1
|
Tan L, Zhang C, Kou X, Zhao L, Wu D, Li J, Yu C, Xu T, Gao L, Mao X, Zhao C. Apoptotic Vesicles Attenuate Acute Lung Injury via CD73-Mediated Inhibition of Platelet Activation and NETosis. Int J Nanomedicine 2025; 20:91-107. [PMID: 39802376 PMCID: PMC11717653 DOI: 10.2147/ijn.s485012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction Acute respiratory distress syndrome (ARDS) is a life-threatening type of acute lung injury (ALI) characterized by elevated mortality rates and long-term effects. To date, no pharmacological treatment has proven effective for ARDS. Mesenchymal stem cell-derived apoptotic vesicles (apoVs) were recently found to have excellent therapeutic potential for inflammatory diseases. In this study, our aim was to investigate the therapeutic effects and underlying mechanisms of apoVs in ALI. Methods ALI was induced in mice through intratracheal instillation of lipopolysaccharide (LPS). ApoVs were then administered two hours post-induction, and their impacts on platelet activation, neutrophil infiltration, and NETosis were assessed. Additionally, the role of CD73 in mediating these effects was thoroughly investigated. Results ApoVs inhibit platelet activation, thereby impeding the infiltration of neutrophils into the lung and the initiation of NETosis, ultimately alleviating ALI. Remarkably, apoVs were enriched with CD73, which was critical for apoV-mediated repression of platelet activation and neutrophil NETosis, as well as the therapeutic effects observed in lung injury. Conclusion This study reveals that apoVs inhibit platelet activity and neutrophil NETosis via CD73, offering an innovative and effective cell-free therapeutic strategy for ALI/ARDS.
Collapse
Affiliation(s)
- Lingping Tan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Chi Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
- South China Center of Craniofacial Stem Cell Research, Guangzhou, People’s Republic of China
| | - Lu Zhao
- Department of Orthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Di Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
- South China Center of Craniofacial Stem Cell Research, Guangzhou, People’s Republic of China
| | - Jinyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Chuanying Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Tansi Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Li Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
- South China Center of Craniofacial Stem Cell Research, Guangzhou, People’s Republic of China
| | - Chuanjiang Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Li M, Li J, Wang Y, Jiang G, Jiang H, Li M, Zhu Z, Ren F, Wang Y, Yan M, Chang Z. Umbilical cord-derived mesenchymal stem cells preferentially modulate macrophages to alleviate pulmonary fibrosis. Stem Cell Res Ther 2024; 15:475. [PMID: 39696548 DOI: 10.1186/s13287-024-04091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Idiopathic Pulmonary Fibrosis (IPF) is a type of interstitial lung disease characterized by chronic inflammation due to persistent lung damage. Mesenchymal stem cells (MSCs), including those derived from the umbilical cord (UCMSCs) and placenta (PLMSCs), have been utilized in clinical trials for IPF treatment. However, the varying therapeutic effectiveness between these two MSC types remains unclear. METHODS In this study, we examined the therapeutic differences between UCMSCs and PLMSCs in treating lung damage using a bleomycin (BLM)-induced pulmonary injury mouse model. RESULTS We showed that UCMSCs had a superior therapeutic impact on lung damage compared to PLMSCs. Upon cytokine stimulation, UCMSCs expressed higher levels of inflammation-related genes and more effectively directed macrophage polarization towards the M2 phenotype than PLMSCs, both in vitro and in vivo. Furthermore, UCMSCs showed a preference for expressing CC motif ligation 2 (CCL2) and C-X-C motif chemokine ligand 1 (CXCL1) compared to PLMSCs. The expression of secreted phosphoprotein 1 (SPP1), triggering receptor expressed on myeloid cells 2 (Trem2), and CCAAT enhancer binding protein beta (Cebpb) in macrophages from mice with the disease treated with UCMSCs was significantly reduced compared to those treated with PLMSCs. CONCLUSIONS Therefore, UCMSCs demonstrated superior anti-fibrotic abilities in treating lung damage, potentially through inducing a more robust M2 polarization of macrophages than PLMSCs.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory of Membrane Biology, School of Basic Medical Sciencese, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Jun Li
- Heya Pharmaceutical Technology Company, Beijing, 100176, China
| | - Ying Wang
- State Key Laboratory of Membrane Biology, School of Basic Medical Sciencese, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Guancheng Jiang
- State Key Laboratory of Membrane Biology, School of Basic Medical Sciencese, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Hanguo Jiang
- State Key Laboratory of Membrane Biology, School of Basic Medical Sciencese, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Mengdi Li
- State Key Laboratory of Membrane Biology, School of Basic Medical Sciencese, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Ziying Zhu
- First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Basic Medical Sciencese, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Basic Medical Sciencese, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Muyang Yan
- First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Basic Medical Sciencese, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Zhao R, Hadisurya M, Ndetan H, Xi NM, Adduri S, Konduru NV, Samten B, Zhang J, Tao WA, Singh KP, Ji HL. Regenerative Signatures in BAL of Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2024; 71:740-742. [PMID: 39601539 PMCID: PMC11622636 DOI: 10.1165/rcmb.2024-0193le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Affiliation(s)
- Runzhen Zhao
- Loyola University Chicago Health Sciences DivisionMaywood, Illinois
| | | | - Harrison Ndetan
- University of Texas at Tyler Health Science CenterTyler, Texas
| | | | | | | | - Buka Samten
- University of Texas at Tyler Health Science CenterTyler, Texas
| | - Jiwang Zhang
- Loyola University Medical CenterMaywood, Illinois
| | | | - Karan P. Singh
- University of Texas at Tyler Health Science CenterTyler, Texas
| | - Hong-Long Ji
- Loyola University Chicago Health Sciences DivisionMaywood, Illinois
| |
Collapse
|
4
|
Ghiasi M, Kheirandish Zarandi P, Dayani A, Salimi A, Shokri E. Potential therapeutic effects and nano-based delivery systems of mesenchymal stem cells and their isolated exosomes to alleviate acute respiratory distress syndrome caused by COVID-19. Regen Ther 2024; 27:319-328. [PMID: 38650667 PMCID: PMC11035022 DOI: 10.1016/j.reth.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/03/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
The severe respiratory effects of the coronavirus disease 2019 (COVID-19) pandemic have necessitated the immediate development of novel treatments. The majority of COVID-19-related fatalities are due to acute respiratory distress syndrome (ARDS). Consequently, this virus causes massive and aberrant inflammatory conditions, which must be promptly managed. Severe respiratory disorders, notably ARDS and acute lung injury (ALI), may be treated safely and effectively using cell-based treatments, mostly employing mesenchymal stem cells (MSCs). Since the high potential of these cells was identified, a great deal of research has been conducted on their use in regenerative medicine and complementary medicine. Multiple investigations have demonstrated that MSCs and their products, especially exosomes, inhibit inflammation. Exosomes serve a critical function in intercellular communication by transporting molecular cargo from donor cells to receiver cells. MSCs and their derived exosomes (MSCs/MSC-exosomes) may improve lung permeability, microbial and alveolar fluid clearance, and epithelial and endothelial repair, according to recent studies. This review focuses on COVID-19-related ARDS clinical studies involving MSCs/MSC-exosomes. We also investigated the utilization of Nano-delivery strategies for MSCs/MSC-exosomes and anti-inflammatory agents to enhance COVID-19 treatment.
Collapse
Affiliation(s)
- Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Abdolreza Dayani
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ehsan Shokri
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
5
|
Aghayan AH, Mirazimi Y, Nasehi L, Atashi A. The toxic effects of neutrophil extracellular traps on mesenchymal stem cells. Mol Biol Rep 2024; 52:30. [PMID: 39614028 DOI: 10.1007/s11033-024-10134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
Sepsis, a systemic inflammatory response syndrome resulting from an uncontrolled inflammatory reaction to infection, remains without a definitive cure despite therapeutic advancements. Mesenchymal stem cells (MSCs), renowned for their capacity to alleviate inflammation and modulate the immune system, have emerged as a potential treatment avenue for sepsis. In sepsis pathophysiology, hyperactivated neutrophils release extracellular neutrophil traps (NETs). NETs are essential for eradicating pathogens; however, excessive formation leads to tissue damage. Given the limited knowledge regarding the impact of NETs on MSCs used in sepsis therapy and the established interaction between MSCs and NETs, this study investigates the effects of NETs on MSCs in vitro. NETs were isolated from stimulated neutrophils, and MSCs were sourced from umbilical cord blood. After co-culturing MSCs with isolated NETs, MSCs' viability, migration, intracellular antioxidant capacity, and changes in gene expression were analyzed. Following exposure to NETs, MSCs exhibited obvious apoptosis and necrosis. NETs disrupt MSCs' mitochondrial activity. Also, NETs upregulate the pro-apoptotic gene BAX and downregulate the anti-apoptotic gene BCL2 in MSCs. Additionally, NETs reduce MSCs' intracellular antioxidant capacity. Furthermore, MSC migration is significantly impaired by NETs. This study collectively demonstrates that NETs have toxic and detrimental effects on MSCs. These effects on MSCs indicate a potential barrier to their functionality and therapeutic efficacy. Therefore, it appears that reducing the undesirable effects of NETs could serve as a novel target to enhance the therapeutic efficacy of MSCs in septic patients.
Collapse
Affiliation(s)
- Amir Hossein Aghayan
- Student Research Committee, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yasin Mirazimi
- Student Research Committee, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Leila Nasehi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Amir Atashi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran.
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
6
|
Chen T, Ni M, Wang H, Xue F, Jiang T, Wu X, Li C, Liang S, Hong L, Wu Q. The Reparative Effect of FOXM1 in Pulmonary Disease. Lung 2024; 203:1. [PMID: 39601876 DOI: 10.1007/s00408-024-00773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
FOXM1, a key member of the FOX transcription factor family, maintains cell homeostasis by accurately controlling diverse biological processes, such as proliferation, cell cycle progression, differentiation, DNA damage repair, tissue homeostasis, angiogenesis, apoptosis, redox signaling, and drug resistance. In recent years, an increasing number of studies have focused on the role of FOXM1 in the occurrence of multiple diseases and various pathophysiological processes. In the field of pulmonary diseases, FOXM1 has a certain reparative effect by promoting cell proliferation, regulating cell cycle, antifibrosis, participating in inflammation regulation, and synergizing with other signaling pathways. On the basis of the repair properties of FOXM1, this review explores its therapeutic potential in acute lung injury/acute respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, pulmonary arterial hypertension, lung cancer, and other lung diseases, with the goal of providing a new perspective for the analysis of FOXM1-related mechanism of action and the expansion of clinical treatment strategies.
Collapse
Affiliation(s)
- Tianhao Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Ming Ni
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Hao Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Fei Xue
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Tao Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Xuanpeng Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Chenxi Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Shuhao Liang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Leyu Hong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China
| | - Qifei Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No. 277, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.
| |
Collapse
|
7
|
Hu J, Wang N, Jiang Y, Li Y, Qin B, Wang Z, Gao L. BMSCs promote alveolar epithelial cell autophagy to reduce pulmonary fibrosis by inhibiting core fucosylation modifications. Stem Cells 2024; 42:809-820. [PMID: 38982795 DOI: 10.1093/stmcls/sxae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (PF) is a chronic progressive interstitial lung disease characterized by alveolar epithelial cell (AEC) injury and fibroblast activation. Inadequate autophagy in AECs may result from the activation of several signaling pathways following AEC injury, with glycoproteins serving as key receptor proteins. The core fucosylation (CF) modification in glycoproteins is crucial. Mesenchymal stem cells derived from bone marrow (BMSCs) have the ability to regenerate damaged tissue and treat PF. This study aimed to elucidate the relationship and mechanism of interaction between BMSCs, CF modification, and autophagy in PF. METHODS C57BL/6 male mice, AEC-specific FUT8 conditional knockout (CKO) mice, and MLE12 cells were administered bleomycin (BLM), FUT8 siRNA, and mouse BMSCs, respectively. Experimental techniques including tissue staining, Western blotting, immunofluorescence, autophagic flux detection, and flow cytometry were used in this study. RESULTS First, we found that autophagy was inhibited while FUT8 expression was elevated in PF mice and BLM-induced AEC injury models. Subsequently, CKO mice and MLE12 cells transfected with FUT8 siRNA were used to demonstrate that inhibition of CF modification induces autophagy in AECs and mitigates PF. Finally, mouse BMSCs were used to demonstrate that they alleviate the detrimental autophagy of AECs by inhibiting CF modification and decreasing PF. CONCLUSIONS Suppression of CF modification enhanced the suppression of AEC autophagy and reduced PF in mice. Additionally, through the prevention of CF modification, BMSCs can assist AECs deficient in autophagy and partially alleviate PF.
