1
|
du Preez HN, Lin J, Maguire GEM, Aldous C, Kruger HG. COVID-19 vaccine adverse events: Evaluating the pathophysiology with an emphasis on sulfur metabolism and endotheliopathy. Eur J Clin Invest 2024; 54:e14296. [PMID: 39118373 DOI: 10.1111/eci.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
In this narrative review, we assess the pathophysiology of severe adverse events that presented after vaccination with DNA and mRNA vaccines against COVID-19. The focus is on the perspective of an undersulfated and degraded glycocalyx, considering its impact on immunomodulation, inflammatory responses, coagulation and oxidative stress. The paper explores various factors that lead to glutathione and inorganic sulfate depletion and their subsequent effect on glycocalyx sulfation and other metabolites, including hormones. Components of COVID-19 vaccines, such as DNA and mRNA material, spike protein antigen and lipid nanoparticles, are involved in possible cytotoxic effects. The common thread connecting these adverse events is endotheliopathy or glycocalyx degradation, caused by depleted glutathione and inorganic sulfate levels, shear stress from circulating nanoparticles, aggregation and formation of protein coronas; leading to imbalanced immune responses and chronic release of pro-inflammatory cytokines, ultimately resulting in oxidative stress and systemic inflammatory response syndrome. By understanding the underlying pathophysiology of severe adverse events, better treatment options can be explored.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
2
|
Beck E, Bausch-Jurken MT, Van de Velde N, Wang X, Malmenäs M. A Response to: A Letter to the Editor Regarding 'Comparative Effectiveness of mRNA-1273 and BNT162b2 COVID-19 Vaccines Among Older Adults: Systematic Literature Review and Meta-Analysis Using the GRADE Framework'. Infect Dis Ther 2024; 13:2195-2202. [PMID: 39180646 PMCID: PMC11416437 DOI: 10.1007/s40121-024-01020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 08/26/2024] Open
Affiliation(s)
- Ekkehard Beck
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA.
| | | | | | | | | |
Collapse
|
3
|
Madhavan R, Paul JS, Babji S, Thamizh I, Kumar D, Khakha SA, Rennie A, Kumar K, Dhanapal P, Saravanan P, Kumar A, Immanuel S, Gandhi V, Kumar A, Babu JJ, Gangadharan NT, Jagadeesan P, John E, Jamora C, Palakodeti D, Bhati R, Thambidurai SD, Suvatha A, George A, Kang G, John J. SARS-CoV-2 infections before, during, and after the Omicron wave: a 2-year Indian community cohort study. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2024; 28:100470. [PMID: 39263629 PMCID: PMC11388673 DOI: 10.1016/j.lansea.2024.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
Background We measured the incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and re-infections in an adult community-based cohort in southern India. Methods We conducted a 2-year follow-up on 1229 participants enrolled between May and October 2021. Participants provided vaccination histories, weekly saliva samples, and blood samples at 0, 6, 12, and 24 months. Salivary reverse transcription polymerase chain reaction (RT-PCR) and Meso-Scale Discovery panels were used for SARS-CoV-2 detection and anti-spike, anti-nucleocapsid immunoglobulin G quantification. Whole genome sequencing was performed on a subset of positive samples. SARS-CoV-2 infection incidence was measured across Pre-Omicron (May-December 2021), Omicron-I (December 2021-June 2022), and Omicron-II (July 2022-October 2023) periods. Findings In total, 1166 (95%) participants with 83% seropositivity at baseline completed the follow-up, providing 2205 person-years of observation. Utilizing both RT-PCR and serology we identified 1306 infections and yielded an incidence rate of 591.3 per 1000 person-years (95% confidence interval, 559.6-624.3), which peaked during Omicron-I at 1418.1 per 1000 person-years (95% confidence interval, 1307.4-1535.6). During Omicron-I and II, neither prior infection nor vaccination conferred protection against infection. Overall, 74% of infections were asymptomatic. Interpretation Integrated RT-PCR and serology revealed significant SARS-CoV-2 infection frequency, highlighting the prevalence of asymptomatic cases among previously infected or vaccinated individuals. This underscores the effectiveness of combining surveillance strategies when monitoring pandemic trends and confirms the role of non-invasive sampling in ensuring participant compliance, reflecting national transmission patterns. Funding The study was funded by the Bill and Melinda Gates Foundation.
