1
|
Wang F, Lin Y, Qin L, Zeng X, Jiang H, Liang Y, Wen S, Li X, Huang S, Li C, Luo X, Yang X. Serum metabolome associated with novel and legacy per- and polyfluoroalkyl substances exposure and thyroid cancer risk: A multi-module integrated analysis based on machine learning. ENVIRONMENT INTERNATIONAL 2024; 195:109203. [PMID: 39673872 DOI: 10.1016/j.envint.2024.109203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/14/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Exposure to per- and polyfluoroalkyl substances (PFAS) may linked to thyroid cancer (TC) risk, but inconsistent findings and a lack of studies on mixed exposures exist, especially regarding novel PFAS compounds. Additionally, little is known about the potential mechanisms underlying the association. OBJECTIVES Explore the effects of PFAS exposure on the serum metabolome and its correlation with TC. METHODS A 1:1 age- and sex-matched case-control study was administered with 746 TC cases and healthy controls. Liquid chromatography-high resolution mass spectrometry determined serum 11 PFAS and untargeted metabolome profile. ENET and LightGBM models were used to explore the exposure patterns and perform variable selection. The mixed exposure effects were assessed using Weighted quantile sum regression and Bayesian kernel machine regression. Metabolome-wide association analyses were performed to assess metabolic dysregulation associated with PFAS, and a structural synthesis analysis was used to detect latent groups of individuals with TC based on PFAS levels and metabolite patterns. RESULTS Ten of the 11 PFAS were detected in > 80 % of the population. PFHxA and PFDoA exposure associated with increased TC risk, while PFHxS and PFOA associated with decreased TC risk in single compound models (all P < 0.05). Machine learning algorithms identified PFHxA, PFDoA, PFHxS, PFOA, and PFHpA as the key PFAS influencing the development of TC, and mixed exposures have an overall positive effect on TC risk, with PFHxA making the primary contribution. A novel integrative analysis identified a cluster of TC patients characterized by increased PFHxA, PFDoA, PFHpA and decreased PFOA, PFHxS levels, and altered metabolite patterns highlighted by the upregulation of free fatty acids. CONCLUSIONS PFAS exposure is linked to a higher risk of TC, possibly through changes in fatty acid metabolism. Larger, prospective studies are needed to confirm these findings, and the role of short-chain PFAS requires more attention.
Collapse
Affiliation(s)
- Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanxin Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Lian Qin
- The Second Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Xiangtai Zeng
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | | | - Yanlan Liang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Shifeng Wen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Xiangzhi Li
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China; Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Shiping Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chunxiang Li
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Xiaoyu Luo
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Ni M, Lin Z, Chen Z, Xu Z, Zhang Q, Zhao J, Li W, Tang Y, Cao Z, Li B, Yao D, Cheng C, Hu Y, Liu X, Chen J, Liu Z. Effect of exposure to environmental phenols and parabens on folate concentrations among 3-19 years old children and adolescents: A cross-sectional study in NHANES 2005-2016. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117440. [PMID: 39662455 DOI: 10.1016/j.ecoenv.2024.117440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
Phenols and parabens, as endocrine-disrupting chemicals (EDCs), are prevalent in daily consumer products and industrial applications. Folate, a vital vitamin, plays a crucial role in numerous metabolic processes. The interaction between EDCs and folate is not well understood and warrants investigation. We utilized data from the National Health and Nutrition Examination Survey (NHANES) 2005-2016. Since many pollutants are co-exposed congeners, with interactive effects between pollutants, we employed multivariate linear regression model, weighted quantile sum regression, and Bayesian kernel machine regression (BKMR) to quantify the impact of folate levels in serum and red blood cell (RBC) and the overall effects of combined exposures. The study included 4395 children and adolescents. A negative correlation was observed between RBC folate concentrations and urinary concentrations of Bisphenol A (BPH), Triclosan (TRS), Methyl paraben (MPB), Propyl paraben (PPB), and Butyl paraben (BUP), in children and adolescents. Specifically, an increase in RBC folate levels was linked to a decrease in urinary BPH, TRS, MPB, PPB, and BUP concentrations. Similar associations were found with serum folate. The weighted quantile sum index showed a decrease in both RBC and serum folate levels with an increase in the mixture of phenols and parabens. BKMR further supported the overall negative impact of the chemical mixture on folate levels. This study provides evidence of an inverse relationship between exposure to phenols and parabens and folate concentrations in children and adolescents, which would be of significance in providing guidance for clinical interventions and calling for remediation actions to be prioritized during childhood.
Collapse
Affiliation(s)
- Meng Ni
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Zhenying Lin
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Ze Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Ziwen Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Qianqian Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Jiuru Zhao
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Wei Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yanan Tang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Zelin Cao
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Baihe Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Dongting Yao
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Chunyu Cheng
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yi Hu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiaorui Liu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Jiji Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Zhiwei Liu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| |
Collapse
|
3
|
Huang Y, Chen W, Gan Y, Liu X, Tian Y, Zhang J, Li F. Prenatal exposure to per- and polyfluoroalkyl substances, genetic factors, and autistic traits: Evidence from the Shanghai birth cohort. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135857. [PMID: 39383700 DOI: 10.1016/j.jhazmat.2024.135857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 10/11/2024]
Abstract
The epidemiological evidence regarding prenatal PFAS exposure and its interaction with genetic factors on the autistic traits risk is unclear. This study included 1610 mother-child pairs from the Shanghai Birth Cohort (SBC). Ten PFAS were quantified in blood serum collected in the first trimester. Child autistic traits were evaluated at age 4 using a Chinese version of the social responsiveness scale-short form (SRS-SF). We calculated the polygenic risk score (PRS) to evaluate the cumulative genetic effects of autism. Additive interaction models were established to explore whether genetic susceptibility modified the effects of prenatal PFAS exposure. After adjusting for confounders, we found prenatal PFOA exposure was associated with an increased risk of autistic traits in children (OR, 3.05; 95 % CI, 1.14-7.58), and the increased risk associated with PFOA was mitigated among women who reported pre-pregnancy folic acid supplementation. Additionally, an increased risk of autistic traits was observed in children with higher levels of prenatal PFHxS exposure and a high PRS (p for interaction = 0.021). Our findings suggest prenatal PFAS exposure may increase the risk of autistic traits in children, especially in those with a high genetic risk. Further research is warranted to confirm this association and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Yun Huang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiran Chen
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuexin Gan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Liu
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei Li
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Zhao Z, Zhou J, Shi A, Wang J, Li H, Yin X, Gao J, Wu Y, Li J, Sun YX, Yan H, Li Y, Chen G. Per- and poly-fluoroalkyl substances (PFAS) accelerate biological aging mediated by increased C-reactive protein. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136090. [PMID: 39405719 DOI: 10.1016/j.jhazmat.2024.136090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/23/2024] [Accepted: 10/05/2024] [Indexed: 12/01/2024]
Abstract
Unhealthy biological aging is related to higher incidence of varied age-related diseases, even higher all-cause mortality. Previous small sample size study suggested that Per- and poly-fluoroalkyl substances (PFAS) was associated with biological aging, but the evidence of exposure-response relationships, potential effect modifiers, and potential mediators were not investigated. Therefore, we conducted a cross-sectional analysis of national study including 14, 865 adults in the US from 8 survey cycles of NHANES from 2003 to 2018, to investigate the associations of PFAS compounds in body serum, including perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS), with biological aging. Generalized linear models showed that higher human exposure to PFAS was associated with accelerated biological aging. Importantly, human exposure to PFOA, PFOS, PFNA, and PFHxS with detected level (above 0.10 ng/mL) was associated with an average of 3.3 year (95 %CI: 2.7, 3.9, P < 0.001), 14.9 year (95 %CI: 7.2, 22.7, P < 0.001), 10.9 years (95 %CI: 3.9, 17.7, P < 0.001), and 8.8 years (95 %CI: 4.8, 12.9, P < 0.001) of biological aging acceleration. Cubic spline models indicated exposure-response relationships where there was no safe threshold of PFAS level regarding harms to human healthy aging. The weighted sum regression model found the significant associations of PFAS compound mixture with biological aging acceleration, and PFOA was the dominant contributor among 4 PFAS compounds. Mediation analysis suggested that C-reactive protein, one of the inflammation biomarkers, might play as mediator in PFAS-induced accelerated biological aging, but not Triglyceride-glucose index. In summary, our study suggests that the effects of PFAS on biological aging acceleration should be of concern and more action plans to address their negative impact on human health should be launched.
