1
|
Yu K, Li W, Long W, Li Y, Li Y, Liao H, Liu J. Proteome-wide mendelian randomization identifies causal plasma proteins in interstitial lung disease. Sci Rep 2025; 15:2293. [PMID: 39824903 DOI: 10.1038/s41598-025-85338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
Interstitial lung disease (ILD) has shown limited treatment advancements, with minimal exploration of circulating protein biomarkers causally linked to ILD and its subtypes beyond idiopathic pulmonary fibrosis (IPF). In this study, we aimed to identify potential drug targets and circulating protein biomarkers for ILD and its subtypes. We utilized the most recent large-scale plasma protein quantitative trait loci (pQTL) data detected from the antibody-based method and ILD and its subtypes' GWAS data from the updated FinnGen database for Mendelian randomization analysis. To enhance the reliability of causal associations, we conducted external validation and sensitivity analyses, including Bayesian colocalization and bidirectional Mendelian randomization analysis. Our study identified eight plasma proteins genetically associated with ILD or its subtypes. Among these, three proteins-CDH15 (Cadherin-15), LTBR (Lymphotoxin-beta receptor), and ADAM15 (A disintegrin and metalloproteinase 15)-emerged as priority biomarkers and potential therapeutic targets, demonstrating more reliable associations by passing a series of sensitivity analyses compared to the others. Based on these findings, we propose for the first time that CDH15, ADAM15, and LTBR hold promise as novel potential circulating protein biomarkers and therapeutic targets for the diagnosis and treatment of ILD, IPF, and sarcoidosis, respectively, especially ADAM15, and these findings have the potential to provide new perspectives for advancing the research on the heterogeneity of ILD.
Collapse
Affiliation(s)
- Kunrong Yu
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Wanying Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Wenjie Long
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yijia Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yanting Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Huili Liao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Jianhong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
2
|
Zhan Y, Yang R, Feng J, Bai G, Shi X, Zhang J, Zhang J. Joint association of systemic immune-inflammation index and phenotypic age acceleration with chronic respiratory disease: a cross-sectional study. BMC Public Health 2025; 25:186. [PMID: 39825391 PMCID: PMC11740354 DOI: 10.1186/s12889-025-21430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Chronic respiratory diseases (CRD) represents a series of lung disorders and is posing a global health burden. Systemic inflammation and phenotypic ageing have been respectively reported to associate with certain CRD. However, little is known about the co-exposures and mutual associations of inflammation and ageing with CRD. Here, we aim to systematically elucidate the joint and mutual mediating associations of systemic immune-inflammation index (SII) and phenotypic age acceleration (PhenoAgeAccel) with CRD based on data from National Health and Nutrition Examination Survey (NHANES). METHODS Data for this study was obtained from NHANES 2007-2010 and 2015-2018. The single and combined associations of SII and PhenoAgeAccel with CRD were analyzed using multivariable logistic regression models. The dose-response relationship between exposures and outcomes was determined by restricted cubic splines (RCS) regression. Subgroup and mediation analyses were further conducted. RESULTS Totally, 15,075 participants were enrolled in this study including 3,587 CRD patients. Compare with controls, CRD patients tended to be older, females and present higher SII and PhenoAgeAccel values. Single-index analysis indicated that either SII or PhenoAgeAccel demonstrated a significantly positive association with CRD via logistic regressions and RCS curves. Furthermore, the joint-indexes analysis revealed that compared to individuals with lower SII and PhenoAgeAccel, those with higher SII and PhenoAgeAccel exhibited remarkably stronger associations with CRD (adjusted OR [aOR], 1.56; 95% CI, 1.31-1.85; P < 0.001), chronic obstructive pulmonary disease (aOR, 1.56; 95% CI, 1.22-2.00; P = 0.001) and asthma (aOR, 1.40; 95% CI, 1.16-1.70; P = 0.001), which were predominant among those aged above 40 years, females and smokers. Eventually, mediation analyses suggested the mutual mediating effects of SII and PhenoAgeAccel on CRD and PhenoAgeAccel mediated SII resulting in CRD more significantly. CONCLUSION This study confirmed the coexposure effect and mutual mediation between SII and PhenoAgeAccel on CRD. We recommend that the joint assessment may conduce to the accurate identification for populations susceptible to CRD and early prevention of chronic respiratory diseases.
Collapse
Affiliation(s)
- Yuan Zhan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruonan Yang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Feng
- Department of Social Medicine and Health Management, School of Public Health, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Genlong Bai
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangyun Shi
- College of Geography and Resources, Sichuan Normal University, Chengdu, China
| | - Jiaheng Zhang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jingbo Zhang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Bridges JP, Vladar EK, Kurche JS, Krivoi A, Stancil IT, Dobrinskikh E, Hu Y, Sasse SK, Lee JS, Blumhagen RZ, Yang IV, Gerber AN, Peljto AL, Evans CM, Redente EF, Riches DW, Schwartz DA. Progressive lung fibrosis: reprogramming a genetically vulnerable bronchoalveolar epithelium. J Clin Invest 2025; 135:e183836. [PMID: 39744946 PMCID: PMC11684817 DOI: 10.1172/jci183836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is etiologically complex, with well-documented genetic and nongenetic origins. In this Review, we speculate that the development of IPF requires two hits: the first establishes a vulnerable bronchoalveolar epithelium, and the second triggers mechanisms that reprogram distal epithelia to initiate and perpetuate a profibrotic phenotype. While vulnerability of the bronchoalveolar epithelia is most often driven by common or rare genetic variants, subsequent injury of the bronchoalveolar epithelia results in persistent changes in cell biology that disrupt tissue homeostasis and activate fibroblasts. The dynamic biology of IPF can best be contextualized etiologically and temporally, including stages of vulnerability, early disease, and persistent and progressive lung fibrosis. These dimensions of IPF highlight critical mechanisms that adversely disrupt epithelial function, activate fibroblasts, and lead to lung remodeling. Together with better recognition of early disease, this conceptual approach should lead to the development of novel therapeutics directed at the etiologic and temporal drivers of lung fibrosis that will ultimately transform the care of patients with IPF from palliative to curative.
Collapse
Affiliation(s)
- James P. Bridges
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eszter K. Vladar
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jonathan S. Kurche
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Andrei Krivoi
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ian T. Stancil
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, School of Medicine, Stanford, California, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yan Hu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sarah K. Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Joyce S. Lee
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel Z. Blumhagen
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| | - Ivana V. Yang
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anthony N. Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Anna L. Peljto
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher M. Evans
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Elizabeth F. Redente
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - David W.H. Riches
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David A. Schwartz
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Di X, Li Y, Wei J, Li T, Liao B. Targeting Fibrosis: From Molecular Mechanisms to Advanced Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410416. [PMID: 39665319 PMCID: PMC11744640 DOI: 10.1002/advs.202410416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Indexed: 12/13/2024]
Abstract
As the final stage of disease-related tissue injury and repair, fibrosis is characterized by excessive accumulation of the extracellular matrix. Unrestricted accumulation of stromal cells and matrix during fibrosis impairs the structure and function of organs, ultimately leading to organ failure. The major etiology of fibrosis is an injury caused by genetic heterogeneity, trauma, virus infection, alcohol, mechanical stimuli, and drug. Persistent abnormal activation of "quiescent" fibroblasts that interact with or do not interact with the immune system via complicated signaling cascades, in which parenchymal cells are also triggered, is identified as the main mechanism involved in the initiation and progression of fibrosis. Although the mechanisms of fibrosis are still largely unknown, multiple therapeutic strategies targeting identified molecular mechanisms have greatly attenuated fibrotic lesions in clinical trials. In this review, the organ-specific molecular mechanisms of fibrosis is systematically summarized, including cardiac fibrosis, hepatic fibrosis, renal fibrosis, and pulmonary fibrosis. Some important signaling pathways associated with fibrosis are also introduced. Finally, the current antifibrotic strategies based on therapeutic targets and clinical trials are discussed. A comprehensive interpretation of the current mechanisms and therapeutic strategies targeting fibrosis will provide the fundamental theoretical basis not only for fibrosis but also for the development of antifibrotic therapies.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Ya Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jingwen Wei
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Tianyue Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Banghua Liao
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| |
Collapse
|
5
|
Wu Y, Li B, Xuan Y, Jiang Y, Chen J, Liao H, Feng J, Zhang J. Fluorofenidone alleviates cigarette smoke exposure-induced chronic lung injury by targeting ferroptosis. Sci Rep 2024; 14:32149. [PMID: 39738585 DOI: 10.1038/s41598-024-83998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common condition that poses significant health risks to humans. Pulmonary interstitial fibrosis (PIF) often manifests in advanced stages of COPD. Fluorofenidone (AKF) has a wide range of pharmacological effects, including anti-fibrotic, antioxidant, and anti-inflammatory effects. Therefore, this study aimed to assess the role of AKF in lung injury and its underlying mechanisms. The COPD mice model was constructed by cigarette smoke (CS) combined with lipopolysaccharide (LPS) treatment. The effect of AKF on COPD mice was evaluated by lung injury, lipid peroxidation, inflammatory factors, and the expression of ferroptosis markers. Furthermore, the normal human bronchial epithelial cell line, Beas-2B, was used to verify the mechanism underlying the association between ferroptosis and inflammation. AKF attenuated the cigarette smoke (CS)/LPS-induced inflammatory response in the mouse lungs. Additionally, AKF attenuated the CS/LPS-induced fibrosis response in the mouse lungs. AKF inhibits ferroptosis in lung tissues of CS/LPS-exposed mice. Furthermore, AKF suppressed the inflammatory response and ferroptosis in CSE-treated BEAS-2B cells via NF-κB signaling pathway. AKF can function as a novel ferroptosis inhibitor by inhibiting NF-κB to inhibit airway inflammation and fibrosis, providing a scientific basis for the use of AKF to prevent the progression of COPD and pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuan Wu
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, Guangxi, 530007, China
- Department of General Medicine, Hunan Provincial People's Hospital, Changsha, 410005, China
| | - Binbin Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Yixuan Xuan
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Yu Jiang
- Institute of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Hunan Provincial People's Hospital, Changsha, 410005, China
| | - Jinping Chen
- Department of General Medicine, Hunan Provincial People's Hospital, Changsha, 410005, China
| | - Hong Liao
- Department of General Medicine, Hunan Provincial People's Hospital, Changsha, 410005, China
| | - Jihua Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Guangxi Health Commission key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
| | - Jianfeng Zhang
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, Guangxi, 530007, China.
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Guangxi Health Commission key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
| |
Collapse
|
6
|
Yi J, Guo H, Jiang C, Duan J, Xue J, Zhao Y, He W, Xia L. Leukocyte telomere length decreased the risk of mortality in patients with alcohol-associated liver disease. Front Endocrinol (Lausanne) 2024; 15:1462591. [PMID: 39735642 PMCID: PMC11672197 DOI: 10.3389/fendo.2024.1462591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/12/2024] [Indexed: 12/31/2024] Open
Abstract
Background It is necessary to find latent indicators to predict the survival of alcohol-associated liver disease (ALD) patients. Leukocyte telomere length (LTL) was regarded as an indicator of prognosis in several diseases. However, the relationships between LTL and survival as well as cause-specific mortality in ALD patients were still unknown. Objective This study aimed at exploring the underlying link between LTL and the risk of mortality in patients with ALD. Methods The LTL and survival data were gathered from the National Health and Nutrition Examination Survey (NHANES) 1999-2002. The connection between LTL and mortality was assessed by Cox regression models and stratified analyses. The non-linear relationship was explored by restricted cubic spline (RCS) analysis. Sensitivity analyses were used to evaluate the robustness of our findings. Results LTL was a negative factor for all-cause mortality (all p-value < 0.05). The risk of cardiovascular disease (CVD)-related death was decreased in Q3 (p < 0.001) and Q4 levels of LTL (p < 0.001) compared with the Q1 group. Shorter LTL resulted in higher cancer-caused mortality (p = 0.03) in the Q2 group. Longer LTL improved survival especially for elder patients (p for trend < 0.001) or men (p for trend = 0.001). Moreover, there were L-shaped correlations between LTL and all-cause mortality (p for non-linearity = 0.02), as well as cancer-related mortality (p for non-linearity < 0.001). Four sensitivity analyses proved the robustness of our findings. Conclusion Our research found that longer LTL improved survival in patients with ALD and decreased CVD and cancer-related mortality. LTL decreased all-cause mortality especially for patients older than 65 years or men. LTL might be a useful biomarker for prognosis among patients with ALD. More prospective studies are needed to assess the relevance between LTL and mortality and explore the underlying mechanisms between them.
