1
|
Conkle-Gutierrez D, Gorman BM, Thosar N, Elghraoui A, Modlin SJ, Valafar F. Widespread loss-of-function mutations implicating preexisting resistance to new or repurposed anti-tuberculosis drugs. Drug Resist Updat 2024; 77:101156. [PMID: 39393282 DOI: 10.1016/j.drup.2024.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 09/05/2024] [Accepted: 09/28/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Five New or Repurposed Drugs (NRDs) were approved in the last decade for treatment of multi-drug resistant tuberculosis: bedaquiline, clofazimine, linezolid, delamanid, and pretomanid. Unfortunately, resistance to these drugs emerged faster than anticipated, potentially due to preexisting resistance in naïve strains. Previous investigations into the rapid emergence have mostly included short variants. For the first time, we utilize de novo-assembled genomes, and systematically include Structural Variations (SV) and heterogeneity to comprehensively study this rapid emergence. We show high prevalence of preexisting resistance, identify novel markers of resistance, and lay the foundation for preventing preexisting resistance in future drug development. METHODS First, a systematic literature review revealed 313 NRD resistance variants in 13 genes. Next, 409 globally diverse clinical isolates collected prior to the drugs' programmatic use (308 were multidrug resistant, 106 had de novo assembled genomes) were utilized to study the 13 genes comprehensively for conventional, structural, and heterogeneous variants. FINDINGS We identified 5 previously reported and 67 novel putative NRD resistance variants. These variants were 2 promoter mutations (in 8/409 isolates), 13 frameshifts (21/409), 6 SVs (9/409), 35 heterogeneous frameshifts (32/409) and 11 heterogeneous SVs (12/106). Delamanid and pretomanid resistance mutations were most prevalent (48/409), while linezolid resistance mutations were least prevalent (8/409). INTERPRETATION Preexisting mutations implicated in resistance to at least one NRD was highly prevalent (85/409, 21 %). This was mostly caused by loss-of-function mutations in genes responsible for prodrug activation and efflux pump regulation. These preexisting mutations may have emerged through a bet-hedging strategy, or through cross-resistance with non-tuberculosis drugs such as metronidazole. Future drugs that could be resisted through loss-of-function in non-essential genes may suffer from preexisting resistance. The methods used here for comprehensive preexisting resistance assessment (especially SVs and heterogeneity) may mitigate this risk during early-stage drug development.
Collapse
Affiliation(s)
- Derek Conkle-Gutierrez
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, USA
| | - Bria M Gorman
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, USA
| | - Nachiket Thosar
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, USA
| | - Afif Elghraoui
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, USA
| | - Samuel J Modlin
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, USA
| | - Faramarz Valafar
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
2
|
Naidoo K, Perumal R, Cox H, Mathema B, Loveday M, Ismail N, Omar SV, Georghiou SB, Daftary A, O'Donnell M, Ndjeka N. The epidemiology, transmission, diagnosis, and management of drug-resistant tuberculosis-lessons from the South African experience. THE LANCET. INFECTIOUS DISEASES 2024; 24:e559-e575. [PMID: 38527475 DOI: 10.1016/s1473-3099(24)00144-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Drug-resistant tuberculosis (DR-TB) threatens to derail tuberculosis control efforts, particularly in Africa where the disease remains out of control. The dogma that DR-TB epidemics are fueled by unchecked rates of acquired resistance in inadequately treated or non-adherent individuals is no longer valid in most high DR-TB burden settings, where community transmission is now widespread. A large burden of DR-TB in Africa remains undiagnosed due to inadequate access to diagnostic tools that simultaneously detect tuberculosis and screen for resistance. Furthermore, acquisition of drug resistance to new and repurposed drugs, for which diagnostic solutions are not yet available, presents a major challenge for the implementation of novel, all-oral, shortened (6-9 months) treatment. Structural challenges including poverty, stigma, and social distress disrupt engagement in care, promote poor treatment outcomes, and reduce the quality of life for people with DR-TB. We reflect on the lessons learnt from the South African experience in implementing state-of-the-art advances in diagnostic solutions, deploying recent innovations in pharmacotherapeutic approaches for rapid cure, understanding local transmission dynamics and implementing interventions to curtail DR-TB transmission, and in mitigating the catastrophic socioeconomic costs of DR-TB. We also highlight globally relevant and locally responsive research priorities for achieving DR-TB control in South Africa.
Collapse
Affiliation(s)
- Kogieleum Naidoo
- SAMRC-CAPRISA HIV/TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
| | - Rubeshan Perumal
- SAMRC-CAPRISA HIV/TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Helen Cox
- Institute of Infectious Diseases and Molecular Medicine, Wellcome Centre for Infectious Disease Research and Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Barun Mathema
- Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Marian Loveday
- South African Medical Research Council, Durban, South Africa
| | - Nazir Ismail
- School of Pathology, University of Witwatersrand, Johannesburg, South Africa
| | - Shaheed Vally Omar
- Centre for Tuberculosis, National & WHO Supranational TB Reference Laboratory, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | | | - Amrita Daftary
- SAMRC-CAPRISA HIV/TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; School of Global Health and Dahdaleh Institute of Global Health Research, York University, Toronto, ON, Canada
| | - Max O'Donnell
- SAMRC-CAPRISA HIV/TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Irving Medical Center, New York City, NY, USA; Department of Epidemiology, Columbia University Irving Medical Center, New York City, NY, USA
| | - Norbert Ndjeka
- TB Control and Management, Republic of South Africa National Department of Health, Pretoria, South Africa
| |
Collapse
|
3
|
Roberts LW, Malone KM, Hunt M, Joseph L, Wintringer P, Knaggs J, Crook D, Farhat MR, Iqbal Z, Omar SV. MmpR5 protein truncation and bedaquiline resistance in Mycobacterium tuberculosis isolates from South Africa: a genomic analysis. THE LANCET. MICROBE 2024; 5:100847. [PMID: 38851206 DOI: 10.1016/s2666-5247(24)00053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND The antibiotic bedaquiline is a key component of new WHO regimens for drug-resistant tuberculosis; however, predicting bedaquiline resistance from bacterial genotypes remains challenging. We aimed to understand the genetic mechanisms of bedaquiline resistance by analysing Mycobacterium tuberculosis isolates from South Africa. METHODS For this genomic analysis, we conducted whole-genome sequencing of Mycobacterium tuberculosis samples collected at two referral laboratories in Cape Town and Johannesburg, covering regions of South Africa with a high prevalence of tuberculosis. We used the tool ARIBA to measure the status of predefined genes that are associated with bedaquiline resistance. To produce a broad genetic landscape of M tuberculosis in South Africa, we extended our analysis to include all publicly available isolates from the European Nucleotide Archive, including isolates obtained by the CRyPTIC consortium, for which minimum inhibitory concentrations of bedaquiline were available. FINDINGS Between Jan 10, 2019, and July, 22, 2020, we sequenced 505 M tuberculosis isolates from 461 patients. Of the 64 isolates with mutations within the mmpR5 regulatory gene, we found 53 (83%) had independent acquisition of 31 different mutations, with a particular enrichment of truncated MmpR5 in bedaquiline-resistant isolates resulting from either frameshift mutations or the introduction of an insertion element. Truncation occurred across three M tuberculosis lineages, and were present in 66% of bedaquiline-resistant isolates. Although the distributions overlapped, the median minimum inhibitory concentration of bedaquiline was 0·25 mg/L (IQR 0·12-0·25) in mmpR5-disrupted isolates, compared with 0·06 mg/L (0·03-0·06) in wild-type M tuberculosis. INTERPRETATION Reduction in the susceptibility of M tuberculosis to bedaquiline has evolved repeatedly across the phylogeny. In our data, we see no evidence that this reduction has led to the spread of a successful strain in South Africa. Binary phenotyping based on the bedaquiline breakpoint might be inappropriate to monitor resistance to this drug. We recommend the use of minimum inhibitory concentrations in addition to MmpR5 truncation screening to identify moderate increases in resistance to bedaquiline. FUNDING US Centers for Disease Control and Prevention.
Collapse
Affiliation(s)
- Leah W Roberts
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK; Department of Medicine, University of Cambridge, Cambridge, UK; Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kerri M Malone
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Martin Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lavania Joseph
- Centre for Tuberculosis, National and Supranational TB Reference Laboratory, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Penelope Wintringer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Jeff Knaggs
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Derrick Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Maha R Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Zamin Iqbal
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK; The Milner Centre for Evolution, University of Bath, Bath, UK.
| | - Shaheed V Omar
- Centre for Tuberculosis, National and Supranational TB Reference Laboratory, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
4
|
Shaw ES, Stoker NG, Potter JL, Claassen H, Leslie A, Tweed CD, Chiang CY, Conradie F, Esmail H, Lange C, Pinto L, Rucsineanu O, Sloan DJ, Theron G, Tisile P, Voo TC, Warren RM, Lebina L, Lipman M. Bedaquiline: what might the future hold? THE LANCET. MICROBE 2024:100909. [PMID: 39074472 DOI: 10.1016/s2666-5247(24)00149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 07/31/2024]
Abstract
Tuberculosis drug development has stagnated for decades, so the recent availability of bedaquiline is welcome. Bedaquiline-containing regimens, now the first-line therapy recommended by WHO, have transformed the treatment of drug-resistant tuberculosis, offering safer and more effective oral treatment options. However, key obstacles need to be overcome to ensure global access and prevent the rapid development of resistance against this promising class of drugs. In this Personal View, building on an international workshop held in 2023, we evaluate the current evidence and suggest possible ways forward, recognising the tension between increasing use and slowing the rise of resistance. We also discuss problems in accessing bedaquiline-containing regimens, the potential widening of their use beyond drug-resistant tuberculosis, and lessons for utilising new drugs as they are developed.
Collapse
Affiliation(s)
- Emily S Shaw
- Division of Acute Medical Services, University College London Hospitals NHS Foundation Trust, London, UK.
| | - Neil G Stoker
- Centre for Clinical Microbiology, Royal Free Campus, University College London, London, UK
| | - Jessica L Potter
- Respiratory Medicine, Division of Medicine, University College London, London, UK; Department of Respiratory Medicine, North Middlesex University Hospital, London, UK
| | | | - Alasdair Leslie
- Department of Infection and Immunity, University College London, London, UK; Africa Health Research Institute, Durban, South Africa
| | - Conor D Tweed
- MRC Clinical Trials Unit, University College London, London, UK
| | - Chen-Yuan Chiang
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; International Union Against Tuberculosis and Lung Disease, Paris, France
| | - Francesca Conradie
- Clinical HIV Research Unit, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Hanif Esmail
- MRC Clinical Trials Unit, University College London, London, UK; Institute for Global Health, University College London, London, UK; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Christoph Lange
- Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; German Center of Infection Research (DZIF), Borstel, Germany; Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Lancelot Pinto
- PD Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - Oxana Rucsineanu
- Moldova National Association of Tuberculosis Patients (SMIT), Bălți, Republic of Moldova
| | - Derek J Sloan
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Grant Theron
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | | | - Robin M Warren
- Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Marc Lipman
- Respiratory Medicine, Division of Medicine, University College London, London, UK; Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
5
|
Kim D, Shin JI, Yoo IY, Jo S, Chu J, Cho WY, Shin SH, Chung YJ, Park YJ, Jung SH. GenoMycAnalyzer: a web-based tool for species and drug resistance prediction for Mycobacterium genomes. BMC Genomics 2024; 25:387. [PMID: 38643090 PMCID: PMC11031912 DOI: 10.1186/s12864-024-10320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Drug-resistant tuberculosis (TB) is a major threat to global public health. Whole-genome sequencing (WGS) is a useful tool for species identification and drug resistance prediction, and many clinical laboratories are transitioning to WGS as a routine diagnostic tool. However, user-friendly and high-confidence automated bioinformatics tools are needed to rapidly identify M. tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM), detect drug resistance, and further guide treatment options. RESULTS We developed GenoMycAnalyzer, a web-based software that integrates functions for identifying MTBC and NTM species, lineage and spoligotype prediction, variant calling, annotation, drug-resistance determination, and data visualization. The accuracy of GenoMycAnalyzer for genotypic drug susceptibility testing (gDST) was evaluated using 5,473 MTBC isolates that underwent phenotypic DST (pDST). The GenoMycAnalyzer database was built to predict the gDST for 15 antituberculosis drugs using the World Health Organization mutational catalogue. Compared to pDST, the sensitivity of drug susceptibilities by the GenoMycAnalyzer for first-line drugs ranged from 95.9% for rifampicin (95% CI 94.8-96.7%) to 79.6% for pyrazinamide (95% CI 76.9-82.2%), whereas those for second-line drugs ranged from 98.2% for levofloxacin (95% CI 90.1-100.0%) to 74.9% for capreomycin (95% CI 69.3-80.0%). Notably, the integration of large deletions of the four resistance-conferring genes increased gDST sensitivity. The specificity of drug susceptibilities by the GenoMycAnalyzer ranged from 98.7% for amikacin (95% CI 97.8-99.3%) to 79.5% for ethionamide (95% CI 76.4-82.3%). The incorporated Kraken2 software identified 1,284 mycobacterial species with an accuracy of 98.8%. GenoMycAnalyzer also perfectly predicted lineages for 1,935 MTBC and spoligotypes for 54 MTBC. CONCLUSIONS GenoMycAnalyzer offers both web-based and graphical user interfaces, which can help biologists with limited access to high-performance computing systems or limited bioinformatics skills. By streamlining the interpretation of WGS data, the GenoMycAnalyzer has the potential to significantly impact TB management and contribute to global efforts to combat this infectious disease. GenoMycAnalyzer is available at http://www.mycochase.org .
