1
|
Nelson NC, Wong KK, Mahoney IJ, Malik T, Rudym D, Lesko MB, Qayum S, Lewis TC, Chang SH, Chan JCY, Geraci TC, Li Y, Pamar P, Schnier J, Singh R, Collazo D, Chang M, Kyeremateng Y, McCormick C, Borghi S, Patel S, Darawshi F, Barnett CR, Sulaiman I, Kugler MC, Brosnahan SB, Singh S, Tsay JCJ, Wu BG, Pass HI, Angel LF, Segal LN, Natalini JG. Lung Allograft Dysbiosis Associates with Immune Response and Primary Graft Dysfunction. J Heart Lung Transplant 2024:S1053-2498(24)01946-6. [PMID: 39561864 DOI: 10.1016/j.healun.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
RATIONALE Lower airway enrichment with oral commensals has been previously associated with grade 3 severe primary graft dysfunction (PGD) after lung transplantation (LT). We aimed to determine whether this dysbiotic signature is present across all PGD severity grades, including milder forms, and whether it is associated with a distinct host inflammatory endotype. METHODS Lower airway samples from 96 LT recipients with varying degrees of PGD were used to evaluate the lung allograft microbiota via 16S rRNA gene sequencing. Bronchoalveolar lavage (BAL) cytokine concentrations and cell differential percentages were compared across PGD grades. In a subset of samples, we evaluated the lower airway host transcriptome using RNA sequencing methods. RESULTS Differential analyses demonstrated lower airway enrichment with supraglottic-predominant taxa (SPT) in both moderate and severe PGD. Dirichlet Multinomial Mixtures (DMM) modeling identified two distinct microbial clusters. A greater percentage of subjects with moderate-severe PGD were identified within the dysbiotic cluster (C-SPT) than within the no PGD group (48 and 29%, respectively) though this difference did not reach statistical significance (p=0.06). PGD severity associated with increased BAL neutrophil concentration (p=0.03) and correlated with BAL concentrations of MCP-1/CCL2, IP-10/CXCL10, IL-10, and TNF-α (p<0.05). Furthermore, microbial signatures of dysbiosis correlated with neutrophils, MCP-1/CCL-2, IL-10, and TNF-α (p<0.05). C-SPT exhibited differential expression of TNF, SERPINE1 (PAI-1), MPO, and MMP1 genes and upregulation of MAPK pathways, suggesting that dysbiosis regulates host signaling to promote neutrophilic inflammation. CONCLUSIONS Lower airway dysbiosis within the lung allograft is associated with a neutrophilic inflammatory endotype, an immune profile commonly recognized as the hallmark for PGD pathogenesis. This data highlights a putative role for lower airway microbial dysbiosis in the pathogenesis of this syndrome.
Collapse
Affiliation(s)
- Nathaniel C Nelson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Kendrew K Wong
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Ian J Mahoney
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Tahir Malik
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Darya Rudym
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA.
| | - Melissa B Lesko
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA.
| | - Seema Qayum
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA.
| | - Tyler C Lewis
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA.
| | - Stephanie H Chang
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA; Department of Cardiothoracic Surgery, New York University Grossman School of Medicine, New York, NY, USA.
| | - Justin C Y Chan
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA; Department of Cardiothoracic Surgery, New York University Grossman School of Medicine, New York, NY, USA.
| | - Travis C Geraci
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA; Department of Cardiothoracic Surgery, New York University Grossman School of Medicine, New York, NY, USA.
| | - Yonghua Li
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Prerna Pamar
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Joseph Schnier
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Rajbir Singh
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Destiny Collazo
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Miao Chang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Yaa Kyeremateng
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Colin McCormick
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Sara Borghi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Shrey Patel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Fares Darawshi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; The Institute of Pulmonology, Hadassah Medical Center, Jerusalem, Israel; The Faculty of Medicine at the Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Clea R Barnett
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Imran Sulaiman
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Department of Respiratory Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Department of Respiratory Medicine, Beaumont Hospital, Dublin, Ireland.
| | - Matthias C Kugler
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Shari B Brosnahan
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Shivani Singh
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Jun-Chieh J Tsay
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; VA New York Harbor Healthcare System, New York, NY, USA.
| | - Benjamin G Wu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; VA New York Harbor Healthcare System, New York, NY, USA.
| | - Harvey I Pass
- Department of Cardiothoracic Surgery, New York University Grossman School of Medicine, New York, NY, USA.
| | - Luis F Angel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA.
| | - Leopoldo N Segal
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Jake G Natalini
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
2
|
Martin C, Mahan KS, Wiggen TD, Gilbertsen AJ, Hertz MI, Hunter RC, Quinn RA. Microbiome and metabolome patterns after lung transplantation reflect underlying disease and chronic lung allograft dysfunction. MICROBIOME 2024; 12:196. [PMID: 39385282 PMCID: PMC11462767 DOI: 10.1186/s40168-024-01893-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/30/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Progression of chronic lung disease may lead to the requirement for lung transplant (LTx). Despite improvements in short-term survival after LTx, chronic lung allograft dysfunction (CLAD) remains a critical challenge for long-term survival. This study investigates the molecular and microbial relationships between underlying lung disease and the development of CLAD in bronchoalveolar lavage fluid (BALF) from subjects post-LTx, which is crucial for tailoring treatment strategies specific to allograft dysfunctions. METHODS Paired 16S rRNA gene amplicon sequencing and untargeted LC-MS/MS metabolomics were performed on 856 BALF samples collected over 10 years from LTx recipients (n = 195) with alpha-1-antitrypsin disease (AATD, n = 23), cystic fibrosis (CF, n = 47), chronic obstructive pulmonary disease (COPD, n = 78), or pulmonary fibrosis (PF, n = 47). Data were analyzed using random forest (RF) machine learning and multivariate statistics for associations with underlying disease and CLAD development. RESULTS The BALF microbiome and metabolome after LTx differed significantly according to the underlying disease state (PERMANOVA, p = 0.001), with CF and AATD demonstrating distinct microbiome and metabolome profiles, respectively. Uniqueness in CF was mainly driven by Pseudomonas abundance and its metabolites, whereas AATD had elevated levels of phenylalanine and a lack of shared metabolites with the other underlying diseases. BALF microbiome and metabolome composition were also distinct between those who did or did not develop CLAD during the sample collection period (PERMANOVA, p = 0.001). An increase in the average abundance of Veillonella (AATD, COPD) and Streptococcus (CF, PF) was associated with CLAD development, and decreases in the abundance of phenylalanine-derivative alkaloids (CF, COPD) and glycerophosphorylcholines (CF, COPD, PF) were signatures of the CLAD metabolome. Although the relative abundance of Pseudomonas was not associated with CLAD, the abundance of its virulence metabolites, including siderophores, quorum-sensing quinolones, and phenazines, were elevated in those with CF who developed CLAD. There was a positive correlation between the abundance of these molecules and the abundance of Pseudomonas in the microbiome, but there was no correlation between their abundance and the time in which BALF samples were collected post-LTx. CONCLUSIONS The BALF microbiome and metabolome after LTx are particularly distinct in those with underlying CF and AATD. These data reflect those who developed CLAD, with increased virulence metabolite production from Pseudomonas, an aspect of CF CLAD cases. These findings shed light on disease-specific microbial and metabolic signatures in LTx recipients, offering valuable insights into the underlying causes of allograft rejection. Video Abstract.
Collapse
Affiliation(s)
- Christian Martin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Kathleen S Mahan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Talia D Wiggen
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Adam J Gilbertsen
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Marshall I Hertz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Ryan C Hunter
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14051, USA.
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
3
|
Ponholzer F, Bogensperger C, Krendl FJ, Krapf C, Dumfarth J, Schneeberger S, Augustin F. Beyond the organ: lung microbiome shapes transplant indications and outcomes. Eur J Cardiothorac Surg 2024; 66:ezae338. [PMID: 39288305 PMCID: PMC11466426 DOI: 10.1093/ejcts/ezae338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/30/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024] Open
Abstract
The lung microbiome plays a crucial role in the development of chronic lung diseases, which may ultimately lead to the need for lung transplantation. Also, perioperative results seem to be connected with altered lung microbiomes and its dynamic changes providing a possible target for optimizing short-term outcome after transplantation. A literature review using MEDLINE, PubMed Central and Bookshelf was performed. Chronic lung allograft dysfunction (CLAD) seems to be influenced and partly triggered by changes in the pulmonary microbiome and dysbiosis, e.g. through increased bacterial load or abundance of specific species such as Pseudomonas aeruginosa. Additionally, the specific indications for transplantation, with their very heterogeneous changes and influences on the pulmonary microbiome, influence long-term outcome. Next to composition and measurable bacterial load, dynamic changes in the allografts microbiome also possess the ability to alter long-term outcomes negatively. This review discusses the "new" microbiome after transplantation and the associations with direct postoperative outcome. With the knowledge of these principles the impact of alterations in the pulmonary microbiome in hindsight to CLAD and possible therapeutic implications are described and discussed. The aim of this review is to summarize the current literature regarding pre- and postoperative lung microbiomes and how they influence different lung diseases on their progression to failure of conservative treatment. This review provides a summary of current literature for centres looking for further options in optimizing lung transplant outcomes and highlights possible areas for further research activities investigating the pulmonary microbiome in connection to transplantation.
Collapse
Affiliation(s)
- Florian Ponholzer
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Christina Bogensperger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Julius Krendl
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Krapf
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Dumfarth
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Augustin
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Özçam M, Lynch SV. The gut-airway microbiome axis in health and respiratory diseases. Nat Rev Microbiol 2024; 22:492-506. [PMID: 38778224 DOI: 10.1038/s41579-024-01048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Communication between the gut and remote organs, such as the brain or the cardiovascular system, has been well established and recent studies provide evidence for a potential bidirectional gut-airway axis. Observations from animal and human studies indicate that respiratory insults influence the activity of the gut microbiome and that microbial ligands and metabolic products generated by the gut microbiome shape respiratory immunity. Information exchange between these two large mucosal surface areas regulates microorganism-immune interactions, with significant implications for the clinical and treatment outcomes of a range of respiratory conditions, including asthma, chronic obstructive pulmonary disease and lung cancer. In this Review, we summarize the most recent data in this field, offering insights into mechanisms of gut-airway crosstalk across spatial and temporal gradients and their relevance for respiratory health.
Collapse
Affiliation(s)
- Mustafa Özçam
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Susan V Lynch
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Natalini JG, Wong KK, Nelson NC, Wu BG, Rudym D, Lesko MB, Qayum S, Lewis TC, Wong A, Chang SH, Chan JCY, Geraci TC, Li Y, Wang C, Li H, Pamar P, Schnier J, Mahoney IJ, Malik T, Darawshy F, Sulaiman I, Kugler MC, Singh R, Collazo DE, Chang M, Patel S, Kyeremateng Y, McCormick C, Barnett CR, Tsay JCJ, Brosnahan SB, Singh S, Pass HI, Angel LF, Segal LN. Longitudinal Lower Airway Microbial Signatures of Acute Cellular Rejection in Lung Transplantation. Am J Respir Crit Care Med 2024; 209:1463-1476. [PMID: 38358857 PMCID: PMC11208954 DOI: 10.1164/rccm.202309-1551oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/14/2024] [Indexed: 02/17/2024] Open
Abstract
Rationale: Acute cellular rejection (ACR) after lung transplant is a leading risk factor for chronic lung allograft dysfunction. Prior studies have demonstrated dynamic microbial changes occurring within the allograft and gut that influence local adaptive and innate immune responses. However, the lung microbiome's overall impact on ACR risk remains poorly understood. Objectives: To evaluate whether temporal changes in microbial signatures were associated with the development of ACR. Methods: We performed cross-sectional and longitudinal analyses (joint modeling of longitudinal and time-to-event data and trajectory comparisons) of 16S rRNA gene sequencing results derived from lung transplant recipient lower airway samples collected at multiple time points. Measurements and Main Results: Among 103 lung transplant recipients, 25 (24.3%) developed ACR. In comparing samples acquired 1 month after transplant, subjects who never developed ACR demonstrated lower airway enrichment with several oral commensals (e.g., Prevotella and Veillonella spp.) than those with current or future (beyond 1 mo) ACR. However, a subgroup analysis of those who developed ACR beyond 1 month revealed delayed enrichment with oral commensals occurring at the time of ACR diagnosis compared with baseline, when enrichment with more traditionally pathogenic taxa was present. In longitudinal models, dynamic changes in α-diversity (characterized by an initial decrease and a subsequent increase) and in the taxonomic trajectories of numerous oral commensals were more commonly observed in subjects with ACR. Conclusions: Dynamic changes in the lower airway microbiota are associated with the development of ACR, supporting its potential role as a useful biomarker or in ACR pathogenesis.