Collapse
Affiliation(s)
- Jiahong Yi
- Department of VIP Region, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui Guo
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chang Jiang
- Department of VIP Region, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junyi Duan
- Department of Obstetrics and Gynecology, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Ju Xue
- Department of VIP Region, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yue Zhao
- Department of VIP Region, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenzhuo He
- Department of VIP Region, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liangping Xia
- Department of VIP Region, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
7
|
Liu Y, Wang D, Liu X, Yuan H, Liu D, Hu Y, Ning S. Biological and pharmacological roles of pyroptosis in pulmonary inflammation and fibrosis: recent advances and future directions. Cell Commun Signal 2024; 22:586. [PMID: 39639365 PMCID: PMC11619304 DOI: 10.1186/s12964-024-01966-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Pyroptosis, an inflammatory regulated cell death (RCD) mechanism, is characterized by cellular swelling, membrane rupture, and subsequent discharge of cellular contents, exerting robust proinflammatory effects. Recent studies have significantly advanced our understanding of pyroptosis, revealing that it can be triggered through inflammasome- and caspase-independent pathways, and interacts intricately with other RCD pathways (e.g., pyroptosis, necroptosis, ferroptosis, and cuproptosis). The pathogenesis of pulmonary fibrosis (PF), including idiopathic pulmonary fibrosis (IPF) and other interstitial lung diseases, involves a multifaceted interplay of factors such as pathogen infections, environmental pollutants, genetic variations, and immune dysfunction. This chronic and progressive interstitial lung disease is characterized by persistent inflammation, extracellular matrix (ECM) accumulation, and fibrotic alveolar wall thickening, which potentially contribute to deteriorated lung function. Despite recent advances in understanding pyroptosis, the mechanisms by which it regulates PF are not entirely elucidated, and effective strategies to improve clinical outcomes remain unclear. This review strives to deliver a comprehensive overview of the biological functions and molecular mechanisms of pyroptosis, exploring its roles in the pathogenesis of PF. Furthermore, it examines potential biomarkers and therapeutic agents for anti-fibrotic treatments.
Collapse
Affiliation(s)
- Ya Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital (The Affiliated Hospital of Hunan University), Xiangtan, 411100, China
| | - Danxia Wang
- Department of Pharmacy, People's Hospital of Ningxiang City, Hunan University of Chinese Medicine, Changsha, 410600, China
| | - Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital (The Affiliated Hospital of Hunan University), Xiangtan, 411100, China
| | - Haibin Yuan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Dan Liu
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Yixiang Hu
- Department of Clinical Pharmacy, Xiangtan Central Hospital (The Affiliated Hospital of Hunan University), Xiangtan, 411100, China.
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
| |
Collapse
|
8
|
Lian H, Xu K, Chang A, Wang Y, Ma S, Cheng L, Zhao W, Xia C, Wang L, Yu G. Loss of PTPN21 disrupted mitochondrial metabolic homeostasis and aggravated experimental pulmonary fibrosis. Respir Res 2024; 25:426. [PMID: 39633451 PMCID: PMC11619687 DOI: 10.1186/s12931-024-03041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a high-mortality lung disease with unclear pathogenesis. Convincing evidence suggests that an imbalance in mitochondrial homeostasis resulting from repeated injury to alveolar epithelial type 2 cells (AEC2) underlies IPF. Non-receptor protein tyrosine phosphatase 21 (PTPN21) performs various functions in cancer; however, its role in IPF has not been studied. This study aimed to investigate the role of PTPN21 in lung fibrosis. The experimental results showed that loss of PTPN21 exacerbated lung fibrosis by increasing cell numbers in bronchoalveolar lavage fluid, lung hydroxyproline content, and extracellular matrix protein expression of fibronectin and α-smooth muscle actin (α-SMA) in bleomycin-challenged mouse lungs. In A549 cells (AEC2), knockdown of PTPN21 suppressed focal adhesion and migration, reduced mitochondrial fission and increased fusion, increased the level of mitochondrial superoxide, decreased mitochondrial membrane potential and ATP levels. Simultaneously, knockdown of PTPN21 impaired autophagy, and increased intracellular reactive oxygen species levels. Treatment of fibroblasts (MRC-5) and primary human lung fibroblasts (PHLF)) with the supernatant from PTPN21-knockdown A549 cells increased the expression of fibronectin, collagen 1 and α-SMA. Conversely, overexpression of PTPN21 in A549 cells produced opposite effects. However, treatment of MRC-5 and PHLF with the supernatant from PTPN21-overexpressing A549 cells only slightly reduced the expression of fibronectin, collagen 1 in MRC-5 cells, but did not change the expression of α-SMA. In summary, this study revealed that the loss of PTPN21 in epithelial cells disrupted mitochondrial metabolic homeostasis, leading to epithelial cell inactivation and increased the deposition of extracellular matrix proteins in fibroblasts, thereby exacerbating experimental pulmonary fibrosis.
Collapse
Affiliation(s)
- Hui Lian
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Kai Xu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
| | - Airu Chang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
| | - Yaxuan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
| | - Shuaichen Ma
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
| | - Lianhui Cheng
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
| | - Wenyu Zhao
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
| | - Cong Xia
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China.
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China.
| |
Collapse
|
9
|
Weng C, Zhao Y, Song M, Shao Z, Pang Y, Yu C, Pei P, Yang L, Millwood IY, Walters RG, Chen Y, Du H, Chen J, Chen Z, Genovese G, Terao C, Lv J, Li L, Sun D. Mosaic loss of chromosome Y, tobacco smoking and risk of age-related lung diseases: insights from two prospective cohorts. Eur Respir J 2024; 64:2400968. [PMID: 39401857 DOI: 10.1183/13993003.00968-2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/11/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Little is known about the underlying relationship between mosaic loss of chromosome Y (mLOY), the most common chromosomal alterations in older men, and the risk of age-related lung diseases. METHODS We included 217 780 participants from the UK Biobank (UKB) and 42 859 participants from the China Kadoorie Biobank. The mLOY events were detected using the Mosaic Chromosomal Alterations (MoChA) pipeline. Outcomes included all lung diseases, COPD, lung cancer and idiopathic pulmonary fibrosis (IPF). Cox proportional hazard models were fitted to estimate the hazard ratios and 95% confidence intervals of mLOY with lung diseases in both cohorts. The combined hazard ratios were derived from meta-analysis. RESULTS Results from the two cohorts showed that expanded mLOY was associated with increased risks of all lung diseases (HR 1.19 (95% CI 1.04-1.36)), COPD (HR 1.20 (95% CI 1.13-1.28)), lung cancer (HR 1.34 (95% CI 1.21-1.48)) and IPF (HR 1.34 (95% CI 1.16-1.56) in the UKB). There was evidence of positive interactions between mLOY and smoking behaviour (relative excess risk due to interaction (97.5% CI) >0). Additionally, we observed that current smokers with expanded mLOY had the highest risk of incident lung diseases in both cohorts. CONCLUSIONS mLOY may be a novel predictor for age-related lung diseases. For current smokers carrying mLOY, adopting quitting smoking behaviour may contribute to substantially reducing their risk of incident lung diseases.
Collapse
Affiliation(s)
- Chenghao Weng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- These authors contributed equally to this work
| | - Yuxuan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- These authors contributed equally to this work
| | - Mingyu Song
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Zilun Shao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Pei Pei
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
| | - Ling Yang
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yiping Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Huaidong Du
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Junshi Chen
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
10
|
Moss ST, Minelli C, Leavy OC, Allen RJ, Oliver N, Wain LV, Jenkins G, Stewart I. Assessing causal relationships between diabetes mellitus and idiopathic pulmonary fibrosis: a Mendelian randomisation study. Thorax 2024:thorax-2024-221472. [PMID: 39613458 DOI: 10.1136/thorax-2024-221472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a disease of progressive lung scarring. There is a known association between diabetes mellitus (DM) and IPF, but it is unclear whether a causal relationship exists between these traits. OBJECTIVES The objectives of this study are to examine causal relationships among DM, diabetes-associated traits and IPF using a Mendelian randomisation approach. METHODS Two-sample MR approaches, including bidirectional inverse-variance weighted random effects and routine sensitivity models, used genetic variants identified from genome-wide association studies for type 1 diabetes (T1D), type 2 diabetes (T2D), glycated haemoglobin level (HbA1c), fasting insulin level and body mass index (BMI) to assess for causal effects of these traits on IPF. Further analyses using pleiotropy-robust and multivariable MR (MVMR) methods were additionally performed to account for trait complexity. RESULTS Results did not suggest that either T1D (OR=1.00, 95% CI 0.93 to 1.07, p=0.90) or T2D (1.02, 0.93 to 1.11, p=0.69) are in the causal pathway of IPF. No effects were suggested of HbA1c (1.19, 0.63 to 2.22, p=0.59) or fasting insulin level (0.60, 0.31 to 1.15, p=0.12) on IPF, but potential effects of BMI on IPF were indicated (1.44, 1.12 to 1.85, p=4.00×10-3). Results were consistent in MVMR, although no independent effects of T2D (0.91, 0.68 to 1.21, p=0.51) or BMI (1.01, 0.94 to 1.09, p=0.82) on IPF were observed when modelled together. CONCLUSIONS This study suggests that DM and IPF are unlikely to be causally linked. This comorbid relationship may instead be driven by shared risk factors or treatment effects.
Collapse
Affiliation(s)
- Samuel T Moss
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Cosetta Minelli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Olivia C Leavy
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, East Midlands, UK
| | - Richard J Allen
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Nick Oliver
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Louise V Wain
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Iain Stewart
- National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
11
|
Lyu TT, Wang JY, Tan JS, Yang YM, Wang YM, Zhao J, Qing P, Wu LM, Wang XJ. Causal associations between telomere length and pulmonary arterial hypertension: A two-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40407. [PMID: 39809206 PMCID: PMC11596709 DOI: 10.1097/md.0000000000040407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 01/16/2025] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by elevated pulmonary artery pressure, leading to right heart failure, and mortality. The role of telomere length, a marker of biological aging, in PAH remains unclear. We utilized summary-level data from genome-wide association studies for various measures of telomere length and PAH. Single nucleotide polymorphisms associated with telomere length at a genome-wide significance level were used as instrumental variables. The inverse variance weighted method was the primary analysis, with sensitivity analyses including the weighted median and Mendelian randomization-Egger regression. The odds ratios and 95% confidence intervals (CI) were calculated to estimate the causal effect of telomere length on PAH risk. The Mendelian randomization analyses revealed no significant causal association between overall telomere length and PAH (odds ratios per standard deviation increase = 1.229, 95% CI: 0.469-3.222, P = .676). Similar null findings were observed for granulocyte, lymphocyte, naive T-cell, memory T-cell, B-cell, and natural killer-cell telomere lengths. Sensitivity analyses confirmed the robustness of the results, with no evidence of horizontal pleiotropy or significant influence of individual single nucleotide polymorphisms on the overall estimates. This Mendelian randomization study didn't support a causal association between telomere length and PAH.
Collapse
Affiliation(s)
- Ting-Ting Lyu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing-Yang Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Emergency and Critical Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang-Shan Tan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Emergency and Critical Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan-Min Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Emergency and Critical Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Meng Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Emergency and Critical Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ping Qing
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Emergency and Critical Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling-Min Wu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiao-Jian Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
- Key Laboratory of Pulmonary Vascular Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Fuwai Yunnan Cardiovascular Hospital, Kunming, China
| |
Collapse
|
12
|
Zhang D, Eckhardt CM, McGroder C, Benesh S, Porcelli J, Depender C, Bogyo K, Westrich J, Thomas-Wilson A, Jobanputra V, Garcia CK. Clinical Impact of Telomere Length Testing for Interstitial Lung Disease. Chest 2024; 166:1071-1081. [PMID: 38950694 PMCID: PMC11562654 DOI: 10.1016/j.chest.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Shortened telomere length (TL) is a genomic risk factor for fibrotic interstitial lung disease (ILD), but its role in clinical management is unknown. RESEARCH QUESTION What is the clinical impact of TL testing on the management of ILD? STUDY DESIGN AND METHODS Patients were evaluated in the Columbia University ILD clinic and underwent Clinical Laboratory Improvement Amendments-certified TL testing by flow cytometry and fluorescence in situ hybridization (FlowFISH) as part of clinical treatment. Short TL was defined as below the 10th age-adjusted percentile for either granulocytes or lymphocytes by FlowFISH. Patients were offered genetic counseling and testing if they had short TL or a family history of ILD. FlowFISH TL was compared with research quantitative polymerase chain reaction (qPCR) TL measurement. RESULTS A total of 108 patients underwent TL testing, including those with clinical features of short telomere syndrome such as familial pulmonary fibrosis (50%) or extrapulmonary manifestations in the patient (25%) or a relative (41%). The overall prevalence of short TL was 46% and was similar across clinical ILD diagnoses. The number of short telomere clinical features was independently associated with detecting short TL (OR, 2.00; 95% CI, 1.27-3.32). TL testing led to clinical treatment changes for 35 patients (32%), most commonly resulting in reduction or avoidance of immunosuppression. Of the patients who underwent genetic testing (n = 34), a positive or candidate diagnostic finding in telomere-related genes was identified in 10 patients (29%). Inclusion of TL testing below the 1st percentile helped reclassify eight of nine variants of uncertain significance into actionable findings. The quantitative polymerase chain reaction test correlated with FlowFISH, but age-adjusted percentile cutoffs may not be equivalent between the two assays. INTERPRETATION Incorporating TL testing in ILD impacted clinical management and led to the discovery of new actionable genetic variants.
