In the paper, we outline the regulatory mechanism of sterile lemma development by LONG STERILE LEMMA1 (G1), which has been identified as the gene controlling sterile lemma development. Based on the comprehensive analyses of transcriptome dynamics during sterile lemma development with G1 alleles between wild-type (WT) and mutant (MT) in rice, we obtained co-expression data and regulatory networks related to sterile lemma development. Co-transfection assays of rice protoplasts confirmed that G1 affects the expression of various phytohormone-related genes by regulating a number of critical transcription factors, such as OsLBD37 and OSH1. The hormone levels in sterile lemmas from WT and MT of rice supports the hypotheses that lower auxin, lower gibberellin, and higher cytokinin concentrations are required to maintain a normal phenotype of sterile lemmas. CONCLUSION The regulatory networks have considerable reference value, and some of the regulatory relationships exhibiting strong correlations are worthy of further study. Taken together, these work provided a detailed guide for further studies into the molecular mechanism of sterile lemma development.
Collapse
Affiliation(s)
- Xi Luo
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Yanmei Zheng
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Linyan Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Fangxi Wu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Huaan Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China.
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China.
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China.
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China.
| |
Collapse
|
5
|
Dreni L. The ABC of Flower Development in Monocots: The Model of Rice Spikelet. Methods Mol Biol 2023; 2686:59-82. [PMID: 37540354 DOI: 10.1007/978-1-0716-3299-4_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The initial seminal studies of flower developmental genetics were made from observations in several eudicot model species, particularly Arabidopsis and Antirrhinum. However, an increasing amount of research in monocot model and crop species is finally giving the credit that monocots deserve for their position in the evolutionary history of Angiosperms, their astonishing diversification and adaptation, their diversified floral structures, their pivotal function in most ecosystems on Earth and, finally, their importance in agriculture and farming, economy, landscaping and feeding mankind. Rice is a staple crop and the major monocot model to study the reproductive phase and flower evolution. Inspired by this, this chapter reviews a story of highly conserved functions related to the ABC model of flower development. Nevertheless, this model is complicated in rice by cases of gene neofunctionalization, like the recruitment of MADS-box genes for the development of the unique organs known as lemma and palea, subfunctionalization, and rewiring of conserved molecular pathways.
Collapse
Affiliation(s)
- Ludovico Dreni
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
6
|
Yang D, He N, Zheng X, Zhen Y, Xie Z, Cheng C, Huang F. Cloning of long sterile lemma (lsl2), a single recessive gene that regulates spike germination in rice (Oryza sativa L.). BMC PLANT BIOLOGY 2020; 20:561. [PMID: 33308141 PMCID: PMC7733262 DOI: 10.1186/s12870-020-02776-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/02/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Rice is a typical monocotyledonous plant and an important cereal crop. The structural units of rice flowers are spikelets and florets, and floral organ development and spike germination affect rice reproduction and yield. RESULTS In this study, we identified a novel long sterile lemma (lsl2) mutant from an EMS population. First, we mapped the lsl2 gene between the markers Indel7-22 and Indel7-27, which encompasses a 25-kb region. The rice genome annotation indicated the presence of four candidate genes in this region. Through gene prediction and cDNA sequencing, we confirmed that the target gene in the lsl2 mutant is allelic to LONG STERILE LEMMA1 (G1)/ELONGATED EMPTY GLUME (ELE), hereafter referred to as lsl2. Further analysis of the lsl2 and LSL2 proteins showed a one-amino-acid change, namely, the mutation of serine (Ser) 79 to proline (Pro) in lsl2 compared with LSL2, and this mutation might change the function of the protein. Knockout experiments showed that the lsl2 gene is responsible for the long sterile lemma phenotype. The lsl2 gene might reduce the damage induced by spike germination by decreasing the seed germination rate, but other agronomic traits of rice were not changed in the lsl2 mutant. Taken together, our results demonstrate that the lsl2 gene will have specific application prospects in future rice breeding. CONCLUSIONS The lsl2 gene is responsible for the long sterile lemma phenotype and might reduce the damage induced by spike germination by decreasing the seed germination rate.
Collapse
Affiliation(s)
- Dewei Yang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fujian High Quality Rice Research & Development Center, Fuzhou, 350019, China.
| | - Niqing He
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fujian High Quality Rice Research & Development Center, Fuzhou, 350019, China
| | - Xianghua Zheng
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fujian High Quality Rice Research & Development Center, Fuzhou, 350019, China
| | - Yanmei Zhen
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fujian High Quality Rice Research & Development Center, Fuzhou, 350019, China
| | - Zhenxin Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fujian High Quality Rice Research & Development Center, Fuzhou, 350019, China
| | - Chaoping Cheng
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fujian High Quality Rice Research & Development Center, Fuzhou, 350019, China
| | - Fenghuang Huang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fujian High Quality Rice Research & Development Center, Fuzhou, 350019, China
| |
Collapse
|
7
|
Liu H, Wang K, Tang H, Gong Q, Du L, Pei X, Ye X. CRISPR/Cas9 editing of wheat TaQ genes alters spike morphogenesis and grain threshability. J Genet Genomics 2020; 47:563-575. [PMID: 33187879 DOI: 10.1016/j.jgg.2020.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/13/2023]
Abstract
The TaQ alleles as one of the AP2-like transcription factors in common wheat (Triticum aestivum) play an important role in the evolution of spike characteristics from wild and domesticated emmer to modern wheat cultivars. Its loss-of-function mutant not only changed threshability and spike architecture but also affected plant height, flowering time, and floret structure. However, the comprehensive functions of TaAQ and TaDq genes in wheat have not been fully elucidated yet. Here, CRISPR/SpCas9 was used to edit wheat TaAQ and TaDq. We obtained homozygous plants in the T1 generation with loss of function of only TaAQ or TaDq and simultaneous loss of function of TaAQ and TaDq to analyze the effect of these genes on wheat spikes and floret shapes. The results demonstrated that the TaAQ-edited plants and the TaAQ and TaDq simultaneously-edited plants were nearly similar in spike architecture, whereas the TaDq-edited plants were different from the wild-type ones only in plant height. Moreover, the TaAQ-edited plants or the TaAQ and TaDq simultaneously-edited plants were more brittle than the wild-type and the TaDq-edited plants. Based on the expression profiling, we postulated that the VRN1, FUL2, SEP2, SEP5, and SEP6 genes might affect the number of spikelets and florets per spike in wheat by regulating the expression of TaQ. Combining the results of this report and previous reports, we conceived a regulatory network of wheat traits, including plant height, spike shape, and floral organs, which were influenced by AP2-like family genes. The results achieved in this study will help us to understand the regulating mechanisms of TaAQ and TaDq alleles on wheat floral organs and inflorescence development.