Collapse
Affiliation(s)
- Jake G. Natalini
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- New York University Langone Transplant Institute, New York, New York
| | - Kendrew K. Wong
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Nathaniel C. Nelson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Benjamin G. Wu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Veterans Affairs New York Harbor Healthcare System, New York, New York
| | - Darya Rudym
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- New York University Langone Transplant Institute, New York, New York
| | - Melissa B. Lesko
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- New York University Langone Transplant Institute, New York, New York
| | - Seema Qayum
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- New York University Langone Transplant Institute, New York, New York
| | - Tyler C. Lewis
- New York University Langone Transplant Institute, New York, New York
| | - Adrian Wong
- New York University Langone Transplant Institute, New York, New York
| | - Stephanie H. Chang
- Department of Cardiothoracic Surgery, and
- New York University Langone Transplant Institute, New York, New York
| | - Justin C. Y. Chan
- Department of Cardiothoracic Surgery, and
- New York University Langone Transplant Institute, New York, New York
| | - Travis C. Geraci
- Department of Cardiothoracic Surgery, and
- New York University Langone Transplant Institute, New York, New York
| | - Yonghua Li
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Chan Wang
- Department of Population Health, New York University Grossman School of Medicine, New York, New York
| | - Huilin Li
- Department of Population Health, New York University Grossman School of Medicine, New York, New York
| | - Prerna Pamar
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Joseph Schnier
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Ian J. Mahoney
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Tahir Malik
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Fares Darawshy
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- The Institute of Pulmonology, Hadassah Medical Center, Jerusalem, Israel
- The Faculty of Medicine at the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Imran Sulaiman
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Department of Respiratory Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; and
- Department of Respiratory Medicine, Beaumont Hospital, Dublin, Ireland
| | - Matthias C. Kugler
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Rajbir Singh
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Destiny E. Collazo
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Miao Chang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Shrey Patel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Yaa Kyeremateng
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Colin McCormick
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Clea R. Barnett
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Jun-Chieh J. Tsay
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Veterans Affairs New York Harbor Healthcare System, New York, New York
| | - Shari B. Brosnahan
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Shivani Singh
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | | | - Luis F. Angel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- New York University Langone Transplant Institute, New York, New York
| | - Leopoldo N. Segal
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| |
Collapse
|
6
|
Snyder ME, Kitsios GD. Lung Transplant Outcomes Keep BUGging us: Acute Cellular Rejection and the Lung Microbiome. Am J Respir Crit Care Med 2024; 209:1423-1425. [PMID: 38564413 PMCID: PMC11208966 DOI: 10.1164/rccm.202403-0499ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
- Mark E Snyder
- Department of Medicine University of Pittsburgh Pittsburgh, Pennsylvania
| | - Georgios D Kitsios
- Department of Medicine University of Pittsburgh Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Li CX, Lv M, Liu HY, Lin YX, Pan JB, You CX, Su J. Comparison of the upper and lower airway microbiome in early postoperative lung transplant recipients. Microbiol Spectr 2024; 12:e0379123. [PMID: 38747583 PMCID: PMC11237413 DOI: 10.1128/spectrum.03791-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/29/2024] [Indexed: 06/06/2024] Open
Abstract
The upper and lower respiratory tract may share microbiome because they are directly continuous, and the nasal microbiome contributes partially to the composition of the lung microbiome. But little is known about the upper and lower airway microbiome of early postoperative lung transplant recipients (LTRs). Using 16S rRNA gene sequencing, we compared paired nasal swab (NS) and bronchoalveolar lavage fluid (BALF) microbiome from 17 early postoperative LTRs. The microbiome between the two compartments were significantly different in Shannon diversity and beta diversity. Four and eight core NS-associated and BALF-associated microbiome were identified, respectively. NS samples harbored more Corynebacterium, Acinetobacter, and Pseudomonas, while BALF contained more Ralstonia, Stenotrophomonas, Enterococcus, and Pedobacter. The within-subject dissimilarity was higher than the between-subject dissimilarity, indicating a greater impact of sampling sites than sampling individuals on microbial difference. There were both difference and homogeneity between NS and BALF microbiome in early postoperative LTRs. High levels of pathogens were detected in both samples, suggesting that both of them can reflect the diseases characteristics of transplanted lung. The differences between upper and lower airway microbiome mainly come from sampling sites instead of sampling individuals. IMPORTANCE Lung transplantation is the only therapeutic option for patients with end-stage lung disease, but its outcome is much worse than other solid organ transplants. Little is known about the NS and BALF microbiome of early postoperative LTRs. Here, we compared paired samples of the nasal and lung microbiome from 17 early postoperative LTRs and showed both difference and homogeneity between the two samples. Most of the "core" microbiome in both NS and BALF samples were recognized respiratory pathogens, suggesting that both samples can reflect the diseases characteristics of transplanted lung. We also found that the differences between upper and lower airway microbiome in early postoperative LTRs mainly come from sampling sites instead of sampling individuals.
Collapse
Affiliation(s)
- Chun-xi Li
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meng Lv
- Department of Oncology, Medical Center for Overseas Patient, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-yue Liu
- Department of laboratory medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yan-xia Lin
- Hospital Infection-Control Department, Shenzhen University General Hospital, Shenzhen, China
| | - Jian-bing Pan
- Department of Respiratory Medicine, Meizhou People's Hospital, Meizhou, China
| | - Chang-xuan You
- Department of Oncology, Medical Center for Overseas Patient, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Su
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Combs MP, Luth JE, Falkowski NR, Wheeler DS, Walker NM, Erb-Downward JR, Wakeam E, Sjoding MW, Dunlap DG, Admon AJ, Dickson RP, Lama VN. The Lung Microbiome Predicts Mortality and Response to Azithromycin in Lung Transplant Recipients with Chronic Rejection. Am J Respir Crit Care Med 2024; 209:1360-1375. [PMID: 38271553 PMCID: PMC11146567 DOI: 10.1164/rccm.202308-1326oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024] Open
Abstract
Rationale: Chronic lung allograft dysfunction (CLAD) is the leading cause of death after lung transplant, and azithromycin has variable efficacy in CLAD. The lung microbiome is a risk factor for developing CLAD, but the relationship between lung dysbiosis, pulmonary inflammation, and allograft dysfunction remains poorly understood. Whether lung microbiota predict outcomes or modify treatment response after CLAD is unknown. Objectives: To determine whether lung microbiota predict post-CLAD outcomes and clinical response to azithromycin. Methods: Retrospective cohort study using acellular BAL fluid prospectively collected from recipients of lung transplant within 90 days of CLAD onset. Lung microbiota were characterized using 16S rRNA gene sequencing and droplet digital PCR. In two additional cohorts, causal relationships of dysbiosis and inflammation were evaluated by comparing lung microbiota with CLAD-associated cytokines and measuring ex vivo P. aeruginosa growth in sterilized BAL fluid. Measurements and Main Results: Patients with higher bacterial burden had shorter post-CLAD survival, independent of CLAD phenotype, azithromycin treatment, and relevant covariates. Azithromycin treatment improved survival in patients with high bacterial burden but had negligible impact on patients with low or moderate burden. Lung bacterial burden was positively associated with CLAD-associated cytokines, and ex vivo growth of P. aeruginosa was augmented in BAL fluid from transplant recipients with CLAD. Conclusions: In recipients of lung transplants with chronic rejection, increased lung bacterial burden is an independent risk factor for mortality and predicts clinical response to azithromycin. Lung bacterial dysbiosis is associated with alveolar inflammation and may be promoted by underlying lung allograft dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elliot Wakeam
- Division of Thoracic Surgery, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Michael W. Sjoding
- Division of Pulmonary and Critical Care and
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, Michigan
| | - Daniel G. Dunlap
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew J. Admon
- Division of Pulmonary and Critical Care and
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, Michigan
| | - Robert P. Dickson
- Division of Pulmonary and Critical Care and
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, Michigan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan; and
| | - Vibha N. Lama
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
9
|
McGinniss J. Definitions of Dysbiosis in Chronic Lung Allograft Dysfunction and High Bacterial Biomass. Am J Respir Crit Care Med 2024; 209:1296-1298. [PMID: 38536158 PMCID: PMC11146569 DOI: 10.1164/rccm.202402-0451ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Affiliation(s)
- John McGinniss
- Respiratory and Immunology Research Unit GSK Research & Development Collegeville, Pennsylvania
| |
Collapse
|
10
|
Fukihara J, Sakamoto K, Ikeyama Y, Furukawa T, Teramachi R, Kataoka K, Kondoh Y, Hashimoto N, Ishii M. Mitochondrial DNA in bronchoalveolar lavage fluid is associated with the prognosis of idiopathic pulmonary fibrosis: a single cohort study. Respir Res 2024; 25:202. [PMID: 38730452 PMCID: PMC11083749 DOI: 10.1186/s12931-024-02828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Extracellular mitochondrial DNA (mtDNA) is released from damaged cells and increases in the serum and bronchoalveolar lavage fluid (BALF) of idiopathic pulmonary fibrosis (IPF) patients. While increased levels of serum mtDNA have been reported to be linked to disease progression and the future development of acute exacerbation (AE) of IPF (AE-IPF), the clinical significance of mtDNA in BALF (BALF-mtDNA) remains unclear. We investigated the relationships between BALF-mtDNA levels and other clinical variables and prognosis in IPF. METHODS Extracellular mtDNA levels in BALF samples collected from IPF patients were determined using droplet-digital PCR. Levels of extracellular nucleolar DNA in BALF (BALF-nucDNA) were also determined as a marker for simple cell collapse. Patient characteristics and survival information were retrospectively reviewed. RESULTS mtDNA levels in serum and BALF did not correlate with each other. In 27 patients with paired BALF samples obtained in a stable state and at the time of AE diagnosis, BALF-mtDNA levels were significantly increased at the time of AE. Elevated BALF-mtDNA levels were associated with inflammation or disordered pulmonary function in a stable state (n = 90), while being associated with age and BALF-neutrophils at the time of AE (n = 38). BALF-mtDNA ≥ 4234.3 copies/µL in a stable state (median survival time (MST): 42.4 vs. 79.6 months, p < 0.001) and ≥ 11,194.3 copies/µL at the time of AE (MST: 2.6 vs. 20.0 months, p = 0.03) were associated with shorter survival after BALF collection, even after adjusting for other known prognostic factors. On the other hand, BALF-nucDNA showed different trends in correlation with other clinical variables and did not show any significant association with survival time. CONCLUSIONS Elevated BALF-mtDNA was associated with a poor prognosis in both IPF and AE-IPF. Of note, at the time of AE, it sharply distinguished survivors from non-survivors. Given the trends shown by analyses for BALF-nucDNA, the elevation of BALF-mtDNA might not simply reflect the impact of cell collapse. Further studies are required to explore the underlying mechanisms and clinical applications of BALF-mtDNA in IPF.