Collapse
Affiliation(s)
- Jinying Hu
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Nan Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Yu Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Yina Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Biaojie Qin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Zhongzhen Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Lili Gao
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| |
Collapse
|
8
|
Trivedi A, Lin M, Miyazawa B, Nair A, Vivona L, Fang X, Bieback K, Schäfer R, Spohn G, McKenna D, Zhuo H, Matthay MA, Pati S. Inter- and Intra-donor variability in bone marrow-derived mesenchymal stromal cells: implications for clinical applications. Cytotherapy 2024; 26:1062-1075. [PMID: 38852094 DOI: 10.1016/j.jcyt.2024.03.486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are attractive as a therapeutic modality in multiple disease conditions characterized by inflammation and vascular compromise. Logistically they are advantageous because they can be isolated from adult tissue sources, such as bone marrow (BM). The phase 2a START clinical trial determined BM-MSCs to be safe in patients with moderate-to-severe acute respiratory distress syndrome (ARDS). Herein, we examine a subset of the clinical doses of MSCs generated for the phase 2a START trial from three unique donors (1-3), where one of the donors' donated BM on two separate occasions (donor 3 and 3W). METHODS The main objective of this study was to correlate properties of the cells from the four lots with plasma biomarkers from treated patients and relevant to ARDS outcomes. To do this we evaluated MSC donor lots for (i) post-thaw viability, (ii) growth kinetics, (iii) metabolism, (iv) surface marker expression, (v) protein expression, (vi) immunomodulatory ability and (vii) their functional effects on regulating endothelial cell permeability. RESULTS MSC-specific marker expression and protection of thrombin-challenged endothelial barrier permeability was similar among all four donor lots. Inter and intra-donor variability was observed in all the other in vitro assays. Furthermore, patient plasma ANG-2 and protein C levels at 6 hours post-transfusion were correlated to cell viability in an inter- and intra-donor dependent manner. CONCLUSIONS These findings highlight the potential of donor dependent (inter-) and collection dependent (intra-) effects in patient biomarker expression.
Collapse
Affiliation(s)
- Alpa Trivedi
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Maximillian Lin
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Byron Miyazawa
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Alison Nair
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Lindsay Vivona
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Xiaohui Fang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Richard Schäfer
- Goethe University Medical Center, Institute of Transfusion Medicine and Immunohematology, and German Red Cross Blood Center Frankfurt, Frankfurt, Germany; Institute for Transfusion Medicine and Gene Therapy, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Germany
| | - Gabriele Spohn
- Goethe University Medical Center, Institute of Transfusion Medicine and Immunohematology, and German Red Cross Blood Center Frankfurt, Frankfurt, Germany
| | - David McKenna
- University of Minnesota, Molecular and Cellular Therapeutics, Saint Paul, Minnesota, USA
| | - Hanjing Zhuo
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA; Department of Medicine and Anesthesia, University of California, San Francisco, San Francisco, California, USA
| | - Shibani Pati
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA; Department of Surgery, University of California, San Francisco, San Francisco, California, USA.
| |
Collapse
|
9
|
Ye H, Zou X, Fang X. Advancing cell-based therapy in sepsis: An anesthesia outlook. Chin Med J (Engl) 2024; 137:1522-1534. [PMID: 38708689 PMCID: PMC11230747 DOI: 10.1097/cm9.0000000000003097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 05/07/2024] Open
Abstract
ABSTRACT Sepsis poses a health challenge globally owing to markedly high rates of morbidity and mortality. Despite employing bundle therapy over two decades, approaches including transient organ supportive therapy and clinical trials focusing on signaling pathways have failed in effectively reversing multiple organ failure in patients with sepsis. Prompt and appropriate perioperative management for surgical patients with concurrent sepsis is urgent. Consequently, innovative therapies focusing on remedying organ injuries are necessitated. Cell therapy has emerged as a promising therapeutic avenue for repairing local damage to vital organs and restoring homeostasis during perioperative treatment for sepsis. Given the pivotal role of immune cell responses in the pathogenesis of sepsis, stem cell-based interventions that primarily modulate immune responses by interacting with multiple immune cells have progressed into clinical trials. The strides made in single-cell sequencing and gene-editing technologies have advanced the understanding of disease-specific immune responses in sepsis. Chimeric antigen receptor (CAR)-immune cell therapy offers an intriguing option for the treatment of sepsis. This review provides a concise overview of immune cell therapy, its current status, and the strides made in the context of sepsis research, discussing potential strategies for the management of patients with sepsis during perioperative stages.
Collapse
Affiliation(s)
- Hui Ye
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiaoyu Zou
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 312000, China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
10
|
Osborn E, Ransom JT, Shulman A, Sengupta V, Choudhry M, Hafiz A, Gooden J, Lightner AL. A novel extracellular vesicle paradigm for the treatment of COVID-19 induced acute respiratory distress syndrome (ARDS). Respir Med Case Rep 2024; 51:102087. [PMID: 39099663 PMCID: PMC11295994 DOI: 10.1016/j.rmcr.2024.102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/08/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Efficacy of mesenchymal stem cells (MSCs) for treatment of acute respiratory distress syndrome (ARDS) suggests bioactive bone marrow MSC extracellular vesicles (BM-MSC EVs) may be effective. A patient with severe COVID-19 associated ARDS who was presumed to expire was treated with a BM-MSC EV preparation (14 doses over two months) as a rescue treatment for refractory COVID ARDS. Near complete reversal of lung inflammation and fibrosis (per computed tomography), near complete restoration of mobility, hospital discharge (3 months) with resumption of normal activities of daily living (one year) and return to work occurred. No adverse events occurred despite repeated dosing of investigational product, highlighting safety of this potential therapy for ARDS.
Collapse
Affiliation(s)
- Erik Osborn
- Mary Washington Healthcare, Fredericksburg, VA, USA
| | | | | | | | | | - Ali Hafiz
- Mary Washington Healthcare, Fredericksburg, VA, USA
| | - Jacob Gooden
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| | | |
Collapse
|
11
|
Hwang N, Ghanta S, Li Q, Lamattina AM, Murzin E, Lederer JA, El-Chemaly S, Chung SW, Liu X, Perrella MA. Carbon monoxide-induced autophagy enhances human mesenchymal stromal cell function via paracrine actions in murine polymicrobial sepsis. Mol Ther 2024; 32:2232-2247. [PMID: 38734903 PMCID: PMC11286814 DOI: 10.1016/j.ymthe.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
Sepsis is a life-threatening process due to organ dysfunction resulting from severe infections. Mesenchymal stromal cells (MSCs) are being investigated as therapy for sepsis, along with conditioning regimens to improve their function. Carbon monoxide (CO) gas, which is cytoprotective at low doses, induces autophagy and is a mediator of inflammation. We evaluated CO-induced autophagy in human MSCs (hMSCs), and its impact on cell function in murine cecal ligation and puncture. Conditioning of hMSCs with CO ex vivo resulted in enhanced survival and bacterial clearance in vivo, and neutrophil phagocytosis of bacteria in vitro. Decreased neutrophil infiltration and less parenchymal cell death in organs were associated with increased macrophage efferocytosis of apoptotic neutrophils, promoting resolution of inflammation. These CO effects were lost when the cells were exposed to autophagy inhibition prior to gas exposure. When assessing paracrine actions of CO-induced autophagy, extracellular vesicles (EVs) were predominantly responsible. CO had no effect on EV production, but altered their miRNA cargo. Increased expression of miR-145-3p and miR-193a-3p by CO was blunted with disruption of autophagy, and inhibitors of these miRNAs led to a loss of neutrophil phagocytosis and macrophage efferocytosis. Collectively, CO-induced autophagy enhanced hMSC function during sepsis via paracrine actions of MSC-derived EVs.
Collapse
Affiliation(s)
- Narae Hwang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sailaja Ghanta
- Division of Newborn Medicine, Department of Pediatrics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qifei Li
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Jackson Health System, Miami, FL, USA
| | - Anthony M Lamattina
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ekaterina Murzin
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Su Wol Chung
- School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Department of Pediatrics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Department of Pediatrics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Zhuxiao R, Shuo Y, Jiangxue H, Jingjun P, Qi Z, Zhu W, Fang X, Jie Y. Antimicrobial peptide LL37 and regulatory T cell associated with late-onset sepsis in very preterm infants. iScience 2024; 27:109780. [PMID: 38736551 PMCID: PMC11088333 DOI: 10.1016/j.isci.2024.109780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Stem cell therapy may prevent late-onset sepsis (LOS) via antimicrobial peptide LL37 secretion and regulatory T cell (Treg) regulation. The early prediction of LOS is still a challenge. This study evaluated whether immunological state of LL37 or Tregs precedes LOS. We firstly analyzed the LL37 level, Treg proportion, and LOS incidence in very preterm infants treated with autologous cord blood mononuclear cells (ACBMNCs) in our previous trial. Then, we constructed a prediction model and built validation cohort. We found ACBMNC intervention reduced the incidence of LOS from 27.3% to 6.9% (p = 0.021). LL37 and Treg abundances were higher in the ACBMNCs group. The nomogram demonstrated that early-life Treg and LL37 characteristics were closely associated with LOS (area under the curve, AUC 0.936), with implications for early prediction and timely clinical management. This composite model was also helpful to evaluate the beneficial effect of ACBMNCs intervention on LOS, thus promoting translational research.
Collapse
Affiliation(s)
- Ren Zhuxiao
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Medical University, Guangdong Neonatal ICU Medical Quality Control Center, National Key Clinical Specialty Construction Unit Guangzhou Medical University, Guangzhou 510000, Guangdong, China
| | - Yang Shuo
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Han Jiangxue
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Medical University, Guangdong Neonatal ICU Medical Quality Control Center, National Key Clinical Specialty Construction Unit Guangzhou Medical University, Guangzhou 510000, Guangdong, China
| | - Pei Jingjun
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhang Qi
- Department of Clinical Genetic Center, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wang Zhu
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Medical University, Guangdong Neonatal ICU Medical Quality Control Center, National Key Clinical Specialty Construction Unit Guangzhou Medical University, Guangzhou 510000, Guangdong, China
| | - Xu Fang
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Medical University, Guangdong Neonatal ICU Medical Quality Control Center, National Key Clinical Specialty Construction Unit Guangzhou Medical University, Guangzhou 510000, Guangdong, China
| | - Yang Jie
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Zhuxiao R, Jiangxue H, Yongsheng L, Jingjun P, Shuo Y, Fang X, Qi Z, Shandan Z, Chuan N, Jie Y. Umbilical cord blood cell characteristics in very preterm neonates for autologous cell therapy of preterm-associated complications. BMC Pediatr 2024; 24:214. [PMID: 38528484 DOI: 10.1186/s12887-024-04678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/01/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND There are emerging clinical evidence for umbilical cord blood mononuclear cells (UCBMNCs) intervention to improve preterm complications. The first critical step in cell therapy is to obtain high-quality cells. This retrospective study aimed to investigate the quantity and quality of UCBMNCs from very preterm infants (VPIs) for the purpose of autologous cell therapy in prevention and treatment of preterm complications. METHODS Very preterm infants (VPIs) born in Guangdong Women and Children Hospital from January 1, 2017, to December 8, 2022, from whom cord blood was successfully collected and separated for public or private banking, were enrolled. The UCBMNCs characters from route cord blood tests performed in cord blood bank, impact of perinatal factors on UCBMNCs, the relationship between UCBMNCs characteristics and preterm outcomes, and the correlation of UCBMNCs characteristics and peripheral blood cells in VPIs were analyzed. RESULTS Totally, 89 VPIs underwent UCB collection and processing successfully. The median cell number post processing was 2.6 × 108. To infuse a dose of 5 × 107 cells/kg, only 3.4% of infants required a volume of more than 20 mL/kg, which exceeded the maximum safe volume limit for VPIs. However, when infusing 10 × 107 cells/kg, 25.8% of infants required a volume of more than 20 ml/kg volume. Antenatal glucocorticoids use and preeclampsia was associated with lower original UCBMNCs concentration. Both CD34+ hematopoietic stem cells (HSC) frequency and colony forming unit - granulocyte and macrophage (CFU-GM) number correlated negatively with gestational age (GA). UCBMNCs characters had no significant effect on preterm outcomes, whereas a significant positive correlation was observed between UCBMNCs concentration and total white blood cell, neutrophil, lymphocyte and PLT counts in peripheral blood. CONCLUSION UCBMNCs collected from VPIs was feasible for autologous cell therapy in improving preterm complications. Setting the infusion dose of 5 × 107 cells/kg guaranteed a safe infusion volume in more than 95% of the targeted infants. UCBMNCs characters did not affect preterm complications; however, the effect of UCBMNCs concentration on peripheral blood classification count should be considered when evaluating the immunomodulation of UCBMNCs transfusion.