Collapse
Affiliation(s)
- Huiyun Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ke Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huali Tang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Gong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lipu Du
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinwu Pei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xingguo Ye
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
8
|
Xu Q, Yu H, Xia S, Cui Y, Yu X, Liu H, Zeng D, Hu J, Zhang Q, Gao Z, Zhang G, Zhu L, Shen L, Guo L, Rao Y, Qian Q, Ren D. The C2H2 zinc-finger protein LACKING RUDIMENTARY GLUME 1 regulates spikelet development in rice. Sci Bull (Beijing) 2020; 65:753-764. [PMID: 36659109 DOI: 10.1016/j.scib.2020.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/21/2023]
Abstract
Rice (Oryza sativa) spikelets are a unique inflorescence structure and their development directly determines grain size and yield. Although many genes related to spikelet development have been reported, the molecular mechanisms underlying this process have not been fully elucidated. In this study, we identified a new recessive rice mutant, lacking rudimentary glume 1 (lrg1). The lrg1 spikelets only formed one rudimentary glume, which, along with the sterile lemmas, was homeotically transformed into lemma-like organs and acquired lemma identity. The transition from the spikelet to the floral meristem was delayed in the lrg1 mutant, resulting in the formation of an ectopic lemma-like organ between the sterile lemma and the terminal floret. In addition, we found that the abnormal lrg1 grain phenotype resulted from the alteration of cell numbers and the hull size. LRG1 encodes a ZOS4-06-C2H2 zinc-finger protein with the typical EAR motifs, and is expressed in all organs and tissues. LRG1 localizes to the nucleus and can interact with the TOPLESS-RELATED PROTEINs (TPRs) to repress the expressions of their downstream target genes. Taken together, our results reveal that LRG1 plays an important role in the regulation of spikelet organ identity and grain size.
Collapse
Affiliation(s)
- Qiankun Xu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Haiping Yu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Saisai Xia
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yuanjiang Cui
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiaoqi Yu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - He Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Dali Zeng
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Jiang Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Qiang Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhenyu Gao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guangheng Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Li Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lan Shen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Longbiao Guo
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yuchun Rao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Qian Qian
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Deyong Ren
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
9
|
Ren D, Li Y, He G, Qian Q. Multifloret spikelet improves rice yield. THE NEW PHYTOLOGIST 2020; 225:2301-2306. [PMID: 31677165 DOI: 10.1111/nph.16303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
The typical rice (Oryza sativa) spikelet contains a single fertile floret and produces only one grain; by contrast, Brachypodium distachyon spikelets contain multiple fertile florets and produce several grains. To increase yield, rice breeders have traditionally focused on panicle morphology (branch number and length, spikelet density), but have not considered the number of florets in each spikelet. Production of rice spikelets with more florets could further increase the number of grains per panicle. Here, we describe two novel approaches - altering meristem determinacy and restoring lateral floret formation - for breeding rice cultivars with a multifloret spikelet, thereby increasing the number of grains per panicle and potentially improving yield.
Collapse
Affiliation(s)
- Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yunfeng Li
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guanghua He
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|
10
|
Debernardi JM, Greenwood JR, Jean Finnegan E, Jernstedt J, Dubcovsky J. APETALA 2-like genes AP2L2 and Q specify lemma identity and axillary floral meristem development in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:171-187. [PMID: 31494998 PMCID: PMC6972666 DOI: 10.1111/tpj.14528] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/22/2019] [Accepted: 08/29/2019] [Indexed: 05/08/2023]
Abstract
The spikelet is the basic unit of the grass inflorescence. In tetraploid (Triticum turgidum) and hexaploid wheat (Triticum aestivum), the spikelet is a short indeterminate branch with two proximal sterile bracts (glumes) followed by a variable number of florets, each including a bract (lemma) with an axillary flower. Varying levels of miR172 and/or its target gene Q (AP2L5) result in gradual transitions of glumes to lemmas, and vice versa. Here, we show that AP2L5 and its related paralog AP2L2 play critical and redundant roles in the specification of axillary floral meristems and lemma identity. AP2L2, also targeted by miR172, displayed similar expression profiles to AP2L5 during spikelet development. Loss-of-function mutants in both homeologs of AP2L2 (henceforth ap2l2) developed normal spikelets, but ap2l2 ap2l5 double mutants generated spikelets with multiple empty bracts before transitioning to florets. The coordinated nature of these changes suggest an early role of these genes in floret development. Moreover, the flowers of ap2l2 ap2l5 mutants showed organ defects in paleas and lodicules, including the homeotic conversion of lodicules into carpels. Mutations in the miR172 target site of AP2L2 were associated with reduced plant height, more compact spikes, promotion of lemma-like characters in glumes and smaller lodicules. Taken together, our results show that the balance in the expression of miR172 and AP2-like genes is crucial for the correct development of spikelets and florets, and that this balance has been altered during the process of wheat and barley (Hordeum vulgare) domestication. The manipulation of this regulatory module provides an opportunity to modify spikelet architecture and improve grain yield.