Collapse
Affiliation(s)
- Doyoung Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong-Ih Shin
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Integrated Research Center for Genomic Polymorphism, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In Young Yoo
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sungjin Jo
- Department of Laboratory Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jiyon Chu
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | - Yeun-Jun Chung
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Integrated Research Center for Genomic Polymorphism, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Departments of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeon-Joon Park
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hyun Jung
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Integrated Research Center for Genomic Polymorphism, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Departments of Biochemistry, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoch-Gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
6
|
Nyambo K, Tapfuma KI, Adu-Amankwaah F, Julius L, Baatjies L, Niang IS, Smith L, Govender KK, Ngxande M, Watson DJ, Wiesner L, Mavumengwana V. Molecular docking, molecular dynamics simulations and binding free energy studies of interactions between Mycobacterium tuberculosis Pks13, PknG and bioactive constituents of extremophilic bacteria. Sci Rep 2024; 14:6794. [PMID: 38514663 PMCID: PMC10957976 DOI: 10.1038/s41598-024-57124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
Mycobacterial pathogens present a significant challenge to disease control efforts globally due to their inherent resistance to multiple antibiotics. The rise of drug-resistant strains of Mycobacterium tuberculosis has prompted an urgent need for innovative therapeutic solutions. One promising way to discover new tuberculosis drugs is by utilizing natural products from the vast biochemical space. Multidisciplinary methods can used to harness the bioactivity of these natural products. This study aimed to evaluate the antimycobacterial efficacy of functional crude extracts from bacteria isolated from gold mine tailings in South Africa. Bacterial strains were identified using 16S rRNA sequencing. The crude extracts obtained from the bacteria were tested against Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis mc2155, and Mycobacterium aurum A+. Untargeted HPLC-qTOF and molecular networking were used to identify the functional constituents present in extracts that exhibited inhibitory activity. A virtual screening workflow (VSW) was used to filter compounds that were strong binders to Mycobacterium tuberculosis Pks13 and PknG. The ligands returned from the VSW were subjected to optimization using density functional theory (DFT) at M06-2X/6-311++ (d,p) level of theory and basis set implemented in Gaussian16 Rev.C01. The optimized ligands were re-docked against Mycobacterium tuberculosis Pks13 and PknG. Molecular dynamics simulation and molecular mechanics generalized born surface area were used to evaluate the stability of the protein-ligand complexes formed by the identified hits. The hit that showed promising binding characteristics was virtually modified through multiple synthetic routes using reaction-driven enumeration. Three bacterial isolates showed significant activity against the two strains of Mycobacterium, while only two, Bacillus subtilis and Bacillus licheniformis, exhibited activity against both Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis mc2155, and Mycobacterium aurum A+. The tentatively identified compounds from the bacterial crude extracts belonged to various classes of natural compounds associated with antimicrobial activity. Two compounds, cyclo-(L-Pro-4-OH-L-Leu) and vazabitide A, showed strong binding against PknG and Pks13, with pre-MD MM-GBSA values of - 42.8 kcal/mol and - 47.6 kcal/mol, respectively. The DFT-optimized compounds exhibited the same docking scores as the ligands optimized using the OPSL-4 force field. After modifying vazabitide A, its affinity to the Pks13 binding site increased to - 85.8 kcal/mol, as revealed by the post-MD MM-GBSA analysis. This study highlights the potential of bacteria isolates from gold mine tailings as a source of new scaffolds for designing and optimizing anti-Mycobacterium agents. These agents synthesized in-silico can be further tested in-vitro to evaluate their efficacy.
Collapse
Affiliation(s)
- Kudakwashe Nyambo
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Kudzanai Ian Tapfuma
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Francis Adu-Amankwaah
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Lauren Julius
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Lucinda Baatjies
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Idah Sithole Niang
- Department of Biotechnology and Biochemistry, University of Zimbabwe, B064, Mount Pleasant, Harare, Zimbabwe
| | - Liezel Smith
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Krishna Kuben Govender
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), Cape Town, South Africa
| | - Mkhuseli Ngxande
- Computer Science Division, Department of Mathematical Sciences, Faculty of Science, University of Stellenbosch, Matieland, South Africa
| | - Daniel J Watson
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Vuyo Mavumengwana
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa.
| |
Collapse
|
7
|
Cai YX, Chen JX, Dong HM, Yang ZC. 19 Schiff bases as antimycobacterial agents: synthesis, molecular docking and a plausible mechanism of action. Future Med Chem 2024; 16:453-467. [PMID: 38314562 DOI: 10.4155/fmc-2023-0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Aim: To discover novel anti-Mycobacterium tuberculosis (Mtb) drugs, 19 compounds were synthesized; their anti-Mtb effects were evaluated and mechanisms of action were preliminarily explored. Materials & methods: The compounds were synthesized and their anti-Mtb activity was elucidated using resazurin microtiter assays. The plausible target of the potential compound was investigated by microimaging techniques, gas chromatography-mass spectrometry analysis and molecular docking. Results: 19 compounds inhibited Mtb growth with minimum inhibitory concentrations ranging from 1 to 32 μg/ml. Compounds 1-17 showed inhibition of Mtb KatG enzyme. Compound 19, the most potent, might be an inhibitor of Pks13 polyketide synthase. Conclusion: This study suggests that 2-((6-fluoropyridin-3-yl)methylene) hydrazine-1-carbothioamide (19) is a potential anti-Mtb lead compound with a novel mechanism of action.
Collapse
Affiliation(s)
- Yu-Xiang Cai
- College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Jun-Xian Chen
- College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Hong-Mei Dong
- College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Zai-Chang Yang
- College of Pharmacy, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
8
|
Negi A, Perveen S, Gupta R, Singh PP, Sharma R. Unraveling Dilemmas and Lacunae in the Escalating Drug Resistance of Mycobacterium tuberculosis to Bedaquiline, Delamanid, and Pretomanid. J Med Chem 2024; 67:2264-2286. [PMID: 38351709 DOI: 10.1021/acs.jmedchem.3c01892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Delamanid, bedaquiline, and pretomanid have been recently added in the anti-tuberculosis (anti-TB) treatment regimens and have emerged as potential solutions for combating drug-resistant TB. These drugs have proven to be effective in treating drug-resistant TB when used in combination. However, concerns have been raised about the eventual loss of these drugs due to evolving resistance mechanisms and certain adverse effects such as prolonged QT period, gastrointestinal problems, hepatotoxicity, and renal disorders. This Perspective emphasizes the properties of these first-in-class drugs, including their mechanism of action, pharmacokinetics/pharmacodynamics profiles, clinical studies, adverse events, and underlying resistance mechanisms. A brief coverage of efforts toward the generation of best-in-class leads in each class is also provided. The ongoing clinical trials of new combinations of these drugs are discussed, thus providing a better insight into the use of these drugs while designing an effective treatment regimen for resistant TB cases.
Collapse
Affiliation(s)
- Anjali Negi
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Summaya Perveen
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ria Gupta
- Natural Products and Medicinal Chemistry, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Parvinder Pal Singh
- Natural Products and Medicinal Chemistry, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
9
|
Nimmo C, Ortiz AT, Tan CCS, Pang J, Acman M, Millard J, Padayatchi N, Grant AD, O'Donnell M, Pym A, Brynildsrud OB, Eldholm V, Grandjean L, Didelot X, Balloux F, van Dorp L. Detection of a historic reservoir of bedaquiline/clofazimine resistance-associated variants in Mycobacterium tuberculosis. Genome Med 2024; 16:34. [PMID: 38374151 PMCID: PMC10877763 DOI: 10.1186/s13073-024-01289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Drug resistance in tuberculosis (TB) poses a major ongoing challenge to public health. The recent inclusion of bedaquiline into TB drug regimens has improved treatment outcomes, but this advance is threatened by the emergence of strains of Mycobacterium tuberculosis (Mtb) resistant to bedaquiline. Clinical bedaquiline resistance is most frequently conferred by off-target resistance-associated variants (RAVs) in the mmpR5 gene (Rv0678), the regulator of an efflux pump, which can also confer cross-resistance to clofazimine, another TB drug. METHODS We compiled a dataset of 3682 Mtb genomes, including 180 carrying variants in mmpR5, and its immediate background (i.e. mmpR5 promoter and adjacent mmpL5 gene), that have been associated to borderline (henceforth intermediate) or confirmed resistance to bedaquiline. We characterised the occurrence of all nonsynonymous mutations in mmpR5 in this dataset and estimated, using time-resolved phylogenetic methods, the age of their emergence. RESULTS We identified eight cases where RAVs were present in the genomes of strains collected prior to the use of bedaquiline in TB treatment regimes. Phylogenetic reconstruction points to multiple emergence events and circulation of RAVs in mmpR5, some estimated to predate the introduction of bedaquiline. However, epistatic interactions can complicate bedaquiline drug-susceptibility prediction from genetic sequence data. Indeed, in one clade, Ile67fs (a RAV when considered in isolation) was estimated to have emerged prior to the antibiotic era, together with a resistance reverting mmpL5 mutation. CONCLUSIONS The presence of a pre-existing reservoir of Mtb strains carrying bedaquiline RAVs prior to its clinical use augments the need for rapid drug susceptibility testing and individualised regimen selection to safeguard the use of bedaquiline in TB care and control.
Collapse
Affiliation(s)
- Camus Nimmo
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK.
- Division of Infection and Immunity, University College London, London, UK.
- Africa Health Research Institute, Durban, South Africa.
| | - Arturo Torres Ortiz
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK
- Department of Medicine, Imperial College, London, UK
| | - Cedric C S Tan
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK
| | - Juanita Pang
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK
- Division of Infection and Immunity, University College London, London, UK
| | - Mislav Acman
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK
| | - James Millard
- Africa Health Research Institute, Durban, South Africa
- Wellcome Trust Liverpool Glasgow Centre for Global Health Research, Liverpool, UK
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Nesri Padayatchi
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Alison D Grant
- Africa Health Research Institute, Durban, South Africa
- TB Centre, London School of Hygiene & Tropical Medicine, London, UK
| | - Max O'Donnell
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
- Department of Medicine & Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Alex Pym
- Africa Health Research Institute, Durban, South Africa
| | - Ola B Brynildsrud
- Division of Infectious Diseases and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Vegard Eldholm
- Division of Infectious Diseases and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Louis Grandjean
- Division of Infection and Immunity, University College London, London, UK
- Laboratorio de Investigacion y Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of Infection, Immunity and Inflammation, Institute of Child Health, University College London, London, UK
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK
| | - François Balloux
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK.
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK.
| |
Collapse
|
10
|
Brown TS, Tang L, Omar SV, Joseph L, Meintjes G, Maartens G, Wasserman S, Shah NS, Farhat MR, Gandhi NR, Ismail N, Brust JCM, Mathema B. Genotype-Phenotype Characterization of Serial Mycobacterium tuberculosis Isolates in Bedaquiline-Resistant Tuberculosis. Clin Infect Dis 2024; 78:269-276. [PMID: 37874928 PMCID: PMC11494438 DOI: 10.1093/cid/ciad596] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Emerging resistance to bedaquiline (BDQ) threatens to undermine advances in the treatment of drug-resistant tuberculosis (DRTB). Characterizing serial Mycobacterium tuberculosis (Mtb) isolates collected during BDQ-based treatment can provide insights into the etiologies of BDQ resistance in this important group of DRTB patients. METHODS We measured mycobacteria growth indicator tube (MGIT)-based BDQ minimum inhibitory concentrations (MICs) of Mtb isolates collected from 195 individuals with no prior BDQ exposure who were receiving BDQ-based treatment for DRTB. We conducted whole-genome sequencing on serial Mtb isolates from all participants who had any isolate with a BDQ MIC >1 collected before or after starting treatment (95 total Mtb isolates from 24 participants). RESULTS Sixteen of 24 participants had BDQ-resistant TB (MGIT MIC ≥4 µg/mL) and 8 had BDQ-intermediate infections (MGIT MIC = 2 µg/mL). Participants with pre-existing resistance outnumbered those with resistance acquired during treatment, and 8 of 24 participants had polyclonal infections. BDQ resistance was observed across multiple Mtb strain types and involved a diverse catalog of mmpR5 (Rv0678) mutations, but no mutations in atpE or pepQ. Nine pairs of participants shared genetically similar isolates separated by <5 single nucleotide polymorphisms, concerning for potential transmitted BDQ resistance. CONCLUSIONS BDQ-resistant TB can arise via multiple, overlapping processes, including transmission of strains with pre-existing resistance. Capturing the within-host diversity of these infections could potentially improve clinical diagnosis, population-level surveillance, and molecular diagnostic test development.
Collapse
Affiliation(s)
- Tyler S Brown
- Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Linrui Tang
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Shaheed Vally Omar
- Centre for Tuberculosis, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Molecular Medicine & Hematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lavania Joseph
- Centre for Tuberculosis, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Gary Maartens
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Sean Wasserman
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town, South Africa
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - N Sarita Shah
- Departments of Epidemiology and Global Health and Medicine, Rollins School of Public Health and Emory School of Medicine, Atlanta, Georgia, USA
| | - Maha R Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Neel R Gandhi
- Departments of Epidemiology and Global Health and Medicine, Rollins School of Public Health and Emory School of Medicine, Atlanta, Georgia, USA
| | - Nazir Ismail
- Centre for Tuberculosis, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - James C M Brust
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Barun Mathema
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, USA
| |
Collapse
|
11
|
Georghiou SB, de Vos M, Velen K, Miotto P, Colman RE, Cirillo DM, Ismail N, Rodwell TC, Suresh A, Ruhwald M. Designing molecular diagnostics for current tuberculosis drug regimens. Emerg Microbes Infect 2023; 12:2178243. [PMID: 36752055 PMCID: PMC9980415 DOI: 10.1080/22221751.2023.2178243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Diagnostic development must occur in parallel with drug development to ensure the longevity of new treatment compounds. Despite an increasing number of novel and repurposed anti-tuberculosis compounds and regimens, there remains a large number of drugs for which no rapid and accurate molecular diagnostic option exists. The lack of rapid drug susceptibility testing for linezolid, bedaquiline, clofazimine, the nitroimidazoles (i.e pretomanid and delamanid) and pyrazinamide at any level of the healthcare system compromises the effectiveness of current tuberculosis and drug-resistant tuberculosis treatment regimens. In the context of current WHO tuberculosis treatment guidelines as well as promising new regimens, we identify the key diagnostic gaps for initial and follow-on tests to diagnose emerging drug resistance and aid in regimen selection. Additionally, we comment on potential gene targets for inclusion in rapid molecular drug susceptibility assays and sequencing assays for novel and repurposed drug compounds currently prioritized in current regimens, and evaluate the feasibility of mutation detection given the design of existing technologies. Based on current knowledge, we also propose design priorities for next generation molecular assays to support triage of tuberculosis patients to appropriate and effective treatment regimens. We encourage assay developers to prioritize development of these key molecular assays and support the continued evolution, uptake, and utility of sequencing to build knowledge of tuberculosis resistance mechanisms and further inform rapid treatment decisions in order to curb resistance to critical drugs in current regimens and achieve End TB targets.Trial registration: ClinicalTrials.gov identifier: NCT05117788..
