1
|
Kortz TB, Holloway A, Agulnik A, He D, Rivera SG, Abbas Q, Appiah JA, Arias AV, Attebery J, Camacho-Cruz J, Caporal P, de Sa Rodrigues KE, Fink E, Kissoon N, Lee JH, López-Barón E, Murthy S, Muttalib F, Nielsen K, Remy K, Sakaan F, Andre-von Arnim AVS, Rodrigues AT, Blackwelder W, Wiens MO, Bhutta A. Prevalence, aetiology, and hospital outcomes of paediatric acute critical illness in resource-constrained settings (Global PARITY): a multicentre, international, point prevalence and prospective cohort study. Lancet Glob Health 2025; 13:e212-e221. [PMID: 39890223 DOI: 10.1016/s2214-109x(24)00450-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/31/2024] [Accepted: 10/09/2024] [Indexed: 02/03/2025]
Abstract
BACKGROUND Children in resource-constrained settings (RCS) have disproportionately high illness and mortality; however, the prevalence in RCS of paediatric acute critical illness (P-ACI; life-threatening conditions that require time-sensitive interventions) is unknown. Most P-ACI can be managed with basic critical care (stabilisation, fluid resuscitation, oxygen, and vital-organ support), but RCS hospitals often lack such essential services. This study estimated the prevalence and examined the aetiology of P-ACI among children at RCS hospitals to support critical care capacity building and inform resource allocation. METHODS We conducted a hybrid prospective cohort and multinational point prevalence study of acutely ill or injured children aged 28 days to 14 years who presented to RCS hospitals on four designated days between July 20, 2021, and July 12, 2022. We measured the proportion of participants with P-ACI, applying the definition for acute paediatric critical illness (DEFCRIT) framework for research in resource-variable settings, and followed up admitted patients for hospital outcomes. In participants with P-ACI, we report diagnoses associated with critical illness. We used descriptive statistics to summarise site and cohort data by country sociodemographic category (Socio-demographic Index; SDI) and multivariable logistic regression to assess whether country sociodemographic category was independently associated with P-ACI. FINDINGS The study included 46 sites, 19 countries, and 7538 children, among whom 2651 (35·2%) were admitted to hospital and 68 died (all-cause mortality 0·9% [95% CI 0·7-1·1]). 985 (13·1% [95% CI 12·3-13·9]) participants had P-ACI. Among all sociodemographic categories, P-ACI prevalence was highest (28·0% [26·0-30·1]; 512 of 1828 participants) in low-SDI countries (p<0·0001). Mortality among those with P-ACI was 6·3% (4·9-8·0; 62 deaths). The most common P-ACI diagnoses were pneumonia (152 [15·4%] of 985 participants), sepsis or septic shock (102 [10·4%]), and malaria (95 [9·6%]). In an adjusted model, country sociodemographic category was not significantly associated with P-ACI frequency. Among all 68 deaths in the study, 40 (59% [46-71]) occurred within 48 h of presentation. INTERPRETATION P-ACI in RCS hospitals is common, associated with high mortality, disproportionately elevated in low-SDI countries, and associated with conditions that can be managed with basic critical care. This study underlines the need for investment in basic critical care services in RCS to address a major contributor to preventable mortality in hospitalised children. FUNDING National Institutes of Health (USA); Medical Research Council (Singapore); Grand Challenges Canada; and University of Maryland, Baltimore (USA). TRANSLATIONS For the French, Portuguese and Spanish translations of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Teresa B Kortz
- Institute for Global Health Sciences, University of California San Francisco, San Francisco, CA, USA; Division of Critical Care, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| | - Adrian Holloway
- Department of Pediatrics, University of Maryland, Baltimore, MD, USA
| | - Asya Agulnik
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - David He
- Analytical Solutions Group, North Potomac, MD, USA
| | - Stephanie Gordon Rivera
- Institute for Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Qalab Abbas
- Department of Pediatrics and Child Health, Section of Pediatric Critical Care Medicine, Aga Khan University, Karachi, Pakistan
| | - John Adabie Appiah
- Pediatric Intensive Care Unit, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Anita V Arias
- Division of Critical Care and Pulmonary Medicine, Department of Pediatrics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonah Attebery
- Department of Pediatrics, Section of Pediatric Critical Care, University of Colorado, Aurora, CO, USA; Barrow Global Health, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Jhon Camacho-Cruz
- Department of Pediatrics, Universidad Nacional de Colombia, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia; Sociedad de Cirugía de Bogota-Hospital San José, Fundación Universitaria Sanitas, Bogotá, Colombia; Clínica Pediátrica Clínicas Colsanitas, Bogotá, Colombia
| | - Paula Caporal
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Red Colaborativa Pediátrica de Latinoamérica (LARed Network), La Plata, Buenos Aires, Argentina
| | | | - Ericka Fink
- Division of Pediatric Critical Care Medicine, Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Niranjan Kissoon
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; Institute for Global Health, Children's and Women's Hospital, Vancouver, BC, Canada
| | - Jan Hau Lee
- Children's Intensive Care Unit, KK Women's and Children's Hospital, Singapore; SingHealth Duke-NUS Global Health Institute, Singapore
| | - Eliana López-Barón
- Unidad de Cuidado Crítico Pediátrico, Hospital Pablo Tobón Uribe, Medellín, Colombia; Department of Pediatrics, Universidad de Antioquia, Medellin, Colombia
| | - Srinivas Murthy
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Fiona Muttalib
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Katie Nielsen
- Division of Pediatric Critical Care, Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Kenneth Remy
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University Hospitals of Cleveland and Rainbow Babies and Children's Hospital, Cleveland, OH, USA; Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Firas Sakaan
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Amelie von Saint Andre-von Arnim
- Department of Global Health, University of Washington, Seattle, WA, USA; Division of Pediatric Critical Care, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Adriana Teixeira Rodrigues
- Departamento de Pediatria, Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Departamento de Pediatria, Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - William Blackwelder
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, MD, USA
| | - Matthew O Wiens
- Institute for Global Health, Children's and Women's Hospital, Vancouver, BC, Canada; Walimu, Kampala, Uganda; Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Adnan Bhutta
- Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
2
|
Hewitt P, Hartmann A, Tornesi B, Ferry-Martin S, Valentin JP, Desert P, Gresham S, Demarta-Gatsi C, Venishetty VK, Kolly C. Importance of tailored non-clinical safety testing of novel antimalarial drugs: Industry best-practice. Regul Toxicol Pharmacol 2024; 154:105736. [PMID: 39515409 DOI: 10.1016/j.yrtph.2024.105736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Malaria is an acute, debilitating parasitic illness. There were 249 million cases of malaria in 2022, resulting in 608,000 deaths globally, 76% of which were children ≤5 years. The unique nature of this disease (recurrences leading to re-treatments and numerous organ systems affected), specific clinical treatment regimens, poor compliance, and diversity of affected populations (predominantly pediatrics, women of childbearing potential, pregnant and lactating women), often makes standard testing approaches inadequate, and tailor-made safety assessments are more appropriate. We provide best practice recommendations based on company experience for the non-clinical safety assessment of antimalarial drugs, with a focus on small molecules since they represent the majority of drug candidates for this illness. We focus on specific testing considerations for repeat dose toxicity studies, including combination toxicity assessments, since new drug treatment regimens typically foresee short treatment durations to improve compliance (i.e., 1 day) with combinations of compounds to improve efficacy and limit potential resistance. Due to the target population, the timing of reproductive, developmental, and juvenile toxicity studies may be earlier than general testing roadmaps for other small molecule drugs. In conclusion, key recommendations presented should enable a more effective and efficient development path whilst protecting clinical trial participants and patients.
Collapse
Affiliation(s)
- Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany.
| | | | - Belen Tornesi
- Non-Clinical Pharmacology & Toxicology, Medicines for Malaria Venture, Geneva, Switzerland
| | - Sandrine Ferry-Martin
- Nonclinical Drug Safety, Merck Research Laboratories, Merck Sharp & Dohme, Clermont-Ferrand, France
| | - Jean-Pierre Valentin
- Early Clinical Development & Translational Science, Non-Clinical Safety Evaluation, UCB Pharma, Braine L'Alleud, Belgium
| | - Paul Desert
- Nonclinical Safety, Sanofi, Marcy l'Etoile, France
| | | | - Claudia Demarta-Gatsi
- Global Health R&D of Merck Healthcare, Ares Trading S.A., (a subsidiary of Merck KGaA, Darmstadt, Germany), Switzerland
| | | | - Carine Kolly
- Preclinical Safety, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
3
|
de Azevedo Teotônio Cavalcanti M, Da Silva Menezes KJ, De Oliveira Viana J, de Oliveira Rios É, Corrêa de Farias AG, Weber KC, Nogueira F, Dos Santos Nascimento IJ, de Moura RO. Current trends to design antimalarial drugs targeting N-myristoyltransferase. Future Microbiol 2024; 19:1601-1618. [PMID: 39440556 DOI: 10.1080/17460913.2024.2412397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Malaria is a disease caused by Plasmodium spp., of which Plasmodium falciparum and Plasmodium vivax are the most prevalent. Unfortunately, traditional and some current treatment regimens face growing protozoan resistance. Thus, searching for and exploring new drugs and targets is necessary. One of these is N-myristoyltransferase (NMT). This enzyme is responsible for the myristoylation of several protein substrates in eukaryotic cells, including Plasmodium spp., thus enabling the assembly of protein complexes and stabilization of protein-membrane interactions. Given the importance of this target in developing new antiparasitic drugs, this review aims to explore the recent advances in the design of antimalarial drugs to target Plasmodium NMT.