Collapse
Affiliation(s)
- Ramya Madhavan
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Jackwin Sam Paul
- Department of Community Health, Christian Medical College, Vellore, India
| | - Sudhir Babji
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Isai Thamizh
- Department of Community Health, Christian Medical College, Vellore, India
| | - Dilesh Kumar
- Department of Community Health, Christian Medical College, Vellore, India
| | | | - Aarene Rennie
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Keerthana Kumar
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Pavithra Dhanapal
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Poornima Saravanan
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Ajith Kumar
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Sushil Immanuel
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Vaishnavi Gandhi
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Anand Kumar
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Johnson John Babu
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Nandu Thrithamarassery Gangadharan
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Premkumar Jagadeesan
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Elizabeth John
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Colin Jamora
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Dasaradhi Palakodeti
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Rubina Bhati
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Saranya Devi Thambidurai
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Arati Suvatha
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Anna George
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Gagandeep Kang
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Jacob John
- Department of Community Health, Christian Medical College, Vellore, India
| |
Collapse
|
4
|
Poh XY, Lee IR, Tan CW, Chavatte JM, Fong SW, Goh YS, Rouers A, Wong N, Torres-Ruesta A, Mah SYY, Yeoh AYY, Gandhi M, Rahman N, Chin YQ, Lim JJ, Yoong TJK, Rao S, Chia PY, Ong SWX, Lee TH, Sadarangani SP, Lin RJH, Lim DRX, Chia W, Renia L, Ren EC, Lin RTP, Lye DC, Wang LF, Ng LFP, Young BE. First SARS-CoV-2 Omicron infection as an effective immune booster among mRNA vaccinated individuals: final results from the first phase of the PRIBIVAC randomised clinical trial. EBioMedicine 2024; 107:105275. [PMID: 39137572 PMCID: PMC11367514 DOI: 10.1016/j.ebiom.2024.105275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/14/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Understanding how SARS-CoV-2 breakthrough infections impacts the breadth of immune responses against existing and pre-emergent SARS-CoV-2 strains is needed to develop an evidence-based long-term immunisation strategy. METHODS We performed a randomised, controlled trial to assess the immunogenicity of homologous (BNT162b2) versus heterologous (mRNA-1273) booster vaccination in 100 BNT162b2-vaccinated infection-naïve individuals enrolled from October 2021. Post hoc analysis was performed to assess the impact of SARS-CoV-2 infection on humoral and cellular immune responses against wild-type SARS-CoV-2 and/or Omicron subvariants. FINDINGS 93 participants completed the study at day 360. 71% (66/93) of participants reported first SARS-CoV-2 Omicron infection by the end of the study with similar proportions of infections between homologous and heterologous booster groups (72.3% [34/47] vs 69.6% [32/46]; p = 0.82). Mean wildtype SARS-CoV-2 anti-S-RBD antibody level was significantly higher in heterologous booster group compared with homologous group at day 180 (14,588 IU/mL; 95% CI, 10,186-20,893 vs 7447 IU/mL; 4646-11,912; p = 0.025). Participants who experienced breakthrough infections during the Omicron BA.1/2 wave had significantly higher anti-S-RBD antibody levels against wildtype SARS-CoV-2 and antibody neutralisation against BA.1 and pre-emergent BA.5 compared with infection-naïve participants. Regardless of hybrid immunity status, wildtype SARS-CoV-2 anti-S-RBD antibody level declined significantly after six months post-booster or post-SARS-CoV-2 infection. INTERPRETATION Booster vaccination with mRNA-1273 was associated with significantly higher antibody levels compared with BNT162b2. Antibody responses are narrower and decline faster among uninfected, vaccinated individuals. Boosters may be more effective if administered shortly before infection outbreaks and at least six months after last infection or booster. FUNDING Singapore NMRC, USFDA, MRC.
