1
|
Francielli de Oliveira P, Felix Ávila P, de Melo Carolo Dos Santos M, Misuraca Meirelles L, Fernando Ramos L, Pereira Todescato A, do Vale-Oliveira M, Beatriz Custódio F, Martins Dala-Paula B. Antioxidant, antimutagenic, and hypoglycemic properties of flours by different parts of marolo (Annona crassiflora Mart.) seeds: Film and almond. Food Res Int 2024; 196:115055. [PMID: 39614560 DOI: 10.1016/j.foodres.2024.115055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 12/01/2024]
Abstract
The biological effects of marolo (Annona crassiflora Mart.) seed byproducts, a native fruit of Brazilian Cerrado, have not been extensively studied. We evaluated the chemopreventive potential of marolo seed almond flour (MSAF) and marolo seed film flour (MSFF) and correlated the results obtained with the antioxidant capacity presented by the seed. Total phenolic content (TPC) and total flavonoid content (TFC) were determined by spectrophotometric analysis and phenolics profile composition by Ultra-Performance Liquid Chromatography (UPLC). In addition, the in vitro antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+) expressed in trolox equivalent (TE) of MSFF (165 and 325 µmol TE/g) and MSAF (7.21 and 4.34 µmol TE/g), respectively. MSFF displayed of antioxidant activity values by DPPH (165.98 µmol TE/g) and ABTS•+ (323.13 µmol TE/g) and TPC, expressed in gallic acid equivalent (GAE), of 54.28 mg GAE/g with predominance of myricetin (368.17 µg/g), and TFC, expressed in catechin equivalent (CE), of 50.86 mg CE/g, representing ∼ 93 % of the TPC. MSAF presented TPC of 1.52 mg GAE/g, with TFC of 0.76 mg CE/g (∼50 % of TPC), with predominance of quercetin (29.08 µg/g). The chemopreventive activity against DNA damage induced by doxorubicin (DXR) [20 mg/kg body weight (bw)]) was evaluated in Swiss mice peripheral blood by micronucleus test. Toxicological parameters, such as food and water consumption and animal weight, as well as blood glucose levels, were monitored during 14 days of treatment. The results showed that MSFF and MSAF presented no significant cytotoxic and mutagenic effects. The MSFF at doses of 3.5, and 7.0 mg/day showed a chemopreventive effect, while in the doses of 14.0 and 28.0 mg/day, no effect was observed. On the other hand, in the MSAF, a chemopreventive effect was observed only in the dose of 28 mg/day. The interference of one or more of the bioactive compounds with antioxidant activity presents in the MSFF may explain the best protective effect against DNA damage. Therefore, both marolo seed flours (MSFF and MSAF) can be considered potential food ingredients products that could be applied in food or pharmaceutical preparations with antioxidant and chemopreventive properties.
Collapse
Affiliation(s)
- Pollyanna Francielli de Oliveira
- Programa de Pós-graduação em Nutrição e Longevidade, Universidade Federal de Alfenas, Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brasil; Laboratório de Genética Humana, Instituto de Ciências da Natureza, Universidade Federal de Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brasil.
| | - Patrícia Felix Ávila
- Programa de Pós-graduação em Nutrição e Longevidade, Universidade Federal de Alfenas, Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brasil
| | - Mylena de Melo Carolo Dos Santos
- Laboratório de Genética Humana, Instituto de Ciências da Natureza, Universidade Federal de Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brasil
| | - Letícia Misuraca Meirelles
- Laboratório de Genética Humana, Instituto de Ciências da Natureza, Universidade Federal de Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brasil
| | - Luiz Fernando Ramos
- Laboratório de Genética Humana, Instituto de Ciências da Natureza, Universidade Federal de Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brasil
| | - Angélica Pereira Todescato
- Programa de Pós-graduação em Nutrição e Longevidade, Universidade Federal de Alfenas, Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brasil
| | - Maysa do Vale-Oliveira
- Universidade Federal do Espírito Santo (UFES), Campus São Mateus, BR-101, km 60, Litorâneo, São Mateus, ES 29932-540, Brasil
| | - Flávia Beatriz Custódio
- BioTox, Laboratório de Bioquímica e Toxicologia de Alimentos, Departamento de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brasil
| | - Bruno Martins Dala-Paula
- Programa de Pós-graduação em Nutrição e Longevidade, Universidade Federal de Alfenas, Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brasil; Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG, 37130-001, Brasil.