Collapse
Affiliation(s)
- Misael de Azevedo Teotônio Cavalcanti
- Postgraduate Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina, Grande-PB, Brazil
- Drug Development & Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina, Grande, 58429-500, Brazil
| | - Karla Joane Da Silva Menezes
- Drug Development & Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina, Grande, 58429-500, Brazil
- Postgraduate Program of Drug Development & Technology Innovation, Federal University of Paraíba, João Pessoa, 58051-900, Brazil
| | - Jéssika De Oliveira Viana
- Postgraduate Program of Chemistry, Department of Chemistry, Federal University of Paraíba, João Pessoa, 58051-970, Brazil
| | | | - Arthur Gabriel Corrêa de Farias
- Drug Development & Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina, Grande, 58429-500, Brazil
| | - Karen Cacilda Weber
- Postgraduate Program of Chemistry, Department of Chemistry, Federal University of Paraíba, João Pessoa, 58051-970, Brazil
| | - Fatima Nogueira
- Universidade NOVA de Lisboa, UNL, Global Health & Tropical Medicine, GHTM, Associate Laboratory in Translation & Innovation Towards Global Health, LAREAL, Instituto de Higiene e Medicina Tropical, IHMT, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
- LAQV-REQUIMTE, MolSyn, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Igor José Dos Santos Nascimento
- Postgraduate Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina, Grande-PB, Brazil
- Drug Development & Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina, Grande, 58429-500, Brazil
- Cesmac University Center, Pharmacy Department, Maceió, 57051-180, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina, Grande-PB, Brazil
- Drug Development & Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina, Grande, 58429-500, Brazil
- Postgraduate Program of Drug Development & Technology Innovation, Federal University of Paraíba, João Pessoa, 58051-900, Brazil
| |
Collapse
|
4
|
Talib J, Abatan AA, HoekSpaans R, Yamba EI, Egbebiyi TS, Caminade C, Jones A, Birch CE, Olagbegi OM, Morse AP. The effect of explicit convection on simulated malaria transmission across Africa. PLoS One 2024; 19:e0297744. [PMID: 38625879 PMCID: PMC11020401 DOI: 10.1371/journal.pone.0297744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/11/2024] [Indexed: 04/18/2024] Open
Abstract
Malaria transmission across sub-Saharan Africa is sensitive to rainfall and temperature. Whilst different malaria modelling techniques and climate simulations have been used to predict malaria transmission risk, most of these studies use coarse-resolution climate models. In these models convection, atmospheric vertical motion driven by instability gradients and responsible for heavy rainfall, is parameterised. Over the past decade enhanced computational capabilities have enabled the simulation of high-resolution continental-scale climates with an explicit representation of convection. In this study we use two malaria models, the Liverpool Malaria Model (LMM) and Vector-Borne Disease Community Model of the International Centre for Theoretical Physics (VECTRI), to investigate the effect of explicitly representing convection on simulated malaria transmission. The concluded impact of explicitly representing convection on simulated malaria transmission depends on the chosen malaria model and local climatic conditions. For instance, in the East African highlands, cooler temperatures when explicitly representing convection decreases LMM-predicted malaria transmission risk by approximately 55%, but has a negligible effect in VECTRI simulations. Even though explicitly representing convection improves rainfall characteristics, concluding that explicit convection improves simulated malaria transmission depends on the chosen metric and malaria model. For example, whilst we conclude improvements of 45% and 23% in root mean squared differences of the annual-mean reproduction number and entomological inoculation rate for VECTRI and the LMM respectively, bias-correcting mean climate conditions minimises these improvements. The projected impact of anthropogenic climate change on malaria incidence is also sensitive to the chosen malaria model and representation of convection. The LMM is relatively insensitive to future changes in precipitation intensity, whilst VECTRI predicts increased risk across the Sahel due to enhanced rainfall. We postulate that VECTRI's enhanced sensitivity to precipitation changes compared to the LMM is due to the inclusion of surface hydrology. Future research should continue assessing the effect of high-resolution climate modelling in impact-based forecasting.
Collapse
Affiliation(s)
- Joshua Talib
- U.K. Centre for Ecology and Hydrology (UKCEH), Wallingford, United Kingdom
| | - Abayomi A. Abatan
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Remy HoekSpaans
- Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
| | - Edmund I. Yamba
- Department of Meteorology and Climate Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Temitope S. Egbebiyi
- Climate Systems Analysis Group, Department of Environmental and Geographical Science, University of Cape Town, Cape Town, South Africa
| | - Cyril Caminade
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy
| | - Anne Jones
- International Business Machines (IBM) Research Europe, Daresbury, United Kingdom
| | - Cathryn E. Birch
- School of Earth and Environment, University of Leeds, Leeds, United Kingdom
| | - Oladapo M. Olagbegi
- School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andrew P. Morse
- School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
5
|
Moreno M, Barry A, Gmeiner M, Yaro JB, Sermé SS, Byrne I, Ramjith J, Ouedraogo A, Soulama I, Grignard L, Soremekun S, Koele S, Ter Heine R, Ouedraogo AZ, Sawadogo J, Sanogo E, Ouedraogo IN, Hien D, Sirima SB, Bradley J, Bousema T, Drakeley C, Tiono AB. Understanding and maximising the community impact of seasonal malaria chemoprevention in Burkina Faso (INDIE-SMC): study protocol for a cluster randomised evaluation trial. BMJ Open 2024; 14:e081682. [PMID: 38479748 PMCID: PMC10936478 DOI: 10.1136/bmjopen-2023-081682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
INTRODUCTION Seasonal malaria chemoprevention (SMC) involves repeated administrations of sulfadoxine-pyrimethamine plus amodiaquine to children below the age of 5 years during the peak transmission season in areas of seasonal malaria transmission. While highly impactful in reducing Plasmodium falciparum malaria burden in controlled research settings, the impact of SMC on infection prevalence is moderate in real-life settings. It remains unclear what drives this efficacy decay. Recently, the WHO widened the scope for SMC to target all vulnerable populations. The Ministry of Health (MoH) in Burkina Faso is considering extending SMC to children below 10 years old. We aim to assess the impact of SMC on clinical incidence and parasite prevalence and quantify the human infectious reservoir for malaria in this population. METHODS AND ANALYSIS We will perform a cluster randomised trial in Saponé Health District, Burkina Faso, with three study arms comprising 62 clusters of three compounds: arm 1 (control): SMC in under 5-year-old children, implemented by the MoH without directly observed treatment (DOT) for the full course of SMC; arm 2 (intervention): SMC in under 5-year-old children, with DOT for the full course of SMC; arm 3 (intervention): SMC in under 10-year-old children, with DOT for the full course of SMC. The primary endpoint is parasite prevalence at the end of the malaria transmission season. Secondary endpoints include the impact of SMC on clinical incidence. Factors affecting SMC uptake, treatment adherence, drug concentrations, parasite resistance markers and transmission of parasites will be determined. ETHICS AND DISSEMINATION The London School of Hygiene & Tropical Medicine's Ethics Committee (29193) and the Burkina Faso National Medical Ethics Committee (Deliberation No 2023-05-104) approved this study. The findings will be presented to the community; disease occurrence data and study outcomes will also be shared with the Burkina Faso MoH. Findings will be published irrespective of their results. TRIAL REGISTRATION NUMBER NCT05878366.