Collapse
Affiliation(s)
- David Zhang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY.
| | | | - Claire McGroder
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Shannon Benesh
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | | | | | - Kelsie Bogyo
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Joseph Westrich
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | | | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY; New York Genome Center, New York, NY
| | - Christine K Garcia
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
13
|
Liang Q, Sun G, Deng J, Qian Q, Wu Y. Physical activity and idiopathic pulmonary fibrosis: A prospective cohort study in UK Biobank and Mendelian randomization analyses. Respir Med Res 2024; 86:101141. [PMID: 39413579 DOI: 10.1016/j.resmer.2024.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/06/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION The impact of physical activity on the incidence of idiopathic pulmonary fibrosis (IPF) remains less well studied. This study aimed to investigate the relationship between moderate-to-vigorous physical activity (MVPA) and the risk of developing IPF. METHODS We analyzed data from a prospective cohort study within the UK Biobank involving 502,476 participants. Participants were categorized as meeting or not meeting the 2017 UK Physical Activity Guidelines (150 min of moderate activity or 75 min of vigorous activity per week). The cumulative incidence and hazard ratios (HRs) for IPF were analyzed using the Kaplan-Meier method, log-rank test, and Cox regression. Two-sample Mendelian randomization (MR) analyses were performed to identify potential causal links between physical activity and IPF risk. RESULTS Over a median of 12.2 y follow-up, we identified 1,639 incident IPF cases and 395,172 controls. Individuals who met the physical activity guidelines had a significantly lower risk of IPF than those who did not meet the guidelines (adjusted HR = 0.843, 95 % confidence interval [CI] = 0.765-0.930).The cumulative incidence of IPF was lower in the meeting guideline group than in the nonmeeting guideline group (Log-rank P = 0.0019). Two-sample MR analysis revealed that a 1-standard deviation increase in moderate-to-vigorous physical activity was linked to a reduced IPF risk (odds ratio [OR] = 0.17, 95 % CIs = 0.04 to 0.81, P = 0.026). Moreover, an increase in the number of days per week of moderate physical activity was genetically correlated with decreased IPF risk (OR = 0.32, 95 % CIs = 0.15-0.70, P = 0.003). CONCLUSION Higher levels of moderate-to-vigorous physical activity are causally associated with a significant reduction in the risk of developing IPF.
Collapse
Affiliation(s)
- Qing Liang
- Department of Pharmacy, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, PR China; Center of Community-Based Health Research, Fudan University, Shanghai, 200240, PR China
| | - Guangchun Sun
- Department of Pharmacy, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, PR China; Clinical Trial Institution, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, PR China
| | - Jiuling Deng
- Department of Pharmacy, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, PR China
| | - Qingqing Qian
- Department of Pharmacy, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, PR China
| | - Yougen Wu
- Clinical Trial Institution, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, PR China; Clinical Trial Institution, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, PR China.
| |
Collapse
|
14
|
Wang Z, Xiong F, Zhang Q, Wang H. Dynamic changes in hs-CRP and risk of all-cause mortality among middle-aged and elderly adults: findings from a nationwide prospective cohort and mendelian randomization. Aging Clin Exp Res 2024; 36:210. [PMID: 39460870 PMCID: PMC11512892 DOI: 10.1007/s40520-024-02865-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
INTRODUCTION The general population experiences mortality rates that are related to high levels of high-sensitivity C-reactive protein (hs-CRP). We aim to assess the linkage of longitudinal trajectories in hs-CRP levels with all-cause mortality in Chinese participants. METHODS We utilized data from the China Health and Retirement Longitudinal Study (CHARLS). The exposures were dynamic changes in the hs-CRP and cumulative hs-CRP from 2012 to 2015, and the outcome was all-cause mortality. All participants were categorized into four trajectories according to hs-CRP levels. Multivariable logistic regression analysis, adjusted for potential confounders, was employed to evaluate the relationship of different trajectories of hs-CRP with mortality risk. A two-sample Mendelian randomization (TSMR) method and SHapley Additive exPlanations (SHAP) for identifying determinants of mortality risk were also employed. RESULTS The study included 5,445 participants with 233 deaths observed, yielding a mortality proportion of 4.28%. Compared to individuals maintaining low, stable levels of hs-CRP (Class 1), individuals with sustained elevated levels of hs-CRP (Class 4), those experiencing a progressive rise in hs-CRP levels (Class 2), or those transitioning from elevated to reduced hs-CRP levels (Class 3) all faced a significantly heighted death risk, with adjusted Odds Ratios (ORs) ranging from 2.34 to 2.47 across models. Moreover, a non-linear relationship was found between them. Further TSMR analysis also supported these findings. SHAP showed that hs-CRP was the fifth most important determinant of mortality risk. CONCLUSIONS Our study shows all-cause mortality increases with dynamic changes in hs-CRP levels among middle-aged and elderly adults in China, and cumulative hs-CRP shows an L-shaped relationship with all-cause mortality.
Collapse
Affiliation(s)
- Zhonghai Wang
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
- Department of Geriatrics, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Feng Xiong
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Quanbo Zhang
- Department of Geriatrics, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Han Wang
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China.
| |
Collapse
|
15
|
Zhu S, Zheng W, Rao D, Tang Z, Liao X. Leukocyte telomere length and lung function: a mendelian randomization study in European population. Front Physiol 2024; 15:1373064. [PMID: 39512472 PMCID: PMC11540648 DOI: 10.3389/fphys.2024.1373064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Background The telomere has long been regarded as a dependable biomarker for cellular senescence. The lung function can reflect the function and status of the lungs. As individuals age beyond adulthood, there is a gradual decline in lung function. However, the existence of a associated between leukocyte telomere length (LTL) and lung function remains uncertain. Methods A two-sample Mendelian randomization (MR) analysis was used. The Single-nucleotide polymorphisms (SNPs) of LTL from the genome-wide association (GWAS) study were used as exposure instruments variable, and the lung function indicator including Forced expiratory volume in 1-s (FEV1), FEV1 Best measure, FEV1 predicted and Forced vital capacity (FVC) from the Neale Lab and MRC-IEU were used as outcomes. The associated between the exposures and outcomes was assessed using inverse-variance weighted (IVW), MR-Egger, and weighted median methods. Sensitivity analysis was conducted using Cochran's Q-test, MR-Egger intercept test, MR-PRESSO, leave-one-out analysis, and Steriger test. Results Using the IVW method, a significant association was identified between genetically determined telomere length extension and enhanced lung function in FEV1, with ukb-a-336 (P = 0.127, OR = 1.028,95CI% = 1.003-1.042) and ukb-b-19657 (P = 7.26E-05, OR = 1.051,95CI% = 1.025-1.077),in FEV1 predicted, ukb-a-234 (P = 0.013, OR = 1.029,95CI% = 1.003-1.042), ukb-b-8428 (P = 0.001, OR = 1.032,95CI% = 1.012-1.052), in FEV1 best measure, ukb-a-231 (P = 7.24E-05, OR = 1.050,95CI% = 1.025-1.075), ukb-b-11141 (P = 1.40E-09, OR = 1.067,95CI% = 1.045-1.090).The sensitivity analysis did not reveal heterogeneity or horizontal pleiotropy.Meanwhile, the Steriger test results also indicate that the directionality between exposure and outcome is correct. Therefore, the results indicated robustness. Conclusion There is a correlation between longer LTL and better lung function in the European dataset.
Collapse
Affiliation(s)
- Shenyu Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Cardiothoracic Surgery Brain injury and brain protection key laboratory of Ganzhou, Jiangxi, China
| | - Wenlong Zheng
- Department of Respiratory, Shangyou Hospital of Traditional Chinese Medicine, Ganzhou, China
| | - Dingyu Rao
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Cardiothoracic Surgery Brain injury and brain protection key laboratory of Ganzhou, Jiangxi, China
| | - Zhixian Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Cardiothoracic Surgery Brain injury and brain protection key laboratory of Ganzhou, Jiangxi, China
| | - Xinhui Liao
- Department of Respiratory, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
16
|
Wang S, Yue Y, Wang X, Tan Y, Zhang Q. SCARF2 is a target for chronic obstructive pulmonary disease: Evidence from multi-omics research and cohort validation. Aging Cell 2024; 23:e14266. [PMID: 38958042 PMCID: PMC11464143 DOI: 10.1111/acel.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
Age-related chronic inflammatory lung diseases impose a threat on public health, including idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). However, their etiology and potential targets have not been clarified. We performed genome-wide meta-analysis for IPF with the largest sample size (2883 cases and 741,929 controls) and leveraged the summary statistics of COPD (17,547 cases and 617,598 controls). Transcriptome-wide and proteome-wide Mendelian randomization (MR) designs, together with genetic colocalization, were implemented to find robust targets. The mediation effect was assessed using leukocyte telomere length (LTL). The single-cell transcriptome analysis was performed to link targets with cell types. Individual-level data from UK Biobank (UKB) were used to validate our findings. Sixteen genetically predicted plasma proteins were causally associated with the risk of IPF and 6 proteins were causally associated with COPD. Therein, genetically-elevated plasma level of SCARF2 protein should reduce the risk of both IPF (odds ratio, OR = 0.9974 [0.9970, 0.9978]) and COPD (OR = 0.7431 [0.6253, 0.8831]) and such effects were not mediated by LTL. Genetic colocalization further corroborated these MR results of SCARF2. The transcriptome-wide MR confirmed that higher expression level of SCARF2 was associated with a reduced risk of both. However, the single-cell RNA analysis indicated that SCARF2 expression level was only relatively lower in epithelial cells of COPD lung tissue compared to normal lung tissue. UKB data implicated an inverse association of serum SCARF2 protein with COPD (hazard ratio, HR = 1.215 [1.106, 1.335]). The SCARF2 gene should be a novel target for COP.
Collapse
Affiliation(s)
- Sai Wang
- Department of OtorhinolaryngologyThe First Hospital of China Medical UniversityShenyangChina
| | - Yuanyi Yue
- Department of GastroenterologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Xueqing Wang
- Department of GastroenterologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Yue Tan
- Department of GastroenterologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Qiang Zhang
- Department of Pulmonary and Critical Care MedicineShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
17
|
Wang J, Li K, Hao D, Li X, Zhu Y, Yu H, Chen H. Pulmonary fibrosis: pathogenesis and therapeutic strategies. MedComm (Beijing) 2024; 5:e744. [PMID: 39314887 PMCID: PMC11417429 DOI: 10.1002/mco2.744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic and progressive lung disease characterized by extensive alterations of cellular fate and function and excessive accumulation of extracellular matrix, leading to lung tissue scarring and impaired respiratory function. Although our understanding of its pathogenesis has increased, effective treatments remain scarce, and fibrotic progression is a major cause of mortality. Recent research has identified various etiological factors, including genetic predispositions, environmental exposures, and lifestyle factors, which contribute to the onset and progression of PF. Nonetheless, the precise mechanisms by which these factors interact to drive fibrosis are not yet fully elucidated. This review thoroughly examines the diverse etiological factors, cellular and molecular mechanisms, and key signaling pathways involved in PF, such as TGF-β, WNT/β-catenin, and PI3K/Akt/mTOR. It also discusses current therapeutic strategies, including antifibrotic agents like pirfenidone and nintedanib, and explores emerging treatments targeting fibrosis and cellular senescence. Emphasizing the need for omni-target approaches to overcome the limitations of current therapies, this review integrates recent findings to enhance our understanding of PF and contribute to the development of more effective prevention and management strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Jianhai Wang
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese MedicineTianjin Institute of Respiratory DiseasesTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Kuan Li
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - De Hao
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
| | - Xue Li
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Yu Zhu
- Department of Clinical LaboratoryNankai University Affiliated Third Central HospitalTianjinChina
- Department of Clinical LaboratoryThe Third Central Hospital of TianjinTianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesArtificial Cell Engineering Technology Research Center of TianjinTianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Hongzhi Yu
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Huaiyong Chen
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese MedicineTianjin Institute of Respiratory DiseasesTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| |
Collapse
|
18
|
Tong X, Cui Y. Mendelian randomization analysis of the causal relationship between serum metabolites and thoracic aortic aneurysm. Medicine (Baltimore) 2024; 103:e39686. [PMID: 39287234 PMCID: PMC11404878 DOI: 10.1097/md.0000000000039686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Thoracic aortic aneurysm (TAA) is associated with changes in the levels of metabolites; however, the exact causal relationships remain unclear. Identifying this complex relationship may provide new insights into the pathogenesis of TAA. We used genome-wide association studies to investigate the relationship between metabolites and TAA in this study. A total of 1400 serum metabolites were investigated for their potential causal effects on the risk of TAA. We performed bidirectional and 2-sample Mendelian randomization (MR) analysis using 5 MR tests: MR-Egger, weighted mode, weighted median, inverse variance weighted (IVW), and simple mode. We also performed sensitivity analysis to verify our findings, including heterogeneity analysis using IVW and MR-Egger tests and pleiotropy analysis using the MR-Egger test. Multiple metabolites were identified as having a causal effect on the risk of TAA, particularly those related to lipid metabolites; the top 2 risk factors identified using the IVW test were 3-carboxy-4-methyl-5-pentyl-2-furanpropionate (P = .019) and 5alpha-androstan-3alpha,17alpha-diol (P = .021), whereas the 2 top protective factors were 1-stearoyl-2-docosahexaenoyl-gpc (P = .023) and 1-oleoyl-2-docosahexaenoyl-GPC (P = .005). Sensitivity analysis verified the lack of heterogeneity (P = .499, .584, .232, and .624, respectively; IVW test) or pleiotropy (P = .621, .483, .598, and .916, respectively; Egger test). Our study provides new evidence of a causal relationship between metabolites and the risk of TAA, thus providing new insights into the pathogenesis of this disease. These findings suggest a promising approach for metabolite-based therapeutic interventions.