| |
Collapse
|
2
|
Tu J, Adhikari B, Brennan MA, Bai W, Cheng P, Brennan CS. Shiitake polysaccharides acted as a non-competitive inhibitor to α-glucosidase and inhibited glucose transport of digested starch from Caco-2 cells monolayer. Food Res Int 2023; 173:113268. [PMID: 37803584 DOI: 10.1016/j.foodres.2023.113268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
The inhibition mechanism of shitake mushroom polysaccharides (Lentinula edodes polysaccharides, LEP) against α-glucosidase was studied by enzyme kinetic assay, fluorescence quenching and molecular docking. The effect of LEP on glucose transport of digested starch was investigated via an in vitro digestion/Caco-2 transwell model. LEP exhibited a stronger inhibiting effect (IC50 = 0.66 mg/mL) than acarbose and presented a non-competitive inhibition mechanism. The interaction between LEP and α-glucosidase primarily involved electrostatic interaction and hydrogen bonding. Molecular docking modelling showed that the four structures of LEP were bound to the allosteric tunnel or adjacent pocket of α-glucosidase via electrostatic force and hydrogen bonds. The (1 → 6)-linkages in LEP structures favoured its binding affinity to the α-glucosidase. The α-glucosidase inhibiting activity of LEP was also found to emanate from the reduction in glucose transport of digested starch as deducted from the in vitro digestion/Caco-2 transwell data. The release of glucose from digested starch cooked with LEP was significantly reduced (33.7%) compared to the digested starch without LEP. The findings from the current study suggest that LEP could be a promising ingredient to inhibit α-glucosidase activity as well as control the level of postprandial blood glucose when incorporated into starchy foods.
Collapse
Affiliation(s)
- Juncai Tu
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia
| | - Benu Adhikari
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia.
| | - Margaret Anne Brennan
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia; Department of Wine, Food and Molecular Biosciences, Lincoln University, PO Box 84, Lincoln 7647, Christchurch, New Zealand
| | - Weidong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ping Cheng
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | | |
Collapse
|
3
|
LIU H, LIU X, XIE J, CHEN S. Structure, function and mechanism of edible fungus polysaccharides in human beings chronic diseases. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Huijuan LIU
- Guizhou Medical University, China; Guizhou Medical University, China
| | | | - Jiao XIE
- Guizhou Medical University, China; Guizhou Medical University, China
| | | |
Collapse
|
4
|
Peng F, Huang H, Lin JX, Yang T, Xie M, Xiong T, Peng Z. Development of yacon syrup fermented by Lactiplantibacillus plantarum NCU001043: Metabolite profiling, antioxidant and glycosidase inhibition activity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Astragalus Polysaccharides/PVA Nanofiber Membranes Containing Astragaloside IV-Loaded Liposomes and Their Potential Use for Wound Healing. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9716271. [PMID: 35600951 PMCID: PMC9117023 DOI: 10.1155/2022/9716271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022]
Abstract
Delayed wound healing is a common and serious complication in diabetic patients, especially the slow healing of foot ulcers, which seriously affects the quality of life of patients and is also the most important risk factor for lower limb amputation. The multifunctional novel dressing prepared by loading the polymer nanofibers with anti-inflammatory and prohealing plant extracts can promote the wound repair of these ulcers by electrospinning technology. Liposomes are nanoparticles prepared from phospholipids and have been widely used as drug delivery systems. Liposomes can be combined with electrospun nanofibrous webs to facilitate local and sustained delivery of loaded bioactive substances. In this study, liposomes were prepared with astragaloside IV (AS) by employing a modified ethanol injection method and conducting the physical and chemical characterization (e.g., the particle size, polydispersity index, zeta potential, and entrapment efficiency). Astragalus polysaccharides were extracted from Astragalus membranaceus. Subsequently, we prepared the electrospun polyvinyl alcohol (PVA)/astragalus polysaccharide (APS)/astragaloside IV (AS) nanofibers. The morphology of the produced ASL/APS/PVA, APS/PVA, and PVA nanofibers were analyzed by scanning electron microscopy (SEM), and it turns out that the addition of astragalus extract made the fiber diameter smaller and the fibers arranged neatly with no dripping. An induced diabetic rat model was built, and a diabetic ulcer model was built by total cortical resection to assess the prorepair ability of the prepared nanofibers. According to in vivo animal experiments, the nanofibrous membrane loaded with APS and ASL was reported to inhibit the occurrence of wound inflammation, enhance the deposition of collagen fibers (P < 0.05) and the repair of regenerated epithelium (P < 0.05), and effectively strengthen the wound healing of diabetic rats (P < 0.05). In brief, PVA-loaded APS/ASL nanofibrous membranes refer to a prominent wound healing dressing material, which can effectively facilitate the healing of diabetic wounds, and they are demonstrated to be highly promising for application in diabetic wound dressings and tissue engineering.