Collapse
Affiliation(s)
- Ren Zhuxiao
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China
- Guangdong Neonatal ICU Medical Quality Control CenterNational Key Clinical Specialty Construction Unit, Guangzhou, 511442, China
| | - Han Jiangxue
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Li Yongsheng
- Guangdong Cord Blood Bank, Guangzhou, 511440, China
| | - Pei Jingjun
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, 511400, China
| | - Yang Shuo
- Department of Medical Statistics, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xu Fang
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China
- Guangdong Neonatal ICU Medical Quality Control CenterNational Key Clinical Specialty Construction Unit, Guangzhou, 511442, China
| | - Zhang Qi
- Department of Clinic Genetic Center, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, 511442, China
| | - Zhang Shandan
- Department of Neonatology, The Maternal and Child Health Care Hospital of HuaDu District, GuangZhou City, Guangdong Medical University, Guangzhou, 510800, China
| | - Nie Chuan
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China.
- Guangdong Neonatal ICU Medical Quality Control CenterNational Key Clinical Specialty Construction Unit, Guangzhou, 511442, China.
- Department of Clinic Genetic Center, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, 511442, China.
| | - Yang Jie
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, 511400, China.
| |
Collapse
|
14
|
Guo M, Li S, Li C, Mao X, Tian L, Yang X, Xu C, Zeng M. Overexpression of Wnt5a promoted the protective effect of mesenchymal stem cells on Lipopolysaccharide-induced endothelial cell injury via activating PI3K/AKT signaling pathway. BMC Infect Dis 2024; 24:335. [PMID: 38509522 PMCID: PMC10953236 DOI: 10.1186/s12879-024-09204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Lung endothelial barrier injury plays an important role in the pathophysiology of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Mesenchymal stem cells (MSCs) therapy has shown promise in ARDS treatment and restoration of the impaired barrier function. It has been reported that Wnt5a shows protective effects on endothelial cells. Therefore, the study aimed to investigate whether overexpression of Wnt5a could promote the protective effects of MSCs on Lipopolysaccharide (LPS)-induced endothelial cell injury. METHODS To evaluate the protective effects of MSCs overexpressing Wnt5a, we assessed the migration, proliferation, apoptosis, and angiogenic ability of endothelial cells. We assessed the transcription of protective cellular factors using qPCR and determined the molecular mechanism using Western blot analysis. RESULTS Overexpression of Wnt5a upregulated the transcription of protective cellular factors in MSCs. Co-culture of MSCWnt5a promoted endothelial migration, proliferation and angiogenesis, and inhibited endothelial cell apoptosis through the PI3K/AKT pathway. CONCLUSIONS Overexpression of Wnt5a promoted the therapeutic effect of MSCs on endothelial cell injury through the PI3K/AKT signaling. Our study provides a novel approach for utilizing genetically modified MSCs in the transplantation therapy for ARDS.
Collapse
Grants
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- the Guangdong Basic and Applied Basic Research Foundation, China (2024)
Collapse
Affiliation(s)
- Manliang Guo
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Shiqi Li
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chuan Li
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Xueyan Mao
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Liru Tian
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xintong Yang
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Caixia Xu
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Mian Zeng
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
15
|
Pei F, Gu B, Miao SM, Guan XD, Wu JF. Clinical practice of sepsis-induced immunosuppression: Current immunotherapy and future options. Chin J Traumatol 2024; 27:63-70. [PMID: 38040590 DOI: 10.1016/j.cjtee.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 12/03/2023] Open
Abstract
Sepsis is a potentially fatal condition characterized by the failure of one or more organs due to a disordered host response to infection. The development of sepsis is closely linked to immune dysfunction. As a result, immunotherapy has gained traction as a promising approach to sepsis treatment, as it holds the potential to reverse immunosuppression and restore immune balance, thereby improving the prognosis of septic patients. However, due to the highly heterogeneous nature of sepsis, it is crucial to carefully select the appropriate patient population for immunotherapy. This review summarizes the current and evolved treatments for sepsis-induced immunosuppression to enhance clinicians' understanding and practical application of immunotherapy in the management of sepsis.
Collapse
Affiliation(s)
- Fei Pei
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, 510080, China
| | - Bin Gu
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, 510080, China
| | - Shu-Min Miao
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, 510080, China
| | - Xiang-Dong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, 510080, China
| | - Jian-Feng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, 510080, China.
| |
Collapse
|
16
|
Huang W, Wang B, Ou Q, Zhang X, He Y, Mao X, Wei X, Kou X. ASC-expressing pyroptotic extracellular vesicles alleviate sepsis by protecting B cells. Mol Ther 2024; 32:395-410. [PMID: 38093517 PMCID: PMC10861962 DOI: 10.1016/j.ymthe.2023.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/04/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Pyroptosis is an inflammatory programmed cell death process characterized by membrane rupture. Interestingly, pyroptotic cells can generate plenty of nanosized vesicles. Non-inflammatory apoptotic cell death-derived apoptotic vesicles (apoVs) were systemically characterized and displayed multiple physiological functions and therapeutic potentials. However, the characteristics of pyroptotic cell-generated extracellular vesicles (EVs) are largely unknown. Here, we identified a group of pyroptotic EVs (pyroEVs) from in vitro cultured pyroptotic mesenchymal stem cells (MSCs), as well as from septic mouse blood. Compared with apoVs, pyroEVs express similar levels of annexin V, calreticulin, and common EV markers, but express a decreased level of apoptotic marker cleave caspase-3. PyroEVs, but not apoVs and exosomes, specifically express pyroptotic maker apoptosis-associated speck-like protein containing CARD (ASC). More importantly, MSC-derived pyroEVs protect B cells in the spleen and bone marrow to relieve inflammatory responses and enhance the survival rate of the septic mice. Mechanistically, pyroEV membrane-expressed ASC binds to B cells to repress cell death by repressing Toll-like receptor 4. This study uncovered the characteristics of pyroEVs and their therapeutic role in sepsis and B cell-mediated immune response.
Collapse
Affiliation(s)
- Weiying Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Ben Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Qianmin Ou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xiao Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yifan He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China.
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China.
| |
Collapse
|
17
|
Zendedel E, Tayebi L, Nikbakht M, Hasanzadeh E, Asadpour S. Clinical Trials of Mesenchymal Stem Cells for the Treatment of COVID 19. Curr Stem Cell Res Ther 2024; 19:1055-1071. [PMID: 37815188 DOI: 10.2174/011574888x260032230925052240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 10/11/2023]
Abstract
Mesenchymal Stem Cells (MSCs) are being investigated as a treatment for a novel viral disease owing to their immunomodulatory, anti-inflammatory, tissue repair and regeneration characteristics, however, the exact processes are unknown. MSC therapy was found to be effective in lowering immune system overactivation and increasing endogenous healing after SARS-CoV-2 infection by improving the pulmonary microenvironment. Many studies on mesenchymal stem cells have been undertaken concurrently, and we may help speed up the effectiveness of these studies by collecting and statistically analyzing data from them. Based on clinical trial information found on clinicaltrials. gov and on 16 November 2020, which includes 63 clinical trials in the field of patient treatment with COVID-19 using MSCs, according to the trend of increasing studies in this field, and with the help of meta-analysis studies, it is possible to hope that the promise of MSCs will one day be realized. The potential therapeutic applications of MSCs for COVID-19 are investigated in this study.
Collapse
Affiliation(s)
- Elham Zendedel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Lobat Tayebi
- Marquett University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Mohammad Nikbakht
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Hasanzadeh
- Immunogenetics Research Center, Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
18
|
Jiang T, Xia Y, Wang W, Zhao J, Liu W, Liu S, Shi S, Li B, He X, Jin Y. Apoptotic bodies inhibit inflammation by PDL1-PD1-mediated macrophage metabolic reprogramming. Cell Prolif 2024; 57:e13531. [PMID: 37553821 PMCID: PMC10771117 DOI: 10.1111/cpr.13531] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
Apoptosis triggers immunoregulation to prevent and suppress inflammation and autoimmunity. However, the mechanism by which apoptotic cells modulate immune responses remains largely elusive. In the context of allogeneic mesenchymal stem cells (MSCs) transplantation, long-term immunoregulation is observed in the host despite the short survive of the injected MSCs. In this study, utilizing a mouse model of acute lung injury (ALI), we demonstrate that apoptotic bodies (ABs) released by transplanted human umbilical cord MSCs (UC-MSCs) convert the macrophages from a pro-inflammatory to an anti-inflammatory state, thereby ameliorating the disease. Mechanistically, we identify the expression of programmed cell death 1 ligand 1 (PDL1) on the membrane of UC-MSCs-derived ABs, which interacts with programmed cell death protein 1 (PD1) on host macrophages. This interaction leads to the reprogramming of macrophage metabolism, shifting from glycolysis to mitochondrial oxidative phosphorylation via the Erk-dependent pathway in ALI. Importantly, we have reproduced the PDL1-PD1 effects of ABs on metabolic switch using alveolar macrophages from patients with ALI, suggesting the potential clinical implications of developing therapeutic strategies for the patients.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Thoracic Surgery, Tangdu HospitalFourth Military Medical UniversityXi'anChina
| | - Yanmin Xia
- Department of Thoracic Surgery, Tangdu HospitalFourth Military Medical UniversityXi'anChina
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Wenzhe Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Jinbo Zhao
- Department of Thoracic Surgery, Tangdu HospitalFourth Military Medical UniversityXi'anChina
| | - Wenhao Liu
- Department of Thoracic Surgery, Tangdu HospitalFourth Military Medical UniversityXi'anChina
| | - Shiyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Guanghua School of StomatologySun Yat‐sen UniversityGuangzhouChina
| | - Bei Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Xiaoning He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Yan Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
19
|
Liu Y, Li Y, Deng Z, Zhao Y, Yuan R, Yang M, Wang L, Fang Y, Ding D, Zhou F, Kang H. Protective and immunomodulatory effects of mesenchymal stem cells on multiorgan injury in male rats with heatstroke. J Therm Biol 2023; 118:103696. [PMID: 37871397 DOI: 10.1016/j.jtherbio.2023.103696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 10/25/2023]
Abstract
Heatstroke (HS) causes multiple organ dysfunction syndrome (MODS) with a mortality rate of 60% after hospitalization. Currently, there is no effective and targeted approach for the treatment of HS. Despite growing evidence that mesenchymal stem cells (MSCs) may reduce multiorgan damage and improve survival through immunomodulatory effects in several diseases, no one has tested whether MSCs have immunomodulatory effects in heatstroke. The present study focused on pathological changes and levels of the cytokines and immunoglobulins to investigate the mechanisms underlying the protective effect and the anti-inflammatory effects of MSCs. We found that MSCs treatment significantly reduced the 28-day mortality rate (P < 0.05), the levels of hepatic and renal function markers on day 1 (P < 0.01) and the pathological lesion scores of multiple organs in HS rats. The levels of IgG1, IgM, and IgA of the HS + MSC group was significantly higher than that in HS group on days 3 and 28(P < 0.05). In conclusion, MSCs contribute to protecting against multiorgan injury, reducing pro-inflammatory cytokines, stabilizing immunoglobulins, and reducing the mortality rate of HS rats.
Collapse
Affiliation(s)
- Yuyan Liu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China; Department of Critical Care Medicine, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yun Li
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China; Department of Critical Care Medicine, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zihui Deng
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China; Department of Basic Medicine, Graduate School, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yan Zhao
- Department of Critical Care Medicine, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Rui Yuan
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China; Department of Critical Care Medicine, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Mengmeng Yang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China; Department of Critical Care Medicine, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lu Wang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China; Department of Critical Care Medicine, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuan Fang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China; Department of Critical Care Medicine, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Dengfeng Ding
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China; Laboratory Animal Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China
| | - Feihu Zhou
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China; Laboratory Animal Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China
| | - Hongjun Kang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China; Department of Critical Care Medicine, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.
| |
Collapse
|
20
|
Zhao R, Hadisurya M, Ndetan H, Xi NM, Adduri S, Konduru NV, Samten B, Tao WA, Singh KP, Ji HL. Regenerative Signatures in Bronchioalveolar Lavage of Acute Respiratory Distress Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566908. [PMID: 38014329 PMCID: PMC10680787 DOI: 10.1101/2023.11.13.566908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background In patients with severe acute respiratory distress syndrome (ARDS) associated with sepsis, lung recovery is considerably delayed, and mortality is much high. More insight into the process of lung regeneration in ARDS patients is needed. Exosomes are important cargos for intercellular communication by serving as autocrine and/or paracrine. Cutting-edge exomics (exosomal proteomics) makes it possible to study the mechanisms of re-alveolarization in ARDS lungs. Aims This study aimed to identify potential regenerative niches by characterizing differentially expressed proteins in the exosomes of bronchioalveolar lavage (BAL) in ARDS patients. Methods We purified exosomes from BAL samples collected from ARDS patients by NIH-supported ALTA and SPIROMICS trials. The abundance of exosomal proteins/peptides was quantified using liquid chromatography-mass spectrometry (LC-MS). Differentially expressed exosomal proteins between healthy controls and ARDS patients were profiled for functional annotations, cell origins, signaling pathways, networks, and clinical correlations. Results Our results show that more exosomal proteins were identified in the lungs of late-stage ARDS patients. Immune cells and lung epithelial stem cells were major contributors to BAL exosomes in addition to those from other organs. We enriched a wide range of functions, stem cell signals, growth factors, and immune niches in both mild and severe patients. The differentially expressed proteins that we identified were associated with key clinical variables. The severity-associated differences in protein-protein interaction, RNA crosstalk, and epigenetic network were observed between mild and severe groups. Moreover, alveolar type 2 epithelial cells could serve as both exosome donors and recipients via autocrine and paracrine mechanisms. Conclusions This study identifies novel exosomal proteins associated with diverse functions, signaling pathways, and cell origins in ARDS lavage samples. These differentiated proteins may serve as regenerative niches for re-alveolarization in injured lungs.