Collapse
Affiliation(s)
| | | | | | - Paolo Miotto
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rebecca E. Colman
- FIND, the Global Alliance for Diagnostics, Geneva, Switzerland
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Timothy C. Rodwell
- FIND, the Global Alliance for Diagnostics, Geneva, Switzerland
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Anita Suresh
- FIND, the Global Alliance for Diagnostics, Geneva, Switzerland
| | - Morten Ruhwald
- FIND, the Global Alliance for Diagnostics, Geneva, Switzerland
| |
Collapse
|
12
|
Derendinger B, Dippenaar A, de Vos M, Huo S, Alberts R, Tadokera R, Limberis J, Sirgel F, Dolby T, Spies C, Reuter A, Folkerts M, Allender C, Lemmer D, Van Rie A, Gagneux S, Rigouts L, Te Riele J, Dheda K, Engelthaler DM, Warren R, Metcalfe J, Cox H, Theron G. Bedaquiline resistance in patients with drug-resistant tuberculosis in Cape Town, South Africa: a retrospective longitudinal cohort study. THE LANCET. MICROBE 2023; 4:e972-e982. [PMID: 37931638 PMCID: PMC10842724 DOI: 10.1016/s2666-5247(23)00172-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Bedaquiline is a life-saving tuberculosis drug undergoing global scale-up. People at risk of weak tuberculosis drug regimens are a priority for novel drug access despite the potential source of Mycobacterium tuberculosis-resistant strains. We aimed to characterise bedaquiline resistance in individuals who had sustained culture positivity during bedaquiline-based treatment. METHODS We did a retrospective longitudinal cohort study of adults (aged ≥18 years) with culture-positive pulmonary tuberculosis who received at least 4 months of a bedaquiline-containing regimen from 12 drug-resistant tuberculosis treatment facilities in Cape Town, South Africa, between Jan 20, 2016, and Nov 20, 2017. Sputum was programmatically collected at baseline (ie, before bedaquiline initiation) and each month to monitor treatment response per the national algorithm. The last available isolate from the sputum collected at or after 4 months of bedaquiline was designated the follow-up isolate. Phenotypic drug susceptibility testing for bedaquiline was done on baseline and follow-up isolates in MGIT960 media (WHO-recommended critical concentration of 1 μg/mL). Targeted deep sequencing for Rv0678, atpE, and pepQ, as well as whole-genome sequencing were also done. FINDINGS In total, 40 (31%) of 129 patients from an estimated pool were eligible for this study. Overall, three (8%) of 38 patients assessable by phenotypic drug susceptibility testing for bedaquiline had primary resistance, 18 (47%) gained resistance (acquired or reinfection), and 17 (45%) were susceptible at both baseline and follow-up. Several Rv0678 and pepQ single-nucleotide polymorphisms and indels were associated with resistance. Although variants occurred in Rv0676c and Rv1979c, these variants were not associated with resistance. Targeted deep sequencing detected low-level variants undetected by whole-genome sequencing; however, none were in genes without variants already detected by whole-genome sequencing. Patients with baseline fluoroquinolone resistance, clofazimine exposure, and four or less effective drugs were more likely to have bedaquiline-resistant gain. Resistance gain was primarily due to acquisition; however, some reinfection by resistant strains occurred. INTERPRETATION Bedaquiline-resistance gain, for which we identified risk factors, was common in these programmatically treated patients with sustained culture positivity. Our study highlights risks associated with implementing life-saving new drugs and shows evidence of bedaquiline-resistance transmission. Routine drug susceptibility testing should urgently accompany scale-up of new drugs; however, rapid drug susceptibility testing for bedaquiline remains challenging given the diversity of variants observed. FUNDING Doris Duke Charitable Foundation, US National Institute of Allergy and Infectious Diseases, South African Medical Research Council, National Research Foundation, Research Foundation Flanders, Stellenbosch University Faculty of Medicine Health Sciences, South African National Research Foundation, Swiss National Science Foundation, and Wellcome Trust.
Collapse
Affiliation(s)
- Brigitta Derendinger
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anzaan Dippenaar
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Margaretha de Vos
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; FIND, Geneva, Switzerland
| | | | - Rencia Alberts
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Rebecca Tadokera
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jason Limberis
- Division of Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, CA, USA
| | - Frik Sirgel
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tania Dolby
- National Health Laboratory Services Green Point, Cape Town, South Africa
| | - Claudia Spies
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anja Reuter
- Médecins Sans Frontières, Khayelitsha, South Africa
| | - Megan Folkerts
- Translational Genomics Research Institute, Flagstaff, AZ, USA
| | | | - Darrin Lemmer
- Translational Genomics Research Institute, Flagstaff, AZ, USA
| | - Annelies Van Rie
- Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Leen Rigouts
- Department of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Keertan Dheda
- Division of Pulmonology, Department of Medicine, Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa; Centre for the Study of Antimicrobial Resistance, South African Medical Research Council, Cape Town, South Africa; Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Robin Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - John Metcalfe
- Division of Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, CA, USA
| | - Helen Cox
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine and Wellcome Centre for Infectious Disease Research, University of Cape Town, South Africa
| | - Grant Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
13
|
Perumal R, Bionghi N, Nimmo C, Letsoalo M, Cummings MJ, Hopson M, Wolf A, Jubaer SA, Padayatchi N, Naidoo K, Larsen MH, O'Donnell M. Baseline and treatment-emergent bedaquiline resistance in drug-resistant tuberculosis: a systematic review and meta-analysis. Eur Respir J 2023; 62:2300639. [PMID: 37945030 PMCID: PMC11035900 DOI: 10.1183/13993003.00639-2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023]
Abstract
Bedaquiline resistance is a major threat to drug-resistant tuberculosis control strategies. This analysis found a pooled prevalence of baseline bedaquiline resistance of 2.4% and a pooled prevalence of treatment-emergent bedaquiline resistance of 2.1%. https://bit.ly/3FC6yio
Collapse
Affiliation(s)
- Rubeshan Perumal
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Division of Pulmonology and Critical Care, Department of Medicine, University of KwaZulu-Natal, Durban, South Africa
- These authors contributed equally to this work
| | - Neda Bionghi
- Department of Medicine, Columbia University Irving Medical Center and New York-Presbyterian Hospital, New York, NY, USA
- These authors contributed equally to this work
| | | | - Marothi Letsoalo
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Matthew J Cummings
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Madeleine Hopson
- Department of Medicine, Columbia University Irving Medical Center and New York-Presbyterian Hospital, New York, NY, USA
| | - Allison Wolf
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Shamim Al Jubaer
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nesri Padayatchi
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Kogieleum Naidoo
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Michelle H Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- These authors contributed equally to this work
| | - Max O'Donnell
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
- These authors contributed equally to this work
| |
Collapse
|
14
|
Mok S, Roycroft E, Flanagan PR, Wagener J, Fitzgibbon MM. Investigation of genomic mutations and their association with phenotypic resistance to new and repurposed drugs in Mycobacterium tuberculosis complex clinical isolates. J Antimicrob Chemother 2023; 78:2637-2644. [PMID: 37740935 PMCID: PMC10683940 DOI: 10.1093/jac/dkad252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/24/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND WGS has the potential to detect resistance-associated mutations and guide treatment of MDR TB. However, the knowledge base to confidently interpret mutations associated with the new and repurposed drugs is sparse, and phenotypic drug susceptibility testing is required to detect resistance. METHODS We screened 900 Mycobacterium tuberculosis complex genomes from Ireland, a low TB incidence country, for mutations in 13 candidate genes and assessed their association with phenotypic resistance to bedaquiline, clofazimine, linezolid, delamanid and pretomanid. RESULTS We identified a large diversity of mutations in the candidate genes of 195 clinical isolates, with very few isolates associated with phenotypic resistance to bedaquiline (n = 4), delamanid (n = 4) and pretomanid (n = 2). We identified bedaquiline resistance among two drug-susceptible TB isolates that harboured mutations in Rv0678. Bedaquiline resistance was also identified in two MDR-TB isolates harbouring Met146Thr in Rv0678, which dated back to 2007, prior to the introduction of bedaquiline. High-level delamanid resistance was observed in two isolates with deletions in ddn, which were also resistant to pretomanid. Delamanid resistance was detected in two further isolates that harboured mutations in fbiA, but did not show cross-resistance to pretomanid. All isolates were susceptible to linezolid and clofazimine, and no mutations found were associated with resistance. CONCLUSIONS More studies that correlate genotypic and phenotypic drug susceptibility data are needed to increase the knowledge base of mutations associated with resistance, in particular for pretomanid. Overall, this study contributes to the development of future mutation catalogues for M. tuberculosis complex isolates.
Collapse
Affiliation(s)
- Simone Mok
- Irish Mycobacteria Reference Laboratory, St James’s Hospital, Dublin, Ireland
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James’s Hospital Campus, Dublin, Ireland
| | - Emma Roycroft
- Irish Mycobacteria Reference Laboratory, St James’s Hospital, Dublin, Ireland
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James’s Hospital Campus, Dublin, Ireland
| | - Peter R Flanagan
- Irish Mycobacteria Reference Laboratory, St James’s Hospital, Dublin, Ireland
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James’s Hospital Campus, Dublin, Ireland
| | - Johannes Wagener
- Irish Mycobacteria Reference Laboratory, St James’s Hospital, Dublin, Ireland
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James’s Hospital Campus, Dublin, Ireland
| | - Margaret M Fitzgibbon
- Irish Mycobacteria Reference Laboratory, St James’s Hospital, Dublin, Ireland
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James’s Hospital Campus, Dublin, Ireland
| |
Collapse
|
15
|
Timm J, Bateson A, Solanki P, Paleckyte A, Witney AA, Rofael SAD, Fabiane S, Olugbosi M, McHugh TD, Sun E. Baseline and acquired resistance to bedaquiline, linezolid and pretomanid, and impact on treatment outcomes in four tuberculosis clinical trials containing pretomanid. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002283. [PMID: 37851685 PMCID: PMC10584172 DOI: 10.1371/journal.pgph.0002283] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
Bedaquiline (B), pretomanid (Pa) and linezolid (L) are key components of new regimens for treating rifampicin-resistant tuberculosis (TB). However, there is limited information on the global prevalence of resistance to these drugs and the impact of resistance on treatment outcomes. Mycobacterium tuberculosis (MTB) phenotypic drug susceptibility and whole-genome sequence (WGS) data, as well as patient profiles from 4 pretomanid-containing trials-STAND, Nix-TB, ZeNix and SimpliciTB-were used to investigate the rates of baseline resistance (BR) and acquired resistance (AR) to BPaL drugs, as well as their genetic basis, risk factors and impact on treatment outcomes. Data from >1,000 TB patients enrolled from 2015 to 2020 in 12 countries was assessed. We identified 2 (0.3%) participants with linezolid BR. Pretomanid BR was also rare, with similar rates across TB drug resistance types (0-2.1%). In contrast, bedaquiline BR was more prevalent among participants with highly resistant TB or longer prior treatment histories than those with newly diagnosed disease (5.2-6.3% vs. 0-0.3%). Bedaquiline BR was a risk factor for bacteriological failure or relapse in Nix-TB/ZeNix; 3/12 (25%, 95% CI 5-57%) participants with vs. 6/185 (3.2%, 1.2-6.9%) without bedaquiline BR. Across trials, we observed no linezolid AR, and only 3 cases of bedaquiline AR, including 2 participants with poor adherence. Overall, pretomanid AR was also rare, except in ZeNix patients with bedaquiline BR. WGS analyses revealed novel mutations in canonical resistant genes and, in 7 MTB isolates, the genetic determinants could not be identified. The overall low rates of BR to linezolid and pretomanid, and to a lesser extent to bedaquiline, observed in the pretomanid trials are in support of the worldwide implementation of BPaL-based regimens. Similarly, the overall low AR rates observed suggest BPaL drugs are better protected in the regimens trialed here than in other regimens combining bedaquiline with more, but less effective drugs.
Collapse
Affiliation(s)
- Juliano Timm
- TB Alliance, New York City, New York, United States of America
| | - Anna Bateson
- Centre for Clinical Microbiology, University College London, Royal Free Campus, London, United Kingdom
| | - Priya Solanki
- Centre for Clinical Microbiology, University College London, Royal Free Campus, London, United Kingdom
| | - Ana Paleckyte
- Centre for Clinical Microbiology, University College London, Royal Free Campus, London, United Kingdom
| | - Adam A. Witney
- Institute of Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Sylvia A. D. Rofael
- Centre for Clinical Microbiology, University College London, Royal Free Campus, London, United Kingdom
- Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Stella Fabiane
- MRC Clinical Trials Unit at University College London, London, United Kingdom
| | | | - Timothy D. McHugh
- Centre for Clinical Microbiology, University College London, Royal Free Campus, London, United Kingdom
| | - Eugene Sun
- TB Alliance, New York City, New York, United States of America
| |
Collapse
|
16
|
Meikle V, Zhang L, Niederweis M. Intricate link between siderophore secretion and drug efflux in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2023; 67:e0162922. [PMID: 37676015 PMCID: PMC10583673 DOI: 10.1128/aac.01629-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/30/2023] [Indexed: 09/08/2023] Open
Abstract
Drug-resistant Mycobacterium tuberculosis is a worldwide health-care problem rendering current tuberculosis (TB) drugs ineffective. Drug efflux is an important mechanism in bacterial drug resistance. The MmpL4 and MmpL5 transporters form functionally redundant complexes with their associated MmpS4 and MmpS5 proteins and constitute the inner membrane components of an essential siderophore secretion system of M. tuberculosis. Inactivating siderophore secretion is toxic for M. tuberculosis due to self-poisoning at low-iron conditions and leads to a strong virulence defect in mice. In this study, we show that M. tuberculosis mutants lacking components of the MmpS4-MmpL4 and MmpS5-MmpL5 systems are more susceptible to bedaquiline, clofazimine, and rifabutin, important drugs for treatment of drug-resistant TB. While genetic deletion experiments revealed similar functions of the MmpL4 and MmpL5 transporters in siderophore and drug secretion, complementation experiments indicated that the MmpS4-MmpL4 proteins alone are not sufficient to restore drug efflux in an M. tuberculosis mutant lacking both operons, in contrast to MmpS5-MmpL5. Importantly, an M. tuberculosis mutant lacking the recently discovered periplasmic Rv0455c protein, which is also essential for siderophore secretion, is more susceptible to the same drugs. These results reveal a promising target for the development of dual-function TB drugs, which might poison M. tuberculosis by blocking siderophore secretion and synergize with other drugs by impairing drug efflux.