Collapse
Affiliation(s)
- Xiaoshan Tong
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yu Cui
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Fu C, Tian X, Wu S, Chu X, Cheng Y, Wu X, Yang W. Role of telomere dysfunction and immune infiltration in idiopathic pulmonary fibrosis: new insights from bioinformatics analysis. Front Genet 2024; 15:1447296. [PMID: 39346776 PMCID: PMC11427275 DOI: 10.3389/fgene.2024.1447296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease characterized by unexplained irreversible pulmonary fibrosis. Although the etiology of IPF is unclear, studies have shown that it is related to telomere length shortening. However, the prognostic value of telomere-related genes in IPF has not been investigated. Methods We utilized the GSE10667 and GSE110147 datasets as the training set, employing differential expression analysis and weighted gene co-expression network analysis (WGCNA) to screen for disease candidate genes. Then, we used consensus clustering analysis to identify different telomere patterns. Next, we used summary data-based mendelian randomization (SMR) analysis to screen core genes. We further evaluated the relationship between core genes and overall survival and lung function in IPF patients. Finally, we performed immune infiltration analysis to reveal the changes in the immune microenvironment of IPF. Results Through differential expression analysis and WGCNA, we identified 35 significant telomere regulatory factors. Consensus clustering analysis revealed two distinct telomere patterns, consisting of cluster A (n = 26) and cluster B (n = 19). Immune infiltration analysis revealed that cluster B had a more active immune microenvironment, suggesting its potential association with IPF. Using GTEx eQTL data, our SMR analysis identified two genes with potential causal associations with IPF, including GPA33 (PSMR = 0.0013; PHEIDI = 0.0741) and MICA (PSMR = 0.0112; PHEIDI = 0.9712). We further revealed that the expression of core genes is associated with survival time and lung function in IPF patients. Finally, immune infiltration analysis revealed that NK cells were downregulated and plasma cells and memory B cells were upregulated in IPF. Further correlation analysis showed that GPA33 expression was positively correlated with NK cells and negatively correlated with plasma cells and memory B cells. Conclusion Our study provides a new perspective for the role of telomere dysfunction and immune infiltration in IPF and identifies potential therapeutic targets. Further research may reveal how core genes affect cell function and disease progression, providing new insights into the complex mechanisms of IPF.
Collapse
Affiliation(s)
- Chenkun Fu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xin Tian
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shuang Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaojuan Chu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yiju Cheng
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Respiratory and Critical Care Medicine, The Fourth People’s Hospital of Guiyang, Guiyang, China
| | - Xiao Wu
- Department of Critical Care Medicine, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Wengting Yang
- Department of Critical Care Medicine, The Second People’s Hospital of Guiyang, Guiyang, China
| |
Collapse
|
20
|
Li S, Xiang Y, Yang X, Chen J, Xian W, Wang Y. Associations of sugary beverage consumption with chronic obstructive pulmonary disease, asthma, and asthma-chronic obstructive pulmonary disease overlap syndrome: a prospective cohort study. Am J Clin Nutr 2024; 120:707-718. [PMID: 38971468 DOI: 10.1016/j.ajcnut.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND The associations between specific types of sugary beverages and major chronic respiratory diseases remain relatively unexplored. OBJECTIVES This study aimed to investigate the associations of sugar-sweetened beverages (SSBs), artificially sweetened beverages (ASBs), and natural juices (NJs) with chronic obstructive pulmonary disease (COPD), asthma, and asthma-chronic obstructive pulmonary disease overlap syndrome (ACOS). METHODS This prospective cohort study included 210,339 participants from the UK Biobank. Sugary beverage intake was measured in units (glasses/cans/cartons/250 mL) through 24-h dietary questionnaires. Logistic regression and Cox proportional hazards models were used to analyze the prevalence and incidence, respectively. Quantile G-computation was used to estimate the joint associations and relative contributions of the 3 types of sugary beverages. RESULTS Over a median follow-up of 11.6 y, 3491 participants developed COPD, 4645 asthma, and 523 ACOS. In prevalence analysis, certain categories of SSB and NJ consumption were associated with increased asthma prevalence, while high ASB consumption (>2 units/d) was linked to higher risks of all 3 outcomes. In incidence analysis, high SSB consumption (>2 units/d) was associated with incident COPD (hazard ratio [HR]: 1.53; 95% confidence interval [CI]: 1.19, 1.98) and asthma (HR: 1.22; 95% CI: 0.98, 1.52). Dose‒response relationships were observed for ASB consumption with all 3 outcomes (continuous HR: 1.98; 95% CI: 1.36, 2.87, for COPD; continuous HR: 1.65; 95% CI: 1.24, 2.20, for asthma; and continuous HR: 2.84; 95% CI: 1.20, 6.72, for ACOS). Moderate NJ consumption (>0-1 unit/d) was inversely associated with COPD (HR: 0.89; 95% CI: 0.82, 0.97), particularly grapefruit and orange juice. Joint exposure to these beverages (per unit increase) was associated with COPD (HR: 1.15; 95% CI: 1.02, 1.29) and asthma (HR: 1.16; 95% CI: 1.06, 1.27), with ASBs having greater positive weights than SSBs. CONCLUSIONS Consumption of SSBs and ASBs was associated with increased risks of COPD, asthma, and potentially ACOS, whereas moderate NJ consumption was associated with reduced risk of COPD, depending on the juice type.
Collapse
Affiliation(s)
- Sicheng Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Yi Xiang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xue Yang
- MED-X institute, Center for Immunological and Metabolic Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiajin Chen
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wenpan Xian
- Department of Stomatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
21
|
Zou QC, Hu JP, Cao Y, She C, Liang LH, Liu ZY. Causal relationship between serum metabolites and idiopathic pulmonary fibrosis: Insights from a two-sample Mendelian randomization study. Heliyon 2024; 10:e36125. [PMID: 39229516 PMCID: PMC11369467 DOI: 10.1016/j.heliyon.2024.e36125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is an irreversible lung disease with unclear pathological mechanisms. In this study, we utilized bidirectional Mendelian randomization (MR) to analyze the relationship between serum metabolites and IPF, and conducted metabolic pathway analysis. Aim To determine the causal relationship between serum metabolites and IPF using MR analysis. Methods A two-sample MR analysis was conducted to evaluate the causal relationship between 824 serum metabolites and IPF. The inverse variance weighted (IVW) method was used to estimate the causal relationship between exposure and results. Sensitivity analysis was conducted using MR Egger, weighted median, and maximum likelihood to eliminate pleiotropy. Additionally, metabolic pathway analysis was conducted to identify potential metabolic pathways. Results We identified 12 serum metabolites (6 risks and 6 protective) associated with IPF from 824 metabolites. Among them, 11 were known and 1 was unknown. 1-Eicosatrienoylglycophorophospholine and 1-myristoylglycophorophospholine were bidirectional MR positive factors, with 1-myristoylglycophorophospholine being a risk factor (1.0013, 1.0097) and 1-eicosatrienoylglycophorine being a protective factor (0.9914, 0.9990). The four lipids (1-linoleoylglycerophoethanolamine*, total cholesterol in large high-density lipoprotein [HDL], cholesterol esters in very large HDL, and phospholipids in very large HDL) and one NA metabolite (degree of unsaturation) were included in the known hazardous metabolites. The known protective metabolites included three types of lipids (carnitine, 1-linoleoylglycerophoethanolamine*, and 1-eicosatrienoylglycerophophophorine), one amino acid (hypoxanthine), and two unknown metabolites (the ratio of omega-6 fatty acids to omega-3 fatty acids, and the ratio of photoshopids to total lipids ratio in chylomicrons and extremely large very low-density lipoprotein [VLDL]). Moreover, sn-Glycerol 3-phosphate and 1-Acyl-sn-glycero-3-phosphocline were found to be involved in the pathogenesis of IPF through metabolic pathways such as Glycerolide metabolism and Glycerophospholipid metabolism. Conclusion Our study identified 6 causal risks and 6 protective serum metabolites associated with IPF. Additionally, 2 metabolites were found to be involved in the pathogenesis of IPF through metabolic pathways, providing a new perspective for further understanding the metabolic pathway and the pathogenesis of IPF.
Collapse
Affiliation(s)
- Qiong-Chao Zou
- Cardiology Department, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
- Research Center for Cardiovascular Epidemiology in Hunan Province, Changsha, 410000, Hunan Province, China
| | - Jun-Pei Hu
- Geriatrics Department, Hunan Provincial People's Hospital, Changsha, 410005, Hunan Province, China
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
| | - Yan Cao
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
- Department of Emergency, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
| | - Chang She
- Cardiology Department, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
| | - Li-Hui Liang
- Geriatrics Department, Hunan Provincial People's Hospital, Changsha, 410005, Hunan Province, China
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
- Research Center for Cardiovascular Epidemiology in Hunan Province, Changsha, 410000, Hunan Province, China
| | - Zheng-Yu Liu
- Cardiology Department, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
- Research Center for Cardiovascular Epidemiology in Hunan Province, Changsha, 410000, Hunan Province, China
| |
Collapse
|
22
|
Le NT, Dunleavy MW, Kumar RD, Zhou W, Bhatia SS, El-Hashash AH. Cellular therapies for idiopathic pulmonary fibrosis: current progress and future prospects. AMERICAN JOURNAL OF STEM CELLS 2024; 13:191-211. [PMID: 39308764 PMCID: PMC11411253 DOI: 10.62347/daks5508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial, fibrotic lung disease characterized by progressive damage. Lung tissues with IPF are replaced by fibrotic tissues with increased collagen deposition, modified extracellular matrix, all which overall damages the alveoli. These changes eventually impede the gas exchange function of the alveoli, and eventually leads to fatal respiratory failure of the lung. Investigations have been conducted to further understand IPF's pathogenesis, and significant progress in understanding its development has been made. Additionally, two therapeutic treatments, Nintedanib and Pirfenidone, have been approved and are currently used in medical applications. Moreover, cell-based treatments have recently come to the forefront of developing disease therapeutics and are the focus of many current studies. Furthermore, a sizable body of research encompassing basic, pre-clinical, and even clinical trials have all been amassed in recent years and hold a great potential for more widespread applications in patient care. Herein, this article reviews the progress in understanding the pathogenesis and pathophysiology of IPF. Additionally, different cell types used in IPF therapy were reviewed, including alveolar epithelial cells (AECs), circulating endothelial progenitors (EPCs), mixed lung epithelial cells, different types of stem cells, and endogenous lung tissue-specific stem cells. Finally, we discussed the contemporary trials that employ or explore cell-based therapy for IPF.
Collapse
Affiliation(s)
- Nicholas T Le
- Biology Department, Texas A&M University College Station, TX, USA
| | | | - Rebecca D Kumar
- Biology Department, Texas A&M University College Station, TX, USA
| | - William Zhou
- The University of Texas at Austin Austin, TX, USA
| | | | | |
Collapse
|
23
|
Ghosh S, Nguyen MT, Choi HE, Stahl M, Kühn AL, Van der Auwera S, Grabe HJ, Völzke H, Homuth G, Myers SA, Hogaboam CM, Noth I, Martinez FJ, Petsko GA, Glimcher LH. RIOK2 transcriptionally regulates TRiC and dyskerin complexes to prevent telomere shortening. Nat Commun 2024; 15:7138. [PMID: 39164231 PMCID: PMC11335878 DOI: 10.1038/s41467-024-51336-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
Telomere shortening is a prominent hallmark of aging and is emerging as a characteristic feature of Myelodysplastic Syndromes (MDS) and Idiopathic Pulmonary Fibrosis (IPF). Optimal telomerase activity prevents progressive shortening of telomeres that triggers DNA damage responses. However, the upstream regulation of telomerase holoenzyme components remains poorly defined. Here, we identify RIOK2, a master regulator of human blood cell development, as a critical transcription factor for telomere maintenance. Mechanistically, loss of RIOK2 or its DNA-binding/transactivation properties downregulates mRNA expression of both TRiC and dyskerin complex subunits that impairs telomerase activity, thereby causing telomere shortening. We further show that RIOK2 expression is diminished in aged individuals and IPF patients, and it strongly correlates with shortened telomeres in MDS patient-derived bone marrow cells. Importantly, ectopic expression of RIOK2 alleviates telomere shortening in IPF patient-derived primary lung fibroblasts. Hence, increasing RIOK2 levels prevents telomere shortening, thus offering therapeutic strategies for telomere biology disorders.