Collapse
Affiliation(s)
- Zongxi Zhao
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Jiayan Zhou
- School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Anye Shi
- System Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jingyi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongzheng Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiangjun Yin
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jialiang Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ying Wu
- Harvard Law School, Harvard University, Cambridge 02138, United States
| | - Jinlin Li
- PBC School of Finance, Tsinghua University, Beijing 100190, China
| | - Ya Xuan Sun
- T.H. Chan School of Public Health, Harvard University, Boston 02115, United States
| | - Hao Yan
- School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Yige Li
- Department of Health Care Policy, Harvard Medical School, Harvard University, Boston 02115, United States
| | - Guang Chen
- Broad Institute of MIT and Harvard, Cambridge 02142, United States; Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|
5
|
Clewell H. Mode of action Criteria for selection of the critical effect and safe dose range for PFOA by the Alliance for risk assessment. Regul Toxicol Pharmacol 2024; 154:105738. [PMID: 39542340 DOI: 10.1016/j.yrtph.2024.105738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
In response to the current disparity in risk assessment values for PFOA from different agencies and countries, an international effort facilitated by the Alliance for Risk Assessment (ARA) was recently undertaken to characterize the range of scientifically supportable safe dose estimates. In this assessment (Burgoon et al., 2023), an evaluation of the evidence regarding the potential modes of action (MOA) for PFOA toxicity was performed first, so that it could be used to inform subsequent decisions regarding potential critical effects and studies. This review describes the evidence considered in the MOA evaluations that were performed as part of the ARA effort. The overall conclusions of this evaluation are that the available mechanistic data do not support any conclusion that reported epidemiological associations of blood concentrations of PFOA as low as 10 ng/mL with various health effects should be considered causal. It is more likely that the reported associations may instead reflect reverse causality/pharmacokinetic confounding. These conclusions are consistent with the opinions of the World Health Organization (WHO, 2022).
Collapse
Affiliation(s)
- Harvey Clewell
- Ramboll Americas Engineering Solutions, 3107 Armand Street, Monroe, LA, USA.
| |
Collapse
|
6
|
de Haro-Romero T, Peinado FM, Vela-Soria F, Lara-Ramos A, Fernández-Parra J, Molina-Lopez A, Ubiña A, Ocón O, Artacho-Cordón F, Freire C. Association between exposure to perfluoroalkyl substances (PFAS) and endometriosis in the ENDEA case-control study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175593. [PMID: 39179042 DOI: 10.1016/j.scitotenv.2024.175593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) are environmental contaminants present in a wide range of consumer products and frequently detected in drinking water. They have been linked to adverse reproductive health outcomes in women, but there is limited human evidence on the association of PFAS exposure with endometriosis. OBJECTIVE/AIM To explore the association between plasma concentrations of several PFAS, considered individually and as a mixture, and the risk of endometriosis in women of childbearing age. METHODS Between 2018 and 2020, 42 patients with endometriosis and 90 controls undergoing abdominal surgery were recruited at two public hospitals in Granada, Spain. The presence or absence of endometriosis was ascertained by laparoscopic inspection of the pelvis and biopsy of suspected lesions (histological diagnosis). Concentrations of 10 PFAS were quantified in plasma samples from participants. Unconditional logistic regression was employed to examine associations of individual PFAS and summed concentrations of short (∑SC) and long-chain (∑LC) PFAS with odds of endometriosis, and quantile g-computation was used to assess their mixture effect. RESULTS In models adjusted for age, schooling, and parity, perfluorotridecanoic acid (PFTrDA) was associated with higher odds of endometriosis (odds ratio [OR] = 1.74; 95 % CI = 1.11-2.73 per 2-fold increase in plasma concentrations), while marginally significant associations were found for perfluorohexane sulfonate (PFHxS) (OR = 1.45, 95 % CI = 0.94-2.21) and ∑SC PFAS (OR = 1.48; 95 % CI = 0.96-2.30). No associations were found for the remaining PFAS. The PFAS mixture was non-significantly associated with 1.7-fold higher odds of endometriosis (95 % CI = 0.73-3.80), with perfluorononanoic acid (PFNA), PFHxS, and PFTrDA being the major contributors to this effect. CONCLUSIONS These findings suggest that exposure to certain PFAS may increase the odds of endometriosis. However, given the modest sample size, further studies are warranted to verify these results.
Collapse
Affiliation(s)
- Teresa de Haro-Romero
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain; Clinical Laboratory Management Unit, San Cecilio University Hospital, 18016 Granada, Spain.
| | - Francisco M Peinado
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain; Biomedical Research Centre (CIBM), University of Granada, 18100 Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071 Granada, Spain.
| | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain; Clinical Laboratory Management Unit, San Cecilio University Hospital, 18016 Granada, Spain.
| | - Ana Lara-Ramos
- Gynaecology and Obstetrics Unit, Virgen de las Nieves University Hospital, 18016 Granada, Spain
| | - Jorge Fernández-Parra
- Gynaecology and Obstetrics Unit, Virgen de las Nieves University Hospital, 18016 Granada, Spain
| | - Ana Molina-Lopez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain; Gynaecology and Obstetrics Unit, San Cecilio University Hospital, 18016 Granada, Spain
| | - Alfredo Ubiña
- General Surgery Unit, San Cecilio University Hospital, E-18016, Granada, Spain
| | - Olga Ocón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain; Gynaecology and Obstetrics Unit, San Cecilio University Hospital, 18016 Granada, Spain.
| | - Francisco Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071 Granada, Spain; General Surgery Unit, San Cecilio University Hospital, E-18016, Granada, Spain.