Collapse
Affiliation(s)
- Virginia Meikle
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
17
|
Shi J, Liu Y, Wu T, Li L, Han S, Peng X, Shang Y, Guo Y, Pang Y, Gao M, Lu J. Spontaneous mutational patterns and novel mutations for bedaquiline and clofazimine resistance in Mycobacterium tuberculosis. Microbiol Spectr 2023; 11:e0009023. [PMID: 37646524 PMCID: PMC10581187 DOI: 10.1128/spectrum.00090-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/17/2023] [Indexed: 09/01/2023] Open
Abstract
The 2022 World Health Organization guidelines recommend use of two core anti-tuberculosis (TB) drugs, bedaquiline (BDQ) and clofazimine (CFZ), for treatment of drug-resistant (DR)-TB. However, several mutated Mycobacterium tuberculosis (MTB) genes, conferring BDQ and CFZ resistance, have been reported that predominantly arose from sporadic mutations that have not been comprehensively characterized. Herein, MTB clinical isolates collected from drug-susceptible (DS)-, multidrug-resistant (MDR)-, and extensively drug-resistant (XDR)-TB patients were cultured in vitro with BDQ or CFZ to generate progeny strains with resistance to these drugs. Progeny strains exposed to CFZ exhibited increased CFZ minimum inhibitory concentrations (MICs) that exceeded MIC increases of BDQ-exposed progeny strains. Notably, mmpR and pepQ mutations accounted for 83% and 17% of BDQ-induced spontaneous gene mutations, respectively, and 86% and 14% of CFZ-induced spontaneous gene mutations, respectively. Analyses of predicted mutation-induced changes in amino acid sequences and structures of MmpR and PepQ mutants revealed several point mutations affected sequence conversation and functionality as an underlying mechanism for observed acquired BDQ/CFZ resistance. Moreover, our results revealed differences in patterns of BDQ- and CFZ-induced acquired spontaneous mutations that may enhance our understanding of MTB BDQ/CFZ-resistance mechanisms. IMPORTANCE This study of MTB drug resistance mechanisms revealed patterns of spontaneous MTB mutations associated with acquired BDQ and CFZ resistance that arose after clinical MTB isolates were cultured in vitro with BDQ or CFZ. Results of protein sequence and structural analyses provided insights into potential mechanisms underlying associations between MTB gene mutations and DR phenotypes. Taken together, these results revealed differences in acquired BDQ and CFZ resistance mechanisms as a new perspective that may enhance our understanding of BDQ/CFZ resistance mechanisms and facilitate the development of new methods for detecting MTB drug resistance genes.
Collapse
Affiliation(s)
- Jin Shi
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
| | - Yuanyuan Liu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Tuoya Wu
- Department of Tuberculosis Diseases, Tongliao Infectious Disease Hospital, Tongliao, Inner Mongolia, China
| | - Lu Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
| | - Shujing Han
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xiao Peng
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
| | - Mengqiu Gao
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| |
Collapse
|
18
|
Cesilia C, Tirtosudiro MA, Nataprawira HM. Bedaquiline (BDQ) resistance in an adolescent with multidrug-resistant tuberculosis (MDR-TB): An alarm for pediatricians. IDCases 2023; 34:e01880. [PMID: 37736021 PMCID: PMC10509653 DOI: 10.1016/j.idcr.2023.e01880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/19/2023] [Accepted: 08/19/2023] [Indexed: 09/23/2023] Open
Abstract
Bedaquiline (BDQ) use for all age groups in drug-resistant (DR) tuberculosis (TB) regimens for children may be shorter, safer, and more effective. However, the emergence of BDQ resistance reports soon after its introduction is alarming. We report the case of a 17-year-old boy, initially diagnosed with Rifampicin-resistant (RR)-TB and developed BDQ resistance during the treatment. To the best of our knowledge, this is the first report of BDQ resistance in pediatric.
Collapse
Affiliation(s)
- Citra Cesilia
- Division of Respirology, Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Indonesia
| | - Muh Akbar Tirtosudiro
- Division of Respirology, Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Indonesia
| | - Heda Melinda Nataprawira
- Division of Respirology, Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Indonesia
| |
Collapse
|
19
|
Xu J, Li D, Shi J, Wang B, Ge F, Guo Z, Mu X, Nuermberger E, Lu Y. Bedquiline Resistance Mutations: Correlations with Drug Exposures and Impact on the Proteome in M. tuberculosis. Antimicrob Agents Chemother 2023; 67:e0153222. [PMID: 37255473 PMCID: PMC10353445 DOI: 10.1128/aac.01532-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
Bedaquiline (BDQ) is an effective drug for the treatment of drug-resistant tuberculosis. Mutations in atpE, which encodes the target of BDQ, are associated with large increases in MICs. Mutations in Rv0678 that derepress the transcription of the MmpL5-MmpS5 efflux transporter are associated with smaller increases in MICs. However, Rv0678 mutations are the most common mutations that are associated with BDQ resistance in clinical isolates, and they also confer cross-resistance to clofazimine (CFZ). To investigate the mechanism of BDQ resistance and the correlation between Rv0678 mutations and target-based atpE mutations, M. tuberculosis strains were exposed to different concentrations of BDQ or CFZ to select Rv0678 mutations and atpE mutations. Gene overexpression strains were constructed to illustrate the roles of MmpL5 and MmpS5. A quantitative proteome analysis was performed to compare the BDQ-resistant mutants to the isogenic strain H37Rv. Here, we report that the Rv0678 mutations were more readily selected than were the atpE mutations at low concentrations of BDQ or CFZ. The atpE mutations were selected by high concentrations of BDQ exposure. The overexpression of both mmpL5 and mmpS5 reduced the susceptibility of Mycobacterium tuberculosis to BDQ and CFZ. Secreted immunogenic proteins and proteins involved in the biosynthesis and transport of phthiocerol dimycocerosates were associated with Rv0678 mutations conferring BDQ resistance in the proteome analysis. In conclusion, exposure to different bedaquiline concentrations resulted in the selection of different mutations. The coexpression of MmpL5 and MmpS5 contributed to drug resistance and upregulated pathogenic proteins in M. tuberculosis, suggesting MmpL5-MmpS5 as a new potential target for antituberculosis drug development. These results warrant further surveillance for the evolution of BDQ resistance during clinical usage.
Collapse
Affiliation(s)
- Jian Xu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Dongshuo Li
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jinghua Shi
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Fei Ge
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zhenyong Guo
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaopan Mu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Eric Nuermberger
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Anlay DZ, Rivière E, Tu PHT, Abrams S, Van Rie A. A Bayesian approach to estimate the probability of resistance to bedaquiline in the presence of a genomic variant. PLoS One 2023; 18:e0287019. [PMID: 37315052 DOI: 10.1371/journal.pone.0287019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Bedaquiline is a core drug for treatment of rifampicin-resistant tuberculosis. Few genomic variants have been statistically associated with bedaquiline resistance. Alternative approaches for determining the genotypic-phenotypic association are needed to guide clinical care. METHODS Using published phenotype data for variants in Rv0678, atpE, pepQ and Rv1979c genes in 756 Mycobacterium tuberculosis isolates and survey data of the opinion of 33 experts, we applied Bayesian methods to estimate the posterior probability of bedaquiline resistance and corresponding 95% credible intervals. RESULTS Experts agreed on the role of Rv0678, and atpE, were uncertain about the role of pepQ and Rv1979c variants and overestimated the probability of bedaquiline resistance for most variant types, resulting in lower posterior probabilities compared to prior estimates. The posterior median probability of bedaquiline resistance was low for synonymous mutations in atpE (0.1%) and Rv0678 (3.3%), high for missense mutations in atpE (60.8%) and nonsense mutations in Rv0678 (55.1%), relatively low for missense (31.5%) mutations and frameshift (30.0%) in Rv0678 and low for missense mutations in pepQ (2.6%) and Rv1979c (2.9%), but 95% credible intervals were wide. CONCLUSIONS Bayesian probability estimates of bedaquiline resistance given the presence of a specific mutation could be useful for clinical decision-making as it presents interpretable probabilities compared to standard odds ratios. For a newly emerging variant, the probability of resistance for the variant type and gene can still be used to guide clinical decision-making. Future studies should investigate the feasibility of using Bayesian probabilities for bedaquiline resistance in clinical practice.
Collapse
Affiliation(s)
- Degefaye Zelalem Anlay
- School of Nursing, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
- Global Health Institute, Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Emmanuel Rivière
- Global Health Institute, Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Pham Hien Trang Tu
- Global Health Institute, Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Steven Abrams
- Global Health Institute, Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Data Science Institute, Interuniversity Institute for Biostatistics and statistical Bioinformatics, Uhasselt, Diepenbeek, Belgium
| | - Annelies Van Rie
- Global Health Institute, Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
21
|
Sonnenkalb L, Carter JJ, Spitaleri A, Iqbal Z, Hunt M, Malone KM, Utpatel C, Cirillo DM, Rodrigues C, Nilgiriwala KS, Fowler PW, Merker M, Niemann S. Bedaquiline and clofazimine resistance in Mycobacterium tuberculosis: an in-vitro and in-silico data analysis. THE LANCET. MICROBE 2023; 4:e358-e368. [PMID: 37003285 PMCID: PMC10156607 DOI: 10.1016/s2666-5247(23)00002-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 03/30/2023]
Abstract
BACKGROUND Bedaquiline is a core drug for the treatment of multidrug-resistant tuberculosis; however, the understanding of resistance mechanisms is poor, which is hampering rapid molecular diagnostics. Some bedaquiline-resistant mutants are also cross-resistant to clofazimine. To decipher bedaquiline and clofazimine resistance determinants, we combined experimental evolution, protein modelling, genome sequencing, and phenotypic data. METHODS For this in-vitro and in-silico data analysis, we used a novel in-vitro evolutionary model using subinhibitory drug concentrations to select bedaquiline-resistant and clofazimine-resistant mutants. We determined bedaquiline and clofazimine minimum inhibitory concentrations and did Illumina and PacBio sequencing to characterise selected mutants and establish a mutation catalogue. This catalogue also includes phenotypic and genotypic data of a global collection of more than 14 000 clinical Mycobacterium tuberculosis complex isolates, and publicly available data. We investigated variants implicated in bedaquiline resistance by protein modelling and dynamic simulations. FINDINGS We discerned 265 genomic variants implicated in bedaquiline resistance, with 250 (94%) variants affecting the transcriptional repressor (Rv0678) of the MmpS5-MmpL5 efflux system. We identified 40 new variants in vitro, and a new bedaquiline resistance mechanism caused by a large-scale genomic rearrangement. Additionally, we identified in vitro 15 (7%) of 208 mutations found in clinical bedaquiline-resistant isolates. From our in-vitro work, we detected 14 (16%) of 88 mutations so far identified as being associated with clofazimine resistance and also seen in clinically resistant strains, and catalogued 35 new mutations. Structural modelling of Rv0678 showed four major mechanisms of bedaquiline resistance: impaired DNA binding, reduction in protein stability, disruption of protein dimerisation, and alteration in affinity for its fatty acid ligand. INTERPRETATION Our findings advance the understanding of drug resistance mechanisms in M tuberculosis complex strains. We have established an extended mutation catalogue, comprising variants implicated in resistance and susceptibility to bedaquiline and clofazimine. Our data emphasise that genotypic testing can delineate clinical isolates with borderline phenotypes, which is essential for the design of effective treatments. FUNDING Leibniz ScienceCampus Evolutionary Medicine of the Lung, Deutsche Forschungsgemeinschaft, Research Training Group 2501 TransEvo, Rhodes Trust, Stanford University Medical Scientist Training Program, National Institute for Health and Care Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Bill & Melinda Gates Foundation, Wellcome Trust, and Marie Skłodowska-Curie Actions.
Collapse
Affiliation(s)
- Lindsay Sonnenkalb
- Molecular and Experimental Mycobacteriology, Research Center Borstel Leibniz Lung Center, Borstel, Germany
| | - Joshua James Carter
- Medical Scientist Training Program, Stanford University, Stanford, CA, USA; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Spitaleri
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Zamin Iqbal
- European Bioinformatics Institute, Cambridge, UK
| | - Martin Hunt
- European Bioinformatics Institute, Cambridge, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel Leibniz Lung Center, Borstel, Germany
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Rodrigues
- Department of Microbiology, P D Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | | | - Philip William Fowler
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; National Institute of Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Matthias Merker
- Evolution of the Resistome, Research Center Borstel Leibniz Lung Center, Borstel, Germany; National Reference Center, Research Center Borstel Leibniz Lung Center, Borstel, Germany; German Centre for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel Leibniz Lung Center, Borstel, Germany; National Reference Center, Research Center Borstel Leibniz Lung Center, Borstel, Germany; German Centre for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.
| |
Collapse
|
22
|
Millard J, Rimmer S, Nimmo C, O'Donnell M. Therapeutic Failure and Acquired Bedaquiline and Delamanid Resistance in Treatment of Drug-Resistant TB. Emerg Infect Dis 2023; 29:1081-1084. [PMID: 37081529 PMCID: PMC10124645 DOI: 10.3201/eid2905.221716] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
New classes of antitubercular drugs, diarylquinolines and nitroimidazoles, have been associated with improved outcomes in the treatment of drug-resistant tuberculosis, but that success is threatened by emerging drug resistance. We report a case of bedaquiline and delamanid resistance in a 55-year-old woman in South Africa with extensively drug-resistant tuberculosis and known HIV.
Collapse
|
23
|
Ismail N, Dippenaar A, Warren RM, Peters RPH, Omar SV. Emergence of Canonical and Noncanonical Genomic Variants following In Vitro Exposure of Clinical Mycobacterium tuberculosis Strains to Bedaquiline or Clofazimine. Antimicrob Agents Chemother 2023; 67:e0136822. [PMID: 36892309 PMCID: PMC10112258 DOI: 10.1128/aac.01368-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/09/2023] [Indexed: 03/10/2023] Open
Abstract
In Mycobacterium tuberculosis, bedaquiline and clofazimine resistance occurs primarily through Rv0678 variants, a gene encoding a repressor protein that regulates mmpS5/mmpL5 efflux pump gene expression. Despite the shared effect of both drugs on efflux, little else is known about other pathways affected. We hypothesized that in vitro generation of bedaquiline- or clofazimine-resistant mutants could provide insight into additional mechanisms of action. We performed whole-genome sequencing and determined phenotypic MICs for both drugs on progenitor and mutant progenies. Mutants were induced through serial passage on increasing concentrations of bedaquiline or clofazimine. Rv0678 variants were identified in both clofazimine- and bedaquiline-resistant mutants, with concurrent atpE SNPs occurring in the latter. Of concern was the acquisition of variants in the F420 biosynthesis pathway in clofazimine-resistant mutants obtained from either a fully susceptible (fbiD: del555GCT) or rifampicin mono-resistant (fbiA: 283delTG and T862C) progenitor. The acquisition of these variants possibly implicates a shared pathway between clofazimine and nitroimidazoles. Pathways associated with drug tolerance and persistence, F420 biosynthesis, glycerol uptake and metabolism, efflux, and NADH homeostasis appear to be affected following exposure to these drugs. Shared genes affected by both drugs include Rv0678, glpK, nuoG, and uvrD1. Genes with variants in the bedaquiline resistant mutants included atpE, fadE28, truA, mmpL5, glnH, and pks8, while clofazimine-resistant mutants displayed ppsD, fbiA, fbiD, mutT3, fadE18, Rv0988, and Rv2082 variants. These results show the importance of epistatic mechanisms as a means of responding to drug pressure and highlight the complexity of resistance acquisition in M. tuberculosis.