Collapse
Affiliation(s)
- Runzhen Zhao
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | - Marco Hadisurya
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Harrison Ndetan
- Department of Epidemiology and Biostatistics, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Nan Miles Xi
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL 60660, USA
| | - Sitaramaraju Adduri
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Nagarjun Venkata Konduru
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Buka Samten
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Karan P Singh
- Department of Epidemiology and Biostatistics, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Hong-Long Ji
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| |
Collapse
|
21
|
Chen Y, Wang L, Liu M, Zhao J, Xu X, Wei D, Chen J. Mechanism of exosomes from adipose-derived mesenchymal stem cells on sepsis-induced acute lung injury by promoting TGF-β secretion in macrophages. Surgery 2023; 174:1208-1219. [PMID: 37612209 DOI: 10.1016/j.surg.2023.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/05/2023] [Accepted: 06/18/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVE Acute lung injury (ALI) caused by sepsis is a life-threatening condition characterized by uncontrollable lung inflammation. The current study sought to investigate the mechanism of adipose-derived mesenchymal stem cell-derived exosomes (ADMSC-Exos) in attenuating sepsis-induced ALI through TGF-β secretion in macrophages. METHODS Adipose-derived mesenchymal stem cell-derived exosomes (ADMSC-Exos) were extracted from ADMSCs and identified. Septic ALI mouse models were established via cecal ligation and puncture (CLP), followed by administration of ADMSC-Exos or sh-TGF-β lentiviral vector. Mouse macrophages (cell line RAW 264.7) were treated with lipopolysaccharide (LPS), co-cultured with Exos and splenic T cells, and transfected with TGF-β siRNA. The lung injury of CLP mice was evaluated, and levels of inflammatory indicators and macrophage markers were measured. The localization of macrophage markers and TGF-β was determined, and the level of TGF-β in lung tissues was measured. The effect of TGF-β knockdown on sepsis-induced ALI in CLP mice was evaluated, and the percentages of CD4+CD25+Foxp3+ Tregs in mononuclear cells/macrophages and Foxp3 levels in lung tissues/co-cultured splenic T cells were examined. RESULTS ADMSC-Exos were found to alleviate sepsis-induced ALI, inhibit inflammatory responses, and induce macrophages to secrete TGF-β in CLP mice. TGF-β silencing reversed the alleviating effect of ADMSC-Exos on sepsis-induced ALI. ADMSC-Exos also increased the number of Tregs in the spleen of CLP mice and promoted M2 polarization and TGF-β secretion in LPS-induced macrophages. After knockdown of TGF-β in macrophages in the co-culture system, the number of Tregs decreased, suggesting that ADMSC-Exos increased the Treg number by promoting macrophages to secrete TGF-β. CONCLUSION Our findings suggest ADMSC-Exos can effectively alleviate sepsis-induced ALI in CLP mice by promoting TGF-β secretion in macrophages.
Collapse
Affiliation(s)
- Yin Chen
- Department of Thoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No.299 Qingyang Road, Wuxi, Jiangsu, 214023, China; Department of Thoracic Surgery, Shanghai General Hospital of Nanjing Medical University, No.100 Haining Road, Shanghai, 200080, China
| | - Lei Wang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200082, China
| | - Mingzhao Liu
- Department of Thoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No.299 Qingyang Road, Wuxi, Jiangsu, 214023, China
| | - Jin Zhao
- Department of Thoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No.299 Qingyang Road, Wuxi, Jiangsu, 214023, China
| | - Xiangnan Xu
- Department of Thoracic Surgery, Shanghai General Hospital of Nanjing Medical University, No.100 Haining Road, Shanghai, 200080, China
| | - Dong Wei
- Department of Thoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No.299 Qingyang Road, Wuxi, Jiangsu, 214023, China.
| | - Jingyu Chen
- Department of Thoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No.299 Qingyang Road, Wuxi, Jiangsu, 214023, China.
| |
Collapse
|
22
|
Yang J, Xue J, Hu W, Zhang L, Xu R, Wu S, Wang J, Ma J, Wei J, Wang Y, Wang S, Liu X. Human embryonic stem cell-derived mesenchymal stem cell secretome reverts silica-induced airway epithelial cell injury by regulating Bmi1 signaling. ENVIRONMENTAL TOXICOLOGY 2023; 38:2084-2099. [PMID: 37227716 DOI: 10.1002/tox.23833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/22/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023]
Abstract
Silicosis is an irreversible chronic pulmonary disease caused by long-term inhalation and deposition of silica particles, which is currently incurable. The exhaustion of airway epithelial stem cells plays a pathogenetic role in silicosis. In present study, we investigated therapeutic effects and potential mechanism of human embryonic stem cell (hESC)-derived MSC-likes immune and matrix regulatory cells (IMRCs) (hESC-MSC-IMRCs), a type of manufacturable MSCs for clinical application in silicosis mice. Our results showed that the transplantation of hESC-MSC-IMRCs led the alleviation of silica-induced silicosis in mice, accompanied by inhibiting epithelia-mesenchymal transition (EMT), activating B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi1) signaling and airway epithelial cell regeneration. In consistence, the secretome of hESC-MSC-IMRC exhibited abilities to restore the potency and plasticity of primary human bronchial epithelial cells (HBECs) proliferation and differentiation following the SiO2 -induced HBECs injury. Mechanistically, the secretome resolved the SiO2 -induced HBECs injury through the activation of BMI1 signaling and restoration of airway basal cell proliferation and differentiation. Moreover, the activation of BMI1 significantly enhanced the capacity of HBEC proliferation and differentiation to multiple airway epithelial cell types in organoids. Cytokine array revealed that DKK1, VEGF, uPAR, IL-8, Serpin E1, MCP-1 and Tsp-1 were the main factors in the hESC-MSC-IMRC secretome. These results demonstrated a potential therapeutic effect of hESC-MSC-IMRCs and their secretome for silicosis, in part through a mechanism by activating Bmi1 signaling to revert the exhaustion of airway epithelial stem cells, subsequentially enhance the potency and plasticity of lung epithelial stem cells.
Collapse
Affiliation(s)
- Jiali Yang
- Ningxia Clinical Research Institute, Center Laboratory, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
| | - Jing Xue
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wenfeng Hu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
- Zephyrm Biotechnologies Co., Ltd., Beijing, China
| | - Lifan Zhang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
| | - Ranran Xu
- Zephyrm Biotechnologies Co., Ltd., Beijing, China
| | - Shuang Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jing Wang
- Ningxia Clinical Research Institute, Center Laboratory, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
| | - Jia Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jun Wei
- Zephyrm Biotechnologies Co., Ltd., Beijing, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
| | - Shuyan Wang
- Zephyrm Biotechnologies Co., Ltd., Beijing, China
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
23
|
Xie J, Wang J, Wang X, Chen M, Yao B, Dong Y, Li X, Yang Q, Tredget EE, Xu RH, Wu Y. An Engineered Dermal Substitute with Mesenchymal Stem Cells Enhances Cutaneous Wound Healing. Tissue Eng Part A 2023; 29:491-505. [PMID: 37212289 DOI: 10.1089/ten.tea.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
The treatment of refractory cutaneous wounds remains to be a clinical challenge. There is growing evidence to show that mesenchymal stem cells (MSCs) have great potential in promoting wound healing. However, the therapeutic effects of MSCs are greatly dampened by their poor survival and engraftment in the wounds. To address this limitation, in this study, MSCs were grown into a collagen-glycosaminoglycan (C-GAG) matrix to form a dermis-like tissue sheet, named engineered dermal substitute (EDS). When seeded on C-GAG matrix, MSCs adhered rapidly, migrated into the pores, and proliferated readily. When applied onto excisional wounds in healthy and diabetic mice, the EDS survived well, and accelerated wound closure, compared with C-GAG matrix alone or MSCs in collagen hydrogel. Histological analysis revealed that EDS prolonged the retention of MSCs in the wounds, associated with increased macrophage infiltration and enhanced angiogenesis. RNA-Seq analysis of EDS-treated wounds uncovered the expression of abundant human chemokines and proangiogenic factors and their corresponding murine receptors, suggesting a mechanism of ligand/receptor-mediated signals in wound healing. Thus, our results indicate that EDS prolongs the survival and retention of MSCs in the wounds and enhances wound healing.
Collapse
Affiliation(s)
- Jundong Xie
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Jinmei Wang
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Department of Pharmacology and Toxicology, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Xiaoxiao Wang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Min Chen
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Bin Yao
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Yankai Dong
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaosong Li
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Qingyang Yang
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Edward E Tredget
- Wound Healing Research Group, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Yaojiong Wu
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| |
Collapse
|
24
|
Li K, Zhu Z, Sun X, Zhao L, Liu Z, Xing J. Harnessing the therapeutic potential of mesenchymal stem cell-derived exosomes in cardiac arrest: Current advances and future perspectives. Biomed Pharmacother 2023; 165:115201. [PMID: 37480828 DOI: 10.1016/j.biopha.2023.115201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Cardiac arrest (CA), characterized by sudden onset and high mortality rates, is one of the leading causes of death globally, with a survival rate of approximately 6-24%. Studies suggest that the restoration of spontaneous circulation (ROSC) hardly improved the mortality rate and prognosis of patients diagnosed with CA, largely due to ischemia-reperfusion injury. MAIN BODY Mesenchymal stem cells (MSCs) exhibit self-renewal and strong potential for multilineage differentiation. Their effects are largely mediated by extracellular vesicles (EVs). Exosomes are the most extensively studied subgroup of EVs. EVs mainly mediate intercellular communication by transferring vesicular proteins, lipids, nucleic acids, and other substances to regulate multiple processes, such as cytokine production, cell proliferation, apoptosis, and metabolism. Thus, exosomes exhibit significant potential for therapeutic application in wound repair, tissue reconstruction, inflammatory reaction, and ischemic diseases. CONCLUSION Based on similar pathological mechanisms underlying post-cardiac arrest syndrome involving various tissues and organs in many diseases, the review summarizes the therapeutic effects of MSC-derived exosomes and explores the prospects for their application in the treatment of CA.