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain; Department of Legal Medicine, Toxicology and Physical Anthropology, School of Medicine, University of Granada, 18016 Granada, Spain.
| |
Collapse
|
7
|
Kong AX, Johnson M, Eno AF, Pham K, Zhang P, Geng Y. Proteome-wide reverse molecular docking reveals folic acid receptor as a mediator of PFAS-induced neurodevelopmental toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623082. [PMID: 39605555 PMCID: PMC11601370 DOI: 10.1101/2024.11.11.623082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of long-lasting chemicals with widespread use and environmental persistence that have been increasingly studied for their detrimental impacts to human and animal health. Several major PFAS species are linked to neurodevelopmental toxicity. For example, epidemiological studies have associated prenatal exposure to perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) with autism risk. However, the neurodevelopmental toxicities of major PFAS species have not been systematically evaluated in an animal model, and the molecular mechanisms underlying these toxicities have remained elusive. Using a high-throughput zebrafish social behavioral model, we screened six major PFAS species currently under regulation by the Environmental Protection Agency (EPA), including PFOA, PFNA, perfluorooctane sulfonate (PFOS), perfluorohexanesulfonic acid (PFHxS), perfluorobutane sulfonate (PFBS), and hexafluoropropylene oxide dimer acid ammonium salt (GenX). We found that embryonic exposure to PFNA, PFOA, and PFOS induced social deficits in zebrafish, recapitulating one of the hallmark behavioral deficits in autistic individuals. To uncover protein targets of the six EPA-regulated PFAS, we screened a virtual library containing predicted binding pockets of over 80% of the 3D human proteome through reverse molecular docking. We found that folate receptor beta (FR-β, encoded by the gene FOLR2) interacts strongly with PFNA, PFOA, and PFOS but to a lesser degree with PFHxS, PFBS, and GenX, correlating positively with their in vivo toxicity. Embryonic co-exposure to folic acid rescued social deficits induced by PFAS. The folic acid pathway has been implicated in autism, indicating a novel molecular mechanism for PFAS in autism etiology.
Collapse
Affiliation(s)
- Ally Xinyi Kong
- Department of Environmental and Occupational Health Sciences, Seattle, WA 98105, USA
| | - Maja Johnson
- Department of Environmental and Occupational Health Sciences, Seattle, WA 98105, USA
| | - Aiden F Eno
- Department of Environmental and Occupational Health Sciences, Seattle, WA 98105, USA
| | - Khoa Pham
- Department of Environmental and Occupational Health Sciences, Seattle, WA 98105, USA
| | - Ping Zhang
- Department of Environmental and Occupational Health Sciences, Seattle, WA 98105, USA
| | - Yijie Geng
- Department of Environmental and Occupational Health Sciences, Seattle, WA 98105, USA
| |
Collapse
|
8
|
Feng Y, Huang Y, Lu B, Xu J, Wang H, Wang F, Lin N. The role of Drp1 - Pink1 - Parkin - mediated mitophagy in perfluorobutane sulfonate- induced hepatocyte damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117066. [PMID: 39305773 DOI: 10.1016/j.ecoenv.2024.117066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 10/17/2024]
Abstract
Perfluorobutane sulfonate (PFBS) is recognized as a highly persistent environmental contaminant, notorious for its chemical stability and enduring presence in ecosystems. Its propensity for persistence and environmental mobility allows PFBS to infiltrate the human body, predominantly accumulating in the liver where it poses a potential risk for hepatic damage. This investigation aimed to explore the outcomes of PFBS on the physiological functionalities of hepatocytes in vitro. To this end, hepatocytes were exposed to 750 ug/ml PFBS, followed by an analysis of various cellular phenotypes and functionalities, including assessments of cell viability and mitochondrial integrity. The findings indicated that PFBS exposure led to a suppression of cell proliferation and an increase in apoptotic cell death. Moreover, PFBS exposure was found to augment the generation of reactive oxygen species (ROS) and induce significant mitochondrial dysfunction. Gene expression analysis identified significant changes in genes associated with numerous tumor signaling pathways and autophagy signaling pathways. Further examinations revealed an increase in cellular mitophagy following PFBS exposure, coupled with the activation of the mitophagy-associated Drp1/Pink1/Parkin pathway. Inhibition of mitophagy was observed to concurrently amplify cellular damage and inhibit the Drp1/Pink1/Parkin pathway. Together, these findings highlight PFBS's capacity to inflict hepatocyte injury through mitochondrial disruption, positioning Drp1/Pink1/Parkin-mediated mitophagy as a crucial cellular defense mechanism against PFBS-induced toxicity.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongheng Huang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Lu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianliang Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Wang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China.
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Lin CY, Lee HL, Wang C, Sung FC, Su TC. Examining the impact of polyfluoroalkyl substance exposure on erythrocyte profiles and its related nutrients: Insights from a prospective study on young Taiwanese. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124576. [PMID: 39032552 DOI: 10.1016/j.envpol.2024.124576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) constitute a group of synthetic chemicals extensively utilized across various commonplace products. PFAS are known to have various toxic effects on human health. The relationship between PFAS exposure and erythrocytes has been a subject of interest in epidemiological research, but so far, only limited cross-sectional studies have investigated. Additionally, the role of erythrocyte related nutrition indicators on PFAS-induced changes in erythrograms has not been explored. To fill these knowledge gaps, we launched a longitudinal study over a decade, tracking 502 adolescents and young adults aged 12 to 30 from the YOung TAiwanese Cohort (YOTA). Our analysis encompassed 11 types of plasma PFAS, as well as erythrograms and serum levels of ferritin, transferrin saturation, vitamin B12, and folate. Our examination unveiled positive associations between specific average levels of PFAS compounds, including linear perfluorooctanoic acid (PFOA), branched perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS), and transferrin saturation. Furthermore, linear PFOA and both linear and branched PFOS were negatively correlated with vitamin B12 levels. Specifically, we observed that the average linear PFOA demonstrated positive correlations with mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH), while average PFNA also exhibited positive associations with hemoglobin (Hb) and hematocrit (Hct) in a multiple linear regression model. Subsequent analysis revealed noteworthy interactions between vitamin B12 and PFNA, as well as folate and PFNA, in the context of their impact on Hb, Hct, and PFNA relationships. Additionally, an interaction with transferrin saturation was identified in the correlation between Hct and PFNA. These findings suggest a plausible link between PFAS exposure and erythrograms among young populations, underscoring the potential involvement of iron status, vitamin B12, and folate in this association. Further studies are imperative to elucidate the precise effects of PFAS on erythrocyte in human subjects.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Chikang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Fung-Chang Sung
- Department of Health Services Administration, China Medical University College of Public Health, Taichung 404, Taiwan; Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan; School of Medicine, College of Medicine, National Cheng-Kung University, Tainan 700, Taiwan.