Collapse
Affiliation(s)
- Jun Fukihara
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, Japan
| | - Koji Sakamoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, Japan.
| | - Yoshiki Ikeyama
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, Japan
| | - Taiki Furukawa
- Medical IT Center, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Ryo Teramachi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, Japan
| | - Kensuke Kataoka
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Makoto Ishii
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, Japan
| |
Collapse
|
11
|
O’Dwyer DN, Kim JS, Ma SF, Ranjan P, Das P, Lipinski JH, Metcalf JD, Falkowski NR, Yow E, Anstrom K, Dickson RP, Huang Y, Gilbert JA, Martinez FJ, Noth I. Commensal Oral Microbiota, Disease Severity, and Mortality in Fibrotic Lung Disease. Am J Respir Crit Care Med 2024; 209:1101-1110. [PMID: 38051927 PMCID: PMC11092942 DOI: 10.1164/rccm.202308-1357oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023] Open
Abstract
Rationale: Oral microbiota associate with diseases of the mouth and serve as a source of lung microbiota. However, the role of oral microbiota in lung disease is unknown. Objectives: To determine associations between oral microbiota and disease severity and death in idiopathic pulmonary fibrosis (IPF). Methods: We analyzed 16S rRNA gene and shotgun metagenomic sequencing data of buccal swabs from 511 patients with IPF in the multicenter CleanUP-IPF (Study of Clinical Efficacy of Antimicrobial Therapy Strategy Using Pragmatic Design in IPF) trial. Buccal swabs were collected from usual care and antimicrobial cohorts. Microbiome data were correlated with measures of disease severity using principal component analysis and linear regression models. Associations between the buccal microbiome and mortality were determined using Cox additive models, Kaplan-Meier analysis, and Cox proportional hazards models. Measurements and Main Results: Greater buccal microbial diversity associated with lower FVC at baseline (mean difference, -3.60; 95% confidence interval [CI], -5.92 to -1.29% predicted FVC per 1-unit increment). The buccal proportion of Streptococcus correlated positively with FVC (mean difference, 0.80; 95% CI, 0.16 to 1.43% predicted per 10% increase) (n = 490). Greater microbial diversity was associated with an increased risk of death (hazard ratio, 1.73; 95% CI, 1.03-2.90), whereas a greater proportion of Streptococcus was associated with a reduced risk of death (HR, 0.85; 95% CI, 0.73 to 0.99). The Streptococcus genus was mainly composed of Streptococcus mitis species. Conclusions: Increasing buccal microbial diversity predicts disease severity and death in IPF. The oral commensal S. mitis spp associates with preserved lung function and improved survival.
Collapse
Affiliation(s)
- David N. O’Dwyer
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - John S. Kim
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Shwu-Fan Ma
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Piyush Ranjan
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Promi Das
- Department of Pediatrics, University of California San Diego, San Diego, California
| | - Jay H. Lipinski
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Joseph D. Metcalf
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Nicole R. Falkowski
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Eric Yow
- Department of Biostatistics, Duke University, Durham, North Carolina
| | - Kevin Anstrom
- Department of Biostatistics, University of North Carolina–Chapel Hill Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Robert P. Dickson
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, Michigan; and
| | - Yong Huang
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jack A. Gilbert
- Department of Pediatrics, University of California San Diego, San Diego, California
| | | | - Imre Noth
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
12
|
King A. Exploring the lung microbiome's role in disease. Nature 2024:10.1038/d41586-024-01123-3. [PMID: 38632423 DOI: 10.1038/d41586-024-01123-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
|
13
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Zheng L, Liu C, Wang H, Zhang J, Mao L, Dong X, Hu S, Li N, Pi D, Qiu J, Xu F, Chen C, Zou Z. Intact lung tissue and bronchoalveolar lavage fluid are both suitable for the evaluation of murine lung microbiome in acute lung injury. MICROBIOME 2024; 12:56. [PMID: 38494479 PMCID: PMC10946114 DOI: 10.1186/s40168-024-01772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/30/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Accumulating clinical evidence suggests that lung microbiome is closely linked to the progression of pulmonary diseases; however, it is still controversial which specimen type is preferred for the evaluation of lung microbiome. METHODS AND RESULTS To address this issue, we established a classical acute lung injury (ALI) mice model by intratracheal instillation of lipopolysaccharides (LPS). We found that the bacterial DNA obtained from the bronchoalveolar lavage fluid (BALF), intact lung tissue [Lung(i)], lung tissue after perfused [Lung(p)], and feces of one mouse were enough for 16S rRNA sequencing, except the BALF of mice treated with phosphate buffer saline (PBS), which might be due to the biomass of lung microbiome in the BALF were upregulated in the mice treated with LPS. Although the alpha diversity among the three specimens from lungs had minimal differences, Lung(p) had higher sample-to-sample variation compared with BALF and Lung(i). Consistently, PCoA analysis at phylum level indicated that BALF was similar to Lung(i), but not Lung(p), in the lungs of mice treated with LPS, suggesting that BALF and Lung(i) were suitable for the evaluation of lung microbiome in ALI. Importantly, Actinobacteria and Firmicutes were identified as the mostly changed phyla in the lungs and might be important factors involved in the gut-lung axis in ALI mice. Moreover, Actinobacteria and Proteobacteria might play indicative roles in the severity of lung injury. CONCLUSION This study shows both Lung(i) and BALF are suitable for the evaluation of murine lung microbiome in ALI, and several bacterial phyla, such as Actinobacteria, may serve as potential biomarkers for the severity of ALI. Video Abstract.
Collapse
Affiliation(s)
- Lijun Zheng
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chengjun Liu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Hongjing Wang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing, 400016, People's Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaomei Dong
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Siyao Hu
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Na Li
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dandan Pi
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Research Center for Environment and Human Health, School of Public Health, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
15
|
Lian Q, Song X, Yang J, Wang L, Xu P, Wang X, Xu X, Yang B, He J, Ju C. Alterations of lung microbiota in lung transplant recipients with pneumocystis jirovecii pneumonia. Respir Res 2024; 25:125. [PMID: 38486264 PMCID: PMC10941442 DOI: 10.1186/s12931-024-02755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Increasing evidence revealed that lung microbiota dysbiosis was associated with pulmonary infection in lung transplant recipients (LTRs). Pneumocystis jirovecii (P. jirovecii) is an opportunistic fungal pathogen that frequently causes lethal pneumonia in LTRs. However, the lung microbiota in LTRs with P. jirovecii pneumonia (PJP) remains unknow. METHODS In this prospective observational study, we performed metagenomic next-generation sequencing (mNGS) on 72 bronchoalveolar lavage fluid (BALF) samples from 61 LTRs (20 with PJP, 22 with PJC, 19 time-matched stable LTRs, and 11 from LTRs after PJP recovery). We compared the lung microbiota composition of LTRs with and without P. jirovecii, and analyzed the related clinical variables. RESULTS BALFs collected at the episode of PJP showed a more discrete distribution with a lower species diversity, and microbiota composition differed significantly compared to P. jirovecii colonization (PJC) and control group. Human gammaherpesvirus 4, Phreatobacter oligotrophus, and Pseudomonas balearica were the differential microbiota species between the PJP and the other two groups. The network analysis revealed that most species had a positive correlation, while P. jirovecii was correlated negatively with 10 species including Acinetobacter venetianus, Pseudomonas guariconensis, Paracandidimonas soli, Acinetobacter colistiniresistens, and Castellaniella defragrans, which were enriched in the control group. The microbiota composition and diversity of BALF after PJP recovery were also different from the PJP and control groups, while the main components of the PJP recovery similar to control group. Clinical variables including age, creatinine, total protein, albumin, IgG, neutrophil, lymphocyte, CD3+CD45+, CD3+CD4+ and CD3+CD8+ T cells were deeply implicated in the alterations of lung microbiota in LTRs. CONCLUSIONS This study suggests that LTRs with PJP had altered lung microbiota compared to PJC, control, and after recovery groups. Furthermore, lung microbiota is related to age, renal function, nutritional and immune status in LTRs.
Collapse
Affiliation(s)
- Qiaoyan Lian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Organ transplantation, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, Guangdong, P.R. China
| | - Xiuling Song
- Vision Medicals Co., Ltd, 510700, Guangzhou, Guangdong, P.R. China
| | - Juhua Yang
- Vision Medicals Co., Ltd, 510700, Guangzhou, Guangdong, P.R. China
| | - Lulin Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Organ transplantation, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, Guangdong, P.R. China
| | - Peihang Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Organ transplantation, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, Guangdong, P.R. China
| | - Xiaohua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Organ transplantation, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, Guangdong, P.R. China
| | - Xin Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Organ transplantation, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, Guangdong, P.R. China
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, Guangdong, P.R. China
| | - Bin Yang
- Vision Medicals Co., Ltd, 510700, Guangzhou, Guangdong, P.R. China
| | - Jianxing He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Organ transplantation, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, Guangdong, P.R. China.
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, Guangdong, P.R. China.
| | - Chunrong Ju
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Organ transplantation, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
16
|
Chan M, Ghadieh C, Irfan I, Khair E, Padilla N, Rebeiro S, Sidgreaves A, Patravale V, Disouza J, Catanzariti R, Pont L, Williams K, De Rubis G, Mehndiratta S, Dhanasekaran M, Dua K. Exploring the influence of the microbiome on the pharmacology of anti-asthmatic drugs. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:751-762. [PMID: 37650889 PMCID: PMC10791706 DOI: 10.1007/s00210-023-02681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
The microbiome is increasingly implicated in playing a role in physiology and pharmacology; in this review, we investigate the literature on the possibility of bacterial influence on the pharmacology of anti-asthmatic drugs, and the potential impact this has on asthmatic patients. Current knowledge in this area of research reveals an interaction between the gut and lung microbiome and the development of asthma. The influence of microbiome on the pharmacokinetics and pharmacodynamics of anti-asthmatic drugs is limited; however, understanding this interaction will assist in creating a more efficient treatment approach. This literature review highlighted that bioaccumulation and biotransformation in the presence of certain gut bacterial strains could affect drug metabolism in anti-asthmatic drugs. Furthermore, the bacterial richness in the lungs and the gut can influence drug efficacy and could also play a role in drug response. The implications of the above findings suggest that the microbiome is a contributing factor to an individuals' pharmacological response to anti-asthmatic drugs. Hence, future directions for research should follow investigating how these processes affect asthmatic patients and consider the role of the microbiome on drug efficacy and modify treatment guidelines accordingly.
Collapse
Affiliation(s)
- Michael Chan
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Chloe Ghadieh
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Isphahan Irfan
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Eamen Khair
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Natasha Padilla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sanshya Rebeiro
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Annabel Sidgreaves
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Maharashtra, 416113, India
| | - Rachelle Catanzariti
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Lisa Pont
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kylie Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Sydney, Australia
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Sydney, Australia
| | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Sydney, Australia.
| |
Collapse
|
17
|
Yu Y, Kim YH, Cho WH, Kim D, So MW, Son BS, Yeo HJ. Unique Changes in the Lung Microbiome following the Development of Chronic Lung Allograft Dysfunction. Microorganisms 2024; 12:287. [PMID: 38399691 PMCID: PMC10893466 DOI: 10.3390/microorganisms12020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The importance of lung microbiome changes in developing chronic lung allograft dysfunction (CLAD) after lung transplantation is poorly understood. The lung microbiome-immune interaction may be critical in developing CLAD. In this context, examining alterations in the microbiome and immune cells of the lungs following CLAD, in comparison to the lung condition immediately after transplantation, can offer valuable insights. Four adult patients who underwent lung retransplantation between January 2019 and June 2020 were included in this study. Lung tissues were collected from the same four individuals at two different time points: at the time of the first transplant and at the time of the explantation of CLAD lungs at retransplantation due to CLAD. We analyzed whole-genome sequencing using the Kraken2 algorithm and quantified the cell fractionation from the bulk tissue gene expression profile for each lung tissue. Finally, we compared the differences in lung microbiome and immune cells between the lung tissues of these two time points. The median age of the recipients was 57 years, and most (75%) had undergone lung transplants for idiopathic pulmonary fibrosis. All patients were administered basiliximab for induction therapy and were maintained on three immunosuppressants. The median CLAD-free survival term was 693.5 days, and the median time to redo the lung transplant was 843.5 days. Bacterial diversity was significantly lower in the CLAD lungs than at transplantation. Bacterial diversity tended to decrease according to the severity of the CLAD. Aerococcus, Caldiericum, Croceibacter, Leptolyngbya, and Pulveribacter genera were uniquely identified in CLAD, whereas no taxa were identified in lungs at transplantation. In particular, six taxa, including Croceibacter atlanticus, Caldiserium exile, Dolichospermum compactum, Stappia sp. ES.058, Kinetoplastibacterium sorsogonicusi, and Pulveribacter suum were uniquely detected in CLAD. Among immune cells, CD8+ T cells were significantly increased, while neutrophils were decreased in the CLAD lung. In conclusion, unique changes in lung microbiome and immune cell composition were confirmed in lung tissue after CLAD compared to at transplantation.