Collapse
Affiliation(s)
- Juan Manuel Debernardi
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
- Howard Hughes Medical InstituteChevy ChaseMD20815USA
| | | | | | - Judy Jernstedt
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | - Jorge Dubcovsky
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
- Howard Hughes Medical InstituteChevy ChaseMD20815USA
| |
Collapse
|
11
|
Li Y, Zeng X, Zhuang H, Chen H, Zhang T, Zhang J, Zheng H, Tang J, Wang H, Ren S, Ling Y, He G. Characterization and fine mapping of nonstop glumes 2 ( nsg2) mutant in rice ( Oryza sativa L.). PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2019; 36:125-134. [PMID: 31768114 PMCID: PMC6854344 DOI: 10.5511/plantbiotechnology.19.0506a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/06/2019] [Indexed: 06/10/2023]
Abstract
In cereal crops, the grain number per panicle and the grain yield are greatly affected by the number of florets in a spikelet. In wild-type rice, a spikelet only produces one fertile floret and beneath the floret are a pair of sterile lemmas and a pair of rudimentary glumes. This study characterized a rice spikelet mutant nonstop glumes 2 (nsg2). In the nsg2 mutant, both the sterile lemmas and rudimentary glumes were elongated, and part of sterile lemma looked like a lemma in appearance, shape and size. Detailed histological analysis and qPCR analysis revealed that the sterile lemmas in the nsg2 mutant had homeotically transformed into lemma-like organs. This phenotype indicates that NSG2 is involved in the regulation of spikelet development and supports the long-held view that sterile lemmas were derived from the lemmas of the two lateral florets. This implies that the rice spikelet has the potential to be restored to the "three florets spikelet", which may have existed in its ancestors. Genetic analysis reveals that the nsg2 trait is controlled by a single recessive gene. The NSG2 gene was finally mapped between markers R-20 and R-39 on chromosome 7 with a physical region of 180 kb. The two MYB family factors LOC_Os07g44030 and LOC_Os07g44090 might be involved in the development of the spikelet and floral organ, and they were considered as candidate genes of NSG2. These results provide a foundation for map-based cloning and function analysis of NSG2, as well as evidence to support "three-florets spikelet" breeding in rice.
Collapse
Affiliation(s)
- Yunfeng Li
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoqin Zeng
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hui Zhuang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Huan Chen
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Ting Zhang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jun Zhang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hao Zheng
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jun Tang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Honglei Wang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Suxian Ren
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yinghua Ling
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Guanghua He
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Chongloi GL, Prakash S, Vijayraghavan U. Regulation of meristem maintenance and organ identity during rice reproductive development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1719-1736. [PMID: 30753578 DOI: 10.1093/jxb/erz046] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Grasses have evolved complex inflorescences, where the primary unit is the specialized short branch called a spikelet. Detailed studies of the cumulative action of the genetic regulators that direct the progressive change in axillary meristem identity and their terminal differentiation are crucial to understanding the complexities of the inflorescence and the development of a determinate floret. Grass florets also pose interesting questions concerning the morphologies and functions of organs as compared to other monocots and eudicots. In this review, we summarize our current knowledge of the regulation of the transitions that occur in grass inflorescence meristems, and of the specification of floret meristems and their determinate development. We primarily use rice as a model, with appropriate comparisons to other crop models and to the extensively studied eudicot Arabidopsis. The role of MADS-domain transcription factors in floral organ patterning is well documented in many eudicots and in grasses. However, there is evidence to suggest that some of these rice floral regulators have evolved distinctive functions and that other grass species-specific factors and regulatory pathways occur - for example the LOFSEP 'E' class genes OsMADS1 and OsMAD34, and ramosa genes. A better understanding of these systems and the epigenetic regulators and hormone signaling pathways that interact with them will provide new insights into the rice inflorescence meristem and the differentiation of its floret organs, and should indicate genetic tools that can be used to control yield-related traits in both rice and other cereal crops.
Collapse
Affiliation(s)
- Grace L Chongloi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sandhan Prakash
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
13
|
Liu C, Xue Z, Tang D, Shen Y, Shi W, Ren L, Du G, Li Y, Cheng Z. Ornithine δ-aminotransferase is critical for floret development and seed setting through mediating nitrogen reutilization in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:842-854. [PMID: 30144334 DOI: 10.1111/tpj.14072] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 05/13/2023]
Abstract
Nitrogen is one of the most important nutrient element that is essential for plant growth and development. Many genes have been reported to contribute to nitrogen absorption and transportation. However, genes involved in nitrogen reutilization are seldom reported. Ornithine δ-aminotransferase (δOAT) is the enzyme connecting arginine cycling and proline cycling. Here, we found that OsOAT, the homologue of δOAT in rice, is essential for nitrogen reutilization through mediating arginase activity. In the Osoat mutant, metabolic abnormality induced by nitrogen deficiency in floret causes malformed glumes, incapable glume opening and anther indehiscence. These defects in the mutant affect the pollination process and lead to a low seed setting rate as well as abnormal seed shape. Intriguingly, urea can rescue the phenotypes of the Osoat mutant. Therefore, OsOAT is crucial for nitrogen reutilization and plays a critical role in floret development and seed setting in rice.
Collapse
Affiliation(s)
- Changzhen Liu
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihui Xue
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenqing Shi
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lijun Ren
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guijie Du
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Genome-Wide Identification and Characterization of wALOG Family Genes Involved in Branch Meristem Development of Branching Head Wheat. Genes (Basel) 2018; 9:genes9100510. [PMID: 30347757 PMCID: PMC6209938 DOI: 10.3390/genes9100510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 01/12/2023] Open
Abstract
The branched spike phenotype is an important supernumerary spikelet trait of Triticum turgidum L. associated with the production of significantly more grains per spike, thereby offering a higher potential yield. However, the genetic basis of branch meristem (BM) development remains to be fully elucidated in wheat. TAW1, an ALOG (Arabidopsis LSH1 and Oryza G1) family gene, has been shown to function as a unique regulator in promoting BM development in rice. In this study, we found that the development pattern of the BMs of the branched spike in wheat was similar to the indeterminate BMs of rice. Moreover, phylogenetic analysis classified the ALOG genes into 12 groups. This family of genes was found to have evolved independently in eudicots and monocots and was evolutionarily conserved between wheat and rice as well as during wheat polyploidization. Furthermore, experiments revealed that TtALOG2-1A, a TAW1-homologous gene, plays a significant role in regulating the transition of indeterminate BM fate. Finally, large-scale RNA-sequencing studies and quantitative real-time polymerase chain reaction (qRT-PCR) experiments revealed that members of the TtALOGs may act upstream of the TtMADS22, TtMADS47, and TtMADS55 genes to promote indeterminate BM activities. Our findings further knowledge on BM development in wheat.