| |
Collapse
|
10
|
McCall JR, Sausman KT, Brown AP, Mead RN. In vitro cytotoxicity of six per- and polyfluoroalkyl substances (PFAS) in human immune cell lines. Toxicol In Vitro 2024; 100:105910. [PMID: 39047989 DOI: 10.1016/j.tiv.2024.105910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Per- and Polyfluoroalkyl substances (PFAS) are a group of persistent long-lived chemicals with global environmental contamination. The published literature is rife with confusing and sometimes contradictory effects of PFAS on animal and cell models, as well as epidemiological studies. Cytotoxicity studies are often used as an early indicator to guide safety requirements, regulation, and further studies and thus can be useful to understand important toxicity differences by various PFAS. Recent studies have found that PFAS are not equivalently toxic on all cell types, and that not all cell types exhibit the same sensitivity to individual PFAS. However, immune cells have not been well studied. As immune cells are important for regulating responses to environmental toxins, infection, and cancer, we sought to discover the sensitivity of these cells to various PFAS, including legacy and replacement compounds. We assessed a range of concentrations and found that immune cells are generally more robust when exposed to PFAS, and that Jurkat T-cells were more sensitive than THP-1 monocytes. As monocytes are critical for coordinating inflammatory responses to external threats with cell death cascades, we further investigated these cells. We discovered that THP-1 cells do not undergo organized or programmed death, such as apoptosis or pyroptosis, and instead PFAS exposure results in a more necrotic/lytic and unorganized death, likely contributing to potential inflammatory effects downstream.
Collapse
Affiliation(s)
- Jennifer R McCall
- School of Nursing, College of Health and Human Services, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA; Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K Moss Lane, Wilmington, NC 28409, USA.
| | - Kathryn T Sausman
- School of Nursing, College of Health and Human Services, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA; Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K Moss Lane, Wilmington, NC 28409, USA
| | - Ariel P Brown
- School of Nursing, College of Health and Human Services, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA; Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K Moss Lane, Wilmington, NC 28409, USA
| | - Ralph N Mead
- Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K Moss Lane, Wilmington, NC 28409, USA; Department of Earth and Ocean Sciences, College of Science and Engineering, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| |
Collapse
|
11
|
Zong S, Wang L, Wang S, Wang Y, Jiang Y, Sun L, Zong Y, Li X. Exposure to per- and polyfluoroalkyl substances is associated with impaired cardiovascular health: a cross-sectional study. Front Public Health 2024; 12:1418134. [PMID: 39267634 PMCID: PMC11390656 DOI: 10.3389/fpubh.2024.1418134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Background Per- and polyfluoroalkyl substance (PFAS) exposure and cardiovascular disease are controversial. We aimed to assess the association between serum PFAS exposure and cardiovascular health (CVH) in U.S. adults. Methods We analyzed serum PFAS concentration data of U.S. adults reported in the National Health and Nutrition Examination Survey (NHANES) study (2005-2018). We employed two weighted logistic regression models and a restricted cubic spline (RCS) to examine the association between each PFAS and impaired CVH (defined as moderate and low CVH). Quantile g-computation (Qgcomp) and weighted quantile sum (WQS) analysis were used to estimate the effects of mixed exposures to PFASs on impaired CVH. Results PFAS were associated with an increased risk of impaired CVH (ORPFNA: 1.40, 95% CI: 1.09, 1.80; ORPFOA: 1.44, 95% CI: 1.10, 1.88; ORPFOS: 1.62, 95% CI: 1.25, 2.11). PFOA and PFOS exhibited nonlinear relationships with impaired CVH. Significant interactions were observed for impaired CVH between race/ethnicity and PFHxS (p = 0.02), marital status and PFOA (p = 0.03), and both marital status and race/ethnicity with PFOS (p = 0.01 and p = 0.02, respectively). Analysis via WQS and Qgcomp revealed that the mixture of PFAS was positively associated with an increased risk of impaired CVH. Conclusion PFNA, PFOA, and PFOS exposure are associated with an increased risk of impaired CVH in U.S. adults. Race/ethnicity and marital status may influence CVH. Reducing PFAS exposure could alleviate the burden of disease associated with impaired CVH.
Collapse
Affiliation(s)
- Shuli Zong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sutong Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongcheng Wang
- Department of Cardiovascular Diseases, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Yuehua Jiang
- Central Laboratory, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Liping Sun
- Department of Endocrine Tumor Intervention, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingying Zong
- Department of Business Administration, Shandong Yingcai University, Jinan, China
| | - Xiao Li
- Department of Cardiovascular Diseases, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| |
Collapse
|
12
|
An Z, Li Y, Li J, Jiang Z, Duan W, Guo M, Zhu Y, Zeng X, Wang L, Liu Y, Li A, Guo H, Zhang X. Associations between co-exposure to per- and polyfluoroalkyl substances and organophosphate esters and erythrogram in Chinese adults. CHEMOSPHERE 2024; 362:142750. [PMID: 38960049 DOI: 10.1016/j.chemosphere.2024.142750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/31/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Erythrogram, despite its prevalent use in assessing red blood cell (RBC) disorders and can be utilized to evaluate various diseases, still lacks evidence supporting the effects of per- and polyfluoroalkyl substances (PFASs) and organophosphate esters (OPEs) on it. A cross-sectional study involving 467 adults from Shijiazhuang, China was conducted to assess the associations between 12 PFASs and 11 OPEs and the erythrogram (8 indicators related to RBC). Three models, including multiple linear regression (MLR), sparse partial least squares regression, and Bayesian kernel machine regression (BKMR) were employed to evaluate both the individual and joint effects of PFASs and OPEs on the erythrogram. Perfluorohexane sulfonic acid (PFHxS) showed the strongest association with HGB (3.68%, 95% CI: 2.29%, 5.10%) when doubling among PFASs in MLR models. BKMR indicated that PFASs were more strongly associated with the erythrogram than OPEs, as evidenced by higher group posterior inclusion probabilities (PIPs) for PFASs. Within hemoglobin and hematocrit, PFHxS emerged as the most significant component (conditional PIP = 1.0 for both). Collectively, our study emphasizes the joint effect of PFASs and OPEs on the erythrogram and identified PFASs, particularly PFHxS, as the pivotal contributors to the erythrogram. Nonetheless, further investigations are warranted to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zexuan Jiang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wenjing Duan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yiming Zhu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiuli Zeng
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Linfeng Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, China
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, China.