Collapse
Affiliation(s)
- Marta Moreno
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Aissata Barry
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | - Markus Gmeiner
- Department of Medical Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Samuel S Sermé
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | - Isabel Byrne
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Jordache Ramjith
- Department of Medical Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Issiaka Soulama
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | - Lynn Grignard
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Seyi Soremekun
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Simon Koele
- Department of Medical Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | - Jean Sawadogo
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | - Edith Sanogo
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | | | - Denise Hien
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | | | - John Bradley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Alfred B Tiono
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| |
Collapse
|
6
|
Govindaraju G, Rajavelu A. Reading the epitranscriptome of the human malaria parasite. Biomed J 2024:100703. [PMID: 38316392 DOI: 10.1016/j.bj.2024.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024] Open
Abstract
Epigenetic machinery has emerged as a central player in gene regulation and chromatin organization in Plasmodium spp. Epigenetic modifications on histones and their role in antigenic variation in P. falciparum are widely studied. Recent discoveries on nucleic acid methylome are exciting and provide a new dimension to the apicomplexan protozoan parasite's gene regulatory process. Reports have confirmed that N6-methyl adenosine (m6A) methylation plays a crucial role in the translational plasticity of the human malaria parasite during its development in RBC. The YTH domain (YT521-B Homology) protein in P. falciparum binds to m6A epitranscriptome modifications on the mRNA and regulates protein translation. The binding of the PfYTH domain protein to the m6A-modified mRNA is mediated through a binding pocket formed by aromatic amino acids. The P. falciparum genome encodes two members of YTH domain proteins, i.e., YTH1 and YTH2, and both have distinct roles in dictating the epitranscriptome in human malaria parasites. This review highlights recent advancements in the functions and mechanisms of YTH domain protein's role in translational plasticity in the various developmental stages of the parasite.
Collapse
Affiliation(s)
- Gayathri Govindaraju
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Chennai, India
| | - Arumugam Rajavelu
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Chennai, India.
| |
Collapse
|
7
|
Li H, Ch'ih Y, Li M, Luo Y, Liu H, Xu J, Song W, Ma Q, Shao Z. Newborn screening for G6PD deficiency in HeFei, FuYang and AnQing, China: Prevalence, cut-off value, variant spectrum. J Med Biochem 2024; 43:86-96. [PMID: 38496015 PMCID: PMC10943458 DOI: 10.5937/jomb0-43078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/14/2023] [Indexed: 03/19/2024] Open
Abstract
Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked recessive Mendelian genetic disorder characterized by neonatal jaundice and hemolytic anemia, affecting more than 400 million people worldwide. The purpose of this research was to investigate prevalence rates of G6PD deficiency and to evaluate and establish specific cut-off values in early prediction of G6PD deficiency by regions (HeFei, FuYang, AnQing) on different seasons, as well as to investigate the frequencies of G6PD gene mutations among three regions mentioned above. Methods A total of 31,482 neonates (21,402, 7680, and 2340 for HeFei, FuYang, and AnQing cities, respectively) were recruited. Positive subjects were recalled to attend genetic tests for diagnosis. G6PD activity on the Genetic screening processor (GSP analyzer, 2021-0010) was measured following the manufactureržs protocol. The cut-off value was first set to 35 U/dL. The receiver operating characteristics (ROC) curve was employed to assess and compare the efficiency in predicting G6PD deficiency among HeFei, FuYang, and AnQing cities in different seasons.
Collapse
Affiliation(s)
- Hui Li
- HeFei Women and Children Medical Care Center, HeFei City, Anhui Province, China
| | - Yah Ch'ih
- Zhejiang Biosan Biochemical Technologies Co., Ltd, Hangzhou City, Zhejiang Province, China
| | - Meiling Li
- HeFei Women and Children Medical Care Center, HeFei City, Anhui Province, China
| | - Yulei Luo
- FuYang Maternal and Child Health Family Planning Service Center, FuYang City, Anhui Province, China
| | - Hao Liu
- AnQing Maternal and Child Health Family Planning Service Center, AnQing City, Anhui Province, China
| | - Junyang Xu
- HeFei Women and Children Medical Care Center, HeFei City, Anhui Province, China
| | - Wangsheng Song
- HeFei Women and Children Medical Care Center, HeFei City, Anhui Province, China
| | - Qingqing Ma
- HeFei Women and Children Medical Care Center, HeFei City, Anhui Province, China
| | - Ziyu Shao
- HeFei Women and Children Medical Care Center, HeFei City, Anhui Province, China
| |
Collapse
|
8
|
de Sousa NF, de Araújo IMA, Rodrigues TCML, da Silva PR, de Moura JP, Scotti MT, Scotti L. Proposition of In silico Pharmacophore Models for Malaria: A Review. Comb Chem High Throughput Screen 2024; 27:2525-2543. [PMID: 37815185 DOI: 10.2174/0113862073247691230925062440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 10/11/2023]
Abstract
In the field of medicinal chemistry, the concept of pharmacophore refers to the specific region of a molecule that possesses essential structural and chemical characteristics for binding to a receptor and eliciting biological activity. Understanding the pharmacophore is crucial for drug research and development, as it allows the design of new drugs. Malaria, a widespread disease, is commonly treated with chloroquine and artemisinin, but the emergence of parasite resistance limits their effectiveness. This study aims to explore computer simulations to discover a specific pharmacophore for Malaria, providing new alternatives for its treatment. A literature review was conducted, encompassing articles proposing a pharmacophore for Malaria, gathered from the "Web of Science" database, with a focus on recent publications to ensure up-to-date analysis. The selected articles employed diverse methods, including ligand-based and structurebased approaches, integrating molecular structure and biological activity data to yield comprehensive analyses. Affinity evaluation between the proposed pharmacophore and the target receptor involved calculating free energy to quantify their interaction. Multiple linear regression was commonly utilized, though it is sensitive to multicollinearity issues. Another recurrent methodology was the use of the Schrödinger package, employing tools such as the Phase module and the OPLS force field for interaction analysis. Pharmacophore model proposition allows threedimensional representations guiding the synthesis and design of new biologically active compounds, offering a promising avenue for discovering therapeutic agents to combat Malaria.
Collapse
Affiliation(s)
- Natália Ferreira de Sousa
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Igor Mikael Alves de Araújo
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | | | - Pablo Rayff da Silva
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Jéssica Paiva de Moura
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Marcus Tullius Scotti
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Luciana Scotti
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| |
Collapse
|
9
|
Hossain MS, Ahmed TS, Sultana N, Chowdhury MAB, Uddin MJ. Examining the disparities of anti-malarial drug consumption among children under the age of five: a study of 5 malaria-endemic countries. Malar J 2023; 22:370. [PMID: 38049847 PMCID: PMC10696736 DOI: 10.1186/s12936-023-04805-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Malaria is one of the most prominent illnesses affecting children, ranking as one of the key development concerns for many low- and middle-income countries (LMICs). There is not much information available on the use of anti-malarial drugs in LMICs in children under five. The study aimed to investigate disparities in anti-malarial drug consumption for malaria among children under the age of five in LMICs. METHODS This study used recent available cross-sectional data from the Malaria Indicator Survey (MIS) datasets across five LMICs (Guinea, Kenya, Mali, Nigeria, and Sierra Leone), which covered a portion of sub-Saharan Africa. The study was carried out between January 2, 2023, and April 15, 2023, and included children under the age of five who had taken an anti-malarial drug for malaria 2 weeks before the survey date. The outcome variable was anti-malarial drug consumption, which was classified into two groups: those who had taken anti-malarial drugs and those who had not. RESULTS In the study of LMICs, 32,397 children under five were observed, and among them, 44.1% had received anti-malarial drugs. Of the five LMICs, Kenya had the lowest (9.2%) and Mali had the highest (70.5%) percentages of anti-malarial drug consumption. Children under five with malaria are more likely to receive anti-malarial drugs if they are over 1 year old, live in rural areas, have mothers with higher education levels, and come from wealthier families. CONCLUSION The study emphasizes the importance of developing universal coverage strategies for anti-malarial drug consumption at both the national and local levels. The study also recommends that improving availability and access to anti-malarial drugs may be necessary, as the consumption of these drugs for treating malaria in children under the age of five is shockingly low in some LMICs.