Collapse
|
6
|
Tejedor-Calvo E, García-Barreda S, Sánchez S, Morte A, Siles-Sánchez MDLN, Soler-Rivas C, Santoyo S, Marco P. Application of Pressurized Liquid Extractions to Obtain Bioactive Compounds from Tuber aestivum and Terfezia claveryi. Foods 2022; 11:foods11030298. [PMID: 35159450 PMCID: PMC8834127 DOI: 10.3390/foods11030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
A PLE (pressurized liquid extraction) method was adjusted following a full-factorial experimental design to obtain bioactive-enriched fractions from Tuber aestivum and Terfezia claveryi. Temperature, time and solvent (water, ethanol and ethanol–water 1:1) parameters were investigated. The response variables investigated were: obtained yield and the levels of total carbohydrate (compounds, β-glucans, chitin, proteins, phenolic compounds and sterols). Principal component analysis indicated water solvent and high temperatures as more adequate parameters to extract polysaccharide-rich fractions (up to 68% of content), whereas ethanol was more suitable to extract fungal sterols (up to 12.5% of content). The fractions obtained at optimal conditions (16.7 MPa, 180 °C, 30 min) were able to protect Caco2 cells from free radical exposure, acting as antioxidants, and were able to reduce secretion of pro-inflammatory cytokines in vitro: IL-6 (50%), and TNFα (80% only T. claveryi ethanol extract), as well as reduce high inhibitory activity (T. aestivum IC50: 9.44 mG/mL).
Collapse
Affiliation(s)
- Eva Tejedor-Calvo
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sergi García-Barreda
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Sergio Sánchez
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Asunción Morte
- Departamento de Biología Vegetal, Facultad de Biología, Campus de Espinardo, Universidad de Murcia, 30100 Murcia, Spain
| | - María de Las Nieves Siles-Sánchez
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Susana Santoyo
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pedro Marco
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain
| |
Collapse
|
7
|
Chun S, Gopal J, Muthu M. Antioxidant Activity of Mushroom Extracts/Polysaccharides-Their Antiviral Properties and Plausible AntiCOVID-19 Properties. Antioxidants (Basel) 2021; 10:1899. [PMID: 34943001 PMCID: PMC8750169 DOI: 10.3390/antiox10121899] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Mushrooms have been long accomplished for their medicinal properties and bioactivity. The ancients benefitted from it, even before they knew that there was more to mushrooms than just the culinary aspect. This review addresses the benefits of mushrooms and specifically dwells on the positive attributes of mushroom polysaccharides. Compared to mushroom research, mushroom polysaccharide-based reports were observed to be significantly less frequent. This review highlights the antioxidant properties and mechanisms as well as consolidates the various antioxidant applications of mushroom polysaccharides. The biological activities of mushroom polysaccharides are also briefly discussed. The antiviral properties of mushrooms and their polysaccharides have been reviewed and presented. The lacunae in implementation of the antiviral benefits into antiCOVID-19 pursuits has been highlighted. The need for expansion and extrapolation of the knowns of mushrooms to extend into the unknown is emphasized.