| | - Xiaoguang Zhang
- Core Facilities and Centers of Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
13
|
Tao L, Tang W, Xia Z, Wu B, Liu H, Fu J, Lu Q, Guo L, Gao C, Zhou Q, Fan Y, Xu DX, Huang Y. Machine learning predicts the serum PFOA and PFOS levels in pregnant women: Enhancement of fatty acid status on model performance. ENVIRONMENT INTERNATIONAL 2024; 190:108837. [PMID: 38909401 DOI: 10.1016/j.envint.2024.108837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Human exposure to per- and polyfluoroalkyl substances (PFASs) has received considerable attention, particularly in pregnant women because of their dramatic changes in physiological status and dietary patterns. Predicting internal PFAS exposure in pregnant women, based on external and relevant parameters, has not been investigated. Here, machine learning (ML) models were developed to predict the serum concentrations of PFOA and PFOS in a large population of 588 pregnant participants. Dietary exposure characteristics, demographic parameters, and in particular, serum fatty acid (FA) data were used for the model development. The fitting results showed that the inclusion of FAs as covariates significantly improved the performance of the ML models, with the random forest (RF) model having the best predictive performance for PFOA (R2 = 0.33, MAE = 1.51 ng/mL, and RMSE = 1.89 ng/mL) and PFOS (R2 = 0.12, MAE = 2.65 ng/mL, and RMSE = 3.37 ng/mL). The feature importance analysis revealed that serum FAs greatly affected PFOA concentration in the pregnant women, with saturated FAs being associated with decreased PFOA levels and unsaturated FAs with increased levels. Comparison with one-compartment pharmacokinetic model further demonstrated the advantage of the ML models in predicting PFAS exposure in pregnant women. Our models correlate for the first time blood chemical concentrations with human FA status using ML, introducing a novel perspective on predicting PFAS levels in pregnant women. This study provides valuable insights concerning internal exposure of PFASs generated from external exposure, and contributes to risk assessment and management in pregnant populations.
Collapse
Affiliation(s)
- Lin Tao
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Weitian Tang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Zhicai Xia
- Xuancheng Center for Disease Control and Prevention, Xuancheng, China
| | - Bing Wu
- Xuancheng Center for Disease Control and Prevention, Xuancheng, China
| | - Heng Liu
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Juanjuan Fu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Qiufang Lu
- Xuancheng Center for Disease Control and Prevention, Xuancheng, China
| | - Liyan Guo
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Chang Gao
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yijun Fan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital, Anhui Medical University, Hefei, China; Clinical Research Center, Suzhou Hospital of Anhui Medical University, Anhui Medical University, Suzhou, China.
| |
Collapse
|
14
|
Wang Y, Gui J, Howe CG, Emond JA, Criswell RL, Gallagher LG, Huset CA, Peterson LA, Botelho JC, Calafat AM, Christensen B, Karagas MR, Romano ME. Association of diet with per- and polyfluoroalkyl substances in plasma and human milk in the New Hampshire Birth Cohort Study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173157. [PMID: 38740209 PMCID: PMC11247473 DOI: 10.1016/j.scitotenv.2024.173157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are related to various adverse health outcomes, and food is a common source of PFAS exposure. Dietary sources of PFAS have not been adequately explored among U.S. pregnant individuals. We examined associations of dietary factors during pregnancy with PFAS concentrations in maternal plasma and human milk in the New Hampshire Birth Cohort Study. PFAS concentrations, including perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), and perfluorodecanoate (PFDA), were measured in maternal plasma collected at ∼28 gestational weeks and human milk collected at ∼6 postpartum weeks. Sociodemographic, lifestyle and reproductive factors were collected from prenatal questionnaires and diet from food frequency questionnaires at ∼28 gestational weeks. We used adaptive elastic net (AENET) to identify important dietary variables for PFAS concentrations. We used multivariable linear regression to assess associations of dietary variables selected by AENET models with PFAS concentrations. Models were adjusted for sociodemographic, lifestyle, and reproductive factors, as well as gestational week of blood sample collection (plasma PFAS), postpartum week of milk sample collection (milk PFAS), and enrollment year. A higher intake of fish/seafood, eggs, coffee, or white rice during pregnancy was associated with higher plasma or milk PFAS concentrations. For example, every 1 standard deviation (SD) servings/day increase in egg intake during pregnancy was associated with 4.4 % (95 % CI: 0.6, 8.4), 3.3 % (0.1, 6.7), and 10.3 % (5.6, 15.2) higher plasma PFOS, PFOA, and PFDA concentrations respectively. Similarly, every 1 SD servings/day increase in white rice intake during pregnancy was associated with 7.5 % (95 % CI: -0.2, 15.8) and 12.4 % (4.8, 20.5) greater milk PFOS and PFOA concentrations, respectively. Our study suggests that certain dietary factors during pregnancy may contribute to higher PFAS concentrations in maternal plasma and human milk, which could inform interventions to reduce PFAS exposure for both birthing people and offspring.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA.
| | - Jiang Gui
- Department of Biomedical Data Science, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Caitlin G Howe
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Jennifer A Emond
- Department of Biomedical Data Science, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Rachel L Criswell
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA; Skowhegan Family Medicine, Redington-Fairview General Hospital, Skowhegan, ME 04976, USA
| | - Lisa G Gallagher
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Carin A Huset
- Minnesota Department of Health, St. Paul, MN 55101, USA
| | - Lisa A Peterson
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Brock Christensen
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Margaret R Karagas
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Megan E Romano
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| |
Collapse
|
15
|
Chen T, Wu J, Pan Q, Dong M. The association of female reproductive factors with history of cardiovascular disease: a large cross-sectional study. BMC Public Health 2024; 24:1616. [PMID: 38886693 PMCID: PMC11181605 DOI: 10.1186/s12889-024-19130-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND This study aimed to explore the association of female reproductive factors (age at first birth (AFB), age at last birth (ALB), number of pregnancies, and live births) with history of cardiovascular disease (CVD). METHODS A total of 15,715 women aged 20 years or over from the National Health and Nutrition Examination Surveys from 1999 to 2018 were included in our analysis. Weighted multivariable logistic regression analysis and restricted cubic spline (RCS) model were used to evaluate the association of AFB and ALB with history of CVD in women. Additionally, the relationship between the number of pregnancies, and live births and history of CVD was also explored. RESULTS After adjusting for potential confounding factors, the RCS plot showed a U-curve relationship between AFB, ALB and history of CVD. Among them, AFB was associated with congestive heart failure (CHF), heart attack, and stroke in a U-shaped curve. Additionally, this U-shaped correlation also exists between ALB and CHF and stroke. However, the number of pregnancies and live births was liner positive associated with history of CVD, including coronary heart disease, CHF, angina pectoris, heart attack, and stroke. CONCLUSIONS Women with younger or later AFB and ALB have higher odds of CVD in later life. Further study is warranted to verify the underlying mechanisms of this association.