Collapse
Affiliation(s)
- N. Ismail
- SAMRC Centre for Tuberculosis Research/DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Prinshof, Gauteng, South Africa
| | - A. Dippenaar
- Global Health Institute, Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - R. M. Warren
- SAMRC Centre for Tuberculosis Research/DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - R. P. H. Peters
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Prinshof, Gauteng, South Africa
- Department of Medical Microbiology, School CAPHRI (Care and Public Health Research Institute), Maastricht University, Maastricht, The Netherlands
| | - S. V. Omar
- Department of Medical Microbiology, School CAPHRI (Care and Public Health Research Institute), Maastricht University, Maastricht, The Netherlands
- National Institute for Communicable Diseases/National Health Laboratory Service, Centre for Tuberculosis, National TB Reference Laboratory & WHO Supranational TB Reference Laboratory, Johannesburg, Gauteng, South Africa
| |
Collapse
|
24
|
Singh V, Dziwornu GA, Chibale K. The implication of Mycobacterium tuberculosis-mediated metabolism of targeted xenobiotics. Nat Rev Chem 2023; 7:340-354. [PMID: 37117810 PMCID: PMC10026799 DOI: 10.1038/s41570-023-00472-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 03/29/2023]
Abstract
Drug metabolism is generally associated with liver enzymes. However, in the case of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), Mtb-mediated drug metabolism plays a significant role in treatment outcomes. Mtb is equipped with enzymes that catalyse biotransformation reactions on xenobiotics with consequences either in its favour or as a hindrance by deactivating or activating chemical entities, respectively. Considering the range of chemical reactions involved in the biosynthetic pathways of Mtb, information related to the biotransformation of antitubercular compounds would provide opportunities for the development of new chemical tools to study successful TB infections while also highlighting potential areas for drug discovery, host-directed therapy, dose optimization and elucidation of mechanisms of action. In this Review, we discuss Mtb-mediated biotransformations and propose a holistic approach to address drug metabolism in TB drug discovery and related areas. ![]()
Mycobacterium tuberculosis-mediated metabolism of xenobiotics poses an important research question for antitubercular drug discovery. Identification of the metabolic fate of compounds can inform requisite structure–activity relationship strategies early on in a drug discovery programme towards improving the properties of the compound.
Collapse
Affiliation(s)
- Vinayak Singh
- grid.7836.a0000 0004 1937 1151Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Godwin Akpeko Dziwornu
- grid.7836.a0000 0004 1937 1151Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Kelly Chibale
- grid.7836.a0000 0004 1937 1151Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
25
|
Stadler JAM, Maartens G, Meintjes G, Wasserman S. Clofazimine for the treatment of tuberculosis. Front Pharmacol 2023; 14:1100488. [PMID: 36817137 PMCID: PMC9932205 DOI: 10.3389/fphar.2023.1100488] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Shorter (6-9 months), fully oral regimens containing new and repurposed drugs are now the first-choice option for the treatment of drug-resistant tuberculosis (DR-TB). Clofazimine, long used in the treatment of leprosy, is one such repurposed drug that has become a cornerstone of DR-TB treatment and ongoing trials are exploring novel, shorter clofazimine-containing regimens for drug-resistant as well as drug-susceptible tuberculosis. Clofazimine's repurposing was informed by evidence of potent activity against DR-TB strains in vitro and in mice and a treatment-shortening effect in DR-TB patients as part of a multidrug regimen. Clofazimine entered clinical use in the 1950s without the rigorous safety and pharmacokinetic evaluation which is part of modern drug development and current dosing is not evidence-based. Recent studies have begun to characterize clofazimine's exposure-response relationship for safety and efficacy in populations with TB. Despite being better tolerated than some other second-line TB drugs, the extent and impact of adverse effects including skin discolouration and cardiotoxicity are not well understood and together with emergent resistance, may undermine clofazimine use in DR-TB programmes. Furthermore, clofazimine's precise mechanism of action is not well established, as is the genetic basis of clofazimine resistance. In this narrative review, we present an overview of the evidence base underpinning the use and limitations of clofazimine as an antituberculosis drug and discuss advances in the understanding of clofazimine pharmacokinetics, toxicity, and resistance. The unusual pharmacokinetic properties of clofazimine and how these relate to its putative mechanism of action, antituberculosis activity, dosing considerations and adverse effects are highlighted. Finally, we discuss the development of novel riminophenazine analogues as antituberculosis drugs.
Collapse
Affiliation(s)
- Jacob A. M. Stadler
- Department of Medicine, University of Cape Town, Cape Town, South Africa,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,*Correspondence: Jacob A. M. Stadler,
| | - Gary Maartens
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Graeme Meintjes
- Department of Medicine, University of Cape Town, Cape Town, South Africa,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sean Wasserman
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
26
|
First and Second-Line Anti-Tuberculosis Drug-Resistance Patterns in Pulmonary Tuberculosis Patients in Zambia. Antibiotics (Basel) 2023; 12:antibiotics12010166. [PMID: 36671366 PMCID: PMC9855139 DOI: 10.3390/antibiotics12010166] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Drug-resistant tuberculosis has continued to be a serious global health threat defined by complexity as well as higher morbidity and mortality wherever it occurs, Zambia included. However, the paucity of information on drug-susceptibility patterns of both first-line and second-line anti-tuberculosis (anti-TB) drugs, including the new and repurposed drugs used in the management of drug-resistant tuberculosis in Zambia, was the major thrust for conducting this study. METHODS A total of 132 bacteriologically confirmed TB isolates were collected from patients with pulmonary TB during the period from April 2020 to December 2021 in Southern and Eastern Provinces of Zambia. Drug-resistance profiles were determined according to four first-line and five second-line anti-TB drugs. Standard mycobacteriological methods were used to isolate and determine phenotypic drug susceptibility. Data on the participants' social-demographic characteristics were obtained using a pre-test checklist. RESULTS Overall, the prevalence of resistance to one or more anti-TB drugs was 23.5% (31/132, 95% CI: 16.5-31.6%). A total of 9.8% (13/132, 95% CI: 5.3-16.2%) of the patients had multidrug-resistant TB and 1.2% were new cases, while 25.5% had a history of being previously treated for TB. Among those with mono-resistant TB strains, isoniazid (INH) resistance was the highest at 9.8% (13/132, 95% CI: 5.3-16.2%). Two (2/31) (6.5%) XDR-TB and one (1/31) (3.2%) pre-XDR-TB cases were identified among the MDR-TB patients. Previously treated patients were 40 times more likely (OR; 40.3, 95% CI: 11.1-146.5%) to have drug-resistant TB than those who had no history of being treated for TB. CONCLUSION This study has established a high rate of multidrug-resistant TB and has further identified both pre-XDR- and XDR-TB. There is a need to intensify surveillance of MDR- and XDR-TB to inform future guidelines for effective treatment and monitoring.
Collapse
|
27
|
Günther G, Guglielmetti L, Leu C, Lange C, van Leth F. Availability and costs of medicines for the treatment of tuberculosis in Europe. Clin Microbiol Infect 2023; 29:77-84. [PMID: 35961488 PMCID: PMC9801521 DOI: 10.1016/j.cmi.2022.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To evaluate the access to comprehensive diagnostics and novel antituberculosis medicines in European countries. METHODS We investigated the access to genotypic and phenotypic Mycobacterium tuberculosis drug susceptibility testing and the availability of antituberculosis drugs and calculated the cost of drugs and treatment regimens at major tuberculosis treatment centres in countries of the WHO European region where rates of drug-resistant tuberculosis are the highest among all WHO regions. Results were stratified by middle-income and high-income countries. RESULTS Overall, 43 treatment centres from 43 countries participated in the study. For WHO group A drugs, the frequency of countries with the availability of phenotypic drug susceptibility testing was as follows: (a) 75% (30/40) for levofloxacin, (b) 82% (33/40) for moxifloxacin, (c) 48% (19/40) for bedaquiline, and (d) 72% (29/40) for linezolid. Overall, of the 43 countries, 36 (84%) and 24 (56%) countries had access to bedaquiline and delamanid, respectively, whereas only 6 (14%) countries had access to rifapentine. The treatment of patients with extensively drug-resistant tuberculosis with a regimen including a carbapenem was available only in 17 (40%) of the 43 countries. The median cost of regimens for drug-susceptible tuberculosis, multidrug-resistant/rifampicin-resistant tuberculosis (shorter regimen, including bedaquiline for 6 months), and extensively drug-resistant tuberculosis (including bedaquiline, delamanid, and a carbapenem) were €44 (minimum-maximum, €15-152), €764 (minimum-maximum, €542-15152), and €8709 (minimum-maximum, €7965-11759) in middle-income countries (n = 12) and €280 (minimum-maximum, €78-1084), €29765 (minimum-maximum, €11116-40584), and €217591 (minimum-maximum, €82827-320146) in high-income countries (n = 29), respectively. DISCUSSION In countries of the WHO European region, there is a widespread lack of drug susceptibility testing capacity to new and repurposed antituberculosis drugs, lack of access to essential medications in several countries, and a high cost for the treatment of drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Gunar Günther
- Department of Pulmonary Medicine and Allergology, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of Medical Sciences, School of Medicine, University of Namibia, Windhoek, Namibia
| | - Lorenzo Guglielmetti
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, équipe 2, Paris, France; Assistance Publique - Hôpitaux de Paris, Groupe Hospitalier Universitaire Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Claude Leu
- Department of Pulmonary Medicine and Allergology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine and International Health, University of Lübeck, Lübeck, Germany; Baylor College of Medicine and Texas Children´s Hospital, Global TB Program, Houston, TX, USA.
| | - Frank van Leth
- Department of Health Sciences, Faculty of Science, Vrije Universiteit, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Dookie N, Ngema SL, Perumal R, Naicker N, Padayatchi N, Naidoo K. The Changing Paradigm of Drug-Resistant Tuberculosis Treatment: Successes, Pitfalls, and Future Perspectives. Clin Microbiol Rev 2022; 35:e0018019. [PMID: 36200885 PMCID: PMC9769521 DOI: 10.1128/cmr.00180-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Drug-resistant tuberculosis (DR-TB) remains a global crisis due to the increasing incidence of drug-resistant forms of the disease, gaps in detection and prevention, models of care, and limited treatment options. The DR-TB treatment landscape has evolved over the last 10 years. Recent developments include the remarkable activity demonstrated by the newly approved anti-TB drugs bedaquiline and pretomanid against Mycobacterium tuberculosis. Hence, treatment of DR-TB has drastically evolved with the introduction of the short-course regimen for multidrug-resistant TB (MDR-TB), transitioning to injection-free regimens and the approval of the 6-month short regimens for rifampin-resistant TB and MDR-TB. Moreover, numerous clinical trials are under way with the aim to reduce pill burden and shorten the DR-TB treatment duration. While there have been apparent successes in the field, some challenges remain. These include the ongoing inclusion of high-dose isoniazid in DR-TB regimens despite a lack of evidence for its efficacy and the inclusion of ethambutol and pyrazinamide in the standard short regimen despite known high levels of background resistance to both drugs. Furthermore, antimicrobial heteroresistance, extensive cavitary disease and intracavitary gradients, the emergence of bedaquiline resistance, and the lack of biomarkers to monitor DR-TB treatment response remain serious challenges to the sustained successes. In this review, we outline the impact of the new drugs and regimens on patient treatment outcomes, explore evidence underpinning current practices on regimen selection and duration, reflect on the disappointments and pitfalls in the field, and highlight key areas that require continued efforts toward improving treatment approaches and rapid biomarkers for monitoring treatment response.
Collapse
Affiliation(s)
- Navisha Dookie
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Senamile L. Ngema
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Rubeshan Perumal
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Nikita Naicker
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| |
Collapse
|
29
|
Kabahita JM, Kabugo J, Kakooza F, Adam I, Guido O, Byabajungu H, Namutebi J, Namaganda MM, Lutaaya P, Otim J, Kakembo FE, Kanyerezi S, Nabisubi P, Sserwadda I, Kasule GW, Nakato H, Musisi K, Oola D, Joloba ML, Mboowa G. First report of whole-genome analysis of an extensively drug-resistant Mycobacterium tuberculosis clinical isolate with bedaquiline, linezolid and clofazimine resistance from Uganda. Antimicrob Resist Infect Control 2022; 11:68. [PMID: 35550202 PMCID: PMC9102340 DOI: 10.1186/s13756-022-01101-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Background Uganda remains one of the countries with the highest burden of TB/HIV. Drug-resistant TB remains a substantial challenge to TB control globally and requires new strategic effective control approaches. Drug resistance usually develops due to inadequate management of TB patients including improper treatment regimens and failure to complete the treatment course which may be due to an unstable supply or a lack of access to treatment, as well as patient noncompliance. Methods Two sputa samples were collected from Xpert MTB/RIF® assay-diagnosed multi-drug resistant tuberculosis (MDR-TB) patient at Lira regional referral hospital in northern Uganda between 2020 and 2021 for comprehensive routine mycobacterial species identification and drug susceptibility testing using culture-based methods. Detection of drug resistance-conferring genes was subsequently performed using whole-genome sequencing with Illumina MiSeq platform at the TB Supranational Reference Laboratory in Uganda. Results In both isolates, extensively drug-resistant TB (XDR-TB) was identified including resistance to Isoniazid (katG p.Ser315Thr), Rifampicin (rpoB p.Ser450Leu), Moxifloxacin (gyrA p.Asp94Gly), Bedaquiline (Rv0678 Glu49fs), Clofazimine (Rv0678 Glu49fs), Linezolid (rplC Cys154Arg), and Ethionamide (ethA c.477del). Further analysis of these two high quality genomes revealed that this 32 years-old patient was infected with the Latin American Mediterranean TB strain (LAM). Conclusions This is the first identification of extensively drug-resistant Mycobacterium tuberculosis clinical isolates with bedaquiline, linezolid and clofazimine resistance from Uganda. These acquired resistances were because of non-adherence as seen in the patient’s clinical history. Our study also strongly highlights the importance of combating DR-TB in Africa through implementing next generation sequencing that can test resistance to all drugs while providing a faster turnaround time. This can facilitate timely clinical decisions in managing MDR-TB patients with non-adherence or lost to follow-up. Supplementary Information The online version contains supplementary material available at 10.1186/s13756-022-01101-2.
Collapse
|
30
|
Solanki P, Lipman M, McHugh TD, Satta G. Whole genome sequencing and prediction of antimicrobial susceptibilities in non-tuberculous mycobacteria. Front Microbiol 2022; 13:1044515. [PMID: 36523832 PMCID: PMC9745125 DOI: 10.3389/fmicb.2022.1044515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are opportunistic pathogens commonly causing chronic, pulmonary disease which is notoriously hard to treat. Current treatment for NTM infections involves at least three active drugs (including one macrolide: clarithromycin or azithromycin) over 12 months or longer. At present there are limited phenotypic in vitro drug susceptibility testing options for NTM which are standardised globally. As seen with tuberculosis, whole genome sequencing has the potential to transform drug susceptibility testing in NTM, by utilising a genotypic approach. The Comprehensive Resistance Prediction for Tuberculosis is a database used to predict Mycobacterium tuberculosis resistance: at present there are no similar databases available to accurately predict NTM resistance. Recent studies have shown concordance between phenotypic and genotypic NTM resistance results. To benefit from the advantages of whole genome sequencing, further advances in resistance prediction need to take place, as well as there being better information on novel drug mutations and an understanding of the impact of whole genome sequencing on NTM treatment outcomes.