Collapse
Affiliation(s)
- Ke Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhu Zhu
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Xiumei Sun
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| | - Linhong Zhao
- Northeast Normal University, Changchun 130022, China.
| | - Zuolong Liu
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
25
|
Zhang X, Xue M, Liu A, Qiu H, Guo F. Activation of Wnt/β‑Catenin‑p130/E2F4 promotes the differentiation of bone marrow‑derived mesenchymal stem cells into type II alveolar epithelial cells through cell cycle arrest. Exp Ther Med 2023; 26:330. [PMID: 37346406 PMCID: PMC10280314 DOI: 10.3892/etm.2023.12029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/18/2023] [Indexed: 06/23/2023] Open
Abstract
The results of our previous study demonstrated that activation of the Wnt/β-catenin pathway increased the differentiation of mesenchymal stem cells (MSCs) into type II alveolar epithelial (AT II) cells; however, the specific mechanisms remain unclear. The present study aimed to evaluate the role of Wnt/β-catenin-p130/E2F transcription factor 4 (E2F4) in regulating the differentiation of mouse MSCs (mMSCs) into AT II cells, and to determine the specific mechanisms. mMSCs with p130 or E2F4 overexpression were constructed using lentiviral vectors. Differentiation of mMSCs into AT II cells was promoted using a modified coculture system with murine lung epithelial-12 cells incubated in small airway growth medium for 7-14 days. The differentiation efficiency was detected using immunofluorescence, western blot analysis and transmission electron microscopy. To detect the association between the canonical Wnt pathway and p130/E2F4, 4 mmol/l lithium chloride (LiCl) or 200 ng/ml Dickkopf-related protein 1 (DKK-1) was also added to the coculture system. Following differentiation, the cell cycle of mMSCs was evaluated using flow cytometry. The results of the present study demonstrated that surfactant protein C (SP-C) protein expression was higher in the p130 overexpression (MSC-p130) and E2F4 overexpression (MSC-E2F4) groups compared with the normal control mMSCs group following differentiation into AT II cells. Similar results for SP-C protein expression and lamellar body-like structures were also observed using immunofluorescence analysis and electron microscopy. Following the addition of LiCl into the coculture system for activation of the Wnt/β-catenin signaling pathway, phosphorylated (p)-p130/p130 was slightly decreased at 7 days and E2F4 was increased both at 7 and 14 days in mMSCs. Furthermore, the p-p130/p130 ratio was significantly increased at 14 days and E2F4 was decreased both at 7 and 14 days following DKK-1-mediated inhibition of the Wnt pathway. The results of the present study demonstrated that the numbers of cells in G1 and S phases were increased following activation of the Wnt pathway and decreased following Wnt pathway inhibition. However, the number of cells in G1 phase was increased following the differentiation of mMSCs overexpressing p130 or E2F4. Therefore, the results of the present study revealed that the canonical Wnt signaling pathway may affect the differentiation of MSCs into AT II cells via regulation of downstream p130/E2F4. The specific mechanisms may be associated with G1 phase extension in the cell cycle of MSCs.
Collapse
Affiliation(s)
- Xiwen Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ming Xue
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Airan Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Fengmei Guo
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
26
|
Feng F, Wang LJ, Li JC, Chen TT, Liu L. Role of heparanase in ARDS through autophagy and exosome pathway (review). Front Pharmacol 2023; 14:1200782. [PMID: 37361227 PMCID: PMC10285077 DOI: 10.3389/fphar.2023.1200782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is the most common respiratory disease in ICU. Although there are many treatment and support methods, the mortality rate is still high. The main pathological feature of ARDS is the damage of pulmonary microvascular endothelium and alveolar epithelium caused by inflammatory reaction, which may lead to coagulation system disorder and pulmonary fibrosis. Heparanase (HPA) plays an significant role in inflammation, coagulation, fibrosis. It is reported that HPA degrades a large amount of HS in ARDS, leading to the damage of endothelial glycocalyx and inflammatory factors are released in large quantities. HPA can aggrandize the release of exosomes through syndecan-syntenin-Alix pathway, leading to a series of pathological reactions; at the same time, HPA can cause abnormal expression of autophagy. Therefore, we speculate that HPA promotes the occurrence and development of ARDS through exosomes and autophagy, which leads to a large amount of release of inflammatory factors, coagulation disorder and pulmonary fibrosis. This article mainly describes the mechanism of HPA on ARDS.
Collapse
Affiliation(s)
- Fei Feng
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Lin-Jun Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Jian-Chun Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Ting-Ting Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Liping Liu
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
- Departments of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
27
|
Martire-Greco D, La Greca A, Montañez LC, Biani C, Lombardi A, Birnberg-Weiss F, Norris A, Sacerdoti F, Amaral MM, Rodrigues-Rodriguez N, Pittaluga JR, Furmento VA, Landoni VI, Miriuka SG, Luzzani C, Fernández GC. EFFECTS OF BACTERIAL LIPOPOLYSACCHARIDE AND SHIGA TOXIN ON INDUCED PLURIPOTENT STEM CELL-DERIVED MESENCHYMAL STEM CELLS. Shock 2023; 59:941-947. [PMID: 37036956 DOI: 10.1097/shk.0000000000002126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
ABSTRACT Background : Mesenchymal stem cells (MSCs) can be activated by different bacterial toxins. Lipopolysaccharides and Shiga Toxin (Stx) are the main toxins necessary for hemolytic uremic syndrome development. The main etiological event in this disease is endothelial damage that causes glomerular destruction. Considering the repairing properties of MSC, we aimed to study the response of MSC derived from induced pluripotent stem cells (iPSC-MSC) to LPS and/or Stx and its effect on the restoration of injured endothelial cells. Methods : iPSC-MSC were treated with LPS and or/Stx for 24 h and secretion of cytokines, adhesion, and migration were measured in response to these toxins. In addition, conditioned media from treated iPSC-MSC were collected and used for proteomics analysis and evaluation of endothelial cell healing and tubulogenesis using human microvascular endothelial cells 1 as a source of endothelial cells. Results : The results obtained showed that LPS induced a proinflammatory profile on iPSC-MSC, whereas Stx effects were less evident, even though cells expressed the Gb 3 receptor. Moreover, LPS induced on iPSC-MSC an increment in migration and adhesion to a gelatin substrate. Addition of conditioned media of iPSC-MSC treated with LPS + Stx, decreased the capacity of human microvascular endothelial cells 1 to close a wound, and did not favor tubulogenesis. Proteomic analysis of iPSC-MSC treated with LPS and/or Stx revealed specific protein secretion patterns that support the functional results described. Conclusions : iPSC-MSC activated by LPS acquired a proinflammatory profile that induces migration and adhesion to extracellular matrix proteins but the addition of Stx did not activate any repair program to ameliorate endothelial damage, indicating that the use of iPSC-MSC to regenerate endothelial injury caused by LPS and/or Stx in hemolytic uremic syndrome could not be the best option to consider to regenerate a tissue injury.
Collapse
Affiliation(s)
| | - Alejandro La Greca
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Instituto de Neurociencias (INEU), FLENI-CONICET, Buenos Aires, Argentina
| | - Luis Castillo Montañez
- Laboratorio de Fisiología de los Procesos Inflamatorios. Instituto de Medicina Experimental (IMEX-CONICET). Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Celeste Biani
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Instituto de Neurociencias (INEU), FLENI-CONICET, Buenos Aires, Argentina
| | - Antonella Lombardi
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Instituto de Neurociencias (INEU), FLENI-CONICET, Buenos Aires, Argentina
| | - Federico Birnberg-Weiss
- Laboratorio de Fisiología de los Procesos Inflamatorios. Instituto de Medicina Experimental (IMEX-CONICET). Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Alessandra Norris
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Instituto de Neurociencias (INEU), FLENI-CONICET, Buenos Aires, Argentina
| | | | | | - Nahuel Rodrigues-Rodriguez
- Laboratorio de Fisiología de los Procesos Inflamatorios. Instituto de Medicina Experimental (IMEX-CONICET). Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Jose Ramón Pittaluga
- Laboratorio de Fisiología de los Procesos Inflamatorios. Instituto de Medicina Experimental (IMEX-CONICET). Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Verónica Alejandra Furmento
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Instituto de Neurociencias (INEU), FLENI-CONICET, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
28
|
Lu L, Quan L, Li J, Yuan J, Nie X, Huang X, Dong H, Su Y, Huang Y, Kou Q, Liu L, Liu H, Zhou X, Gui R, Gu L. Bioengineered stem cell membrane functionalized nanoparticles combine anti-inflammatory and antimicrobial properties for sepsis treatment. J Nanobiotechnology 2023; 21:170. [PMID: 37237294 DOI: 10.1186/s12951-023-01913-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Sepsis is a syndrome of physiological, pathological and biochemical abnormalities caused by infection. Although the mortality rate is lower than before, many survivors have persistent infection, which means sepsis calls for new treatment. After infection, inflammatory mediators were largely released into the blood, leading to multiple organ dysfunction. Therefore, anti-infection and anti-inflammation are critical issues in sepsis management. RESULTS Here, we successfully constructed a novel nanometer drug loading system for sepsis management, FZ/MER-AgMOF@Bm. The nanoparticles were modified with LPS-treated bone marrow mesenchymal stem cell (BMSC) membrane, and silver metal organic framework (AgMOF) was used as the nanocore for loading FPS-ZM1 and meropenem which was delivery to the infectious microenvironments (IMEs) to exert dual anti-inflammatory and antibacterial effects. FZ/MER-AgMOF@Bm effectively alleviated excessive inflammatory response and eliminated bacteria. FZ/MER-AgMOF@Bm also played an anti-inflammatory role by promoting the polarization of macrophages to M2. When sepsis induced by cecal ligation and puncture (CLP) challenged mice was treated, FZ/MER-AgMOF@Bm could not only reduce the levels of pro-inflammatory factors and lung injury, but also help to improve hypothermia caused by septic shock and prolong survival time. CONCLUSIONS Together, the nanoparticles played a role in combined anti-inflammatory and antimicrobial properties, alleviating cytokine storm and protecting vital organ functions, could be a potential new strategy for sepsis management.
Collapse
Affiliation(s)
- Lu Lu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Lingli Quan
- Department of Pulmonary and Critical Care Medicine, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, 412007, China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Junbin Yuan
- Department of Urology, The Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xueyuan Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Hang Dong
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yanrong Su
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yufen Huang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Qingjie Kou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Leping Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Haiting Liu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xionghui Zhou
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Lan Gu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
29
|
Liang TY, Lu LH, Tang SY, Zheng ZH, Shi K, Liu JQ. Current status and prospects of basic research and clinical application of mesenchymal stem cells in acute respiratory distress syndrome. World J Stem Cells 2023; 15:150-164. [PMID: 37180997 PMCID: PMC10173811 DOI: 10.4252/wjsc.v15.i4.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common and clinically devastating disease that causes respiratory failure. Morbidity and mortality of patients in intensive care units are stubbornly high, and various complications severely affect the quality of life of survivors. The pathophysiology of ARDS includes increased alveolar-capillary membrane permeability, an influx of protein-rich pulmonary edema fluid, and surfactant dysfunction leading to severe hypoxemia. At present, the main treatment for ARDS is mechanical treatment combined with diuretics to reduce pulmonary edema, which primarily improves symptoms, but the prognosis of patients with ARDS is still very poor. Mesenchymal stem cells (MSCs) are stromal cells that possess the capacity to self-renew and also exhibit multilineage differentiation. MSCs can be isolated from a variety of tissues, such as the umbilical cord, endometrial polyps, menstrual blood, bone marrow, and adipose tissues. Studies have confirmed the critical healing and immunomodulatory properties of MSCs in the treatment of a variety of diseases. Recently, the potential of stem cells in treating ARDS has been explored via basic research and clinical trials. The efficacy of MSCs has been shown in a variety of in vivo models of ARDS, reducing bacterial pneumonia and ischemia-reperfusion injury while promoting the repair of ventilator-induced lung injury. This article reviews the current basic research findings and clinical applications of MSCs in the treatment of ARDS in order to emphasize the clinical prospects of MSCs.
Collapse
Affiliation(s)
- Tian-Yu Liang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, China
| | - Li-Hai Lu
- Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Si-Yu Tang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Zi-Hao Zheng
- Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Kai Shi
- Department of Respiratory Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China
| | - Jing-Quan Liu
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, China.
| |
Collapse
|
30
|
Umar AK. Stem Cell's Secretome Delivery Systems. Adv Pharm Bull 2023; 13:244-258. [PMID: 37342369 PMCID: PMC10278206 DOI: 10.34172/apb.2023.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 10/05/2021] [Accepted: 12/31/2021] [Indexed: 09/01/2023] Open
Abstract
Stem cells' secretome contains biomolecules that are ready to give therapeutic activities. However, the biomolecules should not be administered directly because of their in vivo instability. They can be degraded by enzymes or seep into other tissues. There have been some advancements in localized and stabilized secretome delivery systems, which have increased their effectiveness. Fibrous, in situ, or viscoelastic hydrogel, sponge-scaffold, bead powder/ suspension, and bio-mimetic coating can maintain secretome retention in the target tissue and prolong the therapy by sustained release. Porosity, young's modulus, surface charge, interfacial interaction, particle size, adhesiveness, water absorption ability, in situ gel/film, and viscoelasticity of the preparation significantly affect the quality, quantity, and efficacy of the secretome. Therefore, the dosage forms, base materials, and characteristics of each system need to be examined to develop a more optimal secretome delivery system. This article discusses the clinical obstacles and potential solutions for secretome delivery, characterization of delivery systems, and devices used or potentially used in secretome delivery for therapeutic applications. This article concludes that secretome delivery for various organ therapies necessitates the use of different delivery systems and bases. Coating, muco-, and cell-adhesive systems are required for systemic delivery and to prevent metabolism. The lyophilized form is required for inhalational delivery, and the lipophilic system can deliver secretomes across the blood-brain barrier. Nano-sized encapsulation and surface-modified systems can deliver secretome to the liver and kidney. These dosage forms can be administered using devices such as a sprayer, eye drop, inhaler, syringe, and implant to improve their efficacy through dosing, direct delivery to target tissues, preserving stability and sterility, and reducing the immune response.