Collapse
Affiliation(s)
- Shrestha Ghosh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| | - Mileena T Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Yale University, New Haven, CT, USA
| | - Ha Eun Choi
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Annemarie Luise Kühn
- Department for Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Van der Auwera
- Department for Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department for Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Cory M Hogaboam
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, USA
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Gregory A Petsko
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurie H Glimcher
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Adegunsoye A, Kropski JA, Behr J, Blackwell TS, Corte TJ, Cottin V, Glanville AR, Glassberg MK, Griese M, Hunninghake GM, Johannson KA, Keane MP, Kim JS, Kolb M, Maher TM, Oldham JM, Podolanczuk AJ, Rosas IO, Martinez FJ, Noth I, Schwartz DA. Genetics and Genomics of Pulmonary Fibrosis: Charting the Molecular Landscape and Shaping Precision Medicine. Am J Respir Crit Care Med 2024; 210:401-423. [PMID: 38573068 PMCID: PMC11351799 DOI: 10.1164/rccm.202401-0238so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024] Open
Abstract
Recent genetic and genomic advancements have elucidated the complex etiology of idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung diseases (ILDs), emphasizing the contribution of heritable factors. This state-of-the-art review synthesizes evidence on significant genetic contributors to pulmonary fibrosis (PF), including rare genetic variants and common SNPs. The MUC5B promoter variant is unusual, a common SNP that markedly elevates the risk of early and established PF. We address the utility of genetic variation in enhancing understanding of disease pathogenesis and clinical phenotypes, improving disease definitions, and informing prognosis and treatment response. Critical research gaps are highlighted, particularly the underrepresentation of non-European ancestries in PF genetic studies and the exploration of PF phenotypes beyond usual interstitial pneumonia/IPF. We discuss the role of telomere length, often critically short in PF, and its link to progression and mortality, underscoring the genetic complexity involving telomere biology genes (TERT, TERC) and others like SFTPC and MUC5B. In addition, we address the potential of gene-by-environment interactions to modulate disease manifestation, advocating for precision medicine in PF. Insights from gene expression profiling studies and multiomic analyses highlight the promise for understanding disease pathogenesis and offer new approaches to clinical care, therapeutic drug development, and biomarker discovery. Finally, we discuss the ethical, legal, and social implications of genomic research and therapies in PF, stressing the need for sound practices and informed clinical genetic discussions. Looking forward, we advocate for comprehensive genetic testing panels and polygenic risk scores to improve the management of PF and related ILDs across diverse populations.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Pulmonary/Critical Care, and
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Juergen Behr
- Department of Medicine V, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Comprehensive Pneumology Center Munich, member of the German Center for Lung Research (DZL), Munich, Germany
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Tamera J. Corte
- Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases (OrphaLung), Louis Pradel Hospital, Hospices Civils de Lyon, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), Lyon, France
- Claude Bernard University Lyon, Lyon, France
| | - Allan R. Glanville
- Lung Transplant Unit, St. Vincent’s Hospital Sydney, Sydney, New South Wales, Australia
| | - Marilyn K. Glassberg
- Department of Medicine, Loyola Chicago Stritch School of Medicine, Chicago, Illinois
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Munich, Germany
| | - Gary M. Hunninghake
- Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Michael P. Keane
- Department of Respiratory Medicine, St. Vincent’s University Hospital and School of Medicine, University College Dublin, Dublin, Ireland
| | - John S. Kim
- Department of Medicine, School of Medicine, and
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Toby M. Maher
- Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Justin M. Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - David A. Schwartz
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
25
|
Lin F, Luo J, Zhu Y, Liang H, Li D, Han D, Chang Q, Pan P, Zhang Y. Association Between Adverse Early Life Factors and Telomere Length in Middle and Late Life. Innov Aging 2024; 8:igae070. [PMID: 39350941 PMCID: PMC11441326 DOI: 10.1093/geroni/igae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Indexed: 10/04/2024] Open
Abstract
Background and Objectives Telomere length (TL) has been acknowledged as biomarker of biological aging. Numerous investigations have examined associations between individual early life factors and leukocyte TL; however, the findings were far from consistent. Research Design and Methods We evaluated the relationship between individual and combined early life factors and leukocytes TL in middle and late life using data from the UK Biobank. The early life factors (eg, maternal smoking, breastfeeding, birth weight, and comparative body size and height to peers at age 10) were measured. The regression coefficients (β) and 95% confidence interval (CI) were applied to assess the link of the early life factors and TL in adulthood. Flexible parametric survival models incorporated age to calculate the relationship between early life factors and life expectancy. Results Exposure to maternal smoking, lack of breastfeeding, low birth weight, and shorter height compared to peers at age 10 were identified to be associated with shorter TL in middle and older age according to the large population-based study with 197 504 participants. Individuals who experienced more than 3 adverse early life factors had the shortest TL in middle and late life (β = -0.053; 95% CI = -0.069 to -0.038; p < .0001), as well as an average of 0.54 years of life loss at the age of 45 and 0.49 years of life loss at the age of 60, compared to those who were not exposed to any early life risk factors. Discussion and Implications Early life factors including maternal smoking, non-breastfed, low birth weight, and shorter height compared to peers at age 10 were associated with shorter TL in later life. In addition, an increased number of the aforementioned factors was associated with a greater likelihood of shorter TL in adulthood, as well as a reduced life expectancy.
Collapse
Affiliation(s)
- Fengyu Lin
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiefeng Luo
- Department of Gynecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiqun Zhu
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
| | - Huaying Liang
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dianwu Li
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Duoduo Han
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qinyu Chang
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pinhua Pan
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Central South University, Changsha, Hunan, China
| | - Yan Zhang
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Xing X, Zhao C, Cai S, Wang J, Zhang J, Sun F, Huang M, Zhang L. Deciphering the mediating role of CXCL10 in hypothyroidism-induced idiopathic pulmonary fibrosis in European ancestry: a Mendelian randomization study. Front Immunol 2024; 15:1379480. [PMID: 39185418 PMCID: PMC11341476 DOI: 10.3389/fimmu.2024.1379480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease characterized by progressive fibrosis, leading to impaired gas exchange and high mortality. The etiology of IPF is complex, with potential links to autoimmune disorders such as hypothyroidism. This study explores the relationship between hypothyroidism and IPF, focusing on the mediating role of plasma proteins. Methods A two-sample Mendelian randomization (MR) approach was employed to determine the impact of hypothyroidism on IPF and the mediating role of 4,907 plasma proteins, all in individuals of European ancestry. Sensitivity analyses, external validation, and reverse causality tests were conducted to ensure the robustness of the findings. Additionally, the function of causal SNPs was evaluated through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Conclusion The findings suggest that hypothyroidism, through altered plasma protein expression, particularly CXCL10, may contribute to the pathogenesis of IPF. This novel insight highlights the potential of CXCL10 as a therapeutic target in IPF, especially in patients with hypothyroidism. The study emphasizes the need for further research into the complex interplay between autoimmune disorders and IPF, with a view towards developing targeted interventions for IPF management.
Collapse
Affiliation(s)
- Xiaoming Xing
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Song Cai
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fang Sun
- Department of respiration, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mao Huang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lishan Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
27
|
Tonutti A, Pugliese N, Ceribelli A, Isailovic N, De Santis M, Colapietro F, De Nicola S, Polverini D, Selmi C, Aghemo A. The autoimmune landscape of Porto-sinusoidal vascular disorder: What the rheumatologist needs to know. Semin Arthritis Rheum 2024; 67:152467. [PMID: 38805899 DOI: 10.1016/j.semarthrit.2024.152467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
Porto-sinusoidal vascular disorder (PSVD) encompasses a group of vascular disorders characterized by lesions of the portal venules and sinusoids with clinical manifestations ranging from non-specific abnormalities in serum liver enzymes to clinically overt portal hypertension and related complications. Several reports have documented cases of PSVD in patients with systemic autoimmune conditions, such as systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. It is of note that these diseases share specific pathophysiological features with PSVD, including endothelial dysfunction, vascular inflammation, and molecular signatures. This narrative review aims to summarize the current knowledge on the association between PSVD and systemic autoimmune diseases, emphasizing the importance of promptly recognizing this condition in the rheumatological practice, and highlighting the key aspects where further research is necessary from both pathogenic and clinical perspectives.
Collapse
Affiliation(s)
- Antonio Tonutti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Nicola Pugliese
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Angela Ceribelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Natasa Isailovic
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Maria De Santis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Francesca Colapietro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Stella De Nicola
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Davide Polverini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Carlo Selmi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy.
| | - Alessio Aghemo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
28
|
Zhu S, Hao Z, Chen Q, Liu X, Wu W, Luo Y, Zhang F. Casual effects of telomere length on sarcoidosis: a bidirectional Mendelian randomization analysis. Front Med (Lausanne) 2024; 11:1408980. [PMID: 39086950 PMCID: PMC11288844 DOI: 10.3389/fmed.2024.1408980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Background Telomere length, crucial for genomic stability, have been implicated in various inflamm-aging diseases, but their role in sarcoidosis remains unexplored. Objective This study aims to explore the casual effects between TL and sarcoidosis via a bidirectional Mendelian Randomization (MR) study. Methods We examined single nucleotide polymorphisms (SNPs) associated with TL and sarcoidosis, utilizing available open-access genome-wide association study (GWAS) databases from the UK Biobank and FinnGen. We employed five MR techniques, including Inverse Variance Weighted (IVW), MR Egger, weighted median (WM), Robust adjusted profile score (RAPS), and Maximum likelihood, to assess causal relationships and explore pleiotropy. Results Summary data extracted from GWAS datasets of TL (n = 472,174) and (n = 217,758) of European ancestry. Employing 130 SNPs with genome-wide significance as instrumental factors for TL, we detect a significant negative correlation between TL and sarcoidosis (OR: 0.682, 95% confidence interval: 0.524-0.888, p : 0.0045). Similarly, utilizing 6 SNPs with genome-wide significance as instrumental factors for sarcoidosis, we fail to identify a noteworthy association between sarcoidosis and TL (OR: 0.992, 95% confidence interval: 0.979-1.005, p : 0.2424). Conclusion Our results suggest that longer telomeres may reduce the risk of sarcoidosis, highlighting TL as a potential biomarker for diagnosis and long-term monitoring. Understanding the critical role of telomere shortening enables more effective focus on diagnosing, treating, and curing sarcoidosis linked to telomeres. Clinical investigations into treatments that enhance TL are warranted.
Collapse
Affiliation(s)
- Shiben Zhu
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Kowloon, Hong Kong SAR, China
| | - Ziyu Hao
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qihang Chen
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Kowloon, Hong Kong SAR, China
| | - Xiaoliu Liu
- Medical Laboratory of Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong, China
| | - Wenyan Wu
- Medical Laboratory of Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong, China
| | - Yanping Luo
- Medical Laboratory of Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong, China
| | - Fang Zhang
- Department of Science and Education, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
29
|
Huang X, Shen R, Zheng Z. Unraveling genetic threads: Identifying novel therapeutic targets for allergic rhinitis through Mendelian randomization. World Allergy Organ J 2024; 17:100927. [PMID: 39040085 PMCID: PMC11261789 DOI: 10.1016/j.waojou.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/23/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Background Allergic rhinitis (AR) is a pervasive global health issue, and currently, there is a scarcity of targeted drug therapies available. This study aims to identify potential druggable target genes for AR using Mendelian randomization (MR) analysis. Methods MR analysis was conducted to assess the causal effect of expression quantitative trait loci (eQTL) in the blood on AR. Data on AR were collected from 2 datasets: FinnGen(R9) (11,009 cases and 359,149 controls) and UK Biobank (25,486 cases and 87,097 controls). Colocalization analysis was utilized to assess the common causal genetic variations between the identified drug target genes and AR. We also employed available genome-wide association studies (GWAS) data to gauge the impact of druggable genes on AR biomarkers and other allergic diseases. Results This study employs MR to analyze the relationship between 3410 druggable genes and AR. After Bonferroni correction, 10 genes were found to be significantly associated with AR risk (P < 0.05/3410). Colocalization analysis revealed a significant causal relationship between the expression variation of CFL1 and EFEMP2 genes and AR, sharing direct causal variants (colocalization probability PP.H3 + PP.H4 > 0.8), highlighting their importance as potential therapeutic targets for AR. The CFL1 gene showed a causal link with levels of thymic stromal lymphopoietin (TSLP), eosinophil count, and interleukin-13 (IL-13) (P = 0.016, 7.45E-16, 0.00091, respectively). EFEMP2 was also causally related to eosinophil count, IL-13, and interleukin-17 (IL-17) (P = 0.00012, 0.00091, 0.032, respectively). PheWAS analysis revealed significant associations of CFL1 with asthma, whereas EFEMP2 showed associations with both asthma and eczema. Protein-Protein Interaction (PPI) network analysis further unveiled the direct interactions of EFEMP2 and CFL1 with proteins related to immune regulation and inflammatory responses, with 77.64% of the network consisting of direct bindings, indicating their key roles in modulating AR-related immune and inflammatory responses. Notably, there was an 8.01% significant correlation between immune-related pathways and genes involved in inflammatory responses. Conclusion These genes present notable associations with AR biomarkers and other autoimmune diseases, offering valuable targets for developing new AR therapies.
Collapse
Affiliation(s)
- Xuerong Huang
- Department of Neonatology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
- Xiamen Key Laboratory of Perinatal-Neonatal Infection, Xiamen, Fujian 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, Fujian 361003, China
| | - Ruoyi Shen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhi Zheng
- Department of Neonatology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
- Xiamen Key Laboratory of Perinatal-Neonatal Infection, Xiamen, Fujian 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, Fujian 361003, China
| |
Collapse
|
30
|
Xu X, Liu N, Yu W. No Evidence of an Association between Genetic Factors Affecting Response to Vitamin A Supplementation and Myopia: A Mendelian Randomization Study and Meta-Analysis. Nutrients 2024; 16:1933. [PMID: 38931287 PMCID: PMC11206965 DOI: 10.3390/nu16121933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The relationship between vitamin A supplementation and myopia has been a topic of debate, with conflicting and inconclusive findings. We aimed to determine whether there is a causal relationship between vitamin A supplementation and the risk of myopia using Mendelian randomization (MR) and meta-analytical methods. Genetic variants from the UK Biobank and FinnGen studies associated with the response to vitamin A supplementation were employed as instrumental variables to evaluate the causal relationship between vitamin A supplementation and myopia. Fixed-effects meta-analysis was then used to combine MR estimates from multiple sources for each outcome. The meta-analysis of MR results found no convincing evidence to support a direct causal relationship between vitamin A supplementation and myopia risk (odds ratio (OR) = 0.99, 95% confidence interval (CI) = 0.82-1.20, I2 = 0%, p = 0.40). The analysis of three out of the four sets of MR analyses indicated no direction of causal effect, whereas the other set of results suggested that higher vitamin A supplementation was associated with a lower risk of myopia (OR = 0.002, 95% CI 1.17 × 10-6-3.099, p = 0.096). This comprehensive MR study and meta-analysis did not find valid evidence of a direct association between vitamin A supplementation and myopia. Vitamin A supplementation may not have an independent effect on myopia, but intraocular processes associated with vitamin A may indirectly contribute to its development.