Collapse
Affiliation(s)
| | | | - Manikandan Muthu
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (J.G.)
| |
Collapse
|
8
|
Yan Z, Liu H, Li J, Wang Y. Application of Identification and Evaluation Techniques for Edible Mushrooms: A Review. Crit Rev Anal Chem 2021; 53:634-654. [PMID: 34435928 DOI: 10.1080/10408347.2021.1969886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Edible mushrooms are healthy food with high nutritional value, which is popular with consumers. With the increase of the problem of mushrooms being confused with the real and pollution in the market, people pay more and more attention to food safety. More than 167 articles of edible mushroom published in the past 20 years were reviewed in this paper. The analysis tools and data analysis methods of identification and quality evaluation of edible mushroom species, origin, mineral elements were reviewed. Five techniques for identification and evaluation of edible mushrooms were introduced and summarized. The macroscopic, microscopic and molecular identification techniques can be used to identify species. Chromatography, spectroscopy technology combined with chemometrics can be used for qualitative and quantitative study of mushroom and evaluation of mushroom quality. In addition, multiple supervised pattern-recognition techniques have good classification ability. Deep learning is more and more widely used in edible mushroom, which shows its advantages in image recognition and prediction. These techniques and analytical methods can provide strong support and guarantee for the identification and evaluation of mushroom, which is of great significance to the development and utilization of edible mushroom.
Collapse
Affiliation(s)
- Ziyun Yan
- College of Resources and Environmental, Yunnan Agricultural University, Kunming, China
| | | | - Jieqing Li
- College of Resources and Environmental, Yunnan Agricultural University, Kunming, China
| | - Yuanzhong Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
9
|
Sadgrove NJ, Simmonds MSJ. Pharmacodynamics of Aloe vera and acemannan in therapeutic applications for skin, digestion, and immunomodulation. Phytother Res 2021; 35:6572-6584. [PMID: 34427371 DOI: 10.1002/ptr.7242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/25/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022]
Abstract
Scientific studies of Aloe vera have tentatively explained therapeutic claims from a mechanistic perspective. Furthermore, in vitro outcomes demonstrate that the breakage of acemannan chains into smaller fragments enhances biological effects. These fragments can intravenously boost vaccine efficacy or entrain the immune system to attack cancer cells by mannose receptor agonism of macrophage or dendritic cells. With oral consumption, epithelialisation also occurs at injured sites in the small intestine or colon. The main advantage of dietary acemannan is the attenuation of the digestive process, increasing satiety, and slowing the release of sugars from starches. In the colon, acemannan is digested by microbes into short-chain fatty acids that are absorbed and augment the sensation of satiety and confer a host of other health benefits. In topical applications, an acemannan/chitosan combination accelerates the closure of wounds by promoting granular tissue formation, which creates a barrier between macrophages or neutrophils and the wound dressing. This causes M2 polarisation, reversal of inflammation, and acceleration of the re-epithelialisation process. This review summarises and explains the current pharmacodynamic paradigm in the context of acemannan in topical, oral, and intravenous applications. However, due to contradictory results in the literature, further research is required to provide scientific evidence to confirm or nullify these claims.
Collapse
|
10
|
Polysaccharide Derived from Nelumbo nucifera Lotus Plumule Shows Potential Prebiotic Activity and Ameliorates Insulin Resistance in HepG2 Cells. Polymers (Basel) 2021; 13:polym13111780. [PMID: 34071638 PMCID: PMC8199337 DOI: 10.3390/polym13111780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Polysaccharides are key bioactive compounds in lotus plumule tea, but their anti-diabetes activities remain unclear. The purpose of this study was to investigate the prebiotic activities of a novel polysaccharide fraction from the Nelumbo nucifera lotus plumule, and to examine its regulation of glucose metabolism in insulin-resistant HepG2 cells. The N. nucifera polysaccharide (NNP) was purified after discoloration, hot water extraction, ethanol precipitation, and DEAE-cellulose chromatography to obtain purified polysaccharide fractions (NNP-2). Fourier transform infrared spectroscopy was used to analyze the main structural characteristics and functional group of NNP-2. Physicochemical characterization indicated that NNP-2 had a molecular weight of 110.47 kDa and consisted of xylose, glucose, fructose, galactose, and fucose in a molar ratio of 33.4:25.7:22.0:10.5:8.1. The prebiotic activity of NNP-2 was demonstrated in vitro using Lactobacillus and Bifidobacterium. Furthermore, NNP-2 showed bioactivity against α-glucosidase (IC50 = 97.32 µg/mL). High glucose-induced insulin-resistant HepG2 cells were used to study the effect of NNP-2 on glucose consumption, and the molecular mechanism of the insulin transduction pathway was studied using RT-qPCR. NNP-2 could improve insulin resistance by modulating the IRS1/PI3K/Akt pathway in insulin-resistant HepG2 cells. Our data demonstrated that the Nelumbo nucifera polysaccharides are potential sources for nutraceuticals, and we propose functional food developments from the bioactive polysaccharides of N. nucifera for the management of diabetes.