Collapse
Affiliation(s)
- Yeuni Yu
- Biomedical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Yun Hak Kim
- Department of Anatomy and Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Woo Hyun Cho
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea;
| | - Dohyung Kim
- Department of Thoracic and Cardiovascular Surgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea;
| | - Min Wook So
- Division of Rheumatology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea;
| | - Bong Soo Son
- Department of Thoracic and Cardiovascular Surgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea;
| | - Hye Ju Yeo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea;
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
18
|
Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther 2024; 9:19. [PMID: 38228603 PMCID: PMC10791971 DOI: 10.1038/s41392-023-01722-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
The lungs were long thought to be sterile until technical advances uncovered the presence of the lung microbial community. The microbiome of healthy lungs is mainly derived from the upper respiratory tract (URT) microbiome but also has its own characteristic flora. The selection mechanisms in the lung, including clearance by coughing, pulmonary macrophages, the oscillation of respiratory cilia, and bacterial inhibition by alveolar surfactant, keep the microbiome transient and mobile, which is different from the microbiome in other organs. The pulmonary bacteriome has been intensively studied recently, but relatively little research has focused on the mycobiome and virome. This up-to-date review retrospectively summarizes the lung microbiome's history, composition, and function. We focus on the interaction of the lung microbiome with the oropharynx and gut microbiome and emphasize the role it plays in the innate and adaptive immune responses. More importantly, we focus on multiple respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), fibrosis, bronchiectasis, and pneumonia. The impact of the lung microbiome on coronavirus disease 2019 (COVID-19) and lung cancer has also been comprehensively studied. Furthermore, by summarizing the therapeutic potential of the lung microbiome in lung diseases and examining the shortcomings of the field, we propose an outlook of the direction of lung microbiome research.
Collapse
Affiliation(s)
- Ruomeng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
Willis KA, Silverberg M, Martin I, Abdelgawad A, Karabayir I, Halloran BA, Myers ED, Desai JP, White CT, Lal CV, Ambalavanan N, Peters BM, Jain VG, Akbilgic O, Tipton L, Jilling T, Cormier SA, Pierre JF, Talati AJ. The fungal intestinal microbiota predict the development of bronchopulmonary dysplasia in very low birthweight newborns. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.29.23290625. [PMID: 37398134 PMCID: PMC10312873 DOI: 10.1101/2023.05.29.23290625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
RATIONALE Bronchopulmonary dysplasia (BPD) is the most common morbidity affecting very preterm infants. Gut fungal and bacterial microbial communities contribute to multiple lung diseases and may influence BPD pathogenesis. METHODS We performed a prospective, observational cohort study comparing the multikingdom fecal microbiota of 144 preterm infants with or without moderate to severe BPD by sequencing the bacterial 16S and fungal ITS2 ribosomal RNA gene. To address the potential causative relationship between gut dysbiosis and BPD, we used fecal microbiota transplant in an antibiotic-pseudohumanized mouse model. Comparisons were made using RNA sequencing, confocal microscopy, lung morphometry, and oscillometry. RESULTS We analyzed 102 fecal microbiome samples collected during the second week of life. Infants who later developed BPD showed an obvious fungal dysbiosis as compared to infants without BPD (NoBPD, p = 0.0398, permutational multivariate ANOVA). Instead of fungal communities dominated by Candida and Saccharomyces, the microbiota of infants who developed BPD were characterized by a greater diversity of rarer fungi in less interconnected community architectures. On successful colonization, the gut microbiota from infants with BPD augmented lung injury in the offspring of recipient animals. We identified alterations in the murine intestinal microbiome and transcriptome associated with augmented lung injury. CONCLUSIONS The gut fungal microbiome of infants who will develop BPD is dysbiotic and may contribute to disease pathogenesis.
Collapse
|
20
|
Watanabe T, Juvet SC, Berra G, Havlin J, Zhong W, Boonstra K, Daigneault T, Horie M, Konoeda C, Teskey G, Guan Z, Hwang DM, Liu M, Keshavjee S, Martinu T. Donor IL-17 receptor A regulates LPS-potentiated acute and chronic murine lung allograft rejection. JCI Insight 2023; 8:e158002. [PMID: 37937643 PMCID: PMC10721268 DOI: 10.1172/jci.insight.158002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/15/2023] [Indexed: 11/09/2023] Open
Abstract
Chronic lung allograft dysfunction (CLAD) is a major complication after lung transplantation that results from a complex interplay of innate inflammatory and alloimmune factors, culminating in parenchymal and/or obliterative airway fibrosis. Excessive IL-17A signaling and chronic inflammation have been recognized as key factors in these pathological processes. Herein, we developed a model of repeated airway inflammation in mouse minor alloantigen-mismatched single-lung transplantation. Repeated intratracheal LPS instillations augmented pulmonary IL-17A expression. LPS also increased acute rejection, airway epithelial damage, and obliterative airway fibrosis, similar to human explanted lung allografts with antecedent episodes of airway infection. We then investigated the role of donor and recipient IL-17 receptor A (IL-17RA) in this context. Donor IL-17RA deficiency significantly attenuated acute rejection and CLAD features, whereas recipient IL-17RA deficiency only slightly reduced airway obliteration in LPS allografts. IL-17RA immunofluorescence positive staining was greater in human CLAD lungs compared with control human lung specimens, with localization to fibroblasts and myofibroblasts, which was also seen in mouse LPS allografts. Taken together, repeated airway inflammation after lung transplantation caused local airway epithelial damage, with persistent elevation of IL-17A and IL-17RA expression and particular involvement of IL-17RA on donor structural cells in development of fibrosis.
Collapse
Affiliation(s)
- Tatsuaki Watanabe
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
| | - Stephen C. Juvet
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gregory Berra
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
| | - Jan Havlin
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Wenshan Zhong
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
| | - Kristen Boonstra
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
| | - Tina Daigneault
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
| | | | - Chihiro Konoeda
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
| | - Grace Teskey
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
| | - Zehong Guan
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
| | - David M. Hwang
- Department of Pathology, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
- Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
- Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Tereza Martinu
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Abstract
Patients with chronic lung disease and lung transplantation have high rates of colonization and infection from multidrug-resistant (MDR) organisms. This article summarizes the current state of knowledge regarding phage therapy in the setting of lung transplantation. Phage therapy has been used in several lung transplant candidates and recipients on a compassionate use basis targeting mostly MDR gram-negative infections and atypical mycobacterial infections with demonstrated clinical safety. Phage biodistribution given intravenously or via nebulization has not been extensively studied, though preliminary data are presented. Phage interacts with both the innate and adaptive immune system; current literature demonstrates the development of serum neutralization in some cases of phage therapy, although the clinical impact seems variable. A summary of current clinical trials involving patients with chronic lung disease is presented, though none are specifically targeting lung transplant candidates or recipients. In addition to treatment of active infections, a variety of clinical scenarios may benefit from phage therapy, and well-designed clinical trials involving this vulnerable patient population are needed: pre- or peritransplantation use of phage in the setting of MDR organism colonization may lead to waitlisting of candidates currently declined by many centers, along with potential reduction of waitlist mortality rates and posttransplant infections; phage may be used for biofilm-related bronchial stent infections; and, finally, there is a possibility that phage use can affect allograft function and chronic rejection.
Collapse
Affiliation(s)
- Saima Aslam
- Center for Innovative Phage Applications and Therapeutics, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
22
|
Xie X, Zhao Z, Wu Q. Current Status and Trends in Lung Transplant Research Funded by the National Natural Science Foundation of China. EXP CLIN TRANSPLANT 2023; 21:893-900. [PMID: 38140933 DOI: 10.6002/ect.2023.0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
OBJECTIVES This study aimed to analyze research projects on lung transplant funded by the National Natural Science Foundation of China from 1986 to 2022 and to provide a scientific reference for lung transplant research. MATERIALS AND METHODS We identified research hotspots and frontiers in the field of lung transplant research using CiteSpace visualization. RESULTS From 1986 to 2022, the National Natural Science Foundation of China funded 93 projects related to lung transplant, with an average of 2.51 projects and ¥0.94 million annually. The National Natural Science Foundation of China funded 30 institutions across 20 provinces, with general and youth science foundation projects comprising 45.16% and 41.93% of the total projects, respectively. The main categories of disciplines included H0113 respiratory intervention, tracheal reconstruction, and lung transplantation; H1105 organ transplantation and transplant immunization; and H0109 acute lung injury and acute respiratory distress syndrome. The research hotspots mainly included ischemia-reperfusion injury, gene regulation, obliterative bronchiolitis, rejection reaction, T cells, and stem cells. The 6 main research clusters were ischemia-reperfusion injury, immune tolerance, obliterative bronchiolitis, stem cells, pulmonary fibrosis, and rejection reaction. The main key word bursts in the past 5 years were "vein endothelial" and "ex vivo lung perfusion." CONCLUSIONS In the past 37 years, National Natural Science Foundation of China-funded projects have significantly advanced the clinical application and basic research of lung transplantation. However, compared with developed countries and other solidorgan transplantations, several problems still require attention and improvements in lung transplant research in China.
Collapse
Affiliation(s)
- Xianyu Xie
- From the Department of Medical Administration, Fujian Medical University Union Hospital, Fuzhou CitY, China
| | | | | |
Collapse
|
23
|
Wijbenga N, de Jong NL, Hoek RA, Mathot BJ, Seghers L, Aerts JG, Bos D, Manintveld OC, Hellemons ME. Detection of Bacterial Colonization in Lung Transplant Recipients Using an Electronic Nose. Transplant Direct 2023; 9:e1533. [PMID: 37745948 PMCID: PMC10513211 DOI: 10.1097/txd.0000000000001533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/26/2023] Open
Abstract
Background Bacterial colonization (BC) of the lower airways is common in lung transplant recipients (LTRs) and increases the risk of chronic lung allograft dysfunction. Diagnosis often requires bronchoscopy. Exhaled breath analysis using electronic nose (eNose) technology may noninvasively detect BC in LTRs. Therefore, we aimed to assess the diagnostic accuracy of an eNose to detect BC in LTRs. Methods We performed a cross-sectional analysis within a prospective, single-center cohort study assessing the diagnostic accuracy of detecting BC using eNose technology in LTRs. In the outpatient clinic, consecutive LTR eNose measurements were collected. We assessed and classified the eNose measurements for the presence of BC. Using supervised machine learning, the diagnostic accuracy of eNose for BC was assessed in a random training and validation set. Model performance was evaluated using receiver operating characteristic analysis. Results In total, 161 LTRs were included with 80 exclusions because of various reasons. Of the remaining 81 patients, 16 (20%) were classified as BC and 65 (80%) as non-BC. eNose-based classification of patients with and without BC provided an area under the curve of 0.82 in the training set and 0.97 in the validation set. Conclusions Exhaled breath analysis using eNose technology has the potential to noninvasively detect BC.