Collapse
|
15
|
Ren D, Hu J, Xu Q, Cui Y, Zhang Y, Zhou T, Rao Y, Xue D, Zeng D, Zhang G, Gao Z, Zhu L, Shen L, Chen G, Guo L, Qian Q. FZP determines grain size and sterile lemma fate in rice. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4853-4866. [PMID: 30032251 PMCID: PMC6137974 DOI: 10.1093/jxb/ery264] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/12/2018] [Indexed: 05/19/2023]
Abstract
In grass, the spikelet is a unique inflorescence structure that directly determines grain yield. Despite a great deal of research, the molecular mechanisms behind spikelet development are not fully understood. In the study, FZP encodes an ERF domain protein, and functions in grain size and sterile lemma identity. Mutation of FZP causes smaller grains and degenerated sterile lemmas. The small fzp-12 grains were caused by a reduction in cell number and size in the hulls. Interestingly, the sterile lemma underwent a homeotic transformation into a rudimentary glume in the fzp-12 and fzp-13 mutants, whereas the sterile lemma underwent a homeotic transformation into a lemma in FZP over-expressing plants, suggesting that FZP specifically determines the sterile lemma identity. We confirmed the function of FZP by complementation, CRISPR-Cas9 gene editing, and cytological and molecular tests. Additionally, FZP interacts specifically with the GCC-box and DRE motifs, and may be involved in regulation of the downstream genes. Our results revealed that FZP plays a vital role in the regulation of grain size, and first provides clear evidence in support of the hypothesis that the lemma, rudimentary glume, and sterile lemma are homologous organs.
Collapse
Affiliation(s)
- Deyong Ren
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Jiang Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Qiankun Xu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Yuanjiang Cui
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Yu Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Tingting Zhou
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Yuchun Rao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, P. R. China
| | - Dali Zeng
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Guangheng Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Zhenyu Gao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Li Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Lan Shen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Guang Chen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Longbiao Guo
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
| | - Qian Qian
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P. R. China
- Correspondence:
| |
Collapse
|
16
|
Meng Q, Li X, Zhu W, Yang L, Liang W, Dreni L, Zhang D. Regulatory network and genetic interactions established by OsMADS34 in rice inflorescence and spikelet morphogenesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:693-707. [PMID: 28843032 DOI: 10.1111/jipb.12594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
Grasses display highly diversified inflorescence architectures that differ in the arrangement of spikelets and flowers and determine cereal yields. However, the molecular basis underlying grass inflorescence morphogenesis remains largely unknown. Here we investigate the role of a functionally diversified SEPALLATA MADS-box transcription factor, OsMADS34, in regulating rice (Oryza sativa L.) inflorescence and spikelet development. Microarray analysis showed that, at the very early stages of inflorescence formation, dysfunction of OsMADS34 caused altered expression of 379 genes that are associated with protein modification and degradation, transcriptional regulation, signaling and metabolism activity. Genetic analysis revealed that OsMADS34 controls different aspects of inflorescence structure, branching and meristem activity synergistically with LAX PANICLE1 (LAX1) and FLORAL ORGAN NUMBER4 (FON4), as evidenced by the enhanced phenotypes of osmads34 lax1 and osmads34 fon4 compared with the single mutants. Additionally, double mutant between osmads34 and the sterile lemma defective mutant elongated empty glume (ele) displayed an enhanced phenotype, that is, longer and wider sterile lemmas that were converted into lemma/palea-like organs, suggesting that ELE and OsMADS34 synergistically control the sterile lemma development. OsMADS34 may act together with OsMADS15 in controlling sterile lemma development. Collectively, these findings provide insights into the regulatory function of OsMADS34 in rice inflorescence and spikelet development.
Collapse
Affiliation(s)
- Qingcai Meng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofeng Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanwan Zhu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Yang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ludovico Dreni
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| |
Collapse
|
17
|
Yu H, Ruan B, Wang Z, Ren D, Zhang Y, Leng Y, Zeng D, Hu J, Zhang G, Zhu L, Gao Z, Chen G, Guo L, Chen W, Qian Q. Fine Mapping of a Novel defective glume 1 ( dg1) Mutant, Which Affects Vegetative and Spikelet Development in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:486. [PMID: 28428794 PMCID: PMC5382164 DOI: 10.3389/fpls.2017.00486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/21/2017] [Indexed: 05/16/2023]
Abstract
In cereal crops, vegetative and spikelet development play important roles in grain yield and quality, but the genetic mechanisms that control vegetative and spikelet development remain poorly understood in rice. Here, we identified a new rice mutant, defective glume 1 (dg1) mutant from cultivar Zhonghua11 after ethyl methanesulfonate treatment. The dg1 mutant displayed the dwarfism with small, rolled leaves, which resulted from smaller cells and more bulliform cells. The dg1 mutant also had an enlarged leaf angle and defects in brassinosteroid signaling. In the dg1 mutant, both the rudimentary glume and sterile lemma (glumes) were transformed into lemma-like organ and acquired the lemma identity. Additionally, the dg1 mutant produced slender grains. Further analysis revealed that DG1 affects grain size by regulating cell proliferation and expansion. We fine mapped the dg1 locus to a 31-kb region that includes eight open reading frames. We examined the DNA sequence and expression of these loci, but we were not able to identify the DG1 gene. Therefore, more work will be needed for cloning and functional analysis of DG1, which would contribute to our understanding of the molecular mechanisms behind whole-plant development in rice.