Collapse
Affiliation(s)
- Md Sabbir Hossain
- Department of Statistics, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Talha Sheikh Ahmed
- Department of Geography and Environment, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Nahid Sultana
- Department of Statistics, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | | | - Md Jamal Uddin
- Department of Statistics, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
- Faculty of Graduate Studies, Daffodil International University, Savar, Dhaka, 1216, Bangladesh.
| |
Collapse
|
10
|
Ranjha R, Singh K, Baharia RK, Mohan M, Anvikar AR, Bharti PK. Age-specific malaria vulnerability and transmission reservoir among children. GLOBAL PEDIATRICS 2023; 6:None. [PMID: 38440360 PMCID: PMC10911094 DOI: 10.1016/j.gpeds.2023.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 03/06/2024]
Abstract
Purpose The pediatric population, especially under-five children, is highly susceptible to malaria and accounts for 76 % of global malaria deaths according to the World Malaria Report 2022. The purpose of this manuscript is to discuss the various factors involved in the susceptibility of the pediatric population to Malaria and the importance of this age group for malaria elimination. Methodology Data on pediatric malaria epidemiology that includes prevalence, risk factors, immune factors, socioeconomic factors, control methods, etc. were extracted from published literature using PubMed and Google Scholar. This data was further correlated with malaria incidence data from the World Health Organization (WHO) and the National Center for Vector Borne Diseases Control (NCVBDC). Results The younger age group is vulnerable to severe malaria due to an immature immune system. The risk of infection and clinical disease increases after the waning of maternal immunity. In the initial years of life, the developing brain is more susceptible to malaria infection and its after-effects. The pediatric population may act as a malaria transmission reservoir due to parasite density and asymptomatic infections. WHO recommended RTS,S/AS01 has limitations and may not be applicable in all settings to propel malaria elimination. Conclusion The diagnosis of malaria is based on clinical suspicion and confirmed with microscopy and/or rapid diagnostic testing. The school-age pediatric population serves as a transmission reservoir in the form of asymptomatic malaria since they have acquired some immunity due to exposure in early childhood. Targeting the hidden reservoir in the pediatric population and protecting this vulnerable group will be essential for malaria elimination from the countries targeting elimination.
Collapse
Affiliation(s)
- Ritesh Ranjha
- ICMR-National Institute of Malaria Research, New Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Kuldeep Singh
- ICMR-National Institute of Malaria Research, New Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | | | - Mradul Mohan
- ICMR-National Institute of Malaria Research, New Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Anup R Anvikar
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Praveen K. Bharti
- ICMR-National Institute of Malaria Research, New Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
11
|
Loechl CU, Datta-Mitra A, Fenlason L, Green R, Hackl L, Itzkowitz L, Koso-Thomas M, Moorthy D, Owino VO, Pachón H, Stoffel N, Zimmerman MB, Raiten DJ. Approaches to Address the Anemia Challenge. J Nutr 2023; 153 Suppl 1:S42-S59. [PMID: 37714779 PMCID: PMC10797550 DOI: 10.1016/j.tjnut.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 09/17/2023] Open
Abstract
Anemia is a multifactorial condition; approaches to address it must recognize that the causal factors represent an ecology consisting of internal (biology, genetics, and health) and external (social/behavioral/demographic and physical) environments. In this paper, we present an approach for selecting interventions, followed by a description of key issues related to the multiple available interventions for prevention and reduction of anemia. We address interventions for anemia using the following 2 main categories: 1) those that address nutrients alone, and, 2) those that address nonnutritional causes of anemia. The emphasis will be on interventions of public health relevance, but we also consider the clinical context. We also focus on interventions at different stages of the life course, with a particular focus on women of reproductive age and preschool-age children, and present evidence on various factors to consider when selecting an intervention-inflammation, genetic mutations, nutrient delivery, bioavailability, and safety. Each section on an intervention domain concludes with a brief discussion of key research areas.
Collapse
Affiliation(s)
- Cornelia U Loechl
- Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - Ananya Datta-Mitra
- Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA, United States
| | - Lindy Fenlason
- Bureau for Global Health, USAID, Washington, DC, United States
| | - Ralph Green
- Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA, United States
| | - Laura Hackl
- USAID Advancing Nutrition, John Snow Inc., Arlington, VA, United States
| | - Laura Itzkowitz
- Bureau for Global Health, USAID, Washington, DC, United States
| | - Marion Koso-Thomas
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, Unites States
| | - Denish Moorthy
- USAID Advancing Nutrition, John Snow Inc., Arlington, VA, United States.
| | | | - Helena Pachón
- Food Fortification Initiative, Emory University, Atlanta, GA, United States
| | - Nicole Stoffel
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, ETH Zurich, Zu¨rich, Switzerland; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Michael B Zimmerman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Daniel J Raiten
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, Unites States
| |
Collapse
|
12
|
Glockzin K, Meneely KM, Hughes R, Maatouk SW, Piña GE, Suthagar K, Clinch K, Buckler JN, Lamb AL, Tyler PC, Meek TD, Katzfuss A. Kinetic and Structural Characterization of Trypanosoma cruzi Hypoxanthine-Guanine-Xanthine Phosphoribosyltransferases and Repurposing of Transition-State Analogue Inhibitors. Biochemistry 2023. [PMID: 37418678 DOI: 10.1021/acs.biochem.3c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Over 70 million people are currently at risk of developing Chagas Disease (CD) infection, with more than 8 million people already infected worldwide. Current treatments are limited and innovative therapies are required. Trypanosoma cruzi, the etiological agent of CD, is a purine auxotroph that relies on phosphoribosyltransferases to salvage purine bases from their hosts for the formation of purine nucleoside monophosphates. Hypoxanthine-guanine-xanthine phosphoribosyltransferases (HGXPRTs) catalyze the salvage of 6-oxopurines and are promising targets for the treatment of CD. HGXPRTs catalyze the formation of inosine, guanosine, and xanthosine monophosphates from 5-phospho-d-ribose 1-pyrophosphate and the nucleobases hypoxanthine, guanine, and xanthine, respectively. T. cruzi possesses four HG(X)PRT isoforms. We previously reported the kinetic characterization and inhibition of two isoforms, TcHGPRTs, demonstrating their catalytic equivalence. Here, we characterize the two remaining isoforms, revealing nearly identical HGXPRT activities in vitro and identifying for the first time T. cruzi enzymes with XPRT activity, clarifying their previous annotation. TcHGXPRT follows an ordered kinetic mechanism with a postchemistry event as the rate-limiting step(s) of catalysis. Its crystallographic structures reveal implications for catalysis and substrate specificity. A set of transition-state analogue inhibitors (TSAIs) initially developed to target the malarial orthologue were re-evaluated, with the most potent compound binding to TcHGXPRT with nanomolar affinity, validating the repurposing of TSAIs to expedite the discovery of lead compounds against orthologous enzymes. We identified mechanistic and structural features that can be exploited in the optimization of inhibitors effective against TcHGPRT and TcHGXPRT concomitantly, which is an important feature when targeting essential enzymes with overlapping activities.
Collapse
Affiliation(s)
- Kayla Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| | - Kathleen M Meneely
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Ryan Hughes
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| | - Sean W Maatouk
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| | - Grace E Piña
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| | - Kajitha Suthagar
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Keith Clinch
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Joshua N Buckler
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Audrey L Lamb
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Peter C Tyler
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Thomas D Meek
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| | - Ardala Katzfuss
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| |
Collapse
|
13
|
Xu M, Hu YX, Lu SN, Idris MA, Zhou SD, Yang J, Feng XN, Huang YM, Xu X, Chen Y, Wang DQ. Seasonal malaria chemoprevention in Africa and China's upgraded role as a contributor: a scoping review. Infect Dis Poverty 2023; 12:63. [PMID: 37403183 PMCID: PMC10320994 DOI: 10.1186/s40249-023-01115-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Children under five are the vulnerable population most at risk of being infected with Plasmodium parasites, especially in the Sahel region. Seasonal malaria chemoprevention (SMC) recommended by World Health Organization (WHO), has proven to be a highly effective intervention to prevent malaria. Given more deaths reported during the COVID-19 pandemic than in previous years due to the disruptions to essential medical services, it is, therefore, necessary to seek a more coordinated and integrated approach to increasing the pace, coverage and resilience of SMC. Towards this end, fully leverage the resources of major players in the global fight against malaria, such as China could accelerate the SMC process in Africa. METHODS We searched PubMed, MEDLINE, Web of Science, and Embase for research articles and the Institutional Repository for Information Sharing of WHO for reports on SMC. We used gap analysis to investigate the challenges and gaps of SMC since COVID-19. Through the above methods to explore China's prospective contribution to SMC. RESULTS A total of 68 research articles and reports were found. Through gap analysis, we found that despite the delays in the SMC campaign, 11.8 million children received SMC in 2020. However, there remained some challenges: (1) a shortage of fully covered monthly courses; (2) lack of adherence to the second and third doses of amodiaquine; (3) four courses of SMC are not sufficient to cover the entire malaria transmission season in areas where the peak transmission lasts longer; (4) additional interventions are needed to consolidate SMC efforts. China was certified malaria-free by WHO in 2021, and its experience and expertise in malaria elimination can be shared with high-burden countries. With the potential to join the multilateral cooperation in SMC, including the supply of quality-assured health commodities, know-how transfer and experience sharing, China is expected to contribute to the ongoing scale-up of SMC. CONCLUSIONS A combination of necessary preventive and curative activities may prove beneficial both for targeted populations and for health system strengthening in the long run. More actions are entailed to promote the partnership and China can be one of the main contributors with various roles.