Collapse
|
11
|
Yellow- and green-cotyledon seeds of black soybean: Phytochemical and bioactive differences determine edibility and medical applications. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Li S, Yin L, Yi J, Zhang LM, Yang L. Insight into interaction mechanism between theaflavin-3-gallate and α-glucosidase using spectroscopy and molecular docking analysis. J Food Biochem 2020; 45:e13550. [PMID: 33150631 DOI: 10.1111/jfbc.13550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Abstract
To elucidate the α-glucosidase (α-GC) inhibitory mechanism of theaflavin-3-gallate (TF-3-G), their interaction mechanism was investigated using spectroscopy and molecular docking analysis. The inhibition ratio of TF-3-G against α-GC was determined to be 92.3%. Steady fluorescence spectroscopy showed that TF-3-G effectively quenched the intrinsic fluorescence of α-GC through static quenching, forming a stable complex through hydrophobic interactions. Formation of the TF-3-G/α-GC complex was also confirmed by resonance light scattering spectroscopy. Synchronous fluorescence spectroscopy and circular dichroism spectroscopy indicated that the secondary structure of α-GC was changed by TF-3-G. Molecular docking was used to simulate TF-3-G/α-GC complex formation, showing that TF-3-G might be inserted into the hydrophobic region around the active site of ɑ-GC, and bind with the catalytic Asp215 and Asp352 residues. The ɑ-GC inhibitory mechanism of TF-3-G was mainly attributed to the change in ɑ-GC secondary structure caused by the complex formation. PRACTICAL APPLICATIONS: α-Glucosidase (α-GC) can hydrolyze the glycosidic bonds of starch and oligosaccharides in food and release glucose. Therefore, the inhibition of α-GC activity has been used to treat postprandial hyperglycemia and type 2 diabetes mellitus. Theaflavin-3-gallate (TF-3-G), a flavonoid found in the fermentation products of black tea, exhibits strong inhibition of α-GC activity. However, the α-GC inhibitory mechanism of TF-3-G is unclear. This study aids understanding of this mechanism, and proposed a possibly basic theory for improving the medicinal value of TF-3-G in diabetes therapy.
Collapse
Affiliation(s)
- Siyuan Li
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Lin Yin
- Department of Polymer and Material Science, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Juzhen Yi
- Department of Polymer and Material Science, School of Chemistry, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou, China
| | - Li-Ming Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou, China
| | - Liqun Yang
- Department of Polymer and Material Science, School of Chemistry, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Papoutsis K, Zhang J, Bowyer MC, Brunton N, Gibney ER, Lyng J. Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chem 2020; 338:128119. [PMID: 33091976 DOI: 10.1016/j.foodchem.2020.128119] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 12/13/2022]
Abstract
The inhibition of the α-amylase and α-glucosidase activity facilitates the maintenance of circulating glucose levels by decreasing the rate of blood sugar absorption. Existing enzyme inhibitors such as acarbose, miglitol, and voglibose are used for inhibiting the activity of these enzymes, however, alternative solutions are required to avoid the side-effects of using these drugs. The current study aims to review recent evidence regarding the in vitro α-amylase and α-glucosidase inhibition activities of extracts derived from selected fruit, vegetables, and mushrooms. The mechanisms of action of the extracts involved in the inhibition of both enzymes are also presented and discussed. Compounds including flavonoids, phenolic acids, anthocyanins, saponins, carotenoids, terpenes, sugars, proteins, capsaicinoids, fatty acids, alkaloids have been shown to have α-amylase and α-glucosidase inhibition activities. Harvesting period, maturity stage, sample preparation, extraction technique, and solvent type are parameters that affect the α-amylase and α-glucosidase inhibition activities of the extracts.