Collapse
Affiliation(s)
- Tiehan Chen
- Department of Internal Medicine, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, 222000, China.
| | - Jingwen Wu
- Department of Cardiology, Lianyungang First People's Hospital, Lianyungang, Jiangsu, 222000, China
| | - Qinyuan Pan
- Department of Intensive Care Unit, Lianyungang First People's Hospital, Lianyungang, Jiangsu, 222000, China
| | - Mingmei Dong
- Department of Internal Medicine, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, 222000, China
| |
Collapse
|
16
|
Wang M, Wang X, Huang K, Han B, Li R, Shen Y, Zhuang Z, Wang Z, Wang L, Zhou Y, Jing T. Human Biomonitoring of Environmental Chemicals among Elderly in Wuhan, China: Prioritizing Risks Using EPA's ToxCast Database. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10001-10014. [PMID: 38788169 DOI: 10.1021/acs.est.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
In line with the "healthy aging" principle, we aim to assess the exposure map and health risks of environmental chemicals in the elderly. Blood samples from 918 elderly individuals in Wuhan, China, were analyzed using the combined gas/liquid-mass spectrometry technology to detect levels of 118 environmental chemicals. Cluster analysis identified exposure profiles, while risk indexes and bioanalytical equivalence percentages were calculated using EPA's ToxCast database. The detection rates for 87 compounds exceeded 70%. DEHP, DiBP, naphthalene, phenanthrene, DnBP, pyrene, anthracene, permethrin, fluoranthene, and PFOS showed the highest concentrations. Fat-soluble pollutants varied across lifestyles. In cluster 2, which was characterized by higher concentrations of fat-soluble substances, the proportion of smokers or drinkers was higher than that of nonsmokers or nondrinkers. Pesticides emerged as the most active environmental chemicals in peroxisome proliferator-activated receptor gamma antagonist, thyroid hormone receptor (TR) antagonist, TR agonist, and androgen receptor (AR) agonist activity assays. Additionally, PAEs and polycyclic aromatic hydrocarbons played significant roles as active contaminants for the corresponding targets of AR antagonists and estrogen receptor alpha. We proposed a list of priority pollutants linked to endocrine-disrupting toxic effects in the elderly, which may provide the groundwork for further research into environmental etiology.
Collapse
Affiliation(s)
- Mengyi Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Xiu Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China
| | - Kai Huang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Bin Han
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Ruifang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yang Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Zhijia Zhuang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Zhu Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Lulu Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yikai Zhou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Tao Jing
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| |
Collapse
|
17
|
Niu Z, Duan Z, He W, Chen T, Tang H, Du S, Sun J, Chen H, Hu Y, Iijima Y, Han S, Li J, Zhao Z. Kidney function decline mediates the adverse effects of per- and poly-fluoroalkyl substances (PFAS) on uric acid levels and hyperuricemia risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134312. [PMID: 38640681 DOI: 10.1016/j.jhazmat.2024.134312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Previous studies indicated per- and poly-fluoroalkyl substances (PFAS) were related to uric acid and hyperuricemia risk, but evidence for the exposure-response (E-R) curves and combined effect of PFAS mixture is limited. Moreover, the potential mediation effect of kidney function was not assessed. Hence, we conducted a national cross-sectional study involving 13,979 US adults in NHANES 2003-2018 to examine the associations of serum PFAS with uric acid and hyperuricemia risk, and the mediation effects of kidney function. Generalized linear models and E-R curves showed positive associations of individual PFAS with uric acid and hyperuricemia risk, and nearly linear E-R curves indicated no safe threshold for PFAS. Weighted quantile sum regression found positive associations of PFAS mixture with uric acid and hyperuricemia risk, and PFOA was the dominant contributor to the adverse effect of PFAS on uric acid and hyperuricemia risk. Causal mediation analysis indicated significant mediation effects of kidney function decline in the associations of PFAS with uric acid and hyperuricemia risk, with the mediated proportion ranging from 19 % to 57 %. Our findings suggested that PFAS, especially PFOA, may cause increased uric acid and hyperuricemia risk increase even at low levels, and kidney function decline plays a crucial mediation effect.
Collapse
Affiliation(s)
- Zhiping Niu
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Zhizhou Duan
- Preventive Health Service, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, China
| | - Weixiang He
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Tianyi Chen
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Hao Tang
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Shuang Du
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jin Sun
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Han Chen
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yuanzhuo Hu
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yuka Iijima
- Department of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shichao Han
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China.
| | - Jiufeng Li
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China; Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China; WMO/IGAC MAP-AQ Asian Office Shanghai, Fudan University, Shanghai 200438, China.
| |
Collapse
|
18
|
Makris KC, Chourdakis M. The Need for an Alternative Health Claim Process for Foods Based on Both Nutrient and Contaminant Profiles. Curr Dev Nutr 2024; 8:103764. [PMID: 38813480 PMCID: PMC11134546 DOI: 10.1016/j.cdnut.2024.103764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
Most authorized health claims on foods have been established on the basis of single dietary components, mainly micronutrients, such as vitamins, minerals, and possibly bioactives. Failure to sufficiently define and characterize the nutritional profile of a food product is one of the main reasons for rejection or incomplete status for thousands of health claim applications, whereas the food's contaminant profile is simply not accounted for. The objective of this work was to highlight the accumulating scientific evidence supporting a reform of the health claim evaluation process for foods toward more holistic approaches. This would entail the characterization of multiple nutrient-contaminant pairs and contaminant mixture profiles at contaminant levels currently considered "safe," including their interactions that would impact human health outcome(s) in a net positive or negative direction. The notion of a stable nutritional profile in food commodities has been challenged by studies reporting a variable food contaminant content and a declining content of proteins/micronutrients in crops due to anthropogenic greenhouse gas emissions. A holistic approach in the health claim process for foods would entail the incorporation of cumulative risk assessment and/or risk-benefit protocols that effectively combine health risks and benefits associated with multiple nutritional and contaminant attributes of the food/diet under evaluation.
Collapse
Affiliation(s)
- Konstantinos Christos Makris
- Cyprus International Institute for Environmental and Public Health, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - Michael Chourdakis
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
19
|
Sámano R, Martínez-Rojano H, Chico-Barba G, Gamboa R, Tolentino M, Toledo-Barrera AX, Ramírez-González C, Mendoza-Flores ME, Hernández-Trejo M, Godínez-Martínez E. Serum Folate, Red Blood Cell Folate, and Zinc Serum Levels Are Related with Gestational Weight Gain and Offspring's Birth-Weight of Adolescent Mothers. Nutrients 2024; 16:1632. [PMID: 38892565 PMCID: PMC11174574 DOI: 10.3390/nu16111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Gestational weight gain below or above the Institute of Medicine recommendations has been associated with adverse perinatal and neonatal outcomes. Very few studies have evaluated the association between serum and red blood cell folate concentrations and gestational weight gain in adolescents. Additionally, zinc deficiency during pregnancy has been associated with impaired immunity, prolonged labor, preterm and post-term birth, intrauterine growth restriction, low birth weight, and pregnancy-induced hypertension. OBJECTIVE The purpose of our study is to evaluate the association between serum concentrations of zinc, serum folate, and red blood cell folate, with the increase in gestational weight and the weight and length of the newborn in a group of adolescent mothers from Mexico City. RESULTS In our study, 406 adolescent-neonate dyads participated. The adolescents' median age was 15.8 years old. The predominant socioeconomic level was middle-low (57.8%), single (57%), 89.9% were engaged in home activities, and 41.3% completed secondary education. Excessive gestational weight gain was observed in 36.7% of cases, while insufficient gestational weight gain was noted in 38.4%. Small for gestational age infants were observed in 20.9% of the sample. Low serum folate (OR 2.1, 95% CI 1.3-3.3), decreased red blood cell folate (OR 1.6, 95% CI 1.0-2.6), and reduced serum zinc concentrations (OR 3.3, 95% CI 2.1-5.2) were associated with insufficient gestational weight gain. Decreased serum zinc levels (OR 1.2, 95% CI 1.2-3.4) were linked to an increased probability of delivering a baby who is small for their gestational age. CONCLUSIONS Low serum folate, red blood cell folate, and serum zinc concentrations were associated with gestational weight gain and having a small gestational age baby. Both excessive and insufficient gestational weight gain, as well as having a small gestational age baby, are frequent among adolescent mothers.