Collapse
Affiliation(s)
- Abd. Kakhar Umar
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| |
Collapse
|
31
|
Wang Y, Tang B, Li H, Zheng J, Zhang C, Yang Z, Tan X, Luo P, Ma L, Wang Y, Long L, Chen Z, Xiao Z, Ma L, Zhou J, Wang Y, Shi C. A small-molecule inhibitor of Keap1-Nrf2 interaction attenuates sepsis by selectively augmenting the antibacterial defence of macrophages at infection sites. EBioMedicine 2023; 90:104480. [PMID: 36863256 PMCID: PMC9996215 DOI: 10.1016/j.ebiom.2023.104480] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Macrophages at infection sites are considered as the promising therapeutic targets to prevent sepsis development. The Nrf2/Keap1 system acts as a critical modulator of the antibacterial activity of macrophages. Recently, Keap1-Nrf2 protein-protein interaction (PPI) inhibitors have emerged as safer and stronger Nrf2 activators; however, their therapeutic potential in sepsis remains unclear. Herein, we report a unique heptamethine dye, IR-61, as a Keap1-Nrf2 PPI inhibitor that preferentially accumulates in macrophages at infection sites. METHODS A mouse model of acute lung bacterial infection was used to investigate the biodistribution of IR-61. SPR study and CESTA were used to detect the Keap1 binding behaviour of IR-61 in vitro and in cells. Established models of sepsis in mice were used to determine the therapeutic effect of IR-61. The relationship between Nrf2 levels and sepsis outcomes was preliminarily investigated using monocytes from human patients. FINDINGS Our data showed that IR-61 preferentially accumulated in macrophages at infection sites, enhanced bacterial clearance, and improved outcomes in mice with sepsis. Mechanistic studies indicated that IR-61 potentiated the antibacterial function of macrophages by activating Nrf2 via direct inhibition of the Keap1-Nrf2 interaction. Moreover, we observed that IR-61 enhanced the phagocytic ability of human macrophages, and the expression levels of Nrf2 in monocytes might be associated with the outcomes of sepsis patients. INTERPRETATIONS Our study demonstrates that the specific activation of Nrf2 in macrophages at infection sites is valuable for sepsis management. IR-61 may prove to be a Keap1-Nrf2 PPI inhibitor for the precise treatment of sepsis. FUNDING This work was supported by the National Natural Science Foundation of China (Major program 82192884), the Intramural Research Project (Grants: 2018-JCJQ-ZQ-001 and 20QNPY018), and the Chongqing National Science Foundation (CSTB2022NSCQ-MSX1222).
Collapse
Affiliation(s)
- Yawei Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China; Department of Pulmonary and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Binlin Tang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China; Oncology Department, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Huijuan Li
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Jiancheng Zheng
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Can Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Zeyu Yang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Xu Tan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Yang Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Lei Long
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Zelin Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Zhenliang Xiao
- Department of Pulmonary and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Lijie Ma
- Department of Pulmonary and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Jing Zhou
- Department of Pulmonary and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
32
|
Liu J, Tang M, Li Q, Li Q, Dai Y, Zhou H. ATG2B upregulated in LPS-stimulated BMSCs-derived exosomes attenuates septic liver injury by inhibiting macrophage STING signaling. Int Immunopharmacol 2023; 117:109931. [PMID: 36857936 DOI: 10.1016/j.intimp.2023.109931] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023]
Abstract
Pretreated mesenchymal stem cells (MSCs)-derived exosomes have shown great potential in the treatment of various inflammatory diseases. Recent evidence suggests that macrophage stimulator of interferon genes (STING) signal activation plays a critical role in sepsis and septic liver injury. Here, we aimed to investigate the role and effects of lipopolysaccharide (LPS)-pretreated bone marrow mesenchymal stem cells (BMSCs)-derived exosomes (L-Exo) on macrophage STING signaling in septic liver injury. Exosomes were collected from the BMSCs medium via ultracentrifugation. Liver injury, intrahepatic inflammation, and the activation of macrophage STING signaling were analyzed. Mitophagy and the release of mitochondrial DNA (mtDNA) into the cytosol were investigated. Through in vivo and in vitro experiments, L-Exo could markedly attenuate cecal ligation and puncture-induced septic liver injury and inhibit macrophage STING signaling. Mechanistically, L-Exo inhibited macrophage STING signaling by enhancing mitophagy and inhibiting the release of mtDNA into the cytosol. Furthermore, autophagy-related protein 2 homolog B (ATG2B) may be a major factor involved in this effect of L-Exo. These findings reveal that macrophage STING signaling plays an important role in septic liver injury and may be a therapeutic target. In addition, LPS pretreatment is an effective and promising approach for optimizing the therapeutic efficacy of MSCs-derived exosomes in septic liver injury, providing new strategies for treatment.
Collapse
Affiliation(s)
- Jia Liu
- Department of Pediatrics, Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Min Tang
- Department of Pediatrics, Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Qunchao Li
- Department of Pediatrics, Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Qing Li
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, Hefei, China
| | - Yuanyuan Dai
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, Hefei, China
| | - Haoquan Zhou
- Department of Pediatrics, Provincial Hospital Affiliated to Anhui Medical University, Hefei, China; Department of Pediatrics, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, Hefei, China.
| |
Collapse
|
33
|
Xing J, Wang R, Cui F, Song L, Ma Q, Xu H. Role of the regulation of mesenchymal stem cells on macrophages in sepsis. Int J Immunopathol Pharmacol 2023; 37:3946320221150722. [PMID: 36840553 PMCID: PMC9969469 DOI: 10.1177/03946320221150722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Sepsis is a common clinical critical disease with high mortality. The excessive release of cytokines from macrophages is the main cause of out-of-control immune response in sepsis. Mesenchymal stem cells (MSCs) are thought to be useful in adjunctive therapy of sepsis and related diseases, due to their function in immune regulation, anti-inflammatory, antibacterial, and tissue regeneration. Also there have been several successful cases in clinical treatment. Some previous studies have shown that MSCs regulate the function of macrophages through secreting cytokines and extracellular vesicles, or transferring mitochondria directly to target cells, which affects the progress of sepsis. Here, we review the regulation of MSCs on macrophages in sepsis, mainly focus on the regulation ways. We hope that will help to understand the immunological mechanism and also provide some clues for the clinical application of MSCs in the biotherapy of sepsis.
Collapse
Affiliation(s)
- Jie Xing
- Fenyang Hospital of Shanxi
Province, Fenyang, China
| | - Rui Wang
- School of Life Sciences, Northwestern Polytechnical
University, Xi’an, China
| | - Fengqi Cui
- School of Life Sciences, Northwestern Polytechnical
University, Xi’an, China
| | - Linlin Song
- Fenyang Hospital of Shanxi
Province, Fenyang, China
| | - Quanlin Ma
- Fenyang Hospital of Shanxi
Province, Fenyang, China,Quanlin Ma, Department of Cardiothoracic
Surgery, Fenyang Hospital of Shanxi Province, 186 Shengli Street, Fenyang
032200, China.
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical
University, Xi’an, China,Huiyun Xu, School of Life Sciences,
Northwestern Polytechnical University, 127 Youyi Xilu, Xi’an 710072, China.
| |
Collapse
|
34
|
Miceli V, Bulati M, Gallo A, Iannolo G, Busà R, Conaldi PG, Zito G. Role of Mesenchymal Stem/Stromal Cells in Modulating Ischemia/Reperfusion Injury: Current State of the Art and Future Perspectives. Biomedicines 2023; 11:689. [PMID: 36979668 PMCID: PMC10045387 DOI: 10.3390/biomedicines11030689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) is a multistep damage that occurs in several tissues when a blood flow interruption is inevitable, such as during organ surgery or transplantation. It is responsible for cell death and tissue dysfunction, thus leading, in the case of transplantation, to organ rejection. IRI takes place during reperfusion, i.e., when blood flow is restored, by activating inflammation and reactive oxygen species (ROS) production, causing mitochondrial damage and apoptosis of parenchymal cells. Unfortunately, none of the therapies currently in use are definitive, prompting the need for new therapeutic approaches. Scientific evidence has proven that mesenchymal stem/stromal cells (MSCs) can reduce inflammation and ROS, prompting this cellular therapy to also be investigated for treatment of IRI. Moreover, it has been shown that MSC therapeutic effects were mediated in part by their secretome, which appears to be involved in immune regulation and tissue repair. For these reasons, mediated MSC paracrine function might be key for injury amelioration upon IRI damage. In this review, we highlight the scientific literature on the potential beneficial use of MSCs and their products for improving IRI outcomes in different tissues/organs, focusing in particular on the paracrine effects mediated by MSCs, and on the molecular mechanisms behind these effects.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCSS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | | | | | | | | | | | - Giovanni Zito
- Research Department, IRCSS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| |
Collapse
|
35
|
Luo Y, Ge S, Chen Q, Lin S, He W, Zeng M. Overexpression of FoxM1 optimizes the therapeutic effect of bone marrow mesenchymal stem cells on acute respiratory distress syndrome. Stem Cell Res Ther 2023; 14:27. [PMID: 36788588 PMCID: PMC9926819 DOI: 10.1186/s13287-023-03240-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Injury of alveolar epithelial cells and capillary endothelial cells is crucial in the pathogenesis of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Mesenchymal stem cells (MSCs) are a promising cell source for ALI/ARDS treatment. Overexpression of Fork head box protein M1 (FoxM1) facilitates MSC differentiation into alveolar type II (AT II) cells in vitro. Moreover, FoxM1 has been shown to repair the endothelial barrier. Therefore, this study explored whether overexpression of FoxM1 promotes the therapeutic effect of bone marrow-derived MSCs (BMSCs) on ARDS by differentiation of BMSCs into AT II cells or a paracrine mechanism. METHODS A septic ALI model was established in mice by intraperitoneal administration of lipopolysaccharide. The protective effect of BMSCs-FoxM1 on ALI was explored by detecting pathological variations in the lung, total protein concentration in bronchoalveolar lavage fluid (BALF), wet/dry (W/D) lung weight ratio, oxidative stress levels, cytokine levels, and retention of BMSCs in the lung. In addition, we assessed whether FoxM1 overexpression promoted the therapeutic effect of BMSCs on ALI/ARDS by differentiating into AT II cells using SPC-/- mice. Furthermore, the protective effect of BMSCs-FoxM1 on lipopolysaccharide-induced endothelial cell (EC) injury was explored by detecting EC proliferation, apoptosis, scratch wounds, tube formation, permeability, and oxidative stress, and analyzing whether the Wnt/β-catenin pathway contributes to the regulatory mechanism in vitro using a pathway inhibitor. RESULTS Compared with BMSCs-Vector, treatment with BMSCs-FoxM1 significantly decreased the W/D lung weight ratio, total BALF protein level, lung injury score, oxidative stress, and cytokine levels. With the detected track of BMSCs-FoxM1, we observed a low residency rate and short duration of residency in the lung. Notably, SPC was not expressed in SPC-/- mice injected with BMSCs-FoxM1. Furthermore, BMSCs-FoxM1 enhanced EC proliferation, migration, and tube formation; inhibited EC apoptosis and inflammation; and maintained vascular integrity through activation of the Wnt/β-catenin pathway, which was partially reversed by XAV-939. CONCLUSION Overexpression of FoxM1 enhanced the therapeutic effect of BMSCs on ARDS, possibly through a paracrine mechanism rather than by promoting BMSC differentiation into AT II cells in vivo, and prevented LPS-induced EC barrier disruption partially through activating the Wnt/β-catenin signaling pathway in vitro.
Collapse
Affiliation(s)
- Yuling Luo
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Shanhui Ge
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Qingui Chen
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Shan Lin
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Wanmei He
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Mian Zeng
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
36
|
Weiss DJ. What is the need and why is it time for innovative models for understanding lung repair and regeneration? Front Pharmacol 2023; 14:1130074. [PMID: 36860303 PMCID: PMC9968746 DOI: 10.3389/fphar.2023.1130074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
Advances in tissue engineering continue at a rapid pace and have provided novel methodologies and insights into normal cell and tissue homeostasis, disease pathogenesis, and new potential therapeutic strategies. The evolution of new techniques has particularly invigorated the field and span a range from novel organ and organoid technologies to increasingly sophisticated imaging modalities. This is particularly relevant for the field of lung biology and diseases as many lung diseases, including chronic obstructive pulmonary disease (COPD) and idiopathic fibrosis (IPF), among others, remain incurable with significant morbidity and mortality. Advances in lung regenerative medicine and engineering also offer new potential avenues for critical illnesses such as the acute respiratory distress syndrome (ARDS) which also continue to have significant morbidity and mortality. In this review, an overview of lung regenerative medicine with focus on current status of both structural and functional repair will be presented. This will serve as a platform for surveying innovative models and techniques for study, highlighting the need and timeliness for these approaches.