Collapse
Affiliation(s)
- Xiaotong Xu
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China;
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
- Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences, Wenzhou 325027, China
| | - Nianen Liu
- Fifth School of Clinical Medicine, Peking University, Beijing 100730, China;
- Department of Ophthalmology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weihong Yu
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
31
|
Ramos Jesus F, Correia Passos F, Miranda Lopes Falcão M, Vincenzo Sarno Filho M, Neves da Silva IL, Santiago Moraes AC, Lima Costa Neves MC, Baccan GC. Immunosenescence and Inflammation in Chronic Obstructive Pulmonary Disease: A Systematic Review. J Clin Med 2024; 13:3449. [PMID: 38929978 PMCID: PMC11205253 DOI: 10.3390/jcm13123449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Background/Objectives: Chronic Obstructive Pulmonary Disease (COPD) is a disease of premature aging, characterized by airflow limitations in the lungs and systemic chronic inflammation. This systematic review aimed to provide a systematic overview of immunosenescence and inflammation in Chronic Obstructive Pulmonary Disease (COPD). Methods: The PubMed, Science Direct, Scopus, Cochrane Library, and Web of Science databases were searched for studies on markers of immunosenescence. Observational studies comparing patients with COPD to individuals without disease were evaluated, considering the following markers: inflammation and senescence in COPD, naïve, memory, and CD28null T cells, and telomere length in leukocytes. Results: A total of 15 studies were included, eight of which were rated as high quality. IL-6 production, telomere shortening, and the higher frequencies of CD28null T cells were more prominent findings in the COPD studies analyzed. Despite lung function severity being commonly investigated in the included studies, the importance of this clinical marker to immunosenescence remains inconclusive. Conclusions: The findings of this systematic review confirmed the presence of accelerated immunosenescence, in addition to systemic inflammation, in stable COPD patients. Further studies are necessary to more comprehensively evaluate the impact of immunosenescence on lung function in COPD.
Collapse
Affiliation(s)
- Fabíola Ramos Jesus
- Maternidade Climério de Oliveira (MCO/EBSERH), Universidade Federal da Bahia, Salvador 40055-150, Bahia, Brazil;
- Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador 40110-110, Bahia, Brazil
| | - Fabine Correia Passos
- Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador 40110-110, Bahia, Brazil
| | - Michelle Miranda Lopes Falcão
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Avenida Transnordestina, s/n—Novo Horizonte, Feira de Santana 44036-900, Bahia, Brazil
| | - Marcelo Vincenzo Sarno Filho
- Unidade do Sistema Respiratório, Ambulatório Professor Francisco Magalhães Neto-Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador 40110-200, Bahia, Brazil
| | - Ingrid Lorena Neves da Silva
- Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador 40110-110, Bahia, Brazil
| | - Anna Clara Santiago Moraes
- Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador 40110-110, Bahia, Brazil
| | - Margarida Célia Lima Costa Neves
- Unidade do Sistema Respiratório, Ambulatório Professor Francisco Magalhães Neto-Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador 40110-200, Bahia, Brazil
| | - Gyselle Chrystina Baccan
- Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador 40110-110, Bahia, Brazil
| |
Collapse
|
32
|
Wang D, Hadad N, Moss S, Lopez-Jimenez E, Johnson SR, Maher TM, Molyneaux PL, Zhao Y, Perry JRB, Wolters PJ, Kropski JA, Jenkins RG, Banovich NE, Stewart I. Association between mosaic loss of chromosome Y and pulmonary fibrosis susceptibility and severity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595885. [PMID: 38853935 PMCID: PMC11160640 DOI: 10.1101/2024.05.25.595885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Pulmonary fibrosis (PF) is a rare lung disease with diverse pathogenesis and multiple interconnected underlying biological mechanisms. Mosaic loss of chromosome Y (mLOY) is one of the most common forms of acquired chromosome abnormality in men, which has been reported to be associated with increased risk of various chronic progressive diseases including fibrotic diseases. However, the exact role of mLOY in the development of PF remains elusive and to be elucidated. Methods We adopted three complementary approaches to explore the role of mLOY in the pathogenesis of PF. We used copy number on chromosome Y to estimate mLOY comparing patients in PROFILE and gnomAD cohorts and between cases and control patients from the GE100KGP cohort. Correlation of mLOY with demographic and clinical variables was tested using patients from PROFILE cohort. Lung single-cell transcriptomic data were analysed to assess the cell types implicated in mLOY. We performed Mendelian randomisation to examine the causal relationship between mLOY, IPF, and telomere length. Results The genetic analysis suggests that mLOY is found in PF from both case cohorts but when compared with an age matched population the effect is minimal (P = 0.0032). mLOY is related to age (P = 0.00021) and shorter telomere length (P = 0.0081) rather than PF severity or progression. Single-cell analysis indicates that mLOY appears to be found primarily in immune cells and appears to be related to presence and severity of fibrosis. Mendelian randomisation demonstrates that mLOY is not on the causal pathway for IPF, but partial evidence supports that telomere shortening is on the causal pathway for mLOY. Conclusion Our study confirms the existence of mLOY in PF patients and suggests that mLOY is not a major driver of IPF. The combined evidence suggests a triangulation model where telomere shortening leads to both IPF and mLOY.
Collapse
|
33
|
Park J, Lee CH, Han K, Choi SM. Association between statin use and the risk for idiopathic pulmonary fibrosis and its prognosis: a nationwide, population-based study. Sci Rep 2024; 14:7805. [PMID: 38565856 PMCID: PMC10987568 DOI: 10.1038/s41598-024-58417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Given the pleiotropic effects of statins beyond their lipid-lowering effects, there have been attempts to evaluate the role of statin therapy in IPF, but they have shown inconclusive results. Data from the National Health Insurance Service (NHIS) database of South Korea were used to investigate the effects of statin therapy on IPF. The IPF cohort consisted of a total of 10,568 patients who were newly diagnosed with IPF between 2010 and 2017. These patients were then matched in a 1:3 ratio to 31,704 subjects from a control cohort without IPF, with matching based on age and sex. A case-control study was performed to evaluate the association between statin use and the risk for IPF, and the multivariable analysis revealed that statin use was associated with a lower risk for IPF (adjusted OR 0.847, 95% CI 0.800-0.898). Using the IPF cohort, we also evaluated whether statin use at the time of diagnosis was associated with future clinical outcomes. The statin use at the time of IPF diagnosis was associated with improved overall survival (adjusted HR 0.779, 95% CI 0.709-0.856). Further prospective studies are needed to clarify the role of statin therapy in IPF.
Collapse
Affiliation(s)
- Jimyung Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Chang-Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, South Korea
| | - Sun Mi Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
34
|
Ma J, Li G, Wang H, Mo C. Comprehensive review of potential drugs with anti-pulmonary fibrosis properties. Biomed Pharmacother 2024; 173:116282. [PMID: 38401514 DOI: 10.1016/j.biopha.2024.116282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Pulmonary fibrosis is a chronic and progressive lung disease characterized by the accumulation of scar tissue in the lungs, which leads to impaired lung function and reduced quality of life. The prognosis for idiopathic pulmonary fibrosis (IPF), which is the most common form of pulmonary fibrosis, is generally poor. The median survival for patients with IPF is estimated to be around 3-5 years from the time of diagnosis. Currently, there are two approved drugs (Pirfenidone and Nintedanib) for the treatment of IPF. However, Pirfenidone and Nintedanib are not able to reverse or cure pulmonary fibrosis. There is a need for new pharmacological interventions that can slow or halt disease progression and cure pulmonary fibrosis. This review aims to provide an updated overview of current and future drug interventions for idiopathic pulmonary fibrosis, and to summarize possible targets of potential anti-pulmonary fibrosis drugs, providing theoretical support for further clinical combination therapy or the development of new drugs.
Collapse
Affiliation(s)
- Jie Ma
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; The Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Gang Li
- Department of Thoracic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Han Wang
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Center for RNA Science and Therapeutics, School of Medicine, Cleveland, OH, USA
| | - Chunheng Mo
- The Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
35
|
Natri HM, Del Azodi CB, Peter L, Taylor CJ, Chugh S, Kendle R, Chung MI, Flaherty DK, Matlock BK, Calvi CL, Blackwell TS, Ware LB, Bacchetta M, Walia R, Shaver CM, Kropski JA, McCarthy DJ, Banovich NE. Cell-type-specific and disease-associated expression quantitative trait loci in the human lung. Nat Genet 2024; 56:595-604. [PMID: 38548990 PMCID: PMC11018522 DOI: 10.1038/s41588-024-01702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Common genetic variants confer substantial risk for chronic lung diseases, including pulmonary fibrosis. Defining the genetic control of gene expression in a cell-type-specific and context-dependent manner is critical for understanding the mechanisms through which genetic variation influences complex traits and disease pathobiology. To this end, we performed single-cell RNA sequencing of lung tissue from 66 individuals with pulmonary fibrosis and 48 unaffected donors. Using a pseudobulk approach, we mapped expression quantitative trait loci (eQTLs) across 38 cell types, observing both shared and cell-type-specific regulatory effects. Furthermore, we identified disease interaction eQTLs and demonstrated that this class of associations is more likely to be cell-type-specific and linked to cellular dysregulation in pulmonary fibrosis. Finally, we connected lung disease risk variants to their regulatory targets in disease-relevant cell types. These results indicate that cellular context determines the impact of genetic variation on gene expression and implicates context-specific eQTLs as key regulators of lung homeostasis and disease.
Collapse
Affiliation(s)
- Heini M Natri
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Christina B Del Azodi
- St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
- Melbourne Integrative Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Lance Peter
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Chase J Taylor
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sagrika Chugh
- St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
- Melbourne Integrative Genomics, University of Melbourne, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Robert Kendle
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Mei-I Chung
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - David K Flaherty
- Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brittany K Matlock
- Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carla L Calvi
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Veterans Affairs Medical Center, Nashville, TN, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rajat Walia
- Department of Thoracic Disease and Transplantation, Norton Thoracic Institute, Phoenix, AZ, USA
| | - Ciara M Shaver
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Veterans Affairs Medical Center, Nashville, TN, USA
| | - Davis J McCarthy
- St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
- Melbourne Integrative Genomics, University of Melbourne, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
36
|
Cao J, Ma Y, Zhao W, Feng C. Age at menarche and idiopathic pulmonary fibrosis: a two-sample mendelian randomization study. BMC Pulm Med 2024; 24:117. [PMID: 38448907 PMCID: PMC10916238 DOI: 10.1186/s12890-024-02936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Sex difference in the incidence rate of idiopathic pulmonary fibrosis (IPF) indicates that estrogen has a certain protective effect on the disease. Nevertheless, there is a dearth of study investigating the association between factors pertaining to endogenous estrogen exposure level, such as age at menarche (AAM) in women, and IPF. Our study intended to employ Mendelian randomization (MR) method to elucidate the causal association between AAM and IPF. METHODS Our study utilized AAM as a measure of endogenous estrogen exposure and investigated its causal effect on the risk of IPF through MR. We employed the inverse variance weighted (IVW) method to assess the causal relationship between AAM and IPF risk, with supplementary analyses conducted using the weighted median estimator (WME) and MR-Egger method. Several sensitivity analyses were performed to assess the dependability of MR estimates. RESULTS A total of 9 selected single nucleotide polymorphisms (SNPs) significantly associated with AAM were selected as instrumental variables. The IVW method showed that genetically later AAM was associated with an increased risk of IPF (odds ratio [OR] = 1.0014, 95%confidence interval [CI] = 1.0005-1.0023, p = 0.001). The median weighting method and the MR-Egger method obtained similar estimates, and no heterogeneity or pleiotropy was found, indicating that the results were robust. CONCLUSIONS Our MR study suggested a causal relationship between a later onset of menarche and a heightened susceptibility to IPF.
Collapse
Affiliation(s)
- Jiaqi Cao
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Yazhou Ma
- Department of Neurology, Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Wei Zhao
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Chunlai Feng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
37
|
Wang Y, Liu Q, Liang S, Yao M, Zheng H, Hu D, Wang Y. Genetically predicted telomere length and the risk of 11 hematological diseases: a Mendelian randomization study. Aging (Albany NY) 2024; 16:4270-4281. [PMID: 38393686 PMCID: PMC10968687 DOI: 10.18632/aging.205583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Previous studies have demonstrated that various hematologic diseases (HDs) induce alterations in telomere length (TL). The aim of this study is to investigate whether genetically predicted changes in TL have an impact on the risk of developing HDs. METHODS GWAS data for TL and 11 HDs were extracted from the database. The R software package "TwoSampleMR" was employed to conduct a two-sample Mendelian randomization (MR) analysis, in order to estimate the influence of TL changes on the risk of developing the 11 HDs. RESULTS We examined the effect of TL changes on the risk of developing the 11 HDs. The IVW results revealed a significant causal association between genetically predicted longer TL and the risk of developing acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MANTLE), and hodgkin lymphoma (HODGKIN). However, there was no significant causal relationship observed between TL changes and the risk of developing chronic myeloid leukemia (CML), diffuse large b-cell lymphoma (DLBCL), marginal zone b-cell lymphoma (MARGINAL), follicular lymphoma (FOLLICULAR), monocytic leukemia (MONOCYTIC), and mature T/NK-cell lymphomas (TNK). CONCLUSIONS The MR analysis revealed a positive association between genetically predicted longer TL and an increased risk of developing ALL, AML, CLL, MANTLE, and HODGKIN. This study further supports the notion that cells with longer TL have greater proliferative and mutational potential, leading to an increased risk of certain HDs.