Collapse
Affiliation(s)
- Reyna Sámano
- Coordinación de Nutrición y Bioprogramación, Instituto Nacional de Perinatología, Secretaría de Salud, México City 11000, Mexico; (G.C.-B.); (M.T.); (C.R.-G.); (M.E.M.-F.); (E.G.-M.)
| | - Hugo Martínez-Rojano
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, México City 11340, Mexico
- Coordinación de Medicina Laboral, Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE) “Dr. Manuel Martínez Báez”, Secretaría de Salud, México City 01480, Mexico
| | - Gabriela Chico-Barba
- Coordinación de Nutrición y Bioprogramación, Instituto Nacional de Perinatología, Secretaría de Salud, México City 11000, Mexico; (G.C.-B.); (M.T.); (C.R.-G.); (M.E.M.-F.); (E.G.-M.)
| | - Ricardo Gamboa
- Departamento de Fisiología, Instituto Nacional de Cardiología, México City 14080, Mexico;
| | - Maricruz Tolentino
- Coordinación de Nutrición y Bioprogramación, Instituto Nacional de Perinatología, Secretaría de Salud, México City 11000, Mexico; (G.C.-B.); (M.T.); (C.R.-G.); (M.E.M.-F.); (E.G.-M.)
| | | | - Cristina Ramírez-González
- Coordinación de Nutrición y Bioprogramación, Instituto Nacional de Perinatología, Secretaría de Salud, México City 11000, Mexico; (G.C.-B.); (M.T.); (C.R.-G.); (M.E.M.-F.); (E.G.-M.)
| | - María Eugenia Mendoza-Flores
- Coordinación de Nutrición y Bioprogramación, Instituto Nacional de Perinatología, Secretaría de Salud, México City 11000, Mexico; (G.C.-B.); (M.T.); (C.R.-G.); (M.E.M.-F.); (E.G.-M.)
| | - María Hernández-Trejo
- Departamento de Neurobiología del Desarrollo, Instituto Nacional de Perinatología, Secretaría de Salud, México City 11000, Mexico;
| | - Estela Godínez-Martínez
- Coordinación de Nutrición y Bioprogramación, Instituto Nacional de Perinatología, Secretaría de Salud, México City 11000, Mexico; (G.C.-B.); (M.T.); (C.R.-G.); (M.E.M.-F.); (E.G.-M.)
| |
Collapse
|
20
|
Tang C, Wang Y, Hong H. Unraveling the link between heavy metals, perfluoroalkyl substances and depression: Insights from epidemiological and bioinformatics strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116482. [PMID: 38772142 DOI: 10.1016/j.ecoenv.2024.116482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
Heavy metals and per- and polyfluoroalkyl substances (PFASs) have become particularly important when studying the development of depression, a common illness that severely restricts psychosocial functioning and diminishes quality of life. Therefore, the potential joint effects of heavy metal and PFAS exposure on depression, as well as the underlying mechanisms involved, were investigated by using integrated epidemiological and bioinformatic approaches in the present study. A thorough analysis of 7301 samples from the National Health and Nutrition Examination Survey (NHANES) cycles that occurred between 2005 and 2018 was performed. Single-exposure studies have shown that cadmium exposure is positively associated with depression, whereas perfluorooctanesulfonic acid (PFOS) exposure and perfluorodecanoic acid (PFDE) exposure are negatively associated with depression. Furthermore, the Bayesian kernel machine regression (BKMR) and quantile g-computation (QGcomp) models were employed to investigate the collective impact of exposure to mixed metals on depression. Cadmium emerged as the principal contributor to depression. Moreover, the addition of PFAS to the metal mixture had an antagonistic effect on depression, with PFOS having the most prominent influence. Analysis of the effects of co-exposure to cadmium and PFOS confirmed the presence of an antagonistic effect. The inflection points of cadmium and PFOS were determined to be -1.11 and 2.27, respectively. Additionally, exposure to cadmium and PFOS had the opposite effects on two crucial pathways, namely, the rap1 and calcium signaling pathways, which involve core genes related to depression such as ADORA2A, FGF2, and FGFR1. These findings have significant implications for future studies and provide new strategies for exploring the mechanisms underlying co-exposure effects.