Collapse
Affiliation(s)
- Priya Solanki
- UCL-TB and UCL Centre for Clinical Microbiology, University College London, London, United Kingdom
| | - Marc Lipman
- UCL-TB and UCL Respiratory, University College London, London, United Kingdom
- Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Timothy D. McHugh
- UCL-TB and UCL Centre for Clinical Microbiology, University College London, London, United Kingdom
| | - Giovanni Satta
- UCL-TB and UCL Centre for Clinical Microbiology, University College London, London, United Kingdom
| |
Collapse
|
31
|
Tu PHT, Anlay DZ, Dippenaar A, Conceição EC, Loos J, Van Rie A. Bedaquiline resistance probability to guide treatment decision making for rifampicin-resistant tuberculosis: insights from a qualitative study. BMC Infect Dis 2022; 22:876. [PMID: 36418994 PMCID: PMC9682818 DOI: 10.1186/s12879-022-07865-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Bedaquiline (BDQ) is a core drug for rifampicin-resistant tuberculosis (RR-TB) treatment. Accurate prediction of a BDQ-resistant phenotype from genomic data is not yet possible. A Bayesian method to predict BDQ resistance probability from next-generation sequencing data has been proposed as an alternative. METHODS We performed a qualitative study to investigate the decision-making of physicians when facing different levels of BDQ resistance probability. Fourteen semi-structured interviews were conducted with physicians experienced in treating RR-TB, sampled purposefully from eight countries with varying income levels and burden of RR-TB. Five simulated patient scenarios were used as a trigger for discussion. Factors influencing the decision of physicians to prescribe BDQ at macro-, meso- and micro levels were explored using thematic analysis. RESULTS The perception and interpretation of BDQ resistance probability values varied widely between physicians. The limited availability of other RR-TB drugs and the high cost of BDQ hindered physicians from altering the BDQ-containing regimen and incorporating BDQ resistance probability in their decision-making. The little experience with BDQ susceptibility testing and whole-genome sequencing results, and the discordance between phenotypic susceptibility and resistance probability were other barriers for physicians to interpret the resistance probability estimates. Especially for BDQ resistance probabilities between 25% and 70%, physicians interpreted the resistance probability value dynamically, and other factors such as clinical and bacteriological treatment response, history of exposure to BDQ, and resistance profile were often considered more important than the BDQ probability value for the decision to continue or stop BDQ. In this grey zone, some physicians opted to continue BDQ but added other drugs to strengthen the regimen. CONCLUSIONS This study highlights the complexity of physicians' decision-making regarding the use of BDQ in RR-TB regimens for different levels of BDQ resistance probability.. Ensuring sufficient access to BDQ and companion drugs, improving knowledge of the genotype-phenotype association for BDQ resistance, availability of a rapid molecular test, building next-generation sequencing capacity, and developing a clinical decision support system incorporating BDQ resistance probability will all be essential to facilitate the implementation of BDQ resistance probability in personalizing treatment for patients with RR-TB.
Collapse
Affiliation(s)
- Pham Hien Trang Tu
- Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Doornstraat 331, 2610, Antwerp, Belgium.
| | - Degefaye Zelalem Anlay
- Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Doornstraat 331, 2610, Antwerp, Belgium
- Department of Community Health Nursing, School of Nursing, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Anzaan Dippenaar
- Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Doornstraat 331, 2610, Antwerp, Belgium
| | - Emilyn Costa Conceição
- Department of Science and Innovation, National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jasna Loos
- Dean's Office, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Annelies Van Rie
- Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Doornstraat 331, 2610, Antwerp, Belgium
| |
Collapse
|
32
|
Whole-Genome Sequencing for Resistance Prediction and Transmission Analysis of Mycobacterium tuberculosis Complex Strains from Namibia. Microbiol Spectr 2022; 10:e0158622. [PMID: 36165641 PMCID: PMC9603870 DOI: 10.1128/spectrum.01586-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Namibia is among 30 countries with a high burden of tuberculosis (TB), with an estimated incidence of 460 per 100,000 population and around 800 new multidrug-resistant (MDR) TB cases per year. Still, data on the transmission and evolution of drug-resistant Mycobacterium tuberculosis complex (Mtbc) strains are not available. Whole-genome sequencing data of 136 rifampicin-resistant (RIFr) Mtbc strains obtained from 2016 to 2018 were used for phylogenetic classification, resistance prediction, and cluster analysis and linked with phenotypic drug susceptibility testing (pDST) data. Roughly 50% of the strains investigated were resistant to all first-line drugs. Furthermore, 13% of the MDR Mtbc strains were already pre-extensively drug resistant (pre-XDR). The cluster rates were high, at 74.6% among MDR and 85% among pre-XDR strains. A significant proportion of strains had borderline resistance-conferring mutations, e.g., inhA promoter mutations or rpoB L430P. Accordingly, 25% of the RIFr strains tested susceptible by pDST. Finally, we determined a potentially new bedaquiline resistance mutation (Rv0678 D88G) occurring in two independent clusters. High rates of resistance to first-line drugs in line with emerging pre-XDR and likely bedaquiline resistance linked with the ongoing recent transmission of MDR Mtbc clones underline the urgent need for the implementation of interventions that allow rapid diagnostics to break MDR TB transmission chains in the country. A borderline RIFr mutation in the dominant outbreak strain causing discrepancies between phenotypic and genotypic resistance testing results may require breakpoint adjustments but also may allow individualized regimens with high-dose treatment. IMPORTANCE The transmission of drug-resistant tuberculosis (TB) is a major problem for global TB control. Using genome sequencing, we showed that 13% of the multidrug-resistant (MDR) M. tuberculosis complex strains from Namibia are already pre-extensively drug resistant (pre-XDR), which is substantial in an African setting. Our data also indicate that the ongoing transmission of MDR and pre-XDR strains contributes significantly to the problem. In contrast to other settings with higher rates of drug resistance, we found a high proportion of strains having so-called borderline low-level resistance mutations, e.g., inhA promoter mutations or rpoB L430P. This led to the misclassification of 25% of the rifampicin-resistant strains as susceptible by phenotypic drug susceptibility testing. This observation potentially allows individualized regimens with high-dose treatment as a potential option for patients with few treatment options. We also found a potentially new bedaquiline resistance mutation in rv0678.
Collapse
|
33
|
Poulton NC, Rock JM. Unraveling the mechanisms of intrinsic drug resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:997283. [PMID: 36325467 PMCID: PMC9618640 DOI: 10.3389/fcimb.2022.997283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/30/2022] [Indexed: 02/03/2023] Open
Abstract
Tuberculosis (TB) is among the most difficult infections to treat, requiring several months of multidrug therapy to produce a durable cure. The reasons necessitating long treatment times are complex and multifactorial. However, one major difficulty of treating TB is the resistance of the infecting bacterium, Mycobacterium tuberculosis (Mtb), to many distinct classes of antimicrobials. This review will focus on the major gaps in our understanding of intrinsic drug resistance in Mtb and how functional and chemical-genetics can help close those gaps. A better understanding of intrinsic drug resistance will help lay the foundation for strategies to disarm and circumvent these mechanisms to develop more potent antitubercular therapies.
Collapse
|
34
|
Singh K, Sharma S, Banerjee T, Gupta A, Anupurba S. Mutation detection and minimum inhibitory concentration determination against linezolid and clofazimine in confirmed XDR-TB clinical isolates. BMC Microbiol 2022; 22:236. [PMID: 36192704 PMCID: PMC9531458 DOI: 10.1186/s12866-022-02622-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The emergence of multidrug-resistant tuberculosis (MDR-TB) has complicated the situation due to the decline in potency of second-line anti-tubercular drugs. This limits the treatment option for extensively drug-resistant tuberculosis (XDR-TB). The aim of this study was to determine and compare the minimum inhibitory concentration (MIC) by agar dilution and resazurin microtiter assay (REMA) along with the detection of mutations against linezolid and clofazimine in confirmed XDR-TB clinical isolates. RESULTS A total of 169 isolates were found positive for Mycobacterium tuberculosis complex (MTBC). The MIC was determined by agar dilution and REMA methods. The isolates which showed non-susceptibility were further subjected to mutation detection by targeting rplC gene (linezolid) and Rv0678 gene (clofazimine). The MIC for linezolid ranged from 0.125 µg/ml to > 2 µg/ml and for clofazimine from 0.25 µg/ml to > 4 µg/ml. The MIC50 and MIC90 for linezolid were 0.5 µg/ml and 1 µg/ml respectively while for clofazimine both were 1 µg/ml. The essential and categorical agreement for linezolid was 97.63% and 95.26% and for clofazimine, both were 100%. The sequencing result of the rplC gene revealed a point mutation at position 460 bp, where thymine (T) was substituted for cytosine (C) while seven mutations were noted between 46 to 220 bp in Rv0678 gene. CONCLUSION REMA method has been found to be more suitable in comparison to the agar dilution method due to lesser turnaround time. Mutations in rplC and Rv0678 genes were reasons for drug resistance against linezolid and clofazimine respectively.
Collapse
Affiliation(s)
- Kamal Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Swati Sharma
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tuhina Banerjee
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ankush Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shampa Anupurba
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
35
|
Poulton NC, Azadian ZA, DeJesus MA, Rock JM. Mutations in rv0678 Confer Low-Level Resistance to Benzothiazinone DprE1 Inhibitors in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2022; 66:e0090422. [PMID: 35920665 PMCID: PMC9487612 DOI: 10.1128/aac.00904-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tuberculosis (TB) is the leading cause of death from any bacterial infection, causing 1.5 million deaths worldwide each year. Due to the emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) there have been significant efforts aimed at developing novel drugs to treat TB. One promising drug target in Mtb is the arabinogalactan biosynthetic enzyme DprE1, and there have been over a dozen unique chemical scaffolds identified which inhibit the activity of this protein. Among the most promising lead compounds are the benzothiazinones BTZ043 and PBTZ169, both of which are currently in or have completed phase IIa clinical trials. Due to the potential clinical utility of these drugs, we sought to identify potential synergistic interactions and new mechanisms of resistance using a genome-scale CRISPRi chemical-genetic screen with PBTZ169. We found that knockdown of rv0678, the negative regulator of the mmpS5/L5 drug efflux pump, confers resistance to PBTZ169. Mutations in rv0678 are the most common form of resistance to bedaquiline and there is already abundant evidence of these mutations emerging in bedaquiline-treated patients. We confirmed that rv0678 mutations from clinical isolates confer low level cross-resistance to BTZ043 and PBTZ169. While it is yet unclear whether rv0678 mutations would render benzothiazinones ineffective in treating TB, these results highlight the importance of monitoring for clinically prevalent rv0678 mutations during ongoing BTZ043 and PBTZ169 clinical trials.
Collapse
Affiliation(s)
- Nicholas C. Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, USA
| | - Zachary A. Azadian
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, USA
| | - Michael A. DeJesus
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, USA
| | - Jeremy M. Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
36
|
A data compendium associating the genomes of 12,289 Mycobacterium tuberculosis isolates with quantitative resistance phenotypes to 13 antibiotics. PLoS Biol 2022; 20:e3001721. [PMID: 35944069 PMCID: PMC9363010 DOI: 10.1371/journal.pbio.3001721] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
The Comprehensive Resistance Prediction for Tuberculosis: an International Consortium (CRyPTIC) presents here a data compendium of 12,289 Mycobacterium tuberculosis global clinical isolates, all of which have undergone whole-genome sequencing and have had their minimum inhibitory concentrations to 13 antitubercular drugs measured in a single assay. It is the largest matched phenotypic and genotypic dataset for M. tuberculosis to date. Here, we provide a summary detailing the breadth of data collected, along with a description of how the isolates were selected, collected, and uniformly processed in CRyPTIC partner laboratories across 23 countries. The compendium contains 6,814 isolates resistant to at least 1 drug, including 2,129 samples that fully satisfy the clinical definitions of rifampicin resistant (RR), multidrug resistant (MDR), pre-extensively drug resistant (pre-XDR), or extensively drug resistant (XDR). The data are enriched for rare resistance-associated variants, and the current limits of genotypic prediction of resistance status (sensitive/resistant) are presented by using a genetic mutation catalogue, along with the presence of suspected resistance-conferring mutations for isolates resistant to the newly introduced drugs bedaquiline, clofazimine, delamanid, and linezolid. Finally, a case study of rifampicin monoresistance demonstrates how this compendium could be used to advance our genetic understanding of rare resistance phenotypes. The data compendium is fully open source and it is hoped that it will facilitate and inspire future research for years to come.
Collapse
|
37
|
O’Donnell MR, Padayatchi N, Wolf A, Zelnick J, Daftary A, Orrell C, Nimmo C, Baldwin M, Boodhram R, Maharaj B, Amico KR, Friedland G. Bedaquiline Adherence Measured by Electronic Dose Monitoring Predicts Clinical Outcomes in the Treatment of Patients With Multidrug-Resistant Tuberculosis and HIV/AIDS. J Acquir Immune Defic Syndr 2022; 90:325-332. [PMID: 35195572 PMCID: PMC11077859 DOI: 10.1097/qai.0000000000002940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Novel regimens have revolutionized multidrug-resistant tuberculosis (MDR-TB) treatment; however, medication adherence remains challenging and poorly characterized. We hypothesized that bedaquiline adherence, measured using electronic dose monitoring, would predict MDR-TB treatment outcomes. SETTING This is a prospective cohort study conducted in KwaZulu-Natal, South Africa. METHODS Adults with MDR-TB and HIV initiating bedaquiline and on antiretroviral therapy (ART) were eligible. Separate electronic dose monitoring devices measured bedaquiline and ART adherence through 6 months, calculated as observed versus expected doses. Whole-genome sequencing was performed to identify bedaquiline resistance-associated variants. RESULTS From November 2016 through February 2018, 199 participants with MDR-TB and HIV were enrolled and followed up through treatment completion (median 17.2 months interquartile range 12.2-19.6). The median bedaquiline adherence was higher than ART adherence (97 vs. 89%, P < 0.001) but correlated (r2 = 0.68, P < 0.001). High bedaquiline adherence (≥90%) compared with lower adherence was associated with improved end of treatment successful outcome (83.4% vs. 46.3%, P < 0.001), decreased mortality (11.0% vs. 29.6% P = 0.004), and improved retention in care through end of treatment (94.5% vs. 79.6% P = 0.002). Modeling identified a highly significant but linear association between bedaquiline adherence and outcome. On multivariable analysis, bedaquiline adherence was independently associated with mortality and outcome. Bedaquiline resistance-associated variants were seen in 12% (7/57) of sequenced isolates (7% baseline, 5% emergent) with only 28.6% experiencing successful treatment outcome. CONCLUSIONS Bedaquiline adherence through 6 months independently predicted end of MDR-TB treatment outcome, but a specific bedaquiline adherence threshold was not identified. Interventions to optimize bedaquiline adherence are urgently needed to improve MDR-TB HIV treatment outcomes.