Collapse
Affiliation(s)
- Nynke Wijbenga
- Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Nadine L.A. de Jong
- Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Educational Program Technical Medicine, Leiden University Medical Center, Delft University of Technology and Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rogier A.S. Hoek
- Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Bas J. Mathot
- Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Leonard Seghers
- Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Joachim G.J.V. Aerts
- Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Daniel Bos
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Olivier C. Manintveld
- Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Cardiology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Merel E. Hellemons
- Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
24
|
Qin J, Hu C, Cao X, Gao J, Chen Y, Yan M, Chen J. Development and validation of a nomogram model to predict primary graft dysfunction in patients after lung transplantation based on the clinical factors. Clin Transplant 2023; 37:e15039. [PMID: 37256785 DOI: 10.1111/ctr.15039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Primary graft dysfunction (PGD), a significant complication that can affect patients' prognosis and quality of life, develops within 72 h post lung transplantation (LTx). Early detection and prevention of PGD should be given special consideration. The purpose of this study was to create a clinical prediction model to forecast the occurrence of PGD. METHODS We collected information on 622 LTx patients from Wuxi People's Hospital from 2016 to 2020 and used the data to construct the prediction model. Information on 224 patients from 2021 to June 2022 was used for external validation. We used LASSO regression for variable screening. A nomogram was developed for model presentation. Distinctness, fit, and calibration were used to evaluate the performance of the model. RESULTS Subjects with respiratory failure, who received fresh frozen plasma, donor age, donor gender, donor mechanism of death, donor smoking, donor ventilator use time, and donor PaO 2/FiO 2 ratio were independent predictor variables for the occurrence of PGD. The area under the curve of the nomogram was .779. The Hosmer-Lemeshow test showed a good model fit (P = .158). The calibration curve of the nomogram is fairly close to the ideal diagonal. Moreover, the decision curve analysis revealed a positive net benefit of the model. External validation also confirmed the reliability of the model. CONCLUSIONS The nomogram of PGD based on clinical risk factors in postoperative LTx patients was established with high reliability. It provides clinicians and nurses with a new and effective tool for early prediction of PGD and early intervention.
Collapse
Affiliation(s)
- Jianan Qin
- School of Nursing, Fudan University, Shanghai, China
- Operation Department, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Chunxiao Hu
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xiaodong Cao
- Department of Nursing, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jian Gao
- Department of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Chen
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Meiqiong Yan
- Department of Nursing, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingyu Chen
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
25
|
Wu J, Li C, Gao P, Zhang C, Zhang P, Zhang L, Dai C, Zhang K, Shi B, Liu M, Zheng J, Pan B, Chen Z, Zhang C, Liao W, Pan W, Fang W, Chen C. Intestinal microbiota links to allograft stability after lung transplantation: a prospective cohort study. Signal Transduct Target Ther 2023; 8:326. [PMID: 37652953 PMCID: PMC10471611 DOI: 10.1038/s41392-023-01515-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 09/02/2023] Open
Abstract
Whether the alternated microbiota in the gut contribute to the risk of allograft rejection (AR) and pulmonary infection (PI) in the setting of lung transplant recipients (LTRs) remains unexplored. A prospective multicenter cohort of LTRs was identified in the four lung transplant centers. Paired fecal and serum specimens were collected and divided into AR, PI, and event-free (EF) groups according to the diagnosis at sampling. Fecal samples were determined by metagenomic sequencing. And metabolites and cytokines were detected in the paired serum to analyze the potential effect of the altered microbiota community. In total, we analyzed 146 paired samples (AR = 25, PI = 43, and EF = 78). Notably, we found that the gut microbiome of AR followed a major depletion pattern with decreased 487 species and compositional diversity. Further multi-omics analysis showed depleted serum metabolites and increased inflammatory cytokines in AR and PI. Bacteroides uniformis, which declined in AR (2.4% vs 0.6%) and was negatively associated with serum IL-1β and IL-12, was identified as a driven specie in the network of gut microbiome of EF. Functionally, the EF specimens were abundant in probiotics related to mannose and cationic antimicrobial peptide metabolism. Furthermore, a support-vector machine classifier based on microbiome, metabolome, and clinical parameters highly predicted AR (AUPRC = 0.801) and PI (AUPRC = 0.855), whereby the microbiome dataset showed a particularly high diagnostic power. In conclusion, a disruptive gut microbiota showed a significant association with allograft rejection and infection and with systemic cytokines and metabolites in LTRs.
Collapse
Affiliation(s)
- Junqi Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Chongwu Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Peigen Gao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Lei Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Chenyang Dai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Kunpeng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Bowen Shi
- Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Mengyang Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junmeng Zheng
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhan Chen
- Adfontes (Shanghai) Bio-technology Co., Ltd, Shanghai, China
| | - Chao Zhang
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Wenjie Fang
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China.
| |
Collapse
|
26
|
Britton N, Villabona-Rueda A, Whiteside SA, Mathew J, Kelley M, Agbor-Enoh S, McDyer JF, Christie JD, Collman RG, Cox AL, Shah P, D'Alessio F. Pseudomonas-dominant microbiome elicits sustained IL-1β upregulation in alveolar macrophages from lung transplant recipients. J Heart Lung Transplant 2023; 42:1166-1174. [PMID: 37088343 PMCID: PMC10538944 DOI: 10.1016/j.healun.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/22/2023] [Accepted: 04/09/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Isolation of Pseudomonas aeruginosa (PsA) is associated with increased BAL (bronchoalveolar lavage) inflammation and lung allograft injury in lung transplant recipients (LTR). However, the effect of PsA on macrophage responses in this population is incompletely understood. We examined human alveolar macrophage (AMΦ) responses to PsA and Pseudomonas dominant microbiome in healthy LTR. METHODS We stimulated THP-1 derived macrophages (THP-1MΦ) and human AMΦ from LTR with different bacteria and LTR BAL derived microbiome characterized as Pseudomonas-dominant. Macrophage responses were assessed by high dimensional flow cytometry, including their intracellular production of cytokines (TNF-α, IL-6, IL-8, IL-1β, IL-10, IL-1RA, and TGF-β). Pharmacological inhibitors were utilized to evaluate the role of the inflammasome in PsA-macrophage interaction. RESULTS We observed upregulation of pro-inflammatory cytokines (TNF-α, IL-6, IL-8, IL-1β) following stimulation by PsA compared to other bacteria (Staphylococcus aureus (S.Aur), Prevotella melaninogenica, Streptococcus pneumoniae) in both THP-1MΦ and LTR AMΦ, predominated by IL-1β. IL-1β production from THP-1MΦ was sustained after PsA stimulation for up to 96 hours and 48 hours in LTR AMΦ. Treatment with the inflammasome inhibitor BAY11-7082 abrogated THP-1MΦ IL-1β production after PsA exposure. BAL Pseudomonas-dominant microbiota elicited an increased IL-1β, similar to PsA, an effect abrogated by the addition of antibiotics. CONCLUSION PsA and PsA-dominant lung microbiota induce sustained IL-1β production in LTR AMΦ. Pharmacological targeting of the inflammasome reduces PsA-macrophage-IL-1β responses, underscoring their use in lung transplant recipients.
Collapse
Affiliation(s)
- Noel Britton
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Andres Villabona-Rueda
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Samantha A Whiteside
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joby Mathew
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Matthew Kelley
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Sean Agbor-Enoh
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, Maryland; Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - John F McDyer
- Division of Pulmonary, Allergy, and Critical Care, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jason D Christie
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronald G Collman
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrea L Cox
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Pali Shah
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Franco D'Alessio
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
27
|
Ray A, Kale SL, Ramonell RP. Bridging the Gap between Innate and Adaptive Immunity in the Lung: Summary of the Aspen Lung Conference 2022. Am J Respir Cell Mol Biol 2023; 69:266-280. [PMID: 37043828 PMCID: PMC10503303 DOI: 10.1165/rcmb.2023-0057ws] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/12/2023] [Indexed: 04/14/2023] Open
Abstract
Although significant strides have been made in the understanding of pulmonary immunology, much work remains to be done to comprehensively explain coordinated immune responses in the lung. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic only served to highlight the inadequacy of current models of host-pathogen interactions and reinforced the need for current and future generations of immunologists to unravel complex biological questions. As part of that effort, the 64th Annual Thomas L. Petty Aspen Lung Conference was themed "Bridging the Gap between Innate and Adaptive Immunity in the Lung" and featured exciting work from renowned immunologists. This report summarizes the proceedings of the 2022 Aspen Lung Conference, which was convened to discuss the roles played by innate and adaptive immunity in disease pathogenesis, evaluate the interface between the innate and adaptive immune responses, assess the role of adaptive immunity in the development of autoimmunity and autoimmune lung disease, discuss lessons learned from immunologic cancer treatments and approaches, and define new paradigms to harness the immune system to prevent and treat lung diseases.
Collapse
Affiliation(s)
- Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sagar L. Kale
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Richard P. Ramonell
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| |
Collapse
|
28
|
Abstract
New methods and technologies within the field of lung biology are beginning to shed new light into the microbial world of the respiratory tract. Long considered to be a sterile environment, it is now clear that the human lungs are frequently exposed to live microbes and their by-products. The nature of the lung microbiome is quite distinct from other microbial communities inhabiting our bodies such as those in the gut. Notably, the microbiome of the lung exhibits a low biomass and is dominated by dynamic fluxes of microbial immigration and clearance, resulting in a bacterial burden and microbiome composition that is fluid in nature rather than fixed. As our understanding of the microbial ecology of the lung improves, it is becoming increasingly apparent that certain disease states can disrupt the microbial-host interface and ultimately affect disease pathogenesis. In this Review, we provide an overview of lower airway microbial dynamics in health and disease and discuss future work that is required to uncover novel therapeutic targets to improve lung health.
Collapse
|
29
|
Watanabe T, Lam C, Oliver J, Oishi H, Teskey G, Beber S, Boonstra K, Mauricio Umaña J, Buhari H, Joe B, Guan Z, Horie M, Keshavjee S, Martinu T, Juvet SC. Donor Batf3 inhibits murine lung allograft rejection and airway fibrosis. Mucosal Immunol 2023; 16:104-120. [PMID: 36842540 DOI: 10.1016/j.mucimm.2023.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 02/28/2023]
Abstract
Chronic lung allograft dysfunction (CLAD) limits survival after lung transplantation. Noxious stimuli entering the airways foster CLAD development. Classical dendritic cells (cDCs) link innate and adaptive immunity and exhibit regional and functional specialization in the lung. The transcription factor basic leucine zipper ATF-like 3 (BATF3) is absolutely required for the development of type 1 cDCs (cDC1s), which reside in the airway epithelium and have variable responses depending on the context. We studied the role of BATF3 in a mouse minor alloantigen-mismatched orthotopic lung transplant model of CLAD with and without airway inflammation triggered by repeated administration of intratracheal lipopolysaccharide (LPS). We found that cDC1s accumulated in allografts compared with isografts and that donor cDC1s were gradually replaced by recipient cDC1s. LPS administration increased the number of cDC1s and enhanced their state of activation. We found that Batf3-/- recipient mice experienced reduced acute rejection in response to LPS; in contrast, Batf3-/- donor grafts underwent enhanced lung and skin allograft rejection and drove augmented recipient cluster of differentiation 8+ T-cell expansion in the absence of LPS. Our findings suggest that donor and recipient cDC1s have differing and context-dependent roles and may represent a therapeutic target in lung transplantation.
Collapse
Affiliation(s)
- Tatsuaki Watanabe
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada; Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Christina Lam
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada
| | - Jillian Oliver
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada
| | - Hisashi Oishi
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada; Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Grace Teskey
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada
| | - Samuel Beber
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada
| | - Kristen Boonstra
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada
| | - Juan Mauricio Umaña
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada
| | - Hifza Buhari
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada
| | - Betty Joe
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada
| | - Zehong Guan
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada
| | - Miho Horie
- Joint Department of Medical Imaging, University Health Network, Toronto, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada
| | - Tereza Martinu
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada
| | - Stephen C Juvet
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada.
| |
Collapse
|
30
|
Marty PK, Yetmar ZA, Gerberi DJ, Escalante P, Pennington KM, Mahmood M. Risk factors and outcomes of non-tuberculous mycobacteria infection in lung transplant recipients: A systematic review and meta-analysis. J Heart Lung Transplant 2023; 42:264-274. [PMID: 36334962 DOI: 10.1016/j.healun.2022.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/23/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Patients with structural lung disease and immunocompromised status are at increased risk of pulmonary non-tuberculous mycobacteria (NTM) infection. However, literature on NTM in lung transplant recipients (LTR) is limited. We sought to systematically review the literature and perform a meta-analysis to examine associations with NTM disease and isolation in LTRs and their influence on mortality and chronic lung allograft dysfunction (CLAD). METHODS A literature search of MEDLINE and Embase was performed on February 23, 2022. NTM disease was defined according to international guidelines. Isolation was defined as any growth of NTM in culture. Odds ratios (OR) were pooled for risk factors of NTM disease or isolation, and hazard ratios (HR) were pooled for mortality or CLAD. RESULTS Eleven studies totaling 3,371 patients were eligible for inclusion, 10 of which underwent meta-analysis. Cystic fibrosis (OR 1.84, 95% confidence interval [CI] 1.03-3.30; I2 = 0%) and pre-transplant NTM isolation (OR 2.40, 95% CI 1.20-4.83; I2 = 0%) were associated with NTM disease. Only male sex was associated with NTM isolation (OR 1.45, 95% CI 1.01-2.10; I2 = 0%). NTM disease was associated with increased mortality (HR 2.69, 95% CI 1.70-4.26; I2 = 0%) and CLAD (HR 2.11, 95% CI 1.03-4.35; I2 = 44%). NTM isolation was not associated with mortality in pooled analysis or CLAD in 1 included study. CONCLUSIONS NTM disease, but not isolation, is associated with worse outcomes. Several factors were associated with development of NTM disease, including cystic fibrosis and pretransplant NTM isolation. Strategies to optimize prevention and treatment of NTM disease in lung transplant recipients are needed.