Collapse
Affiliation(s)
| | - Jinyuan Zhang
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Michael C Bowyer
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia
| | - Nigel Brunton
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Eileen R Gibney
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - James Lyng
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Kumar K. Nutraceutical Potential and Processing Aspects of Oyster Mushrooms (PleurotusSpecies). CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401314666181015111724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Oyster mushrooms (Pleurotus species) have gained considerable attention of food technologist and nutritionist for their nutraceutical properties. Oyster mushrooms are considered as functional foods due to their richness in functional food ingredients. In recent times, consumption of these mushrooms has increased considerably due to their numerous health benefits. These are potential sources of bioactive components, which are sufficient enough for prevention and treatment of various lifestyle diseases. There are about 200 different species in the genus Pleurotus and these are commonly referred to as “oyster mushrooms”.Objective:The study aimed to grasp a collective information on nutraceutical and processing aspects of highly perishable but nutritious oyster mushroomResults:Pleurotus ostreatus is the most commonly consumed species all over the world due to its superior flavor, taste and nutraceutical properties. It acts as a source of natural antioxidants which might be beneficial for human health in preventing or reducing oxidative damage. Nutritionally, these species are rich sources of proteins, dietary fibres, β-glucan, vitamin B-complex, vitamin C and minerals. They contain higher proportions of certain amino acids such as methionine, cystine and aspartic acid than other edible mushrooms. Oyster mushrooms have been reported to possess hypocholesterolemic, anti-bacterial, anti-diabetic, anti-oxidant, anti-arthritic, anti-carcinogenic, hepatoprotective, anti-viral activities and act as natural resources of immunotherapy activities. The use of these mushrooms can overcome the deficiency of protein in the developing countries where there is unavailability or unacceptability of good quality proteins from animal sources because of religious restrictions.Conclusion:Because of the occurrence of abundant nutritional ingredients and other bioactive components in P. ostreatus, they have a great scope as a potential source for the development of functional or specialty foods for value addition of deficient foods so as to alleviate the nutritional deficiency diseases from society.
Collapse
Affiliation(s)
- Krishan Kumar
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, HP-173101, India
| |
Collapse
|
15
|
Rocha DMUP, Ribeiro PVDM, Caldas APS, da Silva BP, da Silva A, de Almeida AP, da Silva NBM, Machado AM, Alfenas RDCG. Acute consumption of yacon shake did not affect glycemic response in euglycemic, normal weight, healthy adults. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
16
|
Yue SJ, Liu J, Feng WW, Zhang FL, Chen JX, Xin LT, Peng C, Guan HS, Wang CY, Yan D. System Pharmacology-Based Dissection of the Synergistic Mechanism of Huangqi and Huanglian for Diabetes Mellitus. Front Pharmacol 2017; 8:694. [PMID: 29051733 PMCID: PMC5633780 DOI: 10.3389/fphar.2017.00694] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/19/2017] [Indexed: 01/02/2023] Open
Abstract
The rapidly increasing diabetes mellitus (DM) is becoming a major global public health issue. Traditional Chinese medicine (TCM) has a long history of the treatment of DM with good efficacy. Huangqi and Huanglian are one of the most frequently prescribed herbs for DM, and the combination of them occurs frequently in antidiabetic formulae. However, the synergistic mechanism of Huangqi (Radix Astragali) and Huanglian (Rhizoma Coptidis) has not been clearly elucidated. To address this problem, a feasible system pharmacology model based on chemical, pharmacokinetic and pharmacological data was developed via network construction approach to clarify the synergistic mechanisms of these two herbs. Forty-three active ingredients of Huangqi (mainly astragalosides and isoflavonoids) and Huanglian (primarily isoquinoline alkaloids) possessing favorable pharmacokinetic profiles and biological activities were selected, interacting with 50 DM-related targets to provide potential synergistic therapeutic actions. Systematic analysis of the constructed networks revealed that these targets such as GLUT2, NOS2, PTP1B, and IGF1R were mainly involved in PI3K-Akt signaling pathway, insulin resistance, insulin signaling pathway, and HIF-1 signaling pathway, and were mainly located in retina, pancreatic islet, smooth muscle, immunity-related organ tissues, and whole blood. The contribution index of every active ingredient also indicated five compounds, including berberine (BBR), astragaloside IV (AIV), quercetin, palmatine, and astragalus polysaccharides, as the principal components of this herb combination. These results successfully explained the polypharmcological and synergistic mechanisms underlying the efficiency of Huangqi and Huanglian for the treatment of DM and its complications.