Collapse
Affiliation(s)
- Ming Xu
- Department of Global Health, School of Public Health, Peking University, Haidian District, 38 Xue Yuan Road, Beijing, 100191, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Yun-Xuan Hu
- Department of Global Health, School of Public Health, Peking University, Haidian District, 38 Xue Yuan Road, Beijing, 100191, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Shen-Ning Lu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research On Tropical Diseases, Shanghai, China
| | | | - Shu-Duo Zhou
- Department of Global Health, School of Public Health, Peking University, Haidian District, 38 Xue Yuan Road, Beijing, 100191, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Jian Yang
- Department of Global Health, School of Public Health, Peking University, Haidian District, 38 Xue Yuan Road, Beijing, 100191, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Xiang-Ning Feng
- Department of Global Health, School of Public Health, Peking University, Haidian District, 38 Xue Yuan Road, Beijing, 100191, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Yang-Mu Huang
- Department of Global Health, School of Public Health, Peking University, Haidian District, 38 Xue Yuan Road, Beijing, 100191, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Xian Xu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Ying Chen
- Department of Global Health, School of Public Health, Peking University, Haidian District, 38 Xue Yuan Road, Beijing, 100191, China.
- Institute for Global Health and Development, Peking University, Beijing, China.
| | - Duo-Quan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research On Tropical Diseases, Shanghai, China.
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Affiliation(s)
- Dimitrios Choutos
- From the School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Aikaterini Poulaki
- Hematology Unit, Second Department for Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Greece
| | | |
Collapse
|
15
|
Shelus V, Mumbere N, Mulogo EM, Barrington C, Baguma E, Muhindo R, Herrington JE, Emch M, Maman S, Boyce RM. Private sector antimalarial sales a decade after “test and treat”: A cross-sectional study of drug shop clients in rural Uganda. Front Public Health 2023; 11:1140405. [PMID: 37056663 PMCID: PMC10089286 DOI: 10.3389/fpubh.2023.1140405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundThe World Health Organization has promoted “test and treat” guidelines for malaria since 2010, recommending all suspected malaria cases be confirmed with a parasitological test, typically a rapid diagnostic test (RDT), prior to treatment with antimalarial medications. However, many fevers at private drug shops in Uganda continue to be treated presumptively as malaria without diagnostic testing.MethodsThe purpose of this study was to document private sector malaria case management in rural Uganda through a cross-sectional survey of drug shop clients in Bugoye sub-county. Drug shop vendors (n = 46) recorded information about sales interactions with clients reporting fever or requesting antimalarials and collected capillary blood samples from clients who purchased medications without an RDT. We estimated the proportion of clients who purchased an RDT, adhered to the RDT result, and received antimalarials without having laboratory-confirmed malaria.ResultsMost drug shops were unlicensed (96%) and sold RDTs (98%). Of 934 clients with suspected malaria who visited study drug shops during the data collection period, only 25% bought an RDT. Since some clients reported previous RDTs from the public sector, 40% of clients were aware of their malaria status at the drug shop. Among those with negative tests, 36% still purchased antimalarials. Sixty-five percent of clients who purchased an antimalarial without an RDT subsequently tested negative.ConclusionsDespite national guidelines, drug shop clients who purchase antimalarials from drug shops in Bugoye are often not tested to confirm a malaria diagnosis prior to treatment. Most clients treated presumptively with antimalarials did not have malaria. Interventions are needed to improve malaria case management and rational drug use in the private sector.
Collapse
Affiliation(s)
- Victoria Shelus
- Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nobert Mumbere
- Department of Community Health, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Edgar M. Mulogo
- Department of Community Health, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Clare Barrington
- Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Emmanuel Baguma
- Department of Community Health, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Rabbison Muhindo
- Department of Community Health, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - James E. Herrington
- Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael Emch
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Suzanne Maman
- Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ross M. Boyce
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Ross M. Boyce
| |
Collapse
|
16
|
Drysdale M, Tan L, Martin A, Fuhrer IB, Duparc S, Sharma H. Plasmodium vivax in Children: Hidden Burden and Conspicuous Challenges, a Narrative Review. Infect Dis Ther 2023; 12:33-51. [PMID: 36378465 PMCID: PMC9868225 DOI: 10.1007/s40121-022-00713-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
There has been progress towards decreasing malaria prevalence globally; however, Plasmodium vivax has been less responsive to elimination efforts compared with Plasmodium falciparum. P. vivax malaria remains a serious public health concern in regions where it is the dominant species (South and South-East Asia, the Eastern Mediterranean region, and South America) and is increasingly recognized for its contribution to overall morbidity and mortality worldwide. The incidence of P. vivax decreases with increasing age owing to rapidly acquired clinical immunity and there is a disproportionate burden of P. vivax in infants and children, who remain highly vulnerable to severe disease, recurrence, and anemia with associated developmental impacts. Diagnosis is sometimes difficult owing to the sensitivity of diagnostic tests to detect low levels of parasitemia. Additionally, the propensity of P. vivax to relapse following reactivation of dormant hypnozoites in the liver contributes to disease recurrence in infants and children, and potentiates morbidity and transmission. The 8-aminoquinolines, primaquine and tafenoquine, provide radical cure (relapse prevention). However, the risk of hemolysis in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency necessitates testing prior to administration of 8-aminoquinolines, which has limited their uptake. Additional challenges include lack of availability of pediatric dose formulations and problems with adherence to primaquine owing to the length of treatment recommended. A paucity of data and studies specific to pediatric P. vivax malaria impacts the ability to deliver targeted interventions. It is imperative that P. vivax in infants and children be the focus of future research, control initiatives, and anti-malarial drug development.
Collapse
Affiliation(s)
| | - Lionel Tan
- GSK, 980 Great West Road, Brentford, TW8 9GS Middlesex UK
| | - Ana Martin
- GSK, 980 Great West Road, Brentford, TW8 9GS Middlesex UK
| | | | | | - Hema Sharma
- GSK, 980 Great West Road, Brentford, TW8 9GS Middlesex UK
| |
Collapse
|
17
|
Hodson DZ, Mbarga Etoundi Y, Mbatou Nghokeng N, Mohamadou Poulibe R, Magne Djoko S, Goodwin J, Cheteug Nguesta G, Nganso T, Armstrong JN, Andrews JJ, Zhang E, Wade M, Eboumbou Moukoko CE, Boum Y, Parikh S. Clinical characteristics of Plasmodium falciparum infection among symptomatic patients presenting to a major urban military hospital in Cameroon. Malar J 2022; 21:298. [PMID: 36273147 PMCID: PMC9588226 DOI: 10.1186/s12936-022-04315-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/10/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Urban malaria has received insufficient attention in the literature. The prevalence and clinical characteristics of Plasmodium falciparum infection amongst patients presenting with suspected malaria were investigated at a major urban hospital in Douala, Cameroon with a particular focus on anaemia. METHODS A cross-sectional, 18-week demographic and clinical survey was conducted of patients presenting to the Emergency Department of Douala Military Hospital with suspected malaria, largely defined by the presence or recent history of fever. Venous samples were tested for P. falciparum using rapid diagnostic tests and PCR, and anaemia was defined by haemoglobin level according to WHO definitions. Likelihood ratios (LR), odds ratios (OR), and population attributable risk percent (PARP) were calculated. RESULTS Participants were ages 8 months to 86 years, 51% were women (257/503), and all districts of Douala were represented. Overall, 38.0% (n = 189/497) were anaemic, including 5.2% (n = 26/497) with severe anaemia. Anaemia prevalence was significantly higher (OR: 2.20, 95% CI 1.41-3.45) among children < 15 years (53.1%, n = 52/98) compared to adults (34%, n = 133/392). Plasmodium falciparum was detected in 37.2% by nested PCR. Among all participants, several factors were associated with clinically significant LR for P. falciparum infection, including age 10-14 years (positive LR: 3.73), living in the island district of Douala VI (positive LR: 3.41), travel to any of three northern regions (positive LR: 5.11), and high fever > 40 °C at presentation (positive LR: 4.83). Among all participants, 8.7% of anaemia was associated with P. falciparum infection, while the PARP was 33.2% among those < 15 years of age and 81.0% among 10-14-year-olds. CONCLUSIONS The prevalence of P. falciparum infection in the urban hospital was high. Mirroring trends in many rural African settings, older children had the highest positivity rate for P. falciparum infection. Anaemia was also common in all age groups, and for those 10-14 years of age, 80% of the risk for anaemia was associated with P. falciparum infection. Malaria rates in major urban population centres can be high, and more research into the multifactorial causes of anaemia across the age spectrum are needed.