Collapse
Affiliation(s)
- Paige K Marty
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Zachary A Yetmar
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota
| | - Dana J Gerberi
- Mayo Clinic Libraries, Mayo Clinic, Rochester, Minnesota
| | - Patricio Escalante
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kelly M Pennington
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | - Maryam Mahmood
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
31
|
Biomarkers for Chronic Lung Allograft Dysfunction: Ready for Prime Time? Transplantation 2023; 107:341-350. [PMID: 35980878 PMCID: PMC9875844 DOI: 10.1097/tp.0000000000004270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chronic lung allograft dysfunction (CLAD) remains a major hurdle impairing lung transplant outcome. Parallel to the better clinical identification and characterization of CLAD and CLAD phenotypes, there is an increasing urge to find adequate biomarkers that could assist in the earlier detection and differential diagnosis of CLAD phenotypes, as well as disease prognostication. The current status and state-of-the-art of biomarker research in CLAD will be discussed with a particular focus on radiological biomarkers or biomarkers found in peripheral tissue, bronchoalveolar lavage' and circulating blood' in which significant progress has been made over the last years. Ultimately, although a growing number of biomarkers are currently being embedded in the follow-up of lung transplant patients, it is clear that one size does not fit all. The future of biomarker research probably lies in the rigorous combination of clinical information with findings in tissue, bronchoalveolar lavage' or blood. Only by doing so, the ultimate goal of biomarker research can be achieved, which is the earlier identification of CLAD before its clinical manifestation. This is desperately needed to improve the prognosis of patients with CLAD after lung transplantation.
Collapse
|
32
|
Banday MM, Rao SB, Shankar S, Khanday MA, Finan J, O'Neill E, Coppolino A, Seyfang A, Kumar A, Rinewalt DE, Goldberg HJ, Woolley A, Mallidi HR, Visner G, Gaggar A, Patel KN, Sharma NS. IL-33 mediates Pseudomonas induced airway fibrogenesis and is associated with CLAD. J Heart Lung Transplant 2023; 42:53-63. [PMID: 37014805 PMCID: PMC10260236 DOI: 10.1016/j.healun.2022.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Long term outcomes of lung transplantation are impacted by the occurrence of chronic lung allograft dysfunction (CLAD). Recent evidence suggests a role for the lung microbiome in the occurrence of CLAD, but the exact mechanisms are not well defined. We hypothesize that the lung microbiome inhibits epithelial autophagic clearance of pro-fibrotic proteins in an IL-33 dependent manner, thereby augmenting fibrogenesis and risk for CLAD. METHODS Autopsy derived CLAD and non-CLAD lungs were collected. IL-33, P62 and LC3 immunofluorescence was performed and assessed using confocal microscopy. Pseudomonas aeruginosa (PsA), Streptococcus Pneumoniae (SP), Prevotella Melaninogenica (PM), recombinant IL-33 or PsA-lipopolysaccharide was co-cultured with primary human bronchial epithelial cells (PBEC) and lung fibroblasts in the presence or absence of IL-33 blockade. Western blot analysis and quantitative reverse transcription (qRT) PCR was performed to evaluate IL-33 expression, autophagy, cytokines and fibroblast differentiation markers. These experiments were repeated after siRNA silencing and upregulation (plasmid vector) of Beclin-1. RESULTS Human CLAD lungs demonstrated markedly increased expression of IL-33 and reduced basal autophagy compared to non-CLAD lungs. Exposure of co-cultured PBECs to PsA, SP induced IL-33, and inhibited PBEC autophagy, while PM elicited no significant response. Further, PsA exposure increased myofibroblast differentiation and collagen formation. IL-33 blockade in these co-cultures recovered Beclin-1, cellular autophagy and attenuated myofibroblast activation in a Beclin-1 dependent manner. CONCLUSION CLAD is associated with increased airway IL-33 expression and reduced basal autophagy. PsA induces a fibrogenic response by inhibiting airway epithelial autophagy in an IL-33 dependent manner.
Collapse
Affiliation(s)
- Mudassir M Banday
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Shruthi Shankar
- University of South Florida, Morsani College of Medicine/Tampa General Hospital
| | | | - Jon Finan
- University of South Florida, Morsani College of Medicine/Tampa General Hospital
| | - Edward O'Neill
- University of South Florida, Morsani College of Medicine/Tampa General Hospital
| | - Antonio Coppolino
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andreas Seyfang
- University of South Florida, Morsani College of Medicine/Tampa General Hospital
| | - Archit Kumar
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel E Rinewalt
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hilary J Goldberg
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ann Woolley
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hari Reddy Mallidi
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gary Visner
- Boston Children's Hospital. Harvard Medical School
| | | | - Kapil N Patel
- University of South Florida, Morsani College of Medicine/Tampa General Hospital
| | - Nirmal S Sharma
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Boston VA Medical Center.
| |
Collapse
|
33
|
McGinniss JE, Whiteside SA, Deek RA, Simon-Soro A, Graham-Wooten J, Oyster M, Brown MD, Cantu E, Diamond JM, Li H, Christie JD, Bushman FD, Collman RG. The Lung Allograft Microbiome Associates with Pepsin, Inflammation, and Primary Graft Dysfunction. Am J Respir Crit Care Med 2022; 206:1508-1521. [PMID: 36103583 PMCID: PMC9757091 DOI: 10.1164/rccm.202112-2786oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022] Open
Abstract
Rationale: Primary graft dysfunction (PGD) is the principal cause of early morbidity and mortality after lung transplantation. The lung microbiome has been implicated in later transplantation outcomes but has not been investigated in PGD. Objectives: To define the peritransplant bacterial lung microbiome and relationship to host response and PGD. Methods: This was a single-center prospective cohort study. Airway lavage samples from donor lungs before organ procurement and recipient allografts immediately after implantation underwent bacterial 16S ribosomal ribonucleic acid gene sequencing. Recipient allograft samples were analyzed for cytokines by multiplex array and pepsin by ELISA. Measurements and Main Results: We enrolled 139 transplant subjects and obtained donor lung (n = 109) and recipient allograft (n = 136) samples. Severe PGD (persistent grade 3) developed in 15 subjects over the first 72 hours, and 40 remained without PGD (persistent grade 0). The microbiome of donor lungs differed from healthy lungs, and recipient allograft microbiomes differed from donor lungs. Development of severe PGD was associated with enrichment in the immediate postimplantation lung of oropharyngeal anaerobic taxa, particularly Prevotella. Elevated pepsin, a gastric biomarker, and a hyperinflammatory cytokine profile were present in recipient allografts in severe PGD and strongly correlated with microbiome composition. Together, immediate postimplantation allograft Prevotella/Streptococcus ratio, pepsin, and indicator cytokines were associated with development of severe PGD during the 72-hour post-transplantation period (area under the curve = 0.81). Conclusions: Lung allografts that develop PGD have a microbiome enriched in anaerobic oropharyngeal taxa, elevated gastric pepsin, and hyperinflammatory phenotype. These findings suggest a possible role for peritransplant aspiration in PGD, a potentially actionable mechanism that warrants further investigation.
Collapse
Affiliation(s)
- John E. McGinniss
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
| | | | | | - Aurea Simon-Soro
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
| | | | - Michelle Oyster
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
| | - Melanie D. Brown
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
| | | | - Joshua M. Diamond
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
| | - Hongzhe Li
- Department of Epidemiology, Biostatistics, and Informatics
| | - Jason D. Christie
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronald G. Collman
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
34
|
Affiliation(s)
- Alexa A. Pragman
- Infectious Disease SectionMinneapolis Veterans Affairs Health Care SystemMinneapolis, Minnesota,Division of Infectious Diseases and International MedicineUniversity of MinnesotaMinneapolis, Minnesota
| |
Collapse
|
35
|
Schneeberger PHH, Zhang CYK, Santilli J, Chen B, Xu W, Lee Y, Wijesinha Z, Reguera-Nuñez E, Yee N, Ahmed M, Boonstra K, Ramendra R, Frankel CW, Palmer SM, Todd JL, Martinu T, Coburn B. Lung Allograft Microbiome Association with Gastroesophageal Reflux, Inflammation, and Allograft Dysfunction. Am J Respir Crit Care Med 2022; 206:1495-1507. [PMID: 35876129 PMCID: PMC9757088 DOI: 10.1164/rccm.202110-2413oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rationale: It remains unclear how gastroesophageal reflux disease (GERD) affects allograft microbial community composition in lung transplant recipients and its impact on lung allograft inflammation and function. Objectives: Our objective was to compare the allograft microbiota in lung transplant recipients with or without clinically diagnosed GERD in the first year after transplant and assess associations between GERD, allograft microbiota, inflammation, and acute and chronic lung allograft dysfunction (ALAD and CLAD). Methods: A total of 268 BAL samples were collected from 75 lung transplant recipients at a single transplant center every 3 months after transplant for 1 year. Ten transplant recipients from a separate transplant center provided samples before and after antireflux Nissen fundoplication surgery. Microbial community composition and density were measured using 16S ribosomal RNA gene sequencing and quantitative polymerase chain reaction, respectively, and inflammatory markers and bile acids were quantified. Measurements and Main Results: We observed a range of allograft community composition with three discernible types (labeled community state types [CSTs] 1-3). Transplant recipients with GERD were more likely to have CST1, characterized by high bacterial density and relative abundance of the oropharyngeal colonizing genera Prevotella and Veillonella. GERD was associated with more frequent transitions to CST1. CST1 was associated with lower inflammatory cytokine concentrations than pathogen-dominated CST3 across the range of microbial densities observed. Cox proportional hazard models revealed associations between CST3 and the development of ALAD/CLAD. Nissen fundoplication decreased bacterial load and proinflammatory cytokines. Conclusions: GERD was associated with a high bacterial density, Prevotella- and Veillonella-dominated CST1. CST3, but not CST1 or GERD, was associated with inflammation and early development of ALAD and CLAD. Nissen fundoplication was associated with a reduction in microbial density in BAL fluid samples, especially the CST1-specific genus, Prevotella.