Collapse
Affiliation(s)
- Chunlan Tang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, Zhengjiang 315211, China
| | - Yucheng Wang
- The Affiliated Kangning Hospital, Ningbo University, Ningbo, Zhejiang 315201, China
| | - Hang Hong
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
21
|
Mustieles V, Fernández MF, Messerlian C. In Utero Metabolic Disruption-A Preventable Antecedent of Adult Disease? JAMA Netw Open 2024; 7:e2412022. [PMID: 38780945 DOI: 10.1001/jamanetworkopen.2024.12022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Affiliation(s)
- Vicente Mustieles
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
22
|
Zhang Y, Sun Q, Mustieles V, Martin L, Sun Y, Bibi Z, Torres N, Coburn-Sanderson A, First O, Souter I, Petrozza JC, Botelho JC, Calafat AM, Wang YX, Messerlian C. Predictors of Serum Per- and Polyfluoroalkyl Substances Concentrations among U.S. Couples Attending a Fertility Clinic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5685-5694. [PMID: 38502775 DOI: 10.1021/acs.est.3c08457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Previous studies have examined the predictors of PFAS concentrations among pregnant women and children. However, no study has explored the predictors of preconception PFAS concentrations among couples in the United States. This study included 572 females and 279 males (249 couples) who attended a U.S. fertility clinic between 2005 and 2019. Questionnaire information on demographics, reproductive history, and lifestyles and serum samples quantified for PFAS concentrations were collected at study enrollment. We examined the PFAS distribution and correlation within couples. We used Ridge regressions to predict the serum concentration of each PFAS in females and males using data of (1) socio-demographic and reproductive history, (2) diet, (3) behavioral factors, and (4) all factors included in (1) to (3) after accounting for temporal exposure trends. We used general linear models for univariate association of each factor with the PFAS concentration. We found moderate to high correlations for PFAS concentrations within couples. Among all examined factors, diet explained more of the variation in PFAS concentrations (1-48%), while behavioral factors explained the least (0-4%). Individuals reporting White race, with a higher body mass index, and nulliparous women had higher PFAS concentrations than others. Fish and shellfish consumption was positively associated with PFAS concentrations among both females and males, while intake of beans (females), peas (male), kale (females), and tortilla (both) was inversely associated with PFAS concentrations. Our findings provide important data for identifying sources of couples' PFAS exposure and informing interventions to reduce PFAS exposure in the preconception period.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Vicente Mustieles
- Instituto de Investigación Biosanitaria Ibs GRANADA, Granada 18012, Spain
- University of Granada, Center for Biomedical Research (CIBM), Spain. Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid 28029, Spain
| | - Leah Martin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Yang Sun
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Zainab Bibi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Nicole Torres
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Ayanna Coburn-Sanderson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Olivia First
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Irene Souter
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, Massachusetts 02113, United States
| | - John C Petrozza
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, Massachusetts 02113, United States
| | - Julianne C Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Yi-Xin Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, Massachusetts 02113, United States
| |
Collapse
|
23
|
Maitin-Shepard M, Werner EF, Feig LA, Chavarro JE, Mumford SL, Wylie B, Rando OJ, Gaskins AJ, Sakkas D, Arora M, Kudesia R, Lujan ME, Braun J, Mozaffarian D. Food, nutrition, and fertility: from soil to fork. Am J Clin Nutr 2024; 119:578-589. [PMID: 38101699 DOI: 10.1016/j.ajcnut.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Food and nutrition-related factors, including foods and nutrients consumed, dietary patterns, use of dietary supplements, adiposity, and exposure to food-related environmental contaminants, have the potential to impact semen quality and male and female fertility; obstetric, fetal, and birth outcomes; and the health of future generations, but gaps in evidence remain. On 9 November 2022, Tufts University's Friedman School of Nutrition Science and Policy and the school's Food and Nutrition Innovation Institute hosted a 1-d meeting to explore the evidence and evidence gaps regarding the relationships between food, nutrition, and fertility. Topics addressed included male fertility, female fertility and gestation, and intergenerational effects. This meeting report summarizes the presentations and deliberations from the meeting. Regarding male fertility, a positive association exists with a healthy dietary pattern, with high-quality evidence for semen quality and lower quality evidence for clinical outcomes. Folic acid and zinc supplementation have been found to not impact male fertility. In females, body weight status and other nutrition-related factors are linked to nearly half of all ovulation disorders, a leading cause of female infertility. Females with obesity have worse fertility treatment, pregnancy-related, and birth outcomes. Environmental contaminants found in food, water, or its packaging, including lead, perfluorinated alkyl substances, phthalates, and phenols, adversely impact female reproductive outcomes. Epigenetic research has found that maternal and paternal dietary-related factors can impact outcomes for future generations. Priority evidence gaps identified by meeting participants relate to the effects of nutrition and dietary patterns on fertility, gaps in communication regarding fertility optimization through changes in nutritional and environmental exposures, and interventions impacting germ cell mechanisms through dietary effects. Participants developed research proposals to address the priority evidence gaps. The workshop findings serve as a foundation for future prioritization of scientific research to address evidence gaps related to food, nutrition, and fertility.
Collapse
Affiliation(s)
| | - Erika F Werner
- Tufts University School of Medicine, Boston, MA, United States
| | - Larry A Feig
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Jorge E Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Sunni L Mumford
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Blair Wylie
- Collaborative for Women's Environmental Health, Columbia University, New York, NY, United States
| | - Oliver J Rando
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Audrey J Gaskins
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | | | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Marla E Lujan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Joseph Braun
- Department of Epidemiology, Brown University, Providence, RI, United States
| | - Dariush Mozaffarian
- Tufts University School of Medicine, Boston, MA, United States; Food is Medicine Institute, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States.
| |
Collapse
|
24
|
Zhang M, Li R, Fan X, Zhang S, Liao L, Xu X, Guo Y. Correlation of several forms of folic acid with endometrial cancer: cross-sectional data from the National Health and Nutrition Examination Surveys (NHANES) 2011-2018. J Cancer Res Clin Oncol 2023; 149:13619-13629. [PMID: 37515615 DOI: 10.1007/s00432-023-05177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
OBJECTIVE Endometrial cancer (EC) is a common malignancy of the female reproductive system and although most patients have a good prognosis, 20-30% of patients with advanced disease have a poor prognosis. There are currently no reliable biomarkers for early diagnosis and effective prognostic improvement of the disease. The purpose of this study was to explore the correlation between different forms of folic acid and endometrial cancer. METHODS This study included 8809 female subjects aged ≥ 20 years in the NHANES database from 2011 to 2018, including 8738 non-oncology patients and 71 EC patients. Selection bias was reduced using 1:1 propensity score matching (PSM) method. Restricted cubic spline (RCS) was plotted to explore the non-linear relationship between different forms of folic acid and EC. RESULT Using data from the NHANES database from 2011 to 2018, the association between folic acid and the risk of developing EC was assessed. The results of the 1:1 ratio propensity score matching (PSM) showed 68 each for EC patients and non-oncology participants. Total serum folate, 5-methyltetrahydrofolate (5-methylTHF), 5-formyltetrahydrofolate (5-formylTHF), tetrahydrofolate (THF) and 5,10-methylenetetrahydrofolate (5,10-methenylTHF) were significantly correlated with EC (p < 0.05). In addition, the RCS showed a significant non-linear correlation between THF and 5,10-formyl THF and the risk of developing EC. CONCLUSION The results of this study showed that changes in serum total folate, 5-methylTHF, 5-formylTHF, THF and 5,10-methenylTHF were related to EC.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Gynecology, Second Hospital of Lanzhou University, Cuiyingmen No. 82, Chengguan District, 730000, Lanzhou, Gansu, People's Republic of China
| | - Ruiping Li
- Department of Gynecology, Second Hospital of Lanzhou University, Cuiyingmen No. 82, Chengguan District, 730000, Lanzhou, Gansu, People's Republic of China
| | - Xuefen Fan
- Department of Gynecology, Second Hospital of Lanzhou University, Cuiyingmen No. 82, Chengguan District, 730000, Lanzhou, Gansu, People's Republic of China
| | - Shan Zhang
- Department of Gynecology, Second Hospital of Lanzhou University, Cuiyingmen No. 82, Chengguan District, 730000, Lanzhou, Gansu, People's Republic of China
| | - Lixin Liao
- Department of Gynecology, Second Hospital of Lanzhou University, Cuiyingmen No. 82, Chengguan District, 730000, Lanzhou, Gansu, People's Republic of China
| | - Xin Xu
- Department of Gynecology, Second Hospital of Lanzhou University, Cuiyingmen No. 82, Chengguan District, 730000, Lanzhou, Gansu, People's Republic of China
| | - Yuzhen Guo
- Department of Gynecology, Second Hospital of Lanzhou University, Cuiyingmen No. 82, Chengguan District, 730000, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|