Collapse
Affiliation(s)
- Haiping Yu
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province/Key Laboratory of Northeast Rice Biology and Breeding, Ministry of AgricultureShenyang, China
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Banpu Ruan
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province/Key Laboratory of Northeast Rice Biology and Breeding, Ministry of AgricultureShenyang, China
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Zhongwei Wang
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
- *Correspondence: Deyong Ren, Wenfu Chen, Qian Qian,
| | - Yu Zhang
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province/Key Laboratory of Northeast Rice Biology and Breeding, Ministry of AgricultureShenyang, China
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Yujia Leng
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Guang Chen
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Wenfu Chen
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province/Key Laboratory of Northeast Rice Biology and Breeding, Ministry of AgricultureShenyang, China
- *Correspondence: Deyong Ren, Wenfu Chen, Qian Qian,
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
- *Correspondence: Deyong Ren, Wenfu Chen, Qian Qian,
| |
Collapse
|
18
|
A High Temperature-Dependent Mitochondrial Lipase EXTRA GLUME1 Promotes Floral Phenotypic Robustness against Temperature Fluctuation in Rice (Oryza sativa L.). PLoS Genet 2016; 12:e1006152. [PMID: 27367609 PMCID: PMC4930220 DOI: 10.1371/journal.pgen.1006152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/08/2016] [Indexed: 11/19/2022] Open
Abstract
The sessile plants have evolved diverse intrinsic mechanisms to control their proper development under variable environments. In contrast to plastic vegetative development, reproductive traits like floral identity often show phenotypic robustness against environmental variations. However, it remains obscure about the molecular basis of this phenotypic robustness. In this study, we found that eg1 (extra glume1) mutants of rice (Oryza savita L.) showed floral phenotypic variations in different growth locations resulting in a breakdown of floral identity robustness. Physiological and biochemical analyses showed that EG1 encodes a predominantly mitochondria-localized functional lipase and functions in a high temperature-dependent manner. Furthermore, we found that numerous environmentally responsive genes including many floral identity genes are transcriptionally repressed in eg1 mutants and OsMADS1, OsMADS6 and OsG1 genetically act downstream of EG1 to maintain floral robustness. Collectively, our results demonstrate that EG1 promotes floral robustness against temperature fluctuation by safeguarding the expression of floral identify genes through a high temperature-dependent mitochondrial lipid pathway and uncovers a novel mechanistic insight into floral developmental control.
Collapse
|
19
|
Ren D, Rao Y, Leng Y, Li Z, Xu Q, Wu L, Qiu Z, Xue D, Zeng D, Hu J, Zhang G, Zhu L, Gao Z, Chen G, Dong G, Guo L, Qian Q. Regulatory Role of OsMADS34 in the Determination of Glumes Fate, Grain Yield, and Quality in Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:1853. [PMID: 28018389 PMCID: PMC5156729 DOI: 10.3389/fpls.2016.01853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/23/2016] [Indexed: 05/07/2023]
Abstract
Grasses produce seeds on spikelets, a unique type of inflorescence. Despite the importance of grass crops for food, the genetic mechanisms that control spikelet development remain poorly understood. In this study, we used m34-z, a new mutant allele of the rice (Oryza sativa) E-class gene OsMADS34, to examine OsMADS34 function in determining the identities of glumes (rudimentary glume and sterile lemma) and grain size. In the m34-z mutant, both the rudimentary glume and sterile lemma were homeotically converted to the lemma-like organ and acquired the lemma identity, suggesting that OsMADS34 plays important roles in the development of glumes. In the m34-z mutant, most of the grains from the secondary panicle branches (spb) were decreased in size, compared with grains from wild-type, but no differences were observed in the grains from the primary panicle branches. The amylose content and gel consistency, and a seed-setting rate from the spb were reduced in the m34-z mutant. Interesting, transcriptional activity analysis revealed that OsMADS34 protein was a transcription repressor and it may influence grain yield by suppressing the expressions of BG1, GW8, GW2, and GL7 in the m34-z mutant. These findings revealed that OsMADS34 largely affects grain yield by affecting the size of grains from the secondary branches.
Collapse
Affiliation(s)
- Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Yuchun Rao
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
- College of Chemistry and Life Sciences, Zhejiang Normal UniversityZhejiang, China
| | - Yujia Leng
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Zizhuang Li
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
- College of Life and Environmental Sciences, Hangzhou Normal UniversityZhejiang, China
| | - Qiankun Xu
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Liwen Wu
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Zhennan Qiu
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal UniversityZhejiang, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Guang Chen
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
- *Correspondence: Qian Qian, Longbiao Guo,
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research InstituteZhejiang, China
- *Correspondence: Qian Qian, Longbiao Guo,
| |
Collapse
|
20
|
Liu M, Li H, Su Y, Li W, Shi C. G1/ELE Functions in the Development of Rice Lemmas in Addition to Determining Identities of Empty Glumes. FRONTIERS IN PLANT SCIENCE 2016; 7:1006. [PMID: 27462334 PMCID: PMC4941205 DOI: 10.3389/fpls.2016.01006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/27/2016] [Indexed: 05/05/2023]
Abstract
Rice empty glumes, also named sterile lemmas or rudimentary lemmas according to different interpretations, are distinct from lemmas in morphology and cellular pattern. Consistently, the molecular mechanism to control the development of lemmas is different from that of empty glumes. Rice LEAFY HULL STERILE1(OsLHS1) and DROOPING LEAF(DL) regulate the cellular pattern and the number of vascular bundles of lemmas respectively, while LONG STERILE LEMMA1 (G1)/ELONGATED EMPTY GLUME (ELE) and PANICLE PHYTOMER2 (PAP2)/OsMADS34 determine identities of empty glumes. Though some progress has been made, identities of empty glumes remain unclear, and genetic interactions between lemma genes and glume genes have been rarely elucidated. In this research, a new G1/ELE mutant g1-6 was identified and the phenotype was analyzed. Similar to previously reported mutant lines of G1/ELE, empty glumes of g1-6 plants transform into lemma-like organs. Furthermore, Phenotypes of single and double mutant plants suggest that, in addition to their previously described gene-specific functions, G1/ELE and OsLHS1 play redundant roles in controlling vascular bundle number, cell volume, and cell layer number of empty glumes and lemmas. Meanwhile, expression patterns of G1/ELE in osmads1-z flowers and OsLHS1 in g1-6 flowers indicate they do not regulate each other at the level of transcription. Finally, down-regulation of the empty glume gene OsMADS34/PAP2 and ectopic expression of the lemma gene DL, in the g1-6 plants provide further evidence that empty glumes are sterile lemmas. Generally, our findings provided valuable information for better understanding functions of G1 and OsLHS1 in flower development and identities of empty glumes.