Collapse
Affiliation(s)
- Pierre H. H. Schneeberger
- Department of Medicine,,Department of Laboratory Medicine & Pathobiology, and,Department of Medicine and,Swiss Tropical and Public Health Institute, University of Basel, Allschwil, Switzerland; and
| | - Chen Yang Kevin Zhang
- Department of Medicine,,Department of Laboratory Medicine & Pathobiology, and,Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Jessica Santilli
- Department of Medicine,,Department of Laboratory Medicine & Pathobiology, and,Department of Medicine and
| | - Bo Chen
- Department of Biostatistics, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Youngho Lee
- Department of Medicine,,Department of Laboratory Medicine & Pathobiology, and,Department of Medicine and
| | - Zonelle Wijesinha
- Department of Medicine,,Department of Laboratory Medicine & Pathobiology, and,Department of Medicine and
| | - Elaine Reguera-Nuñez
- Department of Medicine,,Department of Laboratory Medicine & Pathobiology, and,Department of Medicine and
| | - Noelle Yee
- Department of Medicine,,Department of Laboratory Medicine & Pathobiology, and,Department of Medicine and
| | - Musawir Ahmed
- Department of Medicine and,Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Kristen Boonstra
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Rayoun Ramendra
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Courtney W. Frankel
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Scott M. Palmer
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jamie L. Todd
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Tereza Martinu
- Department of Medicine,,Department of Laboratory Medicine & Pathobiology, and,Department of Medicine and,Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Bryan Coburn
- Department of Medicine,,Department of Laboratory Medicine & Pathobiology, and,Department of Medicine and
| |
Collapse
|
36
|
Glanville AR, Mitchell AB. New Tools for Old Problems: Gastroesophageal Reflux Disease and the Lung Allograft Microbiome. Am J Respir Crit Care Med 2022; 206:1444-1445. [PMID: 35925015 PMCID: PMC9757095 DOI: 10.1164/rccm.202207-1446ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Allan R. Glanville
- The Lung Transplant UnitSt. Vincent’s HospitalSydney, New South Wales, Australia
| | | |
Collapse
|
37
|
Kullberg RFJ, de Brabander J, Boers LS, Biemond JJ, Nossent EJ, Heunks LMA, Vlaar APJ, Bonta PI, van der Poll T, Duitman J, Bos LDJ, Wiersinga WJ. Lung Microbiota of Critically Ill Patients with COVID-19 Are Associated with Nonresolving Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2022; 206:846-856. [PMID: 35616585 PMCID: PMC9799265 DOI: 10.1164/rccm.202202-0274oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/26/2022] [Indexed: 01/01/2023] Open
Abstract
Rationale: Bacterial lung microbiota are correlated with lung inflammation and acute respiratory distress syndrome (ARDS) and altered in severe coronavirus disease (COVID-19). However, the association between lung microbiota (including fungi) and resolution of ARDS in COVID-19 remains unclear. We hypothesized that increased lung bacterial and fungal burdens are related to nonresolving ARDS and mortality in COVID-19. Objectives: To determine the relation between lung microbiota and clinical outcomes of COVID-19-related ARDS. Methods: This observational cohort study enrolled mechanically ventilated patients with COVID-19. All patients had ARDS and underwent bronchoscopy with BAL. Lung microbiota were profiled using 16S rRNA gene sequencing and quantitative PCR targeting the 16S and 18S rRNA genes. Key features of lung microbiota (bacterial and fungal burden, α-diversity, and community composition) served as predictors. Our primary outcome was successful extubation adjudicated 60 days after intubation, analyzed using a competing risk regression model with mortality as competing risk. Measurements and Main Results: BAL samples of 114 unique patients with COVID-19 were analyzed. Patients with increased lung bacterial and fungal burden were less likely to be extubated (subdistribution hazard ratio, 0.64 [95% confidence interval, 0.42-0.97]; P = 0.034 and 0.59 [95% confidence interval, 0.42-0.83]; P = 0.0027 per log10 increase in bacterial and fungal burden, respectively) and had higher mortality (bacterial burden, P = 0.012; fungal burden, P = 0.0498). Lung microbiota composition was associated with successful extubation (P = 0.0045). Proinflammatory cytokines (e.g., tumor necrosis factor-α) were associated with the microbial burdens. Conclusions: Bacterial and fungal lung microbiota are related to nonresolving ARDS in COVID-19 and represent an important contributor to heterogeneity in COVID-19-related ARDS.
Collapse
Affiliation(s)
| | | | - Leonoor S. Boers
- Department of Intensive Care Medicine
- Laboratory of Experimental Intensive Care and Anesthesiology
| | | | | | | | - Alexander P. J. Vlaar
- Department of Intensive Care Medicine
- Laboratory of Experimental Intensive Care and Anesthesiology
| | | | - Tom van der Poll
- Center for Experimental and Molecular Medicine
- Division of Infectious Diseases, and
| | - JanWillem Duitman
- Department of Pulmonary Medicine
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Lieuwe D. J. Bos
- Department of Intensive Care Medicine
- Laboratory of Experimental Intensive Care and Anesthesiology
- Department of Pulmonary Medicine
| | - W. Joost Wiersinga
- Center for Experimental and Molecular Medicine
- Division of Infectious Diseases, and
| |
Collapse
|
38
|
Guohui J, Kun W, Dong T, Ji Z, Dong L, Dong W, Jingyu C. Microbiosis in lung allotransplantation and xenotransplantation: State of the art and future perspective. HEALTH CARE SCIENCE 2022; 1:119-128. [PMID: 38938886 PMCID: PMC11080722 DOI: 10.1002/hcs2.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/10/2022] [Accepted: 08/03/2022] [Indexed: 06/29/2024]
Abstract
The respiratory tract is known to harbor a microbial community including bacteria, viruses, and fungi. New techniques contribute enormously to the identification of unknown or culture-independent species and reveal the interaction of the community with the host immune system. The existing respiratory microbiome and substantial equilibrium of the transplanted microbiome from donor lung grafts provide an extreme bloom of dynamic changes in the microenvironment in lung transplantation (LT) recipients. Dysbiosis in grafts are not only related to the modified microbial components but also involve the kinetics of the host-graft "talk," which signifies the destination of graft allograft injury, acute rejection, infection, and chronic allograft dysfunction development in short- and long-term survival. Microbiome-derived factors may contribute to lung xenograft survival when using genetically multimodified pig-derived organs. Here, we review the most advanced knowledge of the dynamics and resilience of microbial communities in transplanted lungs with various pretransplant indications. Conceptual and analytical points of view have been illustrated along the time series, gaining insight into the microbiome and lung grafts. Future endeavors on precise tools, sophisticated models, and novel targeted regimens are needed to improve the long-term survival in these patients.
Collapse
Affiliation(s)
- Jiao Guohui
- Center for Medical Device Evaluation, NMPABeijingChina
| | - Wu Kun
- Center for Medical Device Evaluation, NMPABeijingChina
| | - Tian Dong
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduChina
| | - Zhang Ji
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiChina
| | - Liu Dong
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiChina
| | - Wei Dong
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiChina
| | - Chen Jingyu
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiChina
| |
Collapse
|
39
|
Lee IK, Jacome DA, Cho JK, Tu V, Young AJ, Dominguez T, Northrup JD, Etersque JM, Lee HS, Ruff A, Aklilu O, Bittinger K, Glaser LJ, Dorgan D, Hadjiliadis D, Kohli RM, Mach RH, Mankoff DA, Doot RK, Sellmyer MA. Imaging sensitive and drug-resistant bacterial infection with [11C]-trimethoprim. J Clin Invest 2022; 132:156679. [PMID: 36106638 PMCID: PMC9479701 DOI: 10.1172/jci156679] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/19/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Several molecular imaging strategies can identify bacterial infections in humans. PET affords the potential for sensitive infection detection deep within the body. Among PET-based approaches, antibiotic-based radiotracers, which often target key bacterial-specific enzymes, have considerable promise. One question for antibiotic radiotracers is whether antimicrobial resistance (AMR) reduces specific accumulation within bacteria, diminishing the predictive value of the diagnostic test. METHODS Using a PET radiotracer based on the antibiotic trimethoprim (TMP), [11C]-TMP, we performed in vitro uptake studies in susceptible and drug-resistant bacterial strains and whole-genome sequencing (WGS) in selected strains to identify TMP resistance mechanisms. Next, we queried the NCBI database of annotated bacterial genomes for WT and resistant dihydrofolate reductase (DHFR) genes. Finally, we initiated a first-in-human protocol of [11C]-TMP in patients infected with both TMP-sensitive and TMP-resistant organisms to demonstrate the clinical feasibility of the tool. RESULTS We observed robust [11C]-TMP uptake in our panel of TMP-sensitive and -resistant bacteria, noting relatively variable and decreased uptake in a few strains of P. aeruginosa and E. coli. WGS showed that the vast majority of clinically relevant bacteria harbor a WT copy of DHFR, targetable by [11C]-TMP, and that despite the AMR, these strains should be “imageable.” Clinical imaging of patients with [11C]-TMP demonstrated focal radiotracer uptake in areas of infectious lesions. CONCLUSION This work highlights an approach to imaging bacterial infection in patients, which could affect our understanding of bacterial pathogenesis as well as our ability to better diagnose infections and monitor response to therapy. TRIAL REGISTRATION ClinicalTrials.gov NCT03424525. FUNDING Institute for Translational Medicine and Therapeutics, Burroughs Wellcome Fund, NIH Office of the Director Early Independence Award (DP5-OD26386), and University of Pennsylvania NIH T32 Radiology Research Training Grant (5T32EB004311-12).
Collapse
Affiliation(s)
- Iris K. Lee
- Department of Radiology and
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Vincent Tu
- Department of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Jean M. Etersque
- Department of Radiology and
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | - Kyle Bittinger
- Department of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Laurel J. Glaser
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel Dorgan
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, and
| | - Denis Hadjiliadis
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, and
| | - Rahul M. Kohli
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Division of Infectious Disease, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | - Mark A. Sellmyer
- Department of Radiology and
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
Chotirmall SH, Bogaert D, Chalmers JD, Cox MJ, Hansbro PM, Huang YJ, Molyneaux PL, O’Dwyer DN, Pragman AA, Rogers GB, Segal LN, Dickson RP. Therapeutic Targeting of the Respiratory Microbiome. Am J Respir Crit Care Med 2022; 206:535-544. [PMID: 35549655 PMCID: PMC9716896 DOI: 10.1164/rccm.202112-2704pp] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | - Debby Bogaert
- Center for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, the Netherlands
| | - James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom
| | - Michael J. Cox
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Yvonne J. Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Philip L. Molyneaux
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - David N. O’Dwyer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Alexa A. Pragman
- Department of Medicine, Minneapolis Veterans Affairs Medical Center, Minneapolis, Minnesota
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Geraint B. Rogers
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Leopoldo N. Segal
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, New York; and
| | - Robert P. Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, Michigan
| |
Collapse
|
41
|
Yi X, Gao J, Wang Z. The human lung microbiome-A hidden link between microbes and human health and diseases. IMETA 2022; 1:e33. [PMID: 38868714 PMCID: PMC10989958 DOI: 10.1002/imt2.33] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/10/2022] [Accepted: 05/25/2022] [Indexed: 06/14/2024]
Abstract
Once thought to be sterile, the human lung is now well recognized to harbor a consortium of microorganisms collectively known as the lung microbiome. The lung microbiome is altered in an array of lung diseases, including chronic lung diseases such as chronic obstructive pulmonary disease, asthma, and bronchiectasis, acute lung diseases caused by pneumonia, sepsis, and COVID-19, and other lung complications such as those related to lung transplantation, lung cancer, and human immunodeficiency virus. The effects of lung microbiome in modulating host immunity and inflammation in the lung and distal organs are being elucidated. However, the precise mechanism by which members of microbiota produce structural ligands that interact with host genes and pathways remains largely uncharacterized. Multiple unique challenges, both technically and biologically, exist in the field of lung microbiome, necessitating the development of tailored experimental and analytical approaches to overcome the bottlenecks. In this review, we first provide an overview of the principles and methodologies in studying the lung microbiome. We next review current knowledge of the roles of lung microbiome in human diseases, highlighting mechanistic insights. We finally discuss critical challenges in the field and share our thoughts on broad topics for future investigation.