Collapse
Affiliation(s)
| | - Yannick Mbarga Etoundi
- Douala Military Hospital, Douala, Cameroon
- Douala Military Hospital School of Nursing, Douala, Cameroon
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
| | | | | | | | - Justin Goodwin
- Yale School of Medicine, New Haven, USA
- Yale School of Public Health, New Haven, USA
| | - Glwadys Cheteug Nguesta
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Malaria Research Service, Centre Pasteur of Cameroon, Yaoundé, Cameroon
| | - Tatiana Nganso
- Malaria Research Service, Centre Pasteur of Cameroon, Yaoundé, Cameroon
| | | | | | | | | | - Carole Else Eboumbou Moukoko
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Malaria Research Service, Centre Pasteur of Cameroon, Yaoundé, Cameroon
| | - Yap Boum
- Epicentre, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé, Yaoundé, Cameroon
| | - Sunil Parikh
- Yale School of Medicine, New Haven, USA.
- Yale School of Public Health, New Haven, USA.
| |
Collapse
|
18
|
Prolonged Breastfeeding and the Risk of Plasmodium vivax Infection and Clinical Malaria in Early Childhood: A Birth Cohort Study. Pediatr Infect Dis J 2022; 41:793-799. [PMID: 35763695 DOI: 10.1097/inf.0000000000003618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Relatively few Amazonian infants have clinical malaria diagnosed, treated and notified before their first birthday, either because they are little exposed to an infection or remain asymptomatic once infected. Here we measure the proportion of children who have experienced Plasmodium vivax infection and malaria by 2 years of age in the main transmission hotspot of Amazonian Brazil. METHODS We measured IgG antibodies to 3 blood-stage P. vivax antigens at the 1- and 2-year follow-up assessment of 435 participants in a population-based birth cohort. Children's malaria case notifications were retrieved from the electronic database of the Ministry of Health. We used multiple Poisson regression models to identify predictors of serologically proven P. vivax infection and clinical vivax malaria during the first 2 years of life. RESULTS Overall, 23 [5.3%; 95% confidence interval (CI): 3.5-7.8%) children had antibodies to ≥2 antigens detected during at least one follow-up assessment, consistent with past P. vivax infection(s). Fifteen (3.4%; 95% CI: 2.1-5.6%) children had clinical vivax episodes notified during the first 2 years of life; 7 of them were seronegative. We estimate that half of the infections remained unnotified. Children born to women who experienced P. vivax infection during pregnancy were more likely to be infected and develop clinical vivax malaria, while those breast-fed for ≥12 months had their risk of being P. vivax -seropositive (which we take as evidence of blood-stage P. vivax infection during the first 2 years of life) decreased by 79.8% (95% CI: 69.3-86.7%). CONCLUSION P. vivax infections in early childhood are underreported in the Amazon, are associated with anemia at 2 years of age, and appear to be partially prevented by prolonged breastfeeding.
Collapse
|
19
|
White NJ. The assessment of antimalarial drug efficacy in vivo. Trends Parasitol 2022; 38:660-672. [PMID: 35680541 PMCID: PMC7613059 DOI: 10.1016/j.pt.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022]
Abstract
Currently recommended methods of assessing the efficacy of uncomplicated falciparum malaria treatment work less well in high-transmission than in low-transmission settings. There is also uncertainty how to assess intermittent preventive therapies and seasonal malaria chemoprevention (SMC), and Plasmodium vivax radical cure. A pharmacometric antimalarial resistance monitoring (PARM) approach is proposed specifically for evaluating slowly eliminated antimalarial drugs in areas of high transmission. In PARM antimalarial drug concentrations at recurrent parasitaemia are measured to identify outliers (i.e., recurrent parasitaemias in the presence of normally suppressive drug concentrations) and to evaluate changes over time. PARM requires characterization of pharmacometric profiles but should be simpler and more sensitive than current molecular genotyping-based methodologies. PARM does not require parasite genotyping and can be applied to the assessment of both prevention and treatment.
Collapse
Affiliation(s)
- Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK.
| |
Collapse
|
20
|
Genetic Diversity of Plasmodium falciparum and Distribution of Antimalarial Drug Resistance Mutations in Symptomatic and Asymptomatic Infections. Antimicrob Agents Chemother 2022; 66:e0018822. [DOI: 10.1128/aac.00188-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria control relies on passive case detection, and this strategy fails detecting asymptomatic infections. In addition, infections in endemic areas harbor multiple parasite genotypes that could affect case management and malaria epidemiology.
Collapse
|
21
|
Mpimbaza A, Babikako H, Rutazanna D, Karamagi C, Ndeezi G, Katahoire A, Opigo J, Snow RW, Kalyango JN. Adherence to malaria management guidelines by health care workers in the Busoga sub-region, eastern Uganda. Malar J 2022; 21:25. [PMID: 35078479 PMCID: PMC8788114 DOI: 10.1186/s12936-022-04048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Appropriate malaria management is a key malaria control strategy. The objective of this study was to determine health care worker adherence levels to malaria case management guidelines in the Busoga sub-region, Uganda. METHODS Health facility assessments, health care worker (HCW), and patient exit interview (PEI) surveys were conducted at government and private health facilities in the sub-region. All health centres (HC) IVs, IIIs, and a sample of HC IIs, representative of the tiered structure of outpatient service delivery at the district level were targeted. HCWs at these facilities were eligible for participation in the study. For PEIs, 210 patients of all ages presenting with a history of fever for outpatient care at selected facilities in each district were targeted. Patient outcome measures included testing rates, adherence to treatment, dispensing and counselling services as per national guidelines. The primary outcome was appropriate malaria case management, defined as the proportion of patients tested and only prescribed artemether-lumefantrine (AL) if positive. HCW readiness (e.g., training, supervision) and health facility capacity (e.g. availability of diagnostics and anti-malarials) to provide malaria case management were also assessed. Data were weighted to cater for the disproportionate representation of HC IIs in the study sample. RESULTS A total of 3936 patients and 1718 HCW from 392 facilities were considered in the analysis. The median age of patients was 14 years; majority (63.4%) females. Most (70.1%) facilities were HCIIs and 72.7% were owned by the government. Malaria testing services were available at > 85% of facilities. AL was in stock at 300 (76.5%) facilities. Of those with a positive result, nearly all were prescribed an anti-malarial, with AL (95.1%) accounting for most prescriptions. Among those prescribed AL, 81.0% were given AL at the facility, lowest at HC IV (60.0%) and government owned (80.1%) facilities, corresponding to AL stock levels. Overall, 86.9% (95%CI 79.7, 90.7) of all enrolled patients received appropriate malaria case management. However, only 50.7% (21.2, 79.7) of patients seen at PFPs received appropriate malaria management. CONCLUSION Adherence levels to malaria case management guidelines were good, but with gaps noted mainly in the private sector. The supply chain for AL needs to be strengthened. Interventions to improve practise at PFP facilities should be intensified.
Collapse
Affiliation(s)
- Arthur Mpimbaza
- Child Health and Development Centre, Makerere University, College of Health Sciences, Kampala, Uganda.
| | - Harriet Babikako
- Child Health and Development Centre, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Damian Rutazanna
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Charles Karamagi
- Department of Paediatrics and Child Health, Makerere University, College of Health Sciences, Kampala, Uganda
- Clinical Epidemiology Unit, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Grace Ndeezi
- Department of Paediatrics and Child Health, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Anne Katahoire
- Child Health and Development Centre, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Jimmy Opigo
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Robert W Snow
- Population Health Unit, Kenya Medical Research Institute/Wellcome Trust Research Programme, Nairobi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joan N Kalyango
- Clinical Epidemiology Unit, Makerere University, College of Health Sciences, Kampala, Uganda
- Department of Pharmacy, Makerere University, College of Health Sciences, Kampala, Uganda
| |
Collapse
|
22
|
Pernaute-Lau L, Camara M, Nóbrega de Sousa T, Morris U, Ferreira MU, Gil JP. An update on pharmacogenetic factors influencing the metabolism and toxicity of artemisinin-based combination therapy in the treatment of malaria. Expert Opin Drug Metab Toxicol 2022; 18:39-59. [PMID: 35285373 DOI: 10.1080/17425255.2022.2049235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Artemisinin-based combination therapies (ACTs) are recommended first-line antimalarials for uncomplicated Plasmodium falciparum malaria. Pharmacokinetic/pharmacodynamic variation associated with ACT drugs and their effect is documented. It is accepted to an extent that inter-individual variation is genetically driven, and should be explored for optimized antimalarial use. AREAS COVERED We provide an update on the pharmacogenetics of ACT antimalarial disposition. Beyond presently used antimalarials, we also refer to information available for the most notable next-generation drugs under development. The bibliographic approach was based on multiple Boolean searches on PubMed covering all recent publications since our previous review. EXPERT OPINION The last 10 years have witnessed an increase in our knowledge of ACT pharmacogenetics, including the first clear examples of its contribution as an exacerbating factor for drug-drug interactions. This knowledge gap is still large and is likely to widen as a new wave of antimalarial drug is looming, with few studies addressing their pharmacogenetics. Clinically useful pharmacogenetic markers are still not available, in particular, from an individual precision medicine perspective. A better understanding of the genetic makeup of target populations can be valuable for aiding decisions on mass drug administration implementation concerning region-specific antimalarial drug and dosage options.