Collapse
Affiliation(s)
- Max R O’Donnell
- Division of Pulmonary, Allergy, and Critical Care Medicine
- Department of Epidemiology, Columbia University Medical Center, New York City, USA
- CAPRISA MRC- HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Nesri Padayatchi
- CAPRISA MRC- HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Allison Wolf
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Medical Center, New York City, USA
| | - Jennifer Zelnick
- Graduate School of Social Work, Touro College and University System, New York City, USA
| | - Amrita Daftary
- Dahdaleh Institute of Global Health Research, School of Global Health, York University Toronto, Canada
- CAPRISA MRC- HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | | | - Camus Nimmo
- Division of Infection and Immunity, University College London, London, UK
- UCL Genetics Institute, University College London, London, UK
- Africa Health Research Institute, Durban, South Africa
| | - Matt Baldwin
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Medical Center, New York City, USA
| | - Resha Boodhram
- CAPRISA MRC- HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Bhavna Maharaj
- CAPRISA MRC- HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - K. Rivet Amico
- University of Michigan School of Public Health, Ann Arbor, MI, USA
- Kogieleum Naidoo CAPRISA MRC- HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | | |
Collapse
|
38
|
Guo Q, Bi J, Lin Q, Ye T, Wang Z, Wang Z, Liu L, Zhang G. Whole Genome Sequencing Identifies Novel Mutations Associated With Bedaquiline Resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:807095. [PMID: 35694543 PMCID: PMC9184757 DOI: 10.3389/fcimb.2022.807095] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Bedaquiline (BDQ), a new antitubercular agent, has been used to treat drug-resistant tuberculosis (TB). Although mutations in atpE, rv0678, and pepQ confer major resistance to BDQ, the mechanisms of resistance to BDQ in vitro and in clinical settings have not been fully elucidated. We selected BDQ-resistant mutants from 7H10 agar plates containing 0.5 mg/L BDQ (the critical concentration) and identified mutations associated with BDQ resistance through whole genome sequencing and Sanger sequencing. A total of 1,025 mutants were resistant to BDQ. We randomly selected 168 mutants for further analysis and discovered that 157/168 BDQ-resistant mutants harbored mutations in rv0678, which encodes a transcriptional regulator that represses the expression of the efflux pump, MmpS5–MmpL5. Moreover, we found two mutations with high frequency in rv0678 at nucleotide positions 286–287 (CG286–287 insertion; accounting for 26.8% [45/168]) and 198–199 (G198, G199 insertion, and G198 deletion; accounting for 14.3% [24/168]). The other mutations were dispersed covering the entire rv0678 gene. Moreover, we found that one new gene, glpK, harbors a G572 insertion; this mutation has a high prevalence (85.7%; 144/168) in the isolated mutants, and the minimum inhibitory concentration (MIC) assay demonstrated that it is closely associated with BDQ resistance. In summary, we characterized 168/1,025 mutants resistant to BDQ and found that mutations in rv0678 confer the primary mechanism of BDQ resistance. Moreover, we identified a new gene (glpK) involved in BDQ resistance. Our study offers new insights and valuable information that will contribute to rapid identification of BDQ-resistant isolates in clinical settings.
Collapse
Affiliation(s)
- Qinglong Guo
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Jing Bi
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Qiao Lin
- Department of Traditional Chinese Medicine, The Baoan People’s Hospital of Shenzhen, Shenzhen University, Shenzhen, China
| | - Taosheng Ye
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhongyuan Wang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhaoqin Wang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Lei Liu
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Guoliang Zhang,
| |
Collapse
|
39
|
Characteristics and Trend of Drug-Resistant Tuberculosis at a Major Specialized Hospital in Chongqing, China: 2016 Versus 2019. Disaster Med Public Health Prep 2022; 17:e169. [PMID: 35575296 DOI: 10.1017/dmp.2022.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The epidemic of drug-resistant tuberculosis (DR-TB) has become a major concern in global TB control. This study aimed to investigate the patterns and trend of DR-TB epidemic between different time periods in Chongqing. METHODS A total of 985 and 835 culture positive TB patients with drug susceptibility testing (DST) results admitted to the hospital in 2016 and 2019, respectively, were included. Chi-square testing was used to compare the prevalence and trends of DR-TB in 2016 and 2019. RESULTS The proportion of previously treated TB cases with culture positivity was 45.7% in 2019, significantly higher than that in 2016 (39.1%, P = 0.004). The overall rate of drug resistance in 2019 was 43.1%, higher than that in 2016 (40.2%). The rates of multi-drug resistant TB (MDR-TB) and pre-extensively drug resistant TB (pre-XDR-TB) increased significantly from 2016 to 2019 among all TB cases (MDR: 25% vs 33.4%, P < 0.001 and pre-XDR: 7.1% vs 12.8%, P < 0.001, respectively) and previously treated TB cases (MDR: 46.5% vs 56%, P = 0.008 and pre-XDR: 13.2% vs 21.5%, P = 0.003, respectively). CONCLUSIONS Our findings indicated that the prevalence of DR-TB remains high in Chongqing. The trend of resistance to anti-TB drugs beccame worse between 2016 and 2019. Moreover, acquired MDR may play a major role in MDR-TB epidemic in Chongqing. Therefore, rapid diagnosis and effective treatment of TB patients will be important to reduce the burden of DR-TB in Chongqing.
Collapse
|
40
|
Fungal-derived compounds and mycogenic nanoparticles with antimycobacterial activity: a review. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
AbstractTuberculosis (TB) is a persistent lung infection caused by Mycobacterium tuberculosis. The disease is characterized by high mortality rates of over 1 million per year. Unfortunately, the potency and effectiveness of currently used anti-TB drugs is gradually decreasing due to the constant development of persistence and resistance by M. tuberculosis. The adverse side effects associated with current anti-TB drugs, along with anti-TB drug resistance, present an opportunity to bio-prospect novel potent anti-TB drugs from unique sources. Fundamentally, fungi are a rich source of bioactive secondary metabolites with valuable therapeutic potential. Enhancing the potency and effectiveness of fungal-based anti-TB drug leads by chemical synthesis and/or modification with nanomaterials, may result in the discovery of novel anti-TB drugs. In this review, the antimycobacterial activity of fungal-derived compounds and mycogenic nanoparticles are summarized. Numerous fungal-derived compounds as well as some mycogenic nanoparticles that exhibit strong antimycobacterial activity that is comparable to that of approved drugs, were found. If fully explored, fungi holds the promise to become key drivers in the generation of lead compounds in TB-drug discovery initiatives.
Collapse
|
41
|
Chesov E, Chesov D, Maurer FP, Andres S, Utpatel C, Barilar I, Donica A, Reimann M, Niemann S, Lange C, Crudu V, Heyckendorf J, Merker M. Emergence of bedaquiline resistance in a high tuberculosis burden country. Eur Respir J 2022; 59:2100621. [PMID: 34503982 PMCID: PMC8943268 DOI: 10.1183/13993003.00621-2021] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/18/2021] [Indexed: 11/05/2022]
Abstract
RATIONALE Bedaquiline has been classified as a group A drug for the treatment of multidrug-resistant tuberculosis (MDR-TB) by the World Health Organization; however, globally emerging resistance threatens the effectivity of novel MDR-TB treatment regimens. OBJECTIVES We analysed pre-existing and emerging bedaquiline resistance in bedaquiline-based MDR-TB therapies, and risk factors associated with treatment failure and death. METHODS In a cross-sectional cohort study, we employed patient data, whole-genome sequencing (WGS) and phenotyping of Mycobacterium tuberculosis complex (MTBC) isolates. We could retrieve baseline isolates from 30.5% (62 out of 203) of all MDR-TB patients who received bedaquiline between 2016 and 2018 in the Republic of Moldova. This includes 26 patients for whom we could also retrieve a follow-up isolate. MEASUREMENTS AND MAIN RESULTS At baseline, all MTBC isolates were susceptible to bedaquiline. Among 26 patients with available baseline and follow-up isolates, four (15.3%) patients harboured strains which acquired bedaquiline resistance under therapy, while one (3.8%) patient was re-infected with a second bedaquiline-resistant strain. Treatment failure and death were associated with cavitary disease (p=0.011), and any additional drug prescribed in the bedaquiline-containing regimen with WGS-predicted resistance at baseline (OR 1.92 per unit increase, 95% CI 1.15-3.21; p=0.012). CONCLUSIONS MDR-TB treatments based on bedaquiline require a functional background regimen to achieve high cure rates and to prevent the evolution of bedaquiline resistance. Novel MDR-TB therapies with bedaquiline require timely and comprehensive drug resistance monitoring.
Collapse
Affiliation(s)
- Elena Chesov
- Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova
- Chiril Draganiuc Phthisiopneumology Institute, Chisinau, Republic of Moldova
- German Centre for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Germany
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- These authors contributed equally
| | - Dumitru Chesov
- Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova
- German Centre for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Germany
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- These authors contributed equally
| | - Florian P Maurer
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sönke Andres
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Ivan Barilar
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Ana Donica
- Chiril Draganiuc Phthisiopneumology Institute, Chisinau, Republic of Moldova
| | - Maja Reimann
- German Centre for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Germany
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany
| | - Stefan Niemann
- German Centre for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Germany
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Christoph Lange
- Chiril Draganiuc Phthisiopneumology Institute, Chisinau, Republic of Moldova
- German Centre for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Germany
- Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany
- Department of Medicine, Umeå University, Umeå, Sweden
- Global TB Program, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Valeriu Crudu
- Chiril Draganiuc Phthisiopneumology Institute, Chisinau, Republic of Moldova
| | - Jan Heyckendorf
- German Centre for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Germany
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany
- These authors contributed equally
| | - Matthias Merker
- German Centre for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- Evolution of the Resistome, Research Center Borstel, Borstel, Germany
- These authors contributed equally
| |
Collapse
|
42
|
Saeed DK, Shakoor S, Razzak SA, Hasan Z, Sabzwari SF, Azizullah Z, Kanji A, Nasir A, Shafiq S, Ghanchi NK, Hasan R. Variants associated with Bedaquiline (BDQ) resistance identified in Rv0678 and efflux pump genes in Mycobacterium tuberculosis isolates from BDQ naïve TB patients in Pakistan. BMC Microbiol 2022; 22:62. [PMID: 35209842 PMCID: PMC8876534 DOI: 10.1186/s12866-022-02475-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background Mutations in the Rv0678, pepQ and atpE genes of Mycobacterium tuberculosis (MTB) have been reported to be associated with reduced antimycobacterial susceptibility to bedaquiline (BDQ). Resistance conferring mutations in treatment naïve MTB strains is likely to have implications for BDQ based new drug regimen that aim to shorten treatment duration. We therefore investigated the genetic basis of resistance to BDQ in MTB clinical isolates from BDQ naïve TB patients from Pakistan. In addition, mutations in genes associated with efflux pumps were investigated as an alternate mechanism of resistance. Methods Based on convenience sampling, we studied 48 MTB clinical isolates from BDQ naïve TB patients. These isolates (from our strain bank) included 38 MDR/pre-XDR/XDR (10 BDQ resistant, 8 BDQ intermediate and 20 BDQ susceptible) and 10 pan drug susceptible MTB isolates. All strains were subjected to whole genome sequencing and genomes were analysed to identify variants in Rv0678, pepQ, atpE, Rv1979c, mmpLS and mmpL5 and drug resistance associated efflux pump genes. Results Of the BDQ resistant and intermediate strains 44% (8/18) had variants in Rv0678 including; two reported mutations S63R/G, six previously unreported variants; L40F, R50Q and R107C and three frameshift mutations; G25fs, D64fs and D109fs. Variants in efflux pumps; Rv1273c (G462K), Rv0507c (R426H) and Rv1634c (E198R) were found to be present in drug resistant isolates including BDQ resistant and intermediate isolates. E198R in efflux pump gene Rv1634c was the most frequently occurring variant in BDQ resistant and intermediate isolates (n = 10). Conclusion We found RAVs in Rv0678 to be commonly associated with BDQ resistance. Further confirmation of the role of variants in efflux pump genes in resistance is required so that they may be incorporated in genome-based diagnostics for drug resistant MTB. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02475-4.
Collapse
Affiliation(s)
- Dania Khalid Saeed
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Sadia Shakoor
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Safina Abdul Razzak
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Zahra Hasan
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Saba Faraz Sabzwari
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Zahida Azizullah
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Akbar Kanji
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Asghar Nasir
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Samreen Shafiq
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Najia Karim Ghanchi
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Rumina Hasan
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan. .,Faculty of Infectious and Tropical Diseases, London School Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
43
|
Mallick JS, Nair P, Abbew ET, Van Deun A, Decroo T. OUP accepted manuscript. JAC Antimicrob Resist 2022; 4:dlac029. [PMID: 35356403 PMCID: PMC8963286 DOI: 10.1093/jacamr/dlac029] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background Drug-resistant tuberculosis (DR-TB) is considered to be a public health threat and is difficult to cure, requiring a lengthy treatment with potent, potentially toxic drugs. The novel antimicrobial agent bedaquiline has shown promising results for patients with DR-TB, improving the rate of culture conversion and reducing TB-related mortality. However, increasing numbers of cases with acquired bedaquiline resistance (ABR) have been reported in recent years. Methods This systematic review aimed to assess the frequency of ABR and characteristics of patients acquiring it. Studies showing data on sequential bedaquiline drug-susceptibility testing in patients treated with a bedaquiline-containing regimen were included. The databases CENTRAL, PubMed and Embase were manually searched, and 866 unique records identified, eventually leading to the inclusion of 13 studies. Phenotypic ABR was assessed based on predefined MIC thresholds and genotypic ABR based on the emergence of resistance-associated variants. Results The median (IQR) frequency of phenotypic ABR was 2.2% (1.1%–4.6%) and 4.4% (1.8%–5.8%) for genotypic ABR. Among the studies reporting individual data of patients with ABR, the median number of likely effective drugs in a treatment regimen was five, in accordance with WHO recommendations. In regard to the utilization of important companion drugs with high and early bactericidal activity, linezolid was included in the regimen of most ABR patients, whereas the usage of other group A (fluoroquinolones) and former group B drugs (second-line injectable drugs) was rare. Conclusions Our findings suggest a relevant frequency of ABR, urging for a better protection against it. Therefore, treatment regimens should include drugs with high resistance-preventing capacity through high and early bactericidal activity.