Collapse
Affiliation(s)
- Mengjia Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, YanglingChina
| | - Haifeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, YanglingChina
- Xinjiang Agricultural Vocational Technical College, ChangjiChina
- *Correspondence: Haifeng Li, Chunhai Shi,
| | - Yali Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, YanglingChina
| | - Wenqiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, YanglingChina
| | - Chunhai Shi
- College of Agriculture and Biotechnology, Zhejiang University, HangzhouChina
- *Correspondence: Haifeng Li, Chunhai Shi,
| |
Collapse
|
21
|
Wang S, Chen W, Xiao W, Yang C, Xin Y, Qiu J, Hu W, Ying W, Fu Y, Tong J, Hu G, Chen Z, Fang X, Yu H, Lai W, Ruan S, Ma H. Differential Proteomic Analysis Using iTRAQ Reveals Alterations in Hull Development in Rice (Oryza sativa L.). PLoS One 2015; 10:e0133696. [PMID: 26230730 PMCID: PMC4521873 DOI: 10.1371/journal.pone.0133696] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 07/01/2015] [Indexed: 11/21/2022] Open
Abstract
Rice hull, the outer cover of the rice grain, determines grain shape and size. Changes in the rice hull proteome in different growth stages may reflect the underlying mechanisms involved in grain development. To better understand these changes, isobaric tags for relative and absolute quantitative (iTRAQ) MS/MS was used to detect statistically significant changes in the rice hull proteome in the booting, flowering, and milk-ripe growth stages. Differentially expressed proteins were analyzed to predict their potential functions during development. Gene ontology (GO) terms and pathways were used to evaluate the biological mechanisms involved in rice hull at the three growth stages. In total, 5,268 proteins were detected and characterized, of which 563 were differentially expressed across the development stages. The results showed that the flowering and milk-ripe stage proteomes were more similar to each other (r=0.61) than either was to the booting stage proteome. A GO enrichment analysis of the differentially expressed proteins was used to predict their roles during rice hull development. The potential functions of 25 significantly differentially expressed proteins were used to evaluate their possible roles at various growth stages. Among these proteins, an unannotated protein (Q7X8A1) was found to be overexpressed especially in the flowering stage, while a putative uncharacterized protein (B8BF94) and an aldehyde dehydrogenase (Q9FPK6) were overexpressed only in the milk-ripe stage. Pathways regulated by differentially expressed proteins were also analyzed. Magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase (Q9SDJ2), and two magnesium-chelatase subunits, ChlD (Q6ATS0), and ChlI (Q53RM0), were associated with chlorophyll biosynthesis at different developmental stages. The expression of Q9SDJ2 in the flowering and milk-ripe stages was validated by qRT-PCR. The 25 candidate proteins may be pivotal markers for controlling rice hull development at various growth stages and chlorophyll biosynthesis pathway related proteins, especially magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase (Q9SDJ2), may provide new insights into the molecular mechanisms of rice hull development and chlorophyll associated regulation.
Collapse
Affiliation(s)
- Shuzhen Wang
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310012, China
| | - Wenyue Chen
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Wenfei Xiao
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Changdeng Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Ya Xin
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Jieren Qiu
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Weimin Hu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310012, China
| | - Wu Ying
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Yaping Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Jianxin Tong
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Guocheng Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhongzhong Chen
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Xianping Fang
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Hong Yu
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Wenguo Lai
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Songlin Ruan
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
- * E-mail: (SR); (HM)
| | - Huasheng Ma
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
- * E-mail: (SR); (HM)
| |
Collapse
|
22
|
Zhang J, Tang W, Huang Y, Niu X, Zhao Y, Han Y, Liu Y. Down-regulation of a LBD-like gene, OsIG1, leads to occurrence of unusual double ovules and developmental abnormalities of various floral organs and megagametophyte in rice. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:99-112. [PMID: 25324400 PMCID: PMC4265153 DOI: 10.1093/jxb/eru396] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The indeterminate gametophyte1 (ig1) mutation was first characterized to modulate female gametophyte development in maize (Zea mays). However, the function of its rice orthologue, OsIG1, remains unknown. For this, we first analysed OsIG1 localization from differential tissues in rice. Real-time quantitative PCR (qRT-PCR) and histochemical staining results demonstrated that the expression signal of OsIG1 was strongly detected in young inflorescence, moderately in mature flower and weakly in leaf. Furthermore, RNA in situ hybridization analyses exhibited that OsIG1 was strongly expressed in inflorescence meristems, floral meristems, empty-glume- and floret- primordia, especially in the primordia of stamens and immature ovules, and the micropylar side of the mature ovary. In OsIG1-RNAi lines, wrinkled blade formation was accompanied by increased leaf inclination angle. Cross-section further showed that the number of bulliform cells located between the vasculatures was significantly increased, indicating that OsIG1 is involved in division and differentiation of bulliform cell and lateral growth during leaf development. OsIG1-RNAi suppression lines showed pleiotropic phenotypes, including degenerated palea, glume-like features and open hull. In addition, a single OsIG1-RNAi floret is characterized by frequently developing double ovules with abnormal embryo sac development. Additionally, down-regulation of OsIG1 differentially affected the expression of genes associated with the floral organ development including EG1, OsMADS6 and OsMADS1. Taken together, these results demonstrate that OsIG1 plays an essential role in the regulation of empty-glume identity, floral organ number control and female gametophyte development in rice.
Collapse
Affiliation(s)
- Jingrong Zhang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Wei Tang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yulan Huang
- National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangli Niu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Han
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yongsheng Liu
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
23
|
Lin X, Wu F, Du X, Shi X, Liu Y, Liu S, Hu Y, Theißen G, Meng Z. The pleiotropic SEPALLATA-like gene OsMADS34 reveals that the 'empty glumes' of rice (Oryza sativa) spikelets are in fact rudimentary lemmas. THE NEW PHYTOLOGIST 2014; 202:689-702. [PMID: 24372518 DOI: 10.1111/nph.12657] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/22/2013] [Indexed: 05/07/2023]
Abstract
The single floret of the rice (Oryza sativa) spikelet is subtended by a pair of enigmatic organs usually termed 'empty glumes' or 'sterile lemmas'. As the identity of these organs remains essentially unknown, we refer to them as 'organs of unknown identity' (OUIs). Here we present a novel mutant of the rice SEPALLATA-like gene OsMADS34 which develops, in addition to disorganized branches and sterile seeds, elongated OUIs. The function and evolution of OsMADS34 were studied. Morphological and molecular markers indicate that the elongated OUIs have adopted lemma identity. Evolutionary analyses show that the ancestral genes of the OsM34 subclade evolved under positive selection, and that three specific motifs occur in the C-terminal region of proteins in the OsM34 subclade. Yeast two-hybrid assays revealed that the C-terminal region of OsMADS34 plays a crucial role in mediating protein interactions. Sequence analyses for the wild rice Oryza grandiglumis which has elongated OUIs revealed the association of OsMADS34 functionality with OUI identity. Our findings support the hypothesis that OUIs originated from the lemmas of degenerate florets under the negative control of OsMADS34. As OUIs neither are homologues to glumes nor have the identity of lemmas any more, but originated from these organs, we suggest calling them 'rudimentary lemmas'.