Collapse
Affiliation(s)
- Leyre Pernaute-Lau
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, 1749-016, Portugal
| | - Mahamadou Camara
- Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Taís Nóbrega de Sousa
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brasil
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| | - Marcelo Urbano Ferreira
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, 1749-016, Portugal.,Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Pedro Gil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, 1749-016, Portugal.,Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Portugal
| |
Collapse
|
23
|
Ndiaye YD, Hartl DL, McGregor D, Badiane A, Fall FB, Daniels RF, Wirth DF, Ndiaye D, Volkman SK. Genetic surveillance for monitoring the impact of drug use on Plasmodium falciparum populations. Int J Parasitol Drugs Drug Resist 2021; 17:12-22. [PMID: 34333350 PMCID: PMC8342550 DOI: 10.1016/j.ijpddr.2021.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
The use of antimalarial drugs is an effective strategy in the fight against malaria. However, selection of drug resistant parasites is a constant threat to the continued use of this approach. Antimalarial drugs are used not only to treat infections but also as part of population-level strategies to reduce malaria transmission toward elimination. While there is strong evidence that the ongoing use of antimalarial drugs increases the risk of the emergence and spread of drug-resistant parasites, it is less clear how population-level use of drug-based interventions like seasonal malaria chemoprevention (SMC) or mass drug administration (MDA) may contribute to drug resistance or loss of drug efficacy. Critical to sustained use of drug-based strategies for reducing the burden of malaria is the surveillance of population-level signals related to transmission reduction and resistance selection. Here we focus on Plasmodium falciparum and discuss the genetic signatures of a parasite population that are correlated with changes in transmission and related to drug pressure and resistance as a result of drug use. We review the evidence for MDA and SMC contributing to malaria burden reduction and drug resistance selection and examine the use and impact of these interventions in Senegal. Throughout we consider best strategies for ongoing surveillance of both population and resistance signals in the context of different parasite population parameters. Finally, we propose a roadmap for ongoing surveillance during population-level drug-based interventions to reduce the global malaria burden.
Collapse
Affiliation(s)
| | | | - David McGregor
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | | | - Fatou Ba Fall
- Programme National de Lutte Contre le Paludisme, Senegal.
| | - Rachel F Daniels
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA.
| | - Dyann F Wirth
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA.
| | | | - Sarah K Volkman
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA; Simmons University, Boston, MA, USA.
| |
Collapse
|
24
|
Thomas A, Bakai TA, Atcha-Oubou T, Tchadjobo T, Bossard N, Rabilloud M, Voirin N. Seasonality of confirmed malaria cases from 2008 to 2017 in Togo: a time series analysis by health district and target group. BMC Infect Dis 2021; 21:1189. [PMID: 34836505 PMCID: PMC8620157 DOI: 10.1186/s12879-021-06893-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/17/2021] [Indexed: 11/10/2022] Open
Abstract
Background This study aimed to assess the seasonality of confirmed malaria cases in Togo and to provide new indicators of malaria seasonality to the National Malaria Control Programme (NMCP). Methods Aggregated data of confirmed malaria cases were collected monthly from 2008 to 2017 by the Togo’s NMCP and stratified by health district and according to three target groups: children < 5 years old, children ≥ 5 years old and adults, and pregnant women. Time series analysis was carried out for each target group and health district. Seasonal decomposition was used to assess the seasonality of confirmed malaria cases. Maximum and minimum seasonal indices, their corresponding months, and the ratio of maximum/minimum seasonal indices reflecting the importance of malaria transmission, were provided by health district and target group. Results From 2008 to 2017, 7,951,757 malaria cases were reported in Togo. Children < 5 years old, children ≥ 5 years old and adults, and pregnant women represented 37.1%, 57.7% and 5.2% of the confirmed malaria cases, respectively. The maximum seasonal indices were observed during or shortly after a rainy season and the minimum seasonal indices during the dry season between January and April in particular. In children < 5 years old, the ratio of maximum/minimum seasonal indices was higher in the north, suggesting a higher seasonal malaria transmission, than in the south of Togo. This is also observed in the other two groups but to a lesser extent. Conclusions This study contributes to a better understanding of malaria seasonality in Togo. The indicators of malaria seasonality could allow for more accurate forecasting in malaria interventions and supply planning throughout the year. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06893-z.
Collapse
Affiliation(s)
- Anne Thomas
- Université de Lyon, Lyon, France. .,Université Lyon 1, Villeurbanne, France. .,Service de Biostatistique et Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, Lyon, France. .,Équipe Biostatistique-Santé, Laboratoire de Biométrie et Biologie Évolutive, CNRS, UMR 5558, Villeurbanne, France. .,Epidemiology and Modelling of Infectious Diseases (EPIMOD), Lent, France.
| | - Tchaa A Bakai
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,Service de Biostatistique et Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, Lyon, France.,Équipe Biostatistique-Santé, Laboratoire de Biométrie et Biologie Évolutive, CNRS, UMR 5558, Villeurbanne, France.,Epidemiology and Modelling of Infectious Diseases (EPIMOD), Lent, France.,Programme National de Lutte contre le Paludisme (PNLP), Lomé, Togo
| | | | | | - Nadine Bossard
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,Service de Biostatistique et Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, Lyon, France.,Équipe Biostatistique-Santé, Laboratoire de Biométrie et Biologie Évolutive, CNRS, UMR 5558, Villeurbanne, France
| | - Muriel Rabilloud
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,Service de Biostatistique et Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, Lyon, France.,Équipe Biostatistique-Santé, Laboratoire de Biométrie et Biologie Évolutive, CNRS, UMR 5558, Villeurbanne, France
| | - Nicolas Voirin
- Epidemiology and Modelling of Infectious Diseases (EPIMOD), Lent, France
| |
Collapse
|
25
|
Woon SA, Manning L, Moore BR. Antimalarials for children with Plasmodium vivax infection: Current status, challenges, and research priorities. Parasitol Int 2021; 87:102512. [PMID: 34785369 DOI: 10.1016/j.parint.2021.102512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
The aim of this narrative review is to summarise efficacy and pharmacokinetic data for Plasmodium vivax in children. The burden of P. vivax malaria in children continues to remain a significant public health issue, and the need for improved treatment regimens for this vulnerable population is critical. Relapse after re-activation of dormant liver-stage hypnozoites poses additional challenges for treatment, elimination, and control strategies for P. vivax. Whilst it is recognised that paediatric pharmacology may be significantly influenced by anatomical and physiological changes of childhood, dosing regimens often continue to be extrapolated from adult data, highlighting the need for antimalarial dosing in children to be evaluated in early phase clinical trials. This will ensure that globally recommended treatment regimens do not result in suboptimal dosing in children. Furthermore, the development of affordable paediatric formulations to enhance treatment acceptability and widespread G6PD testing to facilitate use of anti-hypnozoite treatment such as primaquine and tafenoquine, should be further prioritised. As the world prepares for malaria elimination, a renewed focus on P. vivax malaria provides an ideal opportunity to harness momentum and ensure that all populations, including children have access to safe, efficacious, and correctly dosed antimalarial therapies.