Collapse
Affiliation(s)
- Yimin Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shibing Liang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghao Yao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huimin Zheng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongqing Hu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifei Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
38
|
Wu X, Xiao X, Fang H, He C, Wang H, Wang M, Lan P, Wang F, Du Q, Yang H. Elucidating shared biomarkers in gastroesophageal reflux disease and idiopathic pulmonary fibrosis: insights into novel therapeutic targets and the role of angelicae sinensis radix. Front Pharmacol 2024; 15:1348708. [PMID: 38414734 PMCID: PMC10897002 DOI: 10.3389/fphar.2024.1348708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
Background: The etiological underpinnings of gastroesophageal reflux disease (GERD) and idiopathic pulmonary fibrosis (IPF) remain elusive, coupled with a scarcity of effective therapeutic interventions for IPF. Angelicae sinensis radix (ASR, also named Danggui) is a Chinese herb with potential anti-fibrotic properties, that holds promise as a therapeutic agent for IPF. Objective: This study seeks to elucidate the causal interplay and potential mechanisms underlying the coexistence of GERD and IPF. Furthermore, it aims to investigate the regulatory effect of ASR on this complex relationship. Methods: A two-sample Mendelian randomization (TSMR) approach was employed to delineate the causal connection between gastroesophageal reflux disease and IPF, with Phennoscanner V2 employed to mitigate confounding factors. Utilizing single nucleotide polymorphism (SNPs) and publicly available microarray data, we analyzed potential targets and mechanisms related to IPF in GERD. Network pharmacology and molecular docking were employed to explore the targets and efficacy of ASR in treating GERD-related IPF. External datasets were subsequently utilized to identify potential diagnostic biomarkers for GERD-related IPF. Results: The IVW analysis demonstrated a positive causal relationship between GERD and IPF (IVW: OR = 1.002, 95%CI: 1.001, 1.003; p < 0.001). Twenty-five shared differentially expressed genes (DEGs) were identified. GO functional analysis revealed enrichment in neural, cellular, and brain development processes, concentrated in chromosomes and plasma membranes, with protein binding and activation involvement. KEGG analysis unveiled enrichment in proteoglycan, ERBB, and neuroactive ligand-receptor interaction pathways in cancer. Protein-protein interaction (PPI) analysis identified seven hub genes. Network pharmacology analysis demonstrated that 104 components of ASR targeted five hub genes (PDE4B, DRD2, ERBB4, ESR1, GRM8), with molecular docking confirming their excellent binding efficiency. GRM8 and ESR1 emerged as potential diagnostic biomarkers for GERD-related IPF (ESR1: AUCGERD = 0.762, AUCIPF = 0.725; GRM8: AUCGERD = 0.717, AUCIPF = 0.908). GRM8 and ESR1 emerged as potential diagnostic biomarkers for GERD-related IPF, validated in external datasets. Conclusion: This study establishes a causal link between GERD and IPF, identifying five key targets and two potential diagnostic biomarkers for GERD-related IPF. ASR exhibits intervention efficacy and favorable binding characteristics, positioning it as a promising candidate for treating GERD-related IPF. The potential regulatory mechanisms may involve cell responses to fibroblast growth factor stimulation and steroidal hormone-mediated signaling pathways.
Collapse
Affiliation(s)
- Xuanyu Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanyu Fang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Cuifang He
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanyue Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Miao Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peishu Lan
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quanyu Du
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
39
|
Feng Y, Dai L, Zhang Y, Sun S, Cong S, Ling S, Zhang H. Buyang Huanwu Decoction alleviates blood stasis, platelet activation, and inflammation and regulates the HMGB1/NF-κB pathway in rats with pulmonary fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117088. [PMID: 37652195 DOI: 10.1016/j.jep.2023.117088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qi deficiency and blood stasis are identified to be pathological factors of pulmonary fibrosis (PF) in traditional Chinese medicine (TCM) theory. Buyang Huanwu Decoction (BYHWD) is a traditional Chinese prescription ameliorating Qi deficiency and blood stasis. AIM OF THE STUDY The objective of this study was to investigate the anti-fibrosis effect of BYHWD and the potential molecular mechanism in rats. MATERIALS AND METHODS Bleomycin was used to construct PF rat models. 27 PF rats were randomly divided into three groups based on treatments: model group (saline solution, n = 9), low-dose BYHWD group (3.5 g/kg, n = 9), and high-dose BYHWD group (14.0 g/kg, n = 9). Moreover, 9 normal rats were used as the blank group. The blood viscosity, coagulation indexes (APTT, TT, PT, and FIB), platelet-related parameters (PLT, PDW, MPV, PCT, and PLCR), platelet microparticles (PMPs), and inflammatory factors (IL-2, IL-10, IL-1β, IL-6, IL-8, IL-17, IFN-γ, TNF-α, PAC-1, HMGB1, NF-κB, and TF) were determined. The lung tissue samples of rats were observed after hematoxylin-eosin (HE) staining. The full component analysis of the BYHWD extract was performed using the ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. The signaling pathway included into the study was selected on the basis of bioinformatics analysis and the results of the phytochemical analysis. The expression levels of genes and proteins involved in the selected signaling pathway were detected. RESULTS Compared to the blank group, the whole blood viscosity, PLR, PDW, MPV, PCT, PLCR, PMPs, and the levels of IL-1β, IL-6, IL-8, IL-17, TNF-α, PAC-1, HMGB1, NF-κB, and TF were increased, while the levels of IL-2 and IL-10 were decreased in the model group. Both low-dose BYHWD and high-dose BYHWD reversed these PF-induced effects in spite of the fact that low-dose BYHWD had no significant effect on the level of NF-κB. In addition, BYHWD ameliorated PF-induced inflammation in the rat lung tissue. The phytochemical analysis of the BYHWD extract combined with the bioinformatics analysis suggested that the therapeutical effect of BYHWD on PF was related to the HMGB1/NF-κB pathway, which consisted of NF-κB, IKBKB, ICAM1, VCAM1, HMGB1, and TLR4. Both RT-qPCR and western blot analyses showed that PF induced increases in the expression levels of NF-κB, ICAM1, VCAM1, HMGB1, and TLR4, but a decrease in the expression level of IKBKB. Moreover, both low-dose BYHWD and high-dose BYHWD exerted the opposite effects, and recovered the expression levels of NF-κB, ICAM1, VCAM1, HMGB1, TLR4, and IKBKB, despite the fact that low-dose BYHWD had no effects on the mRNA expression levels of NF-κB or TLR4. CONCLUSIONS In summary, BYHWD alleviated PF-induced blood stasis, platelet activation, and inflammation in the rats. Our study suggested BYHWD had a therapeutic effect on PF and was a good alternative for the complementary therapy of PF, and the potential molecular mechanism was modulation of HMGB1/NF-κB signaling pathway, and it needs further study.
Collapse
Affiliation(s)
- Yuenan Feng
- Experimental Training Center, Heilongjiang University of Chinese Medicine, No.24 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang Province, China.
| | - Linfeng Dai
- Xiangfang District:Department of Pharmacy, Heilongjiang Provincial Hospital, No.82 Zhongshan Road, Xiangfang District, Harbin, 150036, Heilongjiang Province, China.
| | - Yanli Zhang
- Experimental Training Center, Heilongjiang University of Chinese Medicine, No.24 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang Province, China.
| | - Simiao Sun
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No.24 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang Province, China.
| | - Shan Cong
- Department of Pharmacy, The Second Affiliated Hospital of Qiqihar Medical University, No.64 Zhonghua West Road, Jianhua District, Qiqihar, 161006, Heilongjiang Province, China.
| | - Shuang Ling
- Jiamusi College, Heilongjiang University of Chinese Medicine, No.53 Guanghua Street, Jiamusi, 154007, China.
| | - Huan Zhang
- Nangang District:Department of Pharmacy, Heilongjiang Provincial Hospital, No. 405 Gogol Street, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
40
|
Samarelli AV, Tonelli R, Raineri G, Bruzzi G, Andrisani D, Gozzi F, Marchioni A, Costantini M, Fabbiani L, Genovese F, Pinetti D, Manicardi L, Castaniere I, Masciale V, Aramini B, Tabbì L, Rizzato S, Bettelli S, Manfredini S, Dominici M, Clini E, Cerri S. Proteomic profiling of formalin-fixed paraffine-embedded tissue reveals key proteins related to lung dysfunction in idiopathic pulmonary fibrosis. Front Oncol 2024; 13:1275346. [PMID: 38322285 PMCID: PMC10844556 DOI: 10.3389/fonc.2023.1275346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/29/2023] [Indexed: 02/08/2024] Open
Abstract
Introduction Idiopathic pulmonary fibrosis (IPF) severely affects the lung leading to aberrant deposition of extracellular matrix and parenchymal stiffness with progressive functional derangement. The limited availability of fresh tissues represents one of the major limitations to study the molecular profiling of IPF lung tissue. The primary aim of this study was to explore the proteomic profiling yield of archived formalin-fixed paraffin-embedded (FFPE) specimens of IPF lung tissues. Methods We further determined the protein expression according to respiratory functional decline at the time of biopsy. The total proteins isolated from 11 FFPE samples of IPF patients compared to 3 FFPE samples from a non-fibrotic lung defined as controls, were subjected to label-free quantitative proteomic analysis by liquid chromatography-mass spectrometry (LC-MS/MS) and resulted in the detection of about 400 proteins. Results After the pairwise comparison between controls and IPF, functional enrichment analysis identified differentially expressed proteins that were involved in extracellular matrix signaling pathways, focal adhesion and transforming growth factor β (TGF-β) signaling pathways strongly associated with IPF onset and progression. Five proteins were significantly over- expressed in the lung of IPF patients with either advanced disease stage (Stage II) or impaired pulmonary function (FVC<75, DLCO<55) compared to controls; these were lymphocyte cytosolic protein 1 (LCP1), peroxiredoxin-2 (PRDX2), transgelin 2 (TAGLN2), lumican (LUM) and mimecan (OGN) that might play a key role in the fibrogenic processes. Discussion Our work showed that the analysis of FFPE samples was able to identify key proteins that might be crucial for the IPF pathogenesis. These proteins are correlated with lung carcinogenesis or involved in the immune landscape of lung cancer, thus making possible common mechanisms between lung carcinogenesis and fibrosis progression, two pathological conditions at risk for each other in the real life.
Collapse
Affiliation(s)
- Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Bruzzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Dario Andrisani
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Filippo Gozzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Alessandro Marchioni
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Matteo Costantini
- Pathology Institute, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Luca Fabbiani
- Pathology Institute, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
- Immunohistochemistry Lab, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Filippo Genovese
- Centro Interdipartimentale Grandi Strumenti (C.I.G.S.), University of Modena and Reggio Emilia, Modena, Italy
| | - Diego Pinetti
- Centro Interdipartimentale Grandi Strumenti (C.I.G.S.), University of Modena and Reggio Emilia, Modena, Italy
| | - Linda Manicardi
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Ivana Castaniere
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Valentina Masciale
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences-Diagnostic and Specialty Medicine (DIMEC) of the Alma Mater Studiorum, University of Bologna G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Luca Tabbì
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Simone Rizzato
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Stefania Bettelli
- Molecular Pathology and Predictive Medicine Unit, Modena Cancer Center, University Hospital of Modena, Modena, Italy
| | - Samantha Manfredini
- Molecular Pathology and Predictive Medicine Unit, Modena Cancer Center, University Hospital of Modena, Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| |
Collapse
|
41
|
Zhang C, Xi Y, Zhang Y, He P, Su X, Fan F, Wu M, Kong X, Shi Y. Genetic association analysis of dietary intake and idiopathic pulmonary fibrosis: a two-sample mendelian randomization study. BMC Pulm Med 2024; 24:15. [PMID: 38178024 PMCID: PMC10768076 DOI: 10.1186/s12890-023-02831-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND IPF is a complex lung disease whose aetiology is not fully understood, but diet may have an impact on its development and progression. Therefore, we investigated the potential causal connection between dietary intake and IPF through TSMR to offer insights for early disease prevention recommendations. METHODS The study incorporated 29 dietary exposure factors, oily fish intake, bacon intake, processed meat intake, poultry intake, beef intake, pork intake, lamb/mutton intake, non-oily fish intake, fresh fruit intake, cooked vegetable intake, baked bean intake, fresh tomato intake, tinned tomato intake, salad/raw vegetable intake, Fresh fruit intake, coffee intake, tea intake, water intake, red wine intake, average weekly beer plus cider intake, alcoholic drinks per week, cereal intake, bread intake, whole-wheat intake, whole-wheat cereal intake, cheese intake, yogurt intake, salt added to food and whole egg intake. The study explored the causal link between diet and IPF using TSMR analysis, predominantly the IVW method, and performed sensitivity analyses to validate the results. RESULT The study revealed that consuming oily fish, yogurt, and dried fruits had a protective effect against IPF, whereas the consumption of alcoholic beverages and beef was linked to an increased risk of IPF. CONCLUSION In this MR study, it was discovered that the consumption of oily fish, yogurt, and dried fruits exhibited a protective effect against IPF, whereas the intake of alcoholic beverages and beef was associated with an elevated risk of IPF. These findings underscore the significance of making informed and timely dietary decisions in IPF prevention.