Collapse
Affiliation(s)
- Xuelei Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Feng Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaoqiu Du
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaowei Shi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shujun Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, D-07743, Jena, Germany
| | - Zheng Meng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
24
|
Abstract
The grass family is one of the largest families in angiosperms and has evolved a characteristic inflorescence morphology, with complex branches and specialized spikelets. The origin and development of the highly divergent inflorescence architecture in grasses have recently received much attention. Increasing evidence has revealed that numerous factors, such as transcription factors and plant hormones, play key roles in determining reproductive meristem fate and inflorescence patterning in grasses. Moreover, some molecular switches that have been implicated in specifying inflorescence shapes contribute significantly to grain yields in cereals. Here, we review key genetic and molecular switches recently identified from two model grass species, rice (Oryza sativa) and maize (Zea mays), that regulate inflorescence morphology specification, including meristem identity, meristem size and maintenance, initiation and outgrowth of axillary meristems, and organogenesis. Furthermore, we summarize emerging networks of genes and pathways in grass inflorescence morphogenesis and emphasize their evolutionary divergence in comparison with the model eudicot Arabidopsis thaliana. We also discuss the agricultural application of genes controlling grass inflorescence development.
Collapse
Affiliation(s)
- Dabing Zhang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | | |
Collapse
|
25
|
Ren D, Li Y, Zhao F, Sang X, Shi J, Wang N, Guo S, Ling Y, Zhang C, Yang Z, He G. MULTI-FLORET SPIKELET1, which encodes an AP2/ERF protein, determines spikelet meristem fate and sterile lemma identity in rice. PLANT PHYSIOLOGY 2013; 162:872-84. [PMID: 23629832 PMCID: PMC3668076 DOI: 10.1104/pp.113.216044] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The spikelet is a unique inflorescence structure of grass. The molecular mechanism that controls the development of the spikelet remains unclear. In this study, we identified a rice (Oryza sativa) spikelet mutant, multi-floret spikelet1 (mfs1), that showed delayed transformation of spikelet meristems to floral meristems, which resulted in an extra hull-like organ and an elongated rachilla. In addition, the sterile lemma was homeotically converted to the rudimentary glume and the body of the palea was degenerated in mfs1. These results suggest that the MULTI-FLORET SPIKELET1 (MFS1) gene plays an important role in the regulation of spikelet meristem determinacy and floral organ identity. MFS1 belongs to an unknown function clade in the APETALA2/ethylene-responsive factor (AP2/ERF) family. The MFS1-green fluorescent protein fusion protein is localized in the nucleus. MFS1 messenger RNA is expressed in various tissues, especially in the spikelet and floral meristems. Furthermore, our findings suggest that MFS1 positively regulates the expression of LONG STERILE LEMMA and the INDETERMINATE SPIKELET1 (IDS1)-like genes SUPERNUMERARY BRACT and OsIDS1.
Collapse
|
26
|
Feng G, Zhang C, Tang M, Zhang G, Xu C, Gu M, Liu Q. Genetic analysis and gene cloning of a triangular hull 1 (tri1) mutant in rice (Oryza sativa L.). CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-012-5642-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Wang M, Tang D, Luo Q, Jin Y, Shen Y, Wang K, Cheng Z. BRK1, a Bub1-related kinase, is essential for generating proper tension between homologous kinetochores at metaphase I of rice meiosis. THE PLANT CELL 2012; 24:4961-73. [PMID: 23243128 PMCID: PMC3556969 DOI: 10.1105/tpc.112.105874] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/11/2012] [Accepted: 11/26/2012] [Indexed: 05/19/2023]
Abstract
Bub1 (for budding uninhibited by benzimidazole 1), one of the main spindle checkpoint kinases, acts as a kinetochore scaffold for assembling other checkpoint proteins. Here, we identify a plant Bub1-related kinase 1 (BRK1) in rice (Oryza sativa). The brk1 mutants are sterile due to the precocious separation of sister chromatids at the onset of anaphase I. The centromeric recruitment of SHUGOSHIN1 and phosphorylation of histone H2A at Thr-134 (H2A-pT134) depend on BRK1. Although the homologs can faithfully separate from each other at the end of meiosis I, the uncorrected merotelic attachment of paired sister kinetochores at the early stage of metaphase I in brk1 reduces the tension across homologous kinetochores, causes the metaphase I spindle to be aberrantly shaped, and subsequently affects the synchronicity of homolog separation at the onset of anaphase I. In addition, the phosphorylation of inner centromeric histone H3 at Ser-10 (H3-pS10) during diakinesis depends on BRK1. Therefore, we speculate that BRK1 may be required for normal localization of Aurora kinase before the onset of metaphase I, which is responsible for correcting the merotelic attachment.