Collapse
Affiliation(s)
- Shi-Jun Yue
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Marine Drugs (Ministry of Education of China), School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Juan Liu
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wu-Wen Feng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei-Long Zhang
- Information Center, Beijing University of Chinese Medicine, Beijing, China
| | - Jian-Xin Chen
- Information Center, Beijing University of Chinese Medicine, Beijing, China
| | - Lan-Ting Xin
- Key Laboratory of Marine Drugs (Ministry of Education of China), School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Cheng Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hua-Shi Guan
- Key Laboratory of Marine Drugs (Ministry of Education of China), School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs (Ministry of Education of China), School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dan Yan
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Xie JH, Jin ML, Morris GA, Zha XQ, Chen HQ, Yi Y, Li JE, Wang ZJ, Gao J, Nie SP, Shang P, Xie MY. Advances on Bioactive Polysaccharides from Medicinal Plants. Crit Rev Food Sci Nutr 2017; 56 Suppl 1:S60-84. [PMID: 26463231 DOI: 10.1080/10408398.2015.1069255] [Citation(s) in RCA: 332] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Jian-Hua Xie
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China
| | - Ming-Liang Jin
- b Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University , Xi'an , P.R. China
| | - Gordon A Morris
- c Department of Chemical Sciences , School of Applied Sciences, University of Huddersfield , Huddersfield , UK
| | - Xue-Qiang Zha
- d School of Biotechnology and Food Engineering, Hefei University of Technology , Hefei , P.R. China
| | - Han-Qing Chen
- d School of Biotechnology and Food Engineering, Hefei University of Technology , Hefei , P.R. China
| | - Yang Yi
- e College of Food Science and Engineering, Wuhan Polytechnic University , Wuhan , P.R. China
| | - Jing-En Li
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China.,f College of Food Science and Engineering, Jiangxi Agricultural University , Nanchang , P.R. China
| | - Zhi-Jun Wang
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China
| | - Jie Gao
- d School of Biotechnology and Food Engineering, Hefei University of Technology , Hefei , P.R. China
| | - Shao-Ping Nie
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China
| | - Peng Shang
- b Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University , Xi'an , P.R. China
| | - Ming-Yong Xie
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China
| |
Collapse
|
18
|
Rodrigues D, Freitas AC, Sousa S, Amorim M, Vasconcelos MW, da Costa JP, Silva AM, Rocha-Santos TA, Duarte AC, Gomes AM. Chemical and structural characterization of Pholiota nameko extracts with biological properties. Food Chem 2017; 216:176-85. [DOI: 10.1016/j.foodchem.2016.08.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/27/2022]
|
19
|
Liu J, Deng J, Zhang K, Wu H, Yang C, Zhang X, Du J, Shu K, Yang W. Pod Mildew on Soybeans Can Mitigate the Damage to the Seed Arising from Field Mold at Harvest Time. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9135-9142. [PMID: 27933997 DOI: 10.1021/acs.jafc.6b03561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Seedpods are the outermost barrier of legume plants encountered by pests and pathogens, but research on this tissue, especially regarding their chemical constituents, is limited. In the present study, a mildew-index-model-based cluster analysis was used to evaluate and identify groups of soybean genotypes with different organ-specific resistance against field mold. The constituents of soybean pods, including proteins, carbohydrates, fatty acids, and isoflavones, were analyzed. Linear regression and correlation analyses were also conducted between these main pod constituents and the organ-specific mildew indexes of seed (MIS) and pod (MIP). With increases in the contents of infection constituents, such as proteins, carbohydrates, and fatty acids, the MIP increased and the MIS decreased. The MIS decreased with increases in the contents of glycitein (GLE)-type isoflavonoids, which act as antibiotic constituents. Although the infection constituents in the soybean pods caused pod mildew, they also helped mitigate the corresponding seed mildew to a certain extent.