Collapse
Affiliation(s)
- Jahan Saeed Mallick
- Institute of Tropical Medicine Antwerp, Department of Clinical Sciences, Kronenburgstraat 43, 2000 Antwerpen, Belgium
- Corresponding author. E-mail:
| | - Parvati Nair
- Institute of Tropical Medicine Antwerp, Department of Clinical Sciences, Kronenburgstraat 43, 2000 Antwerpen, Belgium
| | - Elizabeth Tabitha Abbew
- Institute of Tropical Medicine Antwerp, Department of Clinical Sciences, Kronenburgstraat 43, 2000 Antwerpen, Belgium
- Cape Coast Teaching Hospital, Interberton Road, Cape Coast, Ghana
| | | | - Tom Decroo
- Institute of Tropical Medicine Antwerp, Department of Clinical Sciences, Kronenburgstraat 43, 2000 Antwerpen, Belgium
| |
Collapse
|
44
|
Ghodousi A, Rizvi AH, Khanzada FM, Akhtar N, Ghafoor A, Trovato A, Cirillo DM, Tahseen S. In vivo Microevolution of Mycobacterium tuberculosis and transient emergence of atpE_Ala63Pro mutation during treatment in a pre-XDR TB patient. Eur Respir J 2021; 59:13993003.02102-2021. [PMID: 34795042 PMCID: PMC8943273 DOI: 10.1183/13993003.02102-2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/04/2021] [Indexed: 11/27/2022]
Abstract
Bedaquiline is a novel anti-tuberculosis drug for the treatment of multidrug-resistant tuberculosis (MDR-TB) recommended by the World Health Organization (WHO) [1] and recently upgraded to the group A classification of TB drugs as one of the three key drugs, along with linezolid and fluoroquinolones, to be included in all MDR-TB treatment regimens. Based on this grouping of second-line drugs, extensively drug-resistant tuberculosis (XDR-TB) is redefined as MDR- or rifampicin-resistant-TB that is resistant to a fluoroquinolone and to either bedaquiline or linezolid or both. Moreover, bedaquiline, in combination with pretomanid and linezolid, is a part of BPaL regimen recommended for treating adult pulmonary TB patients having pre-XDR-TB or MDR-TB which is either non-responsive or intolerant to recommended standard treatment [2]. However, globally emerging resistance to bedaquiline threatens the effectiveness of novel treatment regimens for drug-resistant TB. This letter describes microevolution of a pre-XDR MTB strain isolated from a pulmonary TB patient over an 18-month exposure to BDQ. MDR-TB therapies with BDQ require a functional background regimen to prevent emergence of additional resistance.https://bit.ly/3D05qT9
Collapse
Affiliation(s)
- Arash Ghodousi
- Vita-Salute San Raffaele University, Milan, Italy.,IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Nasim Akhtar
- National Tuberculosis Control Program, Islamabad, Pakistan.,Pakistan Institute of Medical sciences, Islamabad, Pakistan
| | - Abdul Ghafoor
- National Tuberculosis Control Program, Islamabad, Pakistan
| | | | - Daniela Maria Cirillo
- Vita-Salute San Raffaele University, Milan, Italy.,IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabira Tahseen
- National TB Reference Laboratory, National Tuberculosis Control Program, Pakistan
| |
Collapse
|
45
|
Comparative Efficacy of the Novel Diarylquinoline TBAJ-876 and Bedaquiline against a Resistant Rv0678 Mutant in a Mouse Model of Tuberculosis. Antimicrob Agents Chemother 2021; 65:e0141221. [PMID: 34570644 PMCID: PMC8597756 DOI: 10.1128/aac.01412-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bedaquiline (BDQ, B) is the first-in-class diarylquinoline to be approved for treatment of tuberculosis (TB). Recent guidelines recommend its use in treatment of multidrug- and extensively drug-resistant tuberculosis (MDR/XDR-TB). The newly approved regimen combining BDQ with pretomanid and linezolid is the first 6-month oral regimen proven to be effective against MDR/XDR-TB. However, the emergence of BDQ resistance, primarily due to inactivating mutations in the Rv0678 gene encoding a repressor of the MmpS5-MmpL5 transporter, threatens to undermine the efficacy of new BDQ-containing regimens. Since the shift in MIC due to these mutations is relatively small (2–8×), safer, and more potent, diarylquinoline analogues may be more effective than BDQ. TBAJ-876, which is in phase 1 trials, has more potent in vitro activity and a superior pre-clinical safety profile than BDQ. Using a murine model of TB, we evaluated the dose-dependent activity of TBAJ-876 compared to BDQ against the wild-type H37Rv strain and an isogenic Rv0678 loss-of-function mutant. Although the mutation affected the MIC of both drugs, the MIC of TBAJ-876 against the mutant was 10-fold lower than that of BDQ. TBAJ-876 at doses ≥6.25 mg/kg had greater efficacy against both strains compared to BDQ at 25 mg/kg, when administered alone or in combination with pretomanid and linezolid. Likewise, no selective amplification of BDQ-resistant bacteria was observed at TBAJ-876 doses ≥6.25 mg/kg. These results indicate that replacing BDQ with TBAJ-876 may shorten the duration of TB treatment and be more effective in treating and preventing infections caused by Rv0678 mutants.
Collapse
|
46
|
Assessment of epidemiological and genetic characteristics and clinical outcomes of resistance to bedaquiline in patients treated for rifampicin-resistant tuberculosis: a cross-sectional and longitudinal study. THE LANCET. INFECTIOUS DISEASES 2021; 22:496-506. [PMID: 34780706 DOI: 10.1016/s1473-3099(21)00470-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/16/2021] [Accepted: 07/29/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Bedaquiline improves outcomes of patients with rifampicin-resistant and multidrug-resistant (MDR) tuberculosis; however, emerging resistance threatens this success. We did a cross-sectional and longitudinal analysis evaluating the epidemiology, genetic basis, and treatment outcomes associated with bedaquiline resistance, using data from South Africa (2015-19). METHODS Patients with drug-resistant tuberculosis starting bedaquiline-based treatment had surveillance samples submitted at baseline, month 2, and month 6, along with demographic information. Culture-positive baseline and post-baseline isolates had phenotypic resistance determined. Eligible patients were aged 12 years or older with a positive culture sample at baseline or, if the sample was invalid or negative, a sample within 30 days of the baseline sample submitted for bedaquiline drug susceptibility testing. For the longitudinal study, the first surveillance sample had to be phenotypically susceptible to bedaquiline for inclusion. Whole-genome sequencing was done on bedaquiline-resistant isolates and a subset of bedaquiline-susceptible isolates. The National Institute for Communicable Diseases tuberculosis reference laboratory, and national tuberculosis surveillance databases were matched to the Electronic Drug-Resistant Tuberculosis Register. We assessed baseline resistance prevalence, mutations, transmission, cumulative resistance incidence, and odds ratios (ORs) associating risk factors for resistance with patient outcomes. FINDINGS Between Jan 1, 2015, and July 31, 2019, 8041 patients had surveillance samples submitted, of whom 2023 were included in the cross-sectional analysis and 695 in the longitudinal analysis. Baseline bedaquiline resistance prevalence was 3·8% (76 of 2023 patients; 95% CI 2·9-4·6), and it was associated with previous exposure to bedaquiline or clofazimine (OR 7·1, 95% CI 2·3-21·9) and with rifampicin-resistant or MDR tuberculosis with additional resistance to either fluoroquinolones or injectable drugs (pre-extensively-drug resistant [XDR] tuberculosis: 4·2, 1·7-10·5) or to both (XDR tuberculosis: 4·8, 2·0-11·7). Rv0678 mutations were the sole genetic basis of phenotypic resistance. Baseline resistance could be attributed to previous bedaquiline or clofazimine exposure in four (5·3%) of 76 patients and to primary transmission in six (7·9%). Odds of successful treatment outcomes were lower in patients with baseline bedaquiline resistance (0·5, 0·3-1). Resistance during treatment developed in 16 (2·3%) of 695 patients, at a median of 90 days (IQR 62-195), with 12 of these 16 having pre-XDR or XDR. INTERPRETATION Bedaquiline resistance was associated with poorer treatment outcomes. Rapid assessment of bedaquiline resistance, especially when patients were previously exposed to bedaquiline or clofazimine, should be prioritised at baseline or if patients remain culture-positive after 2 months of treatment. Preventing resistance by use of novel combination therapies, current treatment optimisation, and patient support is essential. FUNDING National Institute for Communicable Diseases of South Africa.
Collapse
|
47
|
Ismail N, Rivière E, Limberis J, Huo S, Metcalfe JZ, Warren RM, Van Rie A. Genetic variants and their association with phenotypic resistance to bedaquiline in Mycobacterium tuberculosis: a systematic review and individual isolate data analysis. THE LANCET MICROBE 2021; 2:e604-e616. [PMID: 34796339 PMCID: PMC8597953 DOI: 10.1016/s2666-5247(21)00175-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Background Methods Findings Interpretation Funding
Collapse
|
48
|
Wu SH, Chan HH, Hsiao HC, Jou R. Primary Bedaquiline Resistance Among Cases of Drug-Resistant Tuberculosis in Taiwan. Front Microbiol 2021; 12:754249. [PMID: 34745058 PMCID: PMC8569445 DOI: 10.3389/fmicb.2021.754249] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
Bedaquiline (BDQ), which is recommended for the treatment of drug-resistant tuberculosis (DR-TB), was introduced in Taiwan in 2014. Due to the alarming emergence of BDQ resistance, we conducted BDQ resistance analyses to strengthen our DR-TB management program. This retrospective population-based study included initial Mycobacterium tuberculosis isolates from 898 rifampicin-resistant (RR) or multidrug-resistant (MDR) TB cases never exposed to BDQ during 2008-2019. We randomly selected 65 isolates and identified 28 isolates with BDQ MIC<0.25μg/ml and MIC≥0.25μg/ml as the control and study groups, respectively. BDQ drug susceptibility testing (DST) using the MGIT960 system and Sanger sequencing of the atpE, Rv0678, and pepQ genes was conducted. Notably, 18 isolates with BDQ MIC=0.25μg/ml, 38.9% (7/18), and 61.1% (11/18) isolates were MGIT-BDQ resistant and susceptible, respectively. Consequently, we recommended redefining MIC=0.25μg/ml as an intermediate-susceptible category to resolve discordance between different DST methods. Of the 93 isolates, 22 isolates were MGIT-BDQ-resistant and 77.3% (17/22) of MGIT-BDQ-resistant isolates harbored Rv0678 mutations. After excluding 2 MGIT-BDQ-resistant isolates with borderline resistance (GU400growth control-GU100BDQ≤1day), 100% (15/15) harbored Rv0678 gene mutations, including seven novel mutations [g-14a, Ile80Ser (N=2), Phe100Tyr, Ala102Val, Ins g 181-182 frameshift mutation (N=2), Del 11-63 frameshift mutation, and whole gene deletion (N=2)]. Since the other 22.7% (5/22) MGIT-BDQ-resistant isolates with borderline resistance (GU400growth control-GU100BDQ≤1day) had no mutation in three analyzed genes. For isolates with phenotypic MGIT-BDQ borderline resistance, checking for GU differences or conducting genotypic analyses are suggested for ruling out BDQ resistance. In addition, we observed favorable outcomes among patients with BDQ-resistant isolates who received BDQ-containing regimens regardless of Rv0678 mutations. We concluded that based on MIC≥0.25μg/ml, 3.1% (28/898) of drug-resistant TB cases without BDQ exposure showed BDQ resistance, Rv0678 was not a robust marker of BDQ resistance, and its mutations were not associated with treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Ruwen Jou
- Taiwan Centers for Disease Control, Taipei, Taiwan
| |
Collapse
|
49
|
Genetic diversity of candidate loci linked to Mycobacterium tuberculosis resistance to bedaquiline, delamanid and pretomanid. Sci Rep 2021; 11:19431. [PMID: 34593898 PMCID: PMC8484543 DOI: 10.1038/s41598-021-98862-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the deadliest infectious diseases worldwide. Multidrug and extensively drug-resistant strains are making disease control difficult, and exhausting treatment options. New anti-TB drugs bedaquiline (BDQ), delamanid (DLM) and pretomanid (PTM) have been approved for the treatment of multi-drug resistant TB, but there is increasing resistance to them. Nine genetic loci strongly linked to resistance have been identified (mmpR5, atpE, and pepQ for BDQ; ddn, fgd1, fbiA, fbiB, fbiC, and fbiD for DLM/PTM). Here we investigated the genetic diversity of these loci across >33,000 M. tuberculosis isolates. In addition, epistatic mutations in mmpL5-mmpS5 as well as variants in ndh, implicated for DLM/PTM resistance in M. smegmatis, were explored. Our analysis revealed 1,227 variants across the nine genes, with the majority (78%) present in isolates collected prior to the roll-out of BDQ and DLM/PTM. We identified phylogenetically-related mutations, which are unlikely to be resistance associated, but also high-impact variants such as frameshifts (e.g. in mmpR5, ddn) with likely functional effects, as well as non-synonymous mutations predominantly in MDR-/XDR-TB strains with predicted protein destabilising effects. Overall, our work provides a comprehensive mutational catalogue for BDQ and DLM/PTM associated genes, which will assist with establishing associations with phenotypic resistance; thereby, improving the understanding of the causative mechanisms of resistance for these drugs, leading to better treatment outcomes.
Collapse
|
50
|
Castro RAD, Borrell S, Gagneux S. The within-host evolution of antimicrobial resistance in Mycobacterium tuberculosis. FEMS Microbiol Rev 2021; 45:fuaa071. [PMID: 33320947 PMCID: PMC8371278 DOI: 10.1093/femsre/fuaa071] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) has been responsible for the greatest number of human deaths due to an infectious disease in general, and due to antimicrobial resistance (AMR) in particular. The etiological agents of human TB are a closely-related group of human-adapted bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Understanding how MTBC populations evolve within-host may allow for improved TB treatment and control strategies. In this review, we highlight recent works that have shed light on how AMR evolves in MTBC populations within individual patients. We discuss the role of heteroresistance in AMR evolution, and review the bacterial, patient and environmental factors that likely modulate the magnitude of heteroresistance within-host. We further highlight recent works on the dynamics of MTBC genetic diversity within-host, and discuss how spatial substructures in patients' lungs, spatiotemporal heterogeneity in antimicrobial concentrations and phenotypic drug tolerance likely modulates the dynamics of MTBC genetic diversity in patients during treatment. We note the general characteristics that are shared between how the MTBC and other bacterial pathogens evolve in humans, and highlight the characteristics unique to the MTBC.
Collapse
Affiliation(s)
- Rhastin A D Castro
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| |
Collapse
|