Collapse
Affiliation(s)
- Mo Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiong Luo
- College of Plant Protection,Yunnan Agricultural University, Kunming 650201, China
| | - Yi Jin
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kejian Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
28
|
Hong L, Tang D, Shen Y, Hu Q, Wang K, Li M, Lu T, Cheng Z. MIL2 (MICROSPORELESS2) regulates early cell differentiation in the rice anther. THE NEW PHYTOLOGIST 2012; 196:402-413. [PMID: 22913653 DOI: 10.1111/j.1469-8137.2012.04270.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/11/2012] [Indexed: 05/22/2023]
Abstract
The formation of diverse, appropriately patterned cell types is critical in the development of all complex multicellular organisms. In flowering plants, anther patterning is a complex process essential for successful sexual reproduction. However, few genes regulating this process have been characterized to date. We report here that the gene MICROSPORELESS2 (MIL2) regulates early anther cell differentiation in rice (Oryza sativa). The anthers of mil2 mutants were characterized using molecular markers and cytological examination. The MIL2 gene was cloned and its expression pattern was analyzed through RNA in situ hybridization. The localization of the MIL2 protein was observed by immunostaining. MIL2 encodes the rice homolog of the Arabidopsis TAPETUM DETERMINANT1 (TPD1) protein. However, mil2 anthers display phenotypes different from those of tpd1 mutants, with only two layers of anther wall cells formed. MIL2 has an expression pattern distinct from that of TPD1. Its transcripts and proteins predominate in inner parietal cells, but show little accumulation in reproductive cells. Our results demonstrate that MIL2 is responsible for the differentiation of primary parietal cells into secondary parietal cells in rice anthers, and suggest that rice and Arabidopsis anthers might share similar regulators in anther patterning, but divergent mechanisms are employed in these processes.
Collapse
Affiliation(s)
- Lilan Hong
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing Hu
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kejian Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ming Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tiegang Lu
- Biotechnology Research Institute/National Key Facility for Gene Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
29
|
Hong L, Qian Q, Tang D, Wang K, Li M, Cheng Z. A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype. PLANTA 2012; 236:141-51. [PMID: 22286805 DOI: 10.1007/s00425-012-1598-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/16/2012] [Indexed: 05/08/2023]
Abstract
The biosynthesis of flavonoids, important secondary plant metabolites, has been investigated extensively, but few mutants of genes in this pathway have been identified in rice (Oryza sativa). The rice gold hull and internode (gh) mutants exhibit a reddish-brown pigmentation in the hull and internode and their phenotype has long been used as a morphological marker trait for breeding and genetic study. Here, we characterized that the gh1 mutant was a mutant of the rice chalcone isomerase gene (OsCHI). The result showed that gh1 had a Dasheng retrotransposon inserted in the 5′ UTR of the OsCHI gene, which resulted in the complete loss of OsCHI expression. gh1 exhibited golden pigmentation in hulls and internodes once the panicles were exposed to light. The total flavonoid content in gh1 hulls was increased threefold compared to wild type. Consistent with the gh1 phenotype, OsCHI transcripts were expressed in most tissues of rice and most abundantly in internodes. It was also expressed at high levels in panicles before heading, distributed mainly in lemmas and paleae, but its expression decreased substantially after the panicles emerged from the sheath. OsCHI encodes a protein functionally and structurally conserved to chalcone isomerases in other species. Our findings demonstrated that the OsCHI gene was indispensable for flux of the flavonoid pathway in rice.
Collapse
Affiliation(s)
- Lilan Hong
- State Key Laboratory of Plant Genomics, Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Dreni L, Pilatone A, Yun D, Erreni S, Pajoro A, Caporali E, Zhang D, Kater MM. Functional analysis of all AGAMOUS subfamily members in rice reveals their roles in reproductive organ identity determination and meristem determinacy. THE PLANT CELL 2011; 23:2850-63. [PMID: 21810995 PMCID: PMC3180796 DOI: 10.1105/tpc.111.087007] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Reproductive organ development is one of the most important steps in the life cycle of plants. Studies using core eudicot species like thale cress (Arabidopsis thaliana) and snapdragon (Antirrhinum majus) have shown that MADS domain transcription factors belonging to the AGAMOUS (AG) subfamily regulate the identity of stamens, carpels, and ovules and that they are important for floral meristem determinacy. Here, we investigate the genetic interactions between the four rice (Oryza sativa) AG subfamily members, MADS3, MADS13, MADS21, and MADS58. Our data show that, in contrast with previous reports, MADS3 and MADS58 determine stamen and carpel identity and, together with MADS13, are important for floral meristem determinacy. In the mads3 mads58 double mutant, we observed a complete loss of reproductive organ identity and massive accumulation of lodicules in the third and fourth floral whorls. MADS21 is an AGL11 lineage gene whose expression is not restricted to ovules. Instead, its expression profile is similar to those of class C genes. However, our genetic analysis shows that MADS21 has no function in stamen, carpel, or ovule identity determination.
Collapse
Affiliation(s)
- Ludovico Dreni
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, 20133 Milan, Italy
| | - Alessandro Pilatone
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, 20133 Milan, Italy
| | - Dapeng Yun
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Stefano Erreni
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, 20133 Milan, Italy
| | - Alice Pajoro
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elisabetta Caporali
- Dipartimento di Biologia, Università degli Studi di Milano, 20133 Milan, Italy
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martin M. Kater
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, 20133 Milan, Italy
- Address correspondence to
| |
Collapse
|
31
|
Gao X, Liang W, Yin C, Ji S, Wang H, Su X, Guo C, Kong H, Xue H, Zhang D. The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. PLANT PHYSIOLOGY 2010; 153:728-40. [PMID: 20395452 PMCID: PMC2879775 DOI: 10.1104/pp.110.156711] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 04/12/2010] [Indexed: 05/18/2023]
Abstract
Grass plants develop distinct inflorescences and spikelets that determine grain yields. However, the mechanisms underlying the specification of inflorescences and spikelets in grasses remain largely unknown. Here, we report the biological role of one SEPALLATA (SEP)-like gene, OsMADS34, in controlling the development of inflorescences and spikelets in rice (Oryza sativa). OsMADS34 encodes a MADS box protein containing a short carboxyl terminus without transcriptional activation activity in yeast cells. We demonstrate the ubiquitous expression of OsMADS34 in roots, leaves, and primordia of inflorescence and spikelet organs. Compared with the wild type, osmads34 mutants developed altered inflorescence morphology, with an increased number of primary branches and a decreased number of secondary branches. In addition, osmads34 mutants displayed a decreased spikelet number and altered spikelet morphology, with lemma/leaf-like elongated sterile lemmas. Moreover, analysis of the double mutant osmads34 osmads1 suggests that OsMADS34 specifies the identities of floral organs, including the lemma/palea, lodicules, stamens, and carpel, in combination with another rice SEP-like gene, OsMADS1. Collectively, our study suggests that the origin and diversification of OsMADS34 and OsMADS1 contribute to the origin of distinct grass inflorescences and spikelets.
Collapse
|