Collapse
Affiliation(s)
- Jiang Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture , Chengdu, Sichuan 611130, People's Republic of China
- Institute of Ecological Agriculture, Sichuan Agricultural University , Chengdu, Sichuan 611130, People's Republic of China
| | - Juncai Deng
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture , Chengdu, Sichuan 611130, People's Republic of China
| | - Ke Zhang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture , Chengdu, Sichuan 611130, People's Republic of China
- College of Pharmacy, Central South University , Changsha, Hunan 410013, People's Republic of China
| | - Haijun Wu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture , Chengdu, Sichuan 611130, People's Republic of China
| | - Caiqiong Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture , Chengdu, Sichuan 611130, People's Republic of China
| | - Xiaowen Zhang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture , Chengdu, Sichuan 611130, People's Republic of China
| | - Junbo Du
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture , Chengdu, Sichuan 611130, People's Republic of China
| | - Kai Shu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture , Chengdu, Sichuan 611130, People's Republic of China
- Institute of Ecological Agriculture, Sichuan Agricultural University , Chengdu, Sichuan 611130, People's Republic of China
| | - Wenyu Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture , Chengdu, Sichuan 611130, People's Republic of China
| |
Collapse
|
20
|
Friedman M. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods 2016; 5:E80. [PMID: 28231175 PMCID: PMC5302426 DOI: 10.3390/foods5040080] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023] Open
Abstract
More than 2000 species of edible and/or medicinal mushrooms have been identified to date, many of which are widely consumed, stimulating much research on their health-promoting properties. These properties are associated with bioactive compounds produced by the mushrooms, including polysaccharides. Although β-glucans (homopolysaccharides) are believed to be the major bioactive polysaccharides of mushrooms, other types of mushroom polysaccharides (heteropolysaccharides) also possess biological properties. Here we survey the chemistry of such health-promoting polysaccharides and their reported antiobesity and antidiabetic properties as well as selected anticarcinogenic, antimicrobial, and antiviral effects that demonstrate their multiple health-promoting potential. The associated antioxidative, anti-inflammatory, and immunomodulating activities in fat cells, rodents, and humans are also discussed. The mechanisms of action involve the gut microbiota, meaning the polysaccharides act as prebiotics in the digestive system. Also covered here are the nutritional, functional food, clinical, and epidemiological studies designed to assess the health-promoting properties of polysaccharides, individually and as blended mixtures, against obesity, diabetes, cancer, and infectious diseases, and suggestions for further research. The collated information and suggested research needs might guide further studies needed for a better understanding of the health-promoting properties of mushroom polysaccharides and enhance their use to help prevent and treat human chronic diseases.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA.
| |
Collapse
|
21
|
Zhang JJ, Li Y, Zhou T, Xu DP, Zhang P, Li S, Li HB. Bioactivities and Health Benefits of Mushrooms Mainly from China. Molecules 2016; 21:E938. [PMID: 27447602 PMCID: PMC6274515 DOI: 10.3390/molecules21070938] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/04/2016] [Accepted: 07/14/2016] [Indexed: 02/07/2023] Open
Abstract
Many mushrooms have been used as foods and medicines for a long time. Mushrooms contain polyphenols, polysaccharides, vitamins and minerals. Studies show that mushrooms possess various bioactivities, such as antioxidant, anti-inflammatory, anticancer, immunomodulatory, antimicrobial, hepatoprotective, and antidiabetic properties, therefore, mushrooms have attracted increasing attention in recent years, and could be developed into functional food or medicines for prevention and treatment of several chronic diseases, such as cancer, cardiovascular diseases, diabetes mellitus and neurodegenerative diseases. The present review summarizes the bioactivities and health benefits of mushrooms, and could be useful for full utilization of mushrooms.
Collapse
Affiliation(s)
- Jiao-Jiao Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Tong Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Pei Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
22
|
Mechanisms underlying the effect of polysaccharides in the treatment of type 2 diabetes: A review. Carbohydr Polym 2016; 144:474-94. [DOI: 10.1016/j.carbpol.2016.02.040] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/18/2016] [Accepted: 02/14/2016] [Indexed: 12/11/2022]
|
23
|
Saraswaty V, Mozef T, Risdian C, Rasyid A. Bioactivity of Polysaccharide from Gracilaria Verrucosa as α-Glucosidase Inhibitor. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proche.2015.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|