Collapse
|
37
|
Luo Y, Lin S, Mao X, Yang Y, He W, Guo M, Zeng M. Overexpression of FoxM1 Enhanced the Protective Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Lipopolysaccharide-Induced Acute Lung Injury through the Activation of Wnt/ β-Catenin Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8324504. [PMID: 36820407 PMCID: PMC9938779 DOI: 10.1155/2023/8324504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Mesenchymal stem cell- (MSC-) based cell and gene therapies have made remarkable progress in alleviating acute lung injury/acute respiratory distress syndrome (ALI/ARDS). However, the benefits of Forkhead box protein M1 (FoxM1) gene-modified MSCs in the treatment of ALI have not been studied. METHODS We evaluated the therapeutic effects of FoxM1-modified MSCs in ALI mice induced by lipopolysaccharide (LPS) by quantifying the survival rate, lung weight ratio (wet/dry), and contents of bronchoalveolar lavage fluid. In addition, microcomputed tomography, histopathology, Evans Blue assay, and quantification of apoptosis were performed. We also explored the underlying mechanism by assessing Wnt/β-catenin signaling following the treatment of mice with FoxM1-modified MSCs utilizing the Wnt/β-catenin inhibitor XAV-939. RESULTS Compared with unmodified MSCs, transplantation of FoxM1-modified MSCs improved survival and vascular permeability; reduced total cell counts, leukocyte counts, total protein concentrations, and inflammatory cytokines in BALF; attenuated lung pathological impairments and fibrosis; and inhibited apoptosis in LPS-induced ALI/ARDS mice. Furthermore, FoxM1-modified MSCs maintained vascular integrity during ALI/ARDS by upregulating Wnt/β-catenin signaling, which was partly reversed via a pathway inhibitor. CONCLUSION Overexpression of FoxM1 optimizes the treatment action of MSCs on ALI/ARDS by inhibiting inflammation and apoptosis and restoring vascular integrity partially through Wnt/β-catenin signaling pathway stimulation.
Collapse
Affiliation(s)
- Yuling Luo
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shan Lin
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xueyan Mao
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yongqiang Yang
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wanmei He
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Manliang Guo
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mian Zeng
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
Taenaka H, Matthay MA. Mechanisms of impaired alveolar fluid clearance. Anat Rec (Hoboken) 2023:10.1002/ar.25166. [PMID: 36688689 PMCID: PMC10564110 DOI: 10.1002/ar.25166] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/09/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
Impaired alveolar fluid clearance (AFC) is an important cause of alveolar edema fluid accumulation in patients with acute respiratory distress syndrome (ARDS). Alveolar edema leads to insufficient gas exchange and worse clinical outcomes. Thus, it is important to understand the pathophysiology of impaired AFC in order to develop new therapies for ARDS. Over the last few decades, multiple experimental studies have been done to understand the molecular, cellular, and physiological mechanisms that regulate AFC in the normal and the injured lung. This review provides a review of AFC in the normal lung, focuses on the mechanisms of impaired AFC, and then outlines the regulation of AFC. Finally, we summarize ongoing challenges and possible future research that may offer promising therapies for ARDS.
Collapse
Affiliation(s)
- Hiroki Taenaka
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, USA
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, USA
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Michael A. Matthay
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, USA
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, USA
| |
Collapse
|
39
|
Tian C, Wang K, Zhao M, Cong S, Di X, Li R. Extracellular vesicles participate in the pathogenesis of sepsis. Front Cell Infect Microbiol 2022; 12:1018692. [PMID: 36579343 PMCID: PMC9791067 DOI: 10.3389/fcimb.2022.1018692] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Sepsis is one of the leading causes of mortality worldwide and is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. The early diagnosis and effective treatment of sepsis still face challenges due to its rapid progression, dynamic changes, and strong heterogeneity among different individuals. To develop novel strategies to control sepsis, a better understanding of the complex mechanisms of sepsis is vital. Extracellular vesicles (EVs) are membrane vesicles released from cells through different mechanisms. In the disease state, the number of EVs produced by activated or apoptotic cells and the cargoes they carry were altered. They regulated the function of local or distant host cells in autocrine or paracrine ways. Current studies have found that EVs are involved in the occurrence and development of sepsis through multiple pathways. In this review, we focus on changes in the cargoes of EVs in sepsis, the regulatory roles of EVs derived from host cells and bacteria, and how EVs are involved in multiple pathological processes and organ dysfunction in sepsis. Overall, EVs have great application prospects in sepsis, such as early diagnosis of sepsis, dynamic monitoring of disease, precise therapeutic targets, and prevention of sepsis as a vaccine platform.
Collapse
Affiliation(s)
- Chang Tian
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Min Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shan Cong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Di
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ranwei Li
- Department of Urinary Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China,*Correspondence: Ranwei Li,
| |
Collapse
|
40
|
Wang H, Jiang C, Cai J, Lu Q, Qiu Y, Wang Y, Huang Y, Xiao Y, Wang B, Wei X, Shi J, Lai X, Wang T, Wang J, Xiang AP. Nestin prevents mesenchymal stromal cells from apoptosis in LPS-induced lung injury via inhibition of unfolded protein response sensor IRE1α. LIFE MEDICINE 2022; 1:359-371. [PMID: 39872742 PMCID: PMC11749126 DOI: 10.1093/lifemedi/lnac049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/01/2022] [Indexed: 01/30/2025]
Abstract
The clinical applications of MSC therapy have been intensely investigated in acute respiratory distress syndrome. However, clinical studies have fallen short of expectations despite encouraging preclinical results. One of the key problems is that transplanted stem cells can hardly survive in the harsh inflammatory environment. Prolonging the survival of transplanted MSCs might be a promising strategy to enhance the therapeutic efficacy of MSC therapy. Here, we identified Nestin, a class VI intermediate filament, as a positive regulator of MSC survival in the inflammatory microenvironment. We showed that Nestin knockout led to a significant increase of MSC apoptosis, which hampered the therapeutic effects in an LPS-induced lung injury model. Mechanistically, Nestin knockout induced a significant elevation of endoplasmic reticulum (ER) stress level. Further investigations showed that Nestin could bind to IRE1α and inhibit ER stress-induced apoptosis under stress. Furthermore, pretreatment with IRE1α inhibitor 4μ8C improved MSC survival and improved therapeutic effect. Our data suggests that Nestin enhances stem cell survival after transplantation by inhibiting ER stress-induced apoptosis, improving protection, and repair of the lung inflammatory injury.
Collapse
Affiliation(s)
- Hongmiao Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Chenhao Jiang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Qiying Lu
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan Qiu
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yi Wang
- Guangdong Institute for Drug Control, NMPA Key Laboratory for Quality Control of Blood Products, Guangdong Drug Administration Key Laboratory of Quality Control and Research of Blood Products, Guangzhou 510663, China
| | - Yinong Huang
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yong Xiao
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Boyan Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoyue Wei
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiahao Shi
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xingqiang Lai
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Tao Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiancheng Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Andy Peng Xiang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
41
|
Kim K, Bae KS, Kim HS, Lee WY. Effectiveness of Mesenchymal Stem Cell Therapy for COVID-19-Induced ARDS Patients: A Case Report. Medicina (B Aires) 2022; 58:medicina58121698. [PMID: 36556900 PMCID: PMC9784973 DOI: 10.3390/medicina58121698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose: This study assessed the safety, feasibility, and tolerability of mesenchymal stem cells for patients diagnosed with COVID (Coronavirus disease 2019-induced ARDS (acute respiratory distress syndrome)). Materials and Methods: Critically ill adult COVID-19 patients who were admitted to Wonju Severance Christian Hospital were enrolled in this study. One patient received human bone marrow-derived mesenchymal stem cell (hBMSC) transplantation and received a total dose of 9 × 107 allogeneic hBMSCs via intravenous infusion. The main outcome of this study was to assess the safety, adverse events, and efficacy following transplantation of hBMSCs in COVID-19- induced ARDS patients. Efficacy was assessed radiologically based on pneumonia improvement, changes in PaO2/FiO2, and O2 saturation. Results: A 73-year-old man visited Wonju Severance Christian Hospital presenting with fever and fatigue. A throat swab was performed for real-time polymerase chain reaction to confirm COVID-19, and the result was positive. The patient developed ARDS on Day 5. MSC transplantation was performed on that day and administered on Day 29. Early adverse events, including allergic reactions, were not observed following MSC transplantation. Subsequently, clinical symptoms, signs, and laboratory findings, including PaO2/FiO2 and O2 saturation, improved. Conclusion: The results of this case report suggest that intravenous injection of MSC derived from the bone marrow is safe and acceptable and can lead to favorable outcomes for critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Kwangmin Kim
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Keum Seok Bae
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Hyun Soo Kim
- Pharmicell Co., Ltd., Sungnam 13229, Republic of Korea
- Kim’s Stem Cell Clinic, Seoul 06017, Republic of Korea
| | - Won-Yeon Lee
- Department of Pulmonology, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
- Correspondence: ; Tel.: +82-33-741-0541; Fax: +82-33-0928
| |
Collapse
|
42
|
Sharma V, Manhas A, Gupta S, Dikshit M, Jagavelu K, Verma RS. Fabrication, characterization and in vivo assessment of cardiogel loaded chitosan patch for myocardial regeneration. Int J Biol Macromol 2022; 222:3045-3056. [DOI: 10.1016/j.ijbiomac.2022.10.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
43
|
Chen CH, Chang KC, Lin YN, Ho MW, Cheng MY, Shih WH, Chou CH, Lin PC, Chi CY, Lu MC, Tien N, Wu MY, Chang SS, Hsu WH, Shyu WC, Cho DY, Jeng LB. Mesenchymal stem cell therapy on top of triple therapy with remdesivir, dexamethasone, and tocilizumab improves PaO2/FiO2 in severe COVID-19 pneumonia. Front Med (Lausanne) 2022; 9:1001979. [PMID: 36213639 PMCID: PMC9537613 DOI: 10.3389/fmed.2022.1001979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background Despite patients with severe coronavirus disease (COVID-19) receiving standard triple therapy, including steroids, antiviral agents, and anticytokine therapy, health condition of certain patients continue to deteriorate. In Taiwan, the COVID-19 mortality has been high since the emergence of previous variants of this disease (such as alpha, beta, or delta). We aimed to evaluate whether adjunctive infusion of human umbilical cord mesenchymal stem cells (MSCs) (hUC-MSCs) on top of dexamethasone, remdesivir, and tocilizumab improves pulmonary oxygenation and suppresses inflammatory cytokines in patients with severe COVID-19. Methods Hospitalized patients with severe or critical COVID-19 pneumonia under standard triple therapy were separated into adjuvant hUC-MSC and non-hUC-MSC groups to compare the changes in the arterial partial pressure of oxygen (PaO2)/fraction of inspired oxygen (FiO2) ratio and biological variables. Results Four out of eight patients with severe or critical COVID-19 received either one (n = 2) or two (n = 2) doses of intravenous infusions of hUC-MSCs using a uniform cell dose of 1.0 × 108. Both high-sensitivity C-reactive protein (hs-CRP) level and monocyte distribution width (MDW) were significantly reduced, with a reduction in the levels of interleukin (IL)-6, IL-13, IL-12p70 and vascular endothelial growth factor following hUC-MSC transplantation. The PaO2/FiO2 ratio increased from 83.68 (64.34–126.75) to 227.50 (185.25–237.50) and then 349.56 (293.03–367.92) within 7 days after hUC-MSC infusion (P < 0.001), while the change of PaO2/FiO2 ratio was insignificant in non-hUC-MSC patients (admission day: 165.00 [102.50–237.61]; day 3: 100.00 [72.00–232.68]; day 7: 250.00 [71.00–251.43], P = 0.923). Conclusion Transplantation of hUC-MSCs as adjunctive therapy improves pulmonary oxygenation in patients with severe or critical COVID-19. The beneficial effects of hUC-MSCs were presumably mediated by the mitigation of inflammatory cytokines, characterized by the reduction in both hs-CRP and MDW.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Kuan-Cheng Chang
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- *Correspondence: Kuan-Cheng Chang,
| | - Yen-Nien Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Mao-Wang Ho
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Meng-Yu Cheng
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Hsin Shih
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Huei Chou
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Po-Chang Lin
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yu Chi
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Min-Chi Lu
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Yao Wu
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Sheng Chang
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wu-Huei Hsu
- School of Medicine, China Medical University, Taichung, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Woei-Cheang Shyu
- School of Medicine, China Medical University, Taichung, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Woei-Cheang Shyu,
| | - Der-Yang Cho
- School of Medicine, China Medical University, Taichung, Taiwan
- Stroke Center, China Medical University Hospital, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Long-Bin Jeng
- School of Medicine, China Medical University, Taichung, Taiwan
- Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
- Long-Bin Jeng,
| |
Collapse
|
44
|
Cao C, Zhang L, Liu F, Shen J. Therapeutic Benefits of Mesenchymal Stem Cells in Acute Respiratory Distress Syndrome: Potential Mechanisms and Challenges. J Inflamm Res 2022; 15:5235-5246. [PMID: 36120184 PMCID: PMC9473549 DOI: 10.2147/jir.s372046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) presents as a form of acute respiratory failure resulting from non-cardiogenic pulmonary edema due to excessive alveolocapillary permeability, which may be pulmonary or systemic in origin. In the last 3 years, the coronavirus disease 2019 pandemic has resulted in an increase in ARDS cases and highlighted the challenges associated with this syndrome, as well as the unacceptably high mortality rates and lack of effective treatments. Currently, clinical treatment remains primarily supportive, including mechanical ventilation and drug-based therapy. Mesenchymal stem cell (MSC) therapies are emerging as a promising intervention in patients with ARDS and have promising therapeutic effects and safety. The therapeutic mechanisms include modifying the immune response and assisting with tissue repair. This review provides an overview of the general properties of MSCs and outlines their role in mitigating lung injury and promoting tissue repair in ARDS. Finally, we summarize the current challenges in the study of translational MSC research and identify avenues by which the discipline may progress in the coming years.