Collapse
Affiliation(s)
- Chenwei Zhang
- Department of Respiratory and Critical Care Medicine, Shanxi Medical University Affiliated First Hospital, Taiyuan, 030000, China
| | - Yujia Xi
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Yukai Zhang
- First School of Clinical Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Peiyun He
- First School of Clinical Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Xuesen Su
- First School of Clinical Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Fangfang Fan
- Department of Respiratory and Critical Care Medicine, Shanxi Medical University Affiliated First Hospital, Taiyuan, 030000, China
| | - Min Wu
- Department of Respiratory and Critical Care Medicine, Shanxi Medical University Affiliated First Hospital, Taiyuan, 030000, China
| | - Xiaomei Kong
- Department of Respiratory and Critical Care Medicine, Shanxi Medical University Affiliated First Hospital, Taiyuan, 030000, China.
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, 030000, China.
| | - Yiwei Shi
- Department of Respiratory and Critical Care Medicine, Shanxi Medical University Affiliated First Hospital, Taiyuan, 030000, China.
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, 030000, China.
| |
Collapse
|
42
|
Wang W, Huang N, Zhuang Z, Song Z, Li Y, Dong X, Xiao W, Zhao Y, Jia J, Liu Z, Qi L, Huang T. Identifying Potential Causal Effects of Telomere Length on Health Outcomes: A Phenome-Wide Investigation and Mendelian Randomization Study. J Gerontol A Biol Sci Med Sci 2024; 79:glad128. [PMID: 37209418 DOI: 10.1093/gerona/glad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Telomere length has been linked to various health outcomes. To comprehensively investigate the causal effects of telomere length throughout the human disease spectrum, we conducted a phenome-wide Mendelian randomization study (MR-PheWAS) and a systematic review of MR studies. METHODS We conducted a PheWAS to screen for associations between telomere length and 1 035 phenotypes in the UK Biobank (n = 408 354). The exposure of interest was the genetic risk score (GRS) of telomere length. Observed associations passing multiple testing corrections were assessed for causality by 2-sample MR analysis. A systematic review of MR studies on telomere length was performed to harmonize the published evidence and complement our findings. RESULTS Of the 1 035 phenotypes tested, PheWAS identified 29 and 78 associations of telomere length GRS at a Bonferroni- and false discovery rate-corrected threshold; 24 and 66 distinct health outcomes were causal in the following principal MR analysis. The replication MR using data from the FinnGen study provided evidence of causal effects of genetically instrumented telomere length on 28 out of 66 outcomes, including decreased risks of 5 diseases in respiratory diseases, digestive diseases, and myocardial infarction, and increased risks of 23 diseases, mainly comprised neoplasms, diseases of the genitourinary system, and essential hypertension. A systematic review of 53 MR studies found evidence to support 16 out of the 66 outcomes. CONCLUSIONS This large-scale MR-PheWAS identified a wide range of health outcomes that were possibly affected by telomere length, and suggested that susceptibility to telomere length may vary across disease categories.
Collapse
Affiliation(s)
- Wenxiu Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Ninghao Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zhenhuang Zhuang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zimin Song
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yueying Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xue Dong
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Wendi Xiao
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yimin Zhao
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jinzhu Jia
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zhonghua Liu
- Department of Biostatistics, Columbia University, New York, New York, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tao Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
43
|
Mulet A, González-Cabo P, Pallardó FV, Signes-Costa J. Persistent Pulmonary Fibrotic Sequelae in Patients With Telomere Shortening One Year After Severe COVID-19. Arch Bronconeumol 2024; 60:62-64. [PMID: 37985282 DOI: 10.1016/j.arbres.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Affiliation(s)
- Alba Mulet
- Pulmonary Department, Hospital Clínico, INCLIVA, Valencia, Spain
| | - Pilar González-Cabo
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain
| | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain.
| | | |
Collapse
|
44
|
Yu S, Wang X, Zhang R, Chen R, Ma L. A review on the potential risks and mechanisms of heavy metal exposure to Chronic Obstructive Pulmonary Disease. Biochem Biophys Res Commun 2023; 684:149124. [PMID: 37897914 DOI: 10.1016/j.bbrc.2023.149124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a chronic disease that affects patients as well as the health and economic stability of society as a whole. At the same time, heavy metal pollution is widely recognized as having a possible impact on the environment and human health. Therefore, these diseases have become important global public health issues. In recent years, researchers have shown great interest in the potential association between heavy metal exposure and the development of COPD, and there has been a substantial increase in the number of related studies. However, we still face the challenge of developing a comprehensive and integrated understanding of this complex association. Therefore, this review aimed to evaluate the existing epidemiological studies to clarify the association between heavy metal exposure and COPD. In addition, we will discuss the biological mechanisms between the two to better understand the multiple molecular pathways and possible mechanisms of action involved, and provide additional insights for the subsequent identification of potential strategies to prevent and control the effects of heavy metal exposure on the development of COPD in individuals and populations.
Collapse
Affiliation(s)
- Shuxia Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoxia Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Rongxuan Zhang
- Department of Respiratory, The Second People's Hospital of Lanzhou City, 730030, China
| | - Rentong Chen
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
45
|
Reghelin CK, Bastos MS, de Souza Basso B, Costa BP, Lima KG, de Sousa AC, Haute GV, Diz FM, Dias HB, Luft C, Rodrigues KF, Garcia MCR, Matzenbacher LS, Adami BS, Xavier LL, Donadio MVF, de Oliveira JR, da Silva Melo DA. Bezafibrate reduces the damage, activation and mechanical properties of lung fibroblast cells induced by hydrogen peroxide. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3857-3866. [PMID: 37358795 DOI: 10.1007/s00210-023-02595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
In pulmonary fibrosis, the proliferation of fibroblasts and their differentiation into myofibroblasts is often caused by tissue damage, such as oxidative damage caused by reactive oxygen species, which leads to progressive rupture and thus destruction of the alveolar architecture, resulting in cell proliferation and tissue remodeling. Bezafibrate (BZF) is an important member of the peroxisome proliferator-activated receptor (PPARs) family agonists, used in clinical practice as antihyperlipidemic. However, the antifibrotic effects of BZF are still poorly studied. The objective of this study was to evaluate the effects of BZF on pulmonary oxidative damage in lung fibroblast cells. MRC-5 cells were treated with hydrogen peroxide (H2O2) to induce oxidative stress activation and BZF treatment was administered at the same moment as H2O2 induction. The outcomes evaluated were cell proliferation and cell viability; oxidative stress markers such as reactive oxygen species (ROS), catalase (CAT) levels and thiobarbituric acid reactive substances (TBARS); col-1 and α-SMA mRNA expression and cellular elasticity through Young's modulus analysis evaluated by atomic force microscopy (AFM). The H2O2-induced oxidative damage decreased the cell viability and increased ROS levels and decreased CAT activity in MRC-5 cells. The expression of α-SMA and the cell stiffness increased in response to H2O2 treatment. Treatment with BZF decreased the MRC-5 cell proliferation, ROS levels, reestablished CAT levels, decreased the mRNA expression of type I collagen protein (col-1) and α-smooth muscle actin (α-SMA), and cellular elasticity even with H2O2 induction. Our results suggest that BZF has a potential protective effect on H2O2-induced oxidative stress. These results are based on an in vitro experiment, derived from a fetal lung cell line and may emerge as a possible new therapy for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Camille Kirinus Reghelin
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Matheus Scherer Bastos
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil.
- Laboratório de Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), 6681 Ipiranga Ave., Porto Alegre, RS, Zip Code: 90619-900, Brazil.
| | - Bruno de Souza Basso
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Bruna Pasqualotto Costa
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Kelly Goulart Lima
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Arieli Cruz de Sousa
- Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo I, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Gabriela Viegas Haute
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Fernando Mendonça Diz
- Programa de Pós-Graduação Em Engenharia E Tecnologia de Materiais, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Henrique Bregolin Dias
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Carolina Luft
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Kétlin Fernanda Rodrigues
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Maria Cláudia Rosa Garcia
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Lucas Strassburger Matzenbacher
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Bruno Silveira Adami
- Laboratório Central de Microscopia E Microanálise (LabCEMM), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Léder Leal Xavier
- Laboratório Central de Microscopia E Microanálise (LabCEMM), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratório de Atividade Física Pediátrica, Centro Infantil, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Denizar Alberto da Silva Melo
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| |
Collapse
|
46
|
Tao H, Dong Y, Chen X, Peng L. Mediators of the association between gastro-oesophageal reflux disease and idiopathic pulmonary fibrosis. Eur Respir J 2023; 62:2300323. [PMID: 37857422 DOI: 10.1183/13993003.00323-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Affiliation(s)
- Heqing Tao
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P.R. China
| | - Yongqiang Dong
- Department of Thyroid Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Xueqing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P.R. China
| | - Liang Peng
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P.R. China
| |
Collapse
|
47
|
Newton CA, Noth I, Raghu G. Gastro-oesophageal reflux and idiopathic pulmonary fibrosis: sorting the chicken and the egg by genetic link. Eur Respir J 2023; 62:2301878. [PMID: 38128953 PMCID: PMC10990001 DOI: 10.1183/13993003.01878-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Affiliation(s)
- Chad A Newton
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, USA
| | - Ganesh Raghu
- Center for Interstitial Lung Diseases, University of Washington Medical Center, Seattle, WA, USA
| |
Collapse
|
48
|
Tao H, Dong Y, Chen X, Peng L. Mediators of the association between gastro-oesophageal reflux disease and idiopathic pulmonary fibrosis for testing. Eur Respir J 2023; 100:0000001. [PMID: 39603667 DOI: 10.1183/13993003.0000-0000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2024]
Affiliation(s)
- Heqing Tao
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P.R. China
| | - Yongqiang Dong
- Department of Thyroid Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Xueqing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P.R. China
| | - Liang Peng
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, P.R. China
| |
Collapse
|
49
|
Yan H, Zhu C, Jin X, Feng G. Mendelian randomization reveals no correlations between herpesvirus infection and idiopathic pulmonary fibrosis. PLoS One 2023; 18:e0295082. [PMID: 38015883 PMCID: PMC10683991 DOI: 10.1371/journal.pone.0295082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Previous studies have found that the persistence of herpesvirus significantly increases the risk of idiopathic pulmonary fibrosis (IPF), but it is unclear whether this effect is causal. We conducted a two-sample Mendelian randomization (MR) study to evaluate the causal relationship between three herpesvirus infections and IPF. METHODS We used genome-wide association studies (GWAS) data from three independent datasets, including FinnGen cohort, Milieu Intérieur cohort, and 23andMe cohort, to screen for instrumental variables (IVs) of herpesvirus infection or herpesvirus-related immunoglobulin G (IgG) levels. Outcome dataset came from the largest meta-analysis of IPF susceptibility currently available. RESULTS In the FinnGen cohort, genetically predicted Epstein-Barr virus (EBV) (OR = 1.105, 95%CI: 0.897-1.149, p = 0.815), cytomegalovirus (CMV) (OR = 1.073, 95%CI: 0.926-1.244, p = 0.302) and herpes simplex (HSV) infection (OR = 0.906, 95%CI: 0.753-1.097, p = 0.298) were not associated with the risk of IPF. In the Milieu Intérieur cohort, we found no correlations between herpesvirus-related IgG EBV nuclear antigen-1 (EBNA1) (OR = 0.968, 95%CI: 0.782-1.198, p = 0.764), EBV viral capsid antigen (VCA) (OR = 1.061, 95CI%: 0.811-1.387, p = 0.665), CMV (OR = 1.108, 95CI%: 0.944-1.314, p = 0.240), HSV-1 (OR = 1.154, 95%CI: 0.684-1.945, p = 0.592) and HSV-2 (OR = 0.915, 95%CI: 0.793-1.056, p = 0.225) and IPF risk. Moreover, in the 23andMe cohort, no evidence of associations between mononucleosis (OR = 1.042, 95%CI: 0.709-1.532, p = 0.832) and cold scores (OR = 0.906, 95%CI: 0.603-1.362, p = 0.635) and IPF were found. Sensitivity analysis confirmed the robustness of our results. CONCLUSIONS This study provides preliminary evidence that EBV, CMV, and HSV herpesviruses, and herpesviruses-related IgG levels, are not causally linked to IPF. Further MR analysis will be necessary when stronger instrument variables and GWAS with larger sample sizes become available.
Collapse
Affiliation(s)
- Haihao Yan
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenghua Zhu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Jin
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ganzhu Feng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
50
|
Luo W, Gu Y, Fu S, Wang J, Zhang J, Wang Y. Emerging opportunities to treat idiopathic pulmonary fibrosis: Design, discovery, and optimizations of small-molecule drugs targeting fibrogenic pathways. Eur J Med Chem 2023; 260:115762. [PMID: 37683364 DOI: 10.1016/j.ejmech.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common fibrotic form of idiopathic diffuse lung disease. Due to limited treatment options, IPF patients suffer from poor survival. About ten years ago, Pirfenidone (Shionogi, 2008; InterMune, 2011) and Nintedanib (Boehringer Ingelheim, 2014) were approved, greatly changing the direction of IPF drug design. However, limited efficacy and side effects indicate that neither can reverse the process of IPF. With insights into the occurrence of IPF, novel targets and agents have been proposed, which have fundamentally changed the treatment of IPF. With the next-generation agents, targeting pro-fibrotic pathways in the epithelial-injury model offers a promising approach. Besides, several next-generation IPF drugs have entered phase II/III clinical trials with encouraging results. Due to the rising IPF treatment requirements, there is an urgent need to completely summarize the mechanisms, targets, problems, and drug design strategies over the past ten years. In this review, we summarize known mechanisms, target types, drug design, and novel technologies of IPF drug discovery, aiming to provide insights into the future development and clinical application of next-generation IPF drugs.
Collapse
Affiliation(s)
- Wenxin Luo
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Siyu Fu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|