Collapse
Affiliation(s)
- Sze-Ann Woon
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Laurens Manning
- Medical School, University of Western Australia, Perth, Western Australia, Australia; Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Brioni R Moore
- Medical School, University of Western Australia, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia; Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
26
|
Hybrid Deep Learning Based on a Heterogeneous Network Profile for Functional Annotations of Plasmodium falciparum Genes. Int J Mol Sci 2021; 22:ijms221810019. [PMID: 34576183 PMCID: PMC8468833 DOI: 10.3390/ijms221810019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Functional annotation of unknown function genes reveals unidentified functions that can enhance our understanding of complex genome communications. A common approach for inferring gene function involves the ortholog-based method. However, genetic data alone are often not enough to provide information for function annotation. Thus, integrating other sources of data can potentially increase the possibility of retrieving annotations. Network-based methods are efficient techniques for exploring interactions among genes and can be used for functional inference. In this study, we present an analysis framework for inferring the functions of Plasmodium falciparum genes based on connection profiles in a heterogeneous network between human and Plasmodium falciparum proteins. These profiles were fed into a hybrid deep learning algorithm to predict the orthologs of unknown function genes. The results show high performance of the model's predictions, with an AUC of 0.89. One hundred and twenty-one predicted pairs with high prediction scores were selected for inferring the functions using statistical enrichment analysis. Using this method, PF3D7_1248700 and PF3D7_0401800 were found to be involved with muscle contraction and striated muscle tissue development, while PF3D7_1303800 and PF3D7_1201000 were found to be related to protein dephosphorylation. In conclusion, combining a heterogeneous network and a hybrid deep learning technique can allow us to identify unknown gene functions of malaria parasites. This approach is generalized and can be applied to other diseases that enhance the field of biomedical science.
Collapse
|
27
|
Pincelli A, Cardoso MA, Malta MB, Johansen IC, Corder RM, Nicolete VC, Soares IS, Castro MC, Ferreira MU. Low-level Plasmodium vivax exposure, maternal antibodies, and anemia in early childhood: Population-based birth cohort study in Amazonian Brazil. PLoS Negl Trop Dis 2021; 15:e0009568. [PMID: 34264946 PMCID: PMC8282015 DOI: 10.1371/journal.pntd.0009568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/16/2021] [Indexed: 11/26/2022] Open
Abstract
Background Malaria causes significant morbidity and mortality in children under 5 years of age in sub-Saharan Africa and the Asia-Pacific region. Neonates and young infants remain relatively protected from clinical disease and the transplacental transfer of maternal antibodies is hypothesized as one of the protective factors. The adverse health effects of Plasmodium vivax malaria in early childhood–traditionally viewed as a benign infection–remain largely neglected in relatively low-endemicity settings across the Amazon. Methodology/Principal findings Overall, 1,539 children participating in a birth cohort study in the main transmission hotspot of Amazonian Brazil had a questionnaire administered, and blood sampled at the two-year follow-up visit. Only 7.1% of them experienced malaria confirmed by microscopy during their first 2 years of life– 89.1% of the infections were caused by P. vivax. Young infants appear to be little exposed to, or largely protected from infection, but children >12 months of age become as vulnerable to vivax malaria as their mothers. Few (1.4%) children experienced ≥4 infections during the 2-year follow-up, accounting for 43.4% of the overall malaria burden among study participants. Antenatal malaria diagnosed by microscopy during pregnancy or by PCR at delivery emerged as a significant correlate of subsequent risk of P. vivax infection in the offspring (incidence rate ratio, 2.58; P = 0.002), after adjusting for local transmission intensity. Anti-P. vivax antibodies measured at delivery do not protect mothers from subsequent malaria; whether maternal antibodies transferred to the fetus reduce early malaria risk in children remains undetermined. Finally, recent and repeated vivax malaria episodes in early childhood are associated with increased risk of anemia at the age of 2 years in this relatively low-endemicity setting. Conclusions/Significance Antenatal infection increases the risk of vivax malaria in the offspring and repeated childhood P. vivax infections are associated with anemia at the age of 2 years. Plasmodium vivax malaria causes frequent hospital admissions of infants and toddlers in areas of intense transmission in the Asia-Pacific region, often due to severe anemia, but its epidemiology and burden have been understudied in children from other endemic settings. Here we characterize the cumulative impact of P. vivax infections in infants and toddlers exposed to relatively low levels of malaria transmission in the Brazilian Amazon. We have previously shown that vivax malaria in pregnancy is associated with increased risk of maternal anemia and impaired fetal growth in this population. Now we show that the adverse effects of malaria extend to early childhood. Children born to mothers who had one or more infections during pregnancy are at an elevated risk of P. vivax malaria in their early life, although the transfer of maternal antibodies to the fetus may provide some short-term protection. Children who are repeatedly infected with P. vivax since birth are more likely to be anemic at the age of 2 years. These findings further challenge the traditional view of vivax malaria as a relatively benign infection in pregnancy and early childhood in the Amazon.
Collapse
Affiliation(s)
- Anaclara Pincelli
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marly A. Cardoso
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Maíra B. Malta
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
- Graduate Program in Collective Health, Catholic University of Santos, Santos, Brazil
| | - Igor C. Johansen
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo M. Corder
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vanessa C. Nicolete
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Irene S. Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcia C. Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| | | |
Collapse
|
28
|
Identifying a Deferiprone-Resveratrol Hybrid as an Effective Lipophilic Anti-Plasmodial Agent. Molecules 2021; 26:molecules26134074. [PMID: 34279413 PMCID: PMC8271877 DOI: 10.3390/molecules26134074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
Malaria i a serious health problem caused by Plasmodium spp. that can be treated by an anti-folate pyrimethamine (PYR) drug. Deferiprone (DFP) is an oral iron chelator used for the treatment of iron overload and has been recognized for its potential anti-malarial activity. Deferiprone-resveratrol hybrids (DFP-RVT) have been synthesized to present therapeutic efficacy at a level which is superior to DFP. We have focused on determining the lipophilicity, toxicity and inhibitory effects on P. falciparum growth and the iron-chelating activity of labile iron pools (LIPs) by DFP-RVT. According to our findings, DFP-RVT was more lipophilic than DFP (p < 0.05) and nontoxic to blood mononuclear cells. Potency for the inhibition of P. falciparum was PYR > DFP-RVT > DFP in the 3D7 strain (IC50 = 0.05, 16.82 and 47.67 µM, respectively) and DFP-RVT > DFP > PYR in the K1 strain (IC50 = 13.38, 42.02 and 105.61 µM, respectively). The combined treatment of DFP-RVT with PYR additionally enhanced the PYR activity in both strains. DFP-RVT dose-dependently lowered LIP levels in PRBCs and was observed to be more effective than DFP at equal concentrations. Thus, the DFP-RVT hybrid should be considered a candidate as an adjuvant anti-malarial drug through the deprivation of cellular iron.
Collapse
|
29
|
Ashley EA, Yeka A. Seasonal malaria chemoprevention: closing the know-do gap. Lancet 2020; 396:1778-1779. [PMID: 33278921 DOI: 10.1016/s0140-6736(20)32525-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Elizabeth A Ashley
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane 01000, Laos; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Adoke Yeka
- College of Health Sciences, Makerere University, Kampala, Uganda; Infectious Diseases Research Collaboration, Kampala, Uganda
| |
Collapse
|
30
|
Saito M, Briand V, Min AM, McGready R. Deleterious effects of malaria in pregnancy on the developing fetus: a review on prevention and treatment with antimalarial drugs. THE LANCET CHILD & ADOLESCENT HEALTH 2020; 4:761-774. [PMID: 32946830 DOI: 10.1016/s2352-4642(20)30099-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/09/2020] [Accepted: 03/25/2020] [Indexed: 12/29/2022]
Abstract
All malaria infections are harmful to both the pregnant mother and the developing fetus. One in ten maternal deaths in malaria endemic countries are estimated to result from Plasmodium falciparum infection. Malaria is associated with a 3-4 times increased risk of miscarriage and a substantially increased risk of stillbirth. Current treatment and prevention strategies reduce, but do not eliminate, malaria's damaging effects on pregnancy outcomes. Reviewing evidence generated from meta-analyses, systematic reviews, and observational data, the first paper in this Series aims to summarise the adverse effects of malaria in pregnancy on the fetus and how the current drug treatment and prevention strategies can alleviate these effects. Although evidence supports the safety and treatment efficacy of artemisinin-based combination therapies in the first trimester, these therapies have not been recommended by WHO for the treatment of malaria at this stage of pregnancy. Intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine is contraindicated in the first trimester and provides imperfect chemoprevention because of inadequate dosing, poor (few and late) antenatal clinic attendance, increasing antimalarial drug resistance, and decreasing naturally acquired maternal immunity due to the decreased incidence of malaria. Alternative strategies to prevent malaria in pregnancy are needed. The prevention of all malaria infections by providing sustained exposure to effective concentrations of antimalarial drugs is key to reducing the adverse effects of malaria in pregnancy.
Collapse
Affiliation(s)
- Makoto Saito
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Valérie Briand
- Infectious Diseases in Lower Income Countries, Research Institute for Sustainable Development, French National Institute of Health and Medical Research, University of Bordeaux, Bordeaux, France
| | - Aung Myat Min
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|