Collapse
Affiliation(s)
- Chao Cao
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, People's Republic of China.,Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai, People's Republic of China.,Shanghai Medical College Fudan University, Shanghai, People's Republic of China
| | - Lin Zhang
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, People's Republic of China.,Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Fuli Liu
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, People's Republic of China.,Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Jie Shen
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, People's Republic of China.,Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai, People's Republic of China.,Shanghai Medical College Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
45
|
Mesenchymal stromal cells alleviate acute respiratory distress syndrome through the cholinergic anti-inflammatory pathway. Signal Transduct Target Ther 2022; 7:307. [PMID: 36064538 PMCID: PMC9441842 DOI: 10.1038/s41392-022-01124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have been considered a promising alternative for treatment of acute respiratory distress syndrome (ARDS). However, there is significant heterogeneity in their therapeutic efficacy, largely owing to the incomplete understanding of the mechanisms underlying the therapeutic activities of MSCs. Here, we hypothesize that the cholinergic anti-inflammatory pathway (CAP), which is recognized as a neuroimmunological pathway, may be involved in the therapeutic mechanisms by which MSCs mitigate ARDS. Using lipopolysaccharide (LPS) and bacterial lung inflammation models, we found that inflammatory cell infiltration and Evans blue leakage were reduced and that the expression levels of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) in lung tissue were significantly increased 6 hours after MSC infusion. When the vagus nerve was blocked or α7 nicotinic acetylcholine (ACh) receptor (α7nAChR)-knockout mice were used, the therapeutic effects of MSCs were significantly reduced, suggesting that the CAP may play an important role in the effects of MSCs in ARDS treatment. Our results further showed that MSC-derived prostaglandin E2 (PGE2) likely promoted ACh synthesis and release. Additionally, based on the efficacy of nAChR and α7nAChR agonists, we found that lobeline, the nicotinic cholinergic receptor excitation stimulant, may attenuate pulmonary inflammation and alleviate respiratory symptoms of ARDS patients in a clinical study (ChiCTR2100047403). In summary, we reveal a previously unrecognized MSC-mediated mechanism of CAP activation as the means by which MSCs alleviate ARDS-like syndrome, providing insight into the clinical translation of MSCs or CAP-related strategies for the treatment of patients with ARDS.
Collapse
|
46
|
Regenerative mesenchymal stem c
ell‐derived
extracellular vesicles: A potential alternative to c
ell‐based
therapy in viral infection and disease damage control. WIREs Mech Dis 2022; 14:e1574. [DOI: 10.1002/wsbm.1574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/24/2022] [Indexed: 11/07/2022]
|
47
|
Kim HY, Kwon S, Um W, Shin S, Kim CH, Park JH, Kim BS. Functional Extracellular Vesicles for Regenerative Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106569. [PMID: 35322545 DOI: 10.1002/smll.202106569] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The unique biological characteristics and promising clinical potential of extracellular vesicles (EVs) have galvanized EV applications for regenerative medicine. Recognized as important mediators of intercellular communication, naturally secreted EVs have the potential, as innate biotherapeutics, to promote tissue regeneration. Although EVs have emerged as novel therapeutic agents, challenges related to the clinical transition have led to further functionalization. In recent years, various engineering approaches such as preconditioning, drug loading, and surface modification have been developed to potentiate the therapeutic outcomes of EVs. Also, limitations of natural EVs have been addressed by the development of artificial EVs that offer advantages in terms of production yield and isolation methodologies. In this review, an updated overview of current techniques is provided for the functionalization of natural EVs and recent advances in artificial EVs, particularly in the scope of regenerative medicine.
Collapse
Affiliation(s)
- Han Young Kim
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Seunglee Kwon
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Wooram Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sol Shin
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Interdisciplinary Program of Bioengineering, Institute of Chemical Processes, Institute of Engineering Research, BioMAX, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
48
|
Ikonomou L, Magnusson M, Dries R, Herzog EL, Hynds RE, Borok Z, Park JA, Skolasinski S, Burgess JK, Turner L, Mojarad SM, Mahoney JE, Lynch T, Lehmann M, Thannickal VJ, Hook JL, Vaughan AE, Hoffman ET, Weiss DJ, Ryan AL. Stem cells, cell therapies, and bioengineering in lung biology and disease 2021. Am J Physiol Lung Cell Mol Physiol 2022; 323:L341-L354. [PMID: 35762622 PMCID: PMC9484991 DOI: 10.1152/ajplung.00113.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
The 9th biennial conference titled "Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases" was hosted virtually, due to the ongoing COVID-19 pandemic, in collaboration with the University of Vermont Larner College of Medicine, the National Heart, Lung, and Blood Institute, the Alpha-1 Foundation, the Cystic Fibrosis Foundation, and the International Society for Cell & Gene Therapy. The event was held from July 12th through 15th, 2021 with a pre-conference workshop held on July 9th. As in previous years, the objectives remained to review and discuss the status of active research areas involving stem cells (SCs), cellular therapeutics, and bioengineering as they relate to the human lung. Topics included 1) technological advancements in the in situ analysis of lung tissues, 2) new insights into stem cell signaling and plasticity in lung remodeling and regeneration, 3) the impact of extracellular matrix in stem cell regulation and airway engineering in lung regeneration, 4) differentiating and delivering stem cell therapeutics to the lung, 5) regeneration in response to viral infection, and 6) ethical development of cell-based treatments for lung diseases. This selection of topics represents some of the most dynamic and current research areas in lung biology. The virtual workshop included active discussion on state-of-the-art methods relating to the core features of the 2021 conference, including in situ proteomics, lung-on-chip, induced pluripotent stem cell (iPSC)-airway differentiation, and light sheet microscopy. The conference concluded with an open discussion to suggest funding priorities and recommendations for future research directions in basic and translational lung biology.
Collapse
Affiliation(s)
- Laertis Ikonomou
- Department of Oral Biology, University at Buffalo, State University of New York, Buffalo, New York
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, State University of New York, Buffalo, New York
| | - Mattias Magnusson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ruben Dries
- Section of Hematology and Medical Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Erica L Herzog
- Yale Interstitial Lung Disease Center of Excellence, Pulmonary and Critical Care Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Robert E Hynds
- Epithelial Cell Biology in ENT Research Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, California
| | - Jin-Ah Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | - Janette K Burgess
- Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Leigh Turner
- Department of Health, Society, and Behavior, University of California, Irvine Program In Public Health, Irvine, California
| | - Sarah M Mojarad
- Engineering in Society Program, Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | | | - Thomas Lynch
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Mareike Lehmann
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center Munich, Helmholtz Zentrum München, Munich, Germany
| | - Victor J Thannickal
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jamie L Hook
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York
- Global Health and Emerging Pathogens Institute, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Evan T Hoffman
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Daniel J Weiss
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Amy L Ryan
- Hastings Center for Pulmonary Research, Department of Medicine, University of Southern California, Los Angeles, California
- Department of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, California
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
49
|
Krishnan A, Muthusamy S, Fernandez FB, Kasoju N. Mesenchymal Stem Cell-Derived Extracellular Vesicles in the Management of COVID19-Associated Lung Injury: A Review on Publications, Clinical Trials and Patent Landscape. Tissue Eng Regen Med 2022; 19:659-673. [PMID: 35384633 PMCID: PMC8985390 DOI: 10.1007/s13770-022-00441-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
The unprecedented COVID-19 pandemic situation forced the scientific community to explore all the possibilities from various fields, and so far we have seen a lot of surprises, eureka moments and disappointments. One of the approaches from the cellular therapists was exploiting the immunomodulatory and regenerative potential of mesenchymal stromal cells (MSCs), more so of MSC-derived extracellular vesicles (EVs)-particularly exosomes, in order to alleviate the cytokine storm and regenerate the damaged lung tissues. Unlike MSCs, the EVs are easier to store, deliver, and are previously shown to be as effective as MSCs, yet less immunogenic. These features attracted the attention of many and thus led to a tremendous increase in publications, clinical trials and patent applications. This review presents the current landscape of the field and highlights some interesting findings on MSC-derived EVs in the context of COVID-19, including in silico, in vitro, in vivo and case reports. The data strongly suggests the potential of MSC-derived EVs as a therapeutic regime for the management of acute lung injury and associated complications in COVID-19 and beyond.
Collapse
Affiliation(s)
- Anand Krishnan
- Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695012, Kerala, India
| | - Senthilkumar Muthusamy
- Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695012, Kerala, India
| | - Francis B Fernandez
- Department of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695012, Kerala, India
| | - Naresh Kasoju
- Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695012, Kerala, India.
| |
Collapse
|
50
|
Kim YE, Ahn SY, Park WS, Sung DK, Sung SI, Yang MS, Chang YS. Mesenchymal-Stem-Cell-Derived Extracellular Vesicles Attenuate Brain Injury in Escherichia coli Meningitis in Newborn Rats. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071030. [PMID: 35888118 PMCID: PMC9319453 DOI: 10.3390/life12071030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
We recently reported that transplantation of mesenchymal stem cells (MSCs) significantly reduced bacterial growth and brain injury in neonatal meningitis induced by Escherichia coli (E. coli) infection in newborn rats. As a next step, to verify whether the MSCs protect against brain injury in a paracrine manner, this study was designed to estimate the efficacy of MSC-derived extracellular vesicles (MSC-EVs) in E. coli meningitis in newborn rats. E. coli meningitis was induced without concomitant bacteremia by the intra-cerebroventricular injection of 5 × 102 colony-forming units of K1 (-) E. coli in rats, at postnatal day 11. MSC-EVs were intra-cerebroventricularly transplanted 6 h after the induction of meningitis, and antibiotics were administered for three consecutive days starting at 24 h after the induction of meningitis. The increase in bacterial growth in the cerebrospinal fluid measured at 24 h after the meningitis induction was not significantly reduced following MSC-EV transplantation. However, an increase in brain cell death, reactive gliosis, and inflammation following meningitis were significantly attenuated after MSC-EV transplantation. Taken together, our results indicate that MSCs show anti-apoptotic, anti-gliosis, and anti-inflammatory, but not antibacterial effects, in an EV-mediated paracrine manner in E. coli-induced neonatal meningitis.
Collapse
Affiliation(s)
- Young-Eun Kim
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Korea; (Y.-E.K.); (W.-S.P.)
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Seoul 06351, Korea
| | - So-Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (S.-Y.A.); (D.-K.S.); (S.-I.S.); (M.-S.Y.)
| | - Won-Soon Park
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Korea; (Y.-E.K.); (W.-S.P.)
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Seoul 06351, Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (S.-Y.A.); (D.-K.S.); (S.-I.S.); (M.-S.Y.)
| | - Dong-Kyung Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (S.-Y.A.); (D.-K.S.); (S.-I.S.); (M.-S.Y.)
| | - Se-In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (S.-Y.A.); (D.-K.S.); (S.-I.S.); (M.-S.Y.)
| | - Mi-Sun Yang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (S.-Y.A.); (D.-K.S.); (S.-I.S.); (M.-S.Y.)
| | - Yun-Sil Chang
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Korea; (Y.-E.K.); (W.-S.P.)
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Seoul 06351, Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (S.-Y.A.); (D.-K.S.); (S.-I.S.); (M.-S.Y.)
- Correspondence: ; Tel.: +82-2-3410-3528
| |
Collapse
|