Collapse
Affiliation(s)
- Xinzhu Yi
- Institute of Ecological Sciences, School of Life SciencesSouth China Normal UniversityGuangzhouGuangdongChina
| | - Jingyuan Gao
- Institute of Ecological Sciences, School of Life SciencesSouth China Normal UniversityGuangzhouGuangdongChina
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life SciencesSouth China Normal UniversityGuangzhouGuangdongChina
| |
Collapse
|
42
|
Sen T, Thummer RP. The Impact of Human Microbiotas in Hematopoietic Stem Cell and Organ Transplantation. Front Immunol 2022; 13:932228. [PMID: 35874759 PMCID: PMC9300833 DOI: 10.3389/fimmu.2022.932228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
The human microbiota heavily influences most vital aspects of human physiology including organ transplantation outcomes and transplant rejection risk. A variety of organ transplantation scenarios such as lung and heart transplantation as well as hematopoietic stem cell transplantation is heavily influenced by the human microbiotas. The human microbiota refers to a rich, diverse, and complex ecosystem of bacteria, fungi, archaea, helminths, protozoans, parasites, and viruses. Research accumulating over the past decade has established the existence of complex cross-species, cross-kingdom interactions between the residents of the various human microbiotas and the human body. Since the gut microbiota is the densest, most popular, and most studied human microbiota, the impact of other human microbiotas such as the oral, lung, urinary, and genital microbiotas is often overshadowed. However, these microbiotas also provide critical and unique insights pertaining to transplantation success, rejection risk, and overall host health, across multiple different transplantation scenarios. Organ transplantation as well as the pre-, peri-, and post-transplant pharmacological regimens patients undergo is known to adversely impact the microbiotas, thereby increasing the risk of adverse patient outcomes. Over the past decade, holistic approaches to post-transplant patient care such as the administration of clinical and dietary interventions aiming at restoring deranged microbiota community structures have been gaining momentum. Examples of these include prebiotic and probiotic administration, fecal microbial transplantation, and bacteriophage-mediated multidrug-resistant bacterial decolonization. This review will discuss these perspectives and explore the role of different human microbiotas in the context of various transplantation scenarios.
Collapse
Affiliation(s)
| | - Rajkumar P. Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
43
|
Safety of Inhaled Amphotericin B Lipid Complex as Antifungal Prophylaxis in Lung Transplant Recipients. Antimicrob Agents Chemother 2022; 66:e0028322. [PMID: 35506698 DOI: 10.1128/aac.00283-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inhaled formulations of amphotericin B are the most widely used antifungal prophylactic agents in lung transplant recipients, yet there are limited data on their safety. We performed a single-center retrospective cohort study of 603 consecutive patients who underwent lung transplantation between 2012 and 2017 and received antifungal prophylaxis with inhaled amphotericin B lipid complex (iABLC) from the day of transplantation until hospital discharge. Of 603 patients, 600 (99.5%) received ≥1 dose of iABLC, and 544 (90.2%) completed the recommended prophylactic course. In total, 4,128 iABLC doses (median, 5; range, 1 to 48 per patient) were administered; 24 patients received >3 months of therapy. Only one (0.2%) patient discontinued therapy due to a drug-attributable adverse event. During the first posttransplant year, 80 (13.3%) patients died (median time to death, 171 days; interquartile range [IQR], 80 to 272 days), and 3,352 (median, 6 per patient) lung biopsies were performed; 414 (68.7%) patients developed biopsy-proven acute cellular rejection. One-year adverse events in our cohort of lung transplant recipients treated with iABLC during transplant hospitalization matched national outcomes for rejection, graft loss, and death. iABLC is a safe and well-tolerated antifungal prophylactic agent in lung transplant recipients.
Collapse
|
44
|
Singh S, Natalini JG, Segal LN. Lung microbial-host interface through the lens of multi-omics. Mucosal Immunol 2022; 15:837-845. [PMID: 35794200 PMCID: PMC9391302 DOI: 10.1038/s41385-022-00541-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023]
Abstract
In recent years, our understanding of the microbial world within us has been revolutionized by the use of culture-independent techniques. The use of multi-omic approaches can now not only comprehensively characterize the microbial environment but also evaluate its functional aspects and its relationship with the host immune response. Advances in bioinformatics have enabled high throughput and in-depth analyses of transcripts, proteins and metabolites and enormously expanded our understanding of the role of the human microbiome in different conditions. Such investigations of the lower airways have specific challenges but as the field develops, new approaches will be facilitated. In this review, we focus on how integrative multi-omics can advance our understanding of the microbial environment and its effects on the host immune tone in the lungs.
Collapse
Affiliation(s)
- Shivani Singh
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Jake G. Natalini
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY,NYU Langone Lung Transplant Institute, New York University Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Leopoldo N. Segal
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY
| |
Collapse
|
45
|
Silva TD, Voisey J, Hopkins P, Apte S, Chambers D, O'Sullivan B. Markers of rejection of a lung allograft: state of the art. Biomark Med 2022; 16:483-498. [PMID: 35315284 DOI: 10.2217/bmm-2021-1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic lung allograft dysfunction (CLAD) affects approximately 50% of all lung transplant recipients by 5 post-operative years and is the leading cause of death in lung transplant recipients. Early CLAD diagnosis or ideally prediction of CLAD is essential to enable early intervention before significant lung injury occurs. New technologies have emerged to facilitate biomarker discovery, including epigenetic modification and single-cell RNA sequencing. This review examines new and existing technologies for biomarker discovery and the current state of research on biomarkers for identifying lung transplant rejection.
Collapse
Affiliation(s)
- Tharushi de Silva
- School of Biomedical Sciences, Centre for Genomics & Personalised Heath, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia
| | - Joanne Voisey
- School of Biomedical Sciences, Centre for Genomics & Personalised Heath, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Peter Hopkins
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, The University of Queensland, 4032, Brisbane, Queensland, Australia
| | - Simon Apte
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, The University of Queensland, 4032, Brisbane, Queensland, Australia
| | - Daniel Chambers
- School of Biomedical Sciences, Centre for Genomics & Personalised Heath, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, The University of Queensland, 4032, Brisbane, Queensland, Australia
| | - Brendan O'Sullivan
- School of Biomedical Sciences, Centre for Genomics & Personalised Heath, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, The University of Queensland, 4032, Brisbane, Queensland, Australia
| |
Collapse
|
46
|
Novel biomarkers of chronic lung allograft dysfunction: is there anything reliable? Curr Opin Organ Transplant 2022; 27:1-6. [PMID: 34939958 DOI: 10.1097/mot.0000000000000944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Chronic lung allograft dysfunction (CLAD) remains a major barrier preventing long-term survival following lung transplantation. As our clinical knowledge regarding its definition and presentation has significantly improved over the last years, adequate biomarkers to predict development of CLAD, phenotype of CLAD or prognosis post-CLAD diagnosis are definitely needed. RECENT FINDINGS Radiological and physiological markers are gradually entering routine clinical practice. In-depth investigation of biological samples including broncho-alveolar lavage, biopsy and serum has generated potential biomarkers involved in fibrogenesis, airway injury and inflammation but none of these are universally accepted or implemented although progress has been made, specifically regarding donor-derived cell-free DNA and donor-specific antibodies. SUMMARY Although a lot of promising biomarkers have been put forward, a very limited number has made it to routine clinical practice. Nevertheless, a biomarker that leads to earlier detection or more adequate disease phenotyping would advance the field enormously.
Collapse
|
47
|
The pulmonary microbiome. Curr Opin Organ Transplant 2022; 27:217-221. [DOI: 10.1097/mot.0000000000000956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Dery KJ, Kupiec-Weglinski JW, Dong TS. The human microbiome in transplantation: the past, present, and future. Curr Opin Organ Transplant 2021; 26:595-602. [PMID: 34545840 DOI: 10.1097/mot.0000000000000922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Over the past 20 years, DNA sequencing technology has transformed human microbiome research from identity characterizations to metagenomics approaches that reveal how microbials correlate with human health and disease. New studies are showing unprecedented opportunity for deep characterization of the human microbial ecosystem, with benefits to the field of organ transplantation. RECENT FINDINGS In the present review, we focus on past milestones of human-associated microbiota research, paying homage to microbiota pioneers. We highlight the role of sequencing efforts to provide insights beyond taxonomic identification. Recent advances in microbiome technology is now integrating high-throughput datasets, giving rise to multi'omics - a comprehensive assessment modeling dynamic biologic networks. Studies that show benefits and mechanisms in peritransplant antibiotic (Abx)-conditioned recipients are reviewed. We describe how next-generation microbial sequencing has the potential to combine with new technologies like phage therapy (PT) to translate into life-saving therapeutics. SUMMARY The study of the microbiome is advancing the field of transplantation by enhancing our knowledge of precision medicine. Sequencing technology has allowed the use of the microbiome as a biomarker to risk stratify patients. Further research is needed to better understand how microbiomes shape transplantation outcomes while informing immune cell - tissue crosstalk platforms.
Collapse
Affiliation(s)
- Kenneth J Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation
| | - Jerzy W Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation
| | - Tien S Dong
- Department of Medicine, Vatche & Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
49
|
Mongodin EF, Saxena V, Iyyathurai J, Lakhan R, Ma B, Silverman E, Lee ZL, Bromberg JS. Chronic rejection as a persisting phantom menace in organ transplantation: a new hope in the microbiota? Curr Opin Organ Transplant 2021; 26:567-581. [PMID: 34714788 PMCID: PMC8556501 DOI: 10.1097/mot.0000000000000929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The microbiota plays an important role in health and disease. During organ transplantation, perturbations in microbiota influence transplant outcome. We review recent advances in characterizing microbiota and studies on regulation of intestinal epithelial barrier function and mucosal and systemic immunity by microbiota and their metabolites. We discuss implications of these interactions on transplant outcomes. RECENT FINDINGS Metagenomic approaches have helped the research community identify beneficial and harmful organisms. Microbiota regulates intestinal epithelial functions. Signals released by epithelial cells or microbiota trigger pro-inflammatory or anti-inflammatory effects on innate and adaptive immune cells, influencing the structure and function of the immune system. Assessment and manipulation of microbiota can be used for biomarkers for diagnosis, prognosis, and therapy. SUMMARY The bidirectional dialogue between the microbiota and immune system is a major influence on immunity. It can be targeted for biomarkers or therapy. Recent studies highlight a close association of transplant outcomes with microbiota, suggesting exciting potential avenues for management of host physiology and organ transplantation.
Collapse
Affiliation(s)
- Emmanuel F. Mongodin
- University of Maryland School of Medicine, Institute for Genome Sciences and Department of Microbiology & Immunology, Baltimore, MD, USA
| | - Vikas Saxena
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, MD, USA
| | - Jegan Iyyathurai
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, MD, USA
| | - Ram Lakhan
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, MD, USA
| | - Bing Ma
- University of Maryland School of Medicine, Institute for Genome Sciences and Department of Microbiology & Immunology, Baltimore, MD, USA
| | - Emma Silverman
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, MD, USA
| | - Zachariah L. Lee
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, MD, USA
| | - Jonathan S. Bromberg
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, MD, USA
| |
Collapse
|
50
|
Bai YZ, Roberts SH, Kreisel D, Nava RG. Microbiota in heart and lung transplantation: implications for innate-adaptive immune interface. Curr Opin Organ Transplant 2021; 26:609-614. [PMID: 34561360 DOI: 10.1097/mot.0000000000000923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Transplantation continues to be the only treatment option for end-stage organ failure when other interventions have failed. Although short-term outcomes have improved due to advances in perioperative care, long-term outcomes continue to be adversely affected by chronic rejection. Little is known about the role microbiota play in modulating alloimmune responses and potentially contributing to graft failure. Initial data have identified a correlation between specific changes of the recipient and/or donor microbiota and transplant outcomes. In this review, we will focus on recent findings concerning the complex interplay between microbiota and the innate immune system after heart and lung transplantation. RECENT FINDINGS Gut microbiome derangements in heart failure promote an inflammatory state and have lasting effects on the innate immune system, with an observed association between increased levels of microbiota-dependent metabolites and acute rejection after cardiac transplantation. The lung allograft microbiome interacts with components of the innate immune system, such as toll-like receptor signalling pathways, NKG2C+ natural killer cells and the NLRP3 inflammasome, to alter posttransplant outcomes, which may result in the development of chronic rejection. SUMMARY The innate immune system is influenced by alterations in the microbiome before and after heart and lung transplantation, thereby offering potential therapeutic targets for prolonging allograft survival.
Collapse
Affiliation(s)
| | | | - Daniel Kreisel
- Department of Surgery
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|