Collapse
Affiliation(s)
| | - I Russel Lee
- National Centre for Infectious Diseases, Singapore
| | - Chee Wah Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jean-Marc Chavatte
- National Centre for Infectious Diseases, Singapore; National Public Health Laboratory, Singapore
| | - Siew Wai Fong
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, 138648, Singapore
| | - Yun Shan Goh
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, 138648, Singapore
| | - Angeline Rouers
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, 138648, Singapore
| | - Nathan Wong
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, 138648, Singapore
| | - Anthony Torres-Ruesta
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, 138648, Singapore
| | - Shirley Y Y Mah
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore
| | - Aileen Y Y Yeoh
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore
| | - Mihir Gandhi
- Biostatistics, Singapore Clinical Research Institute, Singapore; Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | - Nabilah Rahman
- Biostatistics, Singapore Clinical Research Institute, Singapore; Saw Swee Hock School of Public Health, Singapore
| | - Yi Qing Chin
- National Centre for Infectious Diseases, Singapore
| | | | | | - Suma Rao
- National Centre for Infectious Diseases, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
| | - Po Ying Chia
- National Centre for Infectious Diseases, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Sean W X Ong
- National Centre for Infectious Diseases, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
| | - Tau Hong Lee
- National Centre for Infectious Diseases, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
| | - Sapna P Sadarangani
- National Centre for Infectious Diseases, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Ray J H Lin
- National Centre for Infectious Diseases, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
| | - Daniel R X Lim
- National Centre for Infectious Diseases, Singapore; National Public Health Laboratory, Singapore
| | - Wanni Chia
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore
| | - Laurent Renia
- A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, 138648, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | - Ee Chee Ren
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Immunology Network, Singapore
| | - Raymond T P Lin
- National Centre for Infectious Diseases, Singapore; National Public Health Laboratory, Singapore
| | - David C Lye
- National Centre for Infectious Diseases, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Lin-Fa Wang
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore
| | - Lisa F P Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, 138648, Singapore.
| | - Barnaby E Young
- National Centre for Infectious Diseases, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
5
|
Chaufan C, Hemsing N. Is resistance to Covid-19 vaccination a "problem"? A critical policy inquiry of vaccine mandates for healthcare workers. AIMS Public Health 2024; 11:688-714. [PMID: 39416898 PMCID: PMC11474332 DOI: 10.3934/publichealth.2024035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/05/2024] [Accepted: 05/07/2024] [Indexed: 10/19/2024] Open
Abstract
As the COVID-19 global vaccination campaign was launched in December of 2020, vaccination became mandatory for many healthcare workers (HCWs) worldwide. Large minorities resisted the policy, and the responses of authorities to this resistance led to damaged professional reputations, job losses, and suspension or termination of practice licenses. The joint effect of dismissals, early retirements, career changes, and vaccine injuries disabling some compliant HCWs from adequate performance has exacerbated existing crises within health systems. Nevertheless, leading health authorities have maintained that the benefits of a fully vaccinated healthcare labor force-believed to be protecting health systems, vulnerable patient populations, and even HCWs themselves-achieved through mandates, if necessary, outweigh its potential harms. Informed by critical policy and discourse traditions, we examine the expert literature on vaccine mandates for HCWs. We find that this literature neglects evidence that contradicts official claims about the safety and effectiveness of COVID-19 vaccines, dismisses the science supporting the contextual nature of microbial virulence, miscalculates patient and system-level harms of vaccination policies, and ignores or legitimizes the coercive elements built into their design. We discuss the implications of our findings for the sustainability of health systems, for patient care, and for the well-being of HCWs, and suggest directions for ethical clinical and policy practice.
Collapse
Affiliation(s)
- Claudia Chaufan
- School of Health Policy and Management, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | | |
Collapse
|
6
|
Weber S, Hedberg P, Naucler P, Wolkewitz M. Protection from prior natural infection vs. vaccination against SARS-CoV-2-a statistical note to avoid biased interpretation. Front Med (Lausanne) 2024; 11:1376275. [PMID: 38933111 PMCID: PMC11199770 DOI: 10.3389/fmed.2024.1376275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction The fight against SARS-CoV-2 has been a major task worldwide since it was first identified in December 2019. An imperative preventive measure is the availability of efficacious vaccines while there is also a significant interest in the protective effect of a previous SARS-CoV-2 infection on a subsequent infection (natural protection rate). Methods In order to compare protection rates after infection and vaccination, researchers consider different effect measures such as 1 minus hazard ratio, 1 minus odds ratio, or 1 minus risk ratio. These measures differ in a setting with competing risks. Nevertheless, as there is no unique definition, these metrics are frequently used in studies examining protection rate. Comparison of protection rates via vaccination and natural infection poses several challenges. For instance many publications consider the epidemiological definition, that a reinfection after a SARS-CoV-2 infection is only possible after 90 days, whereas there is no such constraint after vaccination. Furthermore, death is more prominent as a competing event during the first 90 days after infection compared to vaccination. In this work we discuss the statistical issues that arise when investigating protection rates comparing vaccination with infection. We explore different aspects of effect measures and provide insights drawn from different analyses, distinguishing between the first and the second 90 days post-infection or vaccination. Results In this study, we have access to real-world data of almost two million people from Stockholm County, Sweden. For the main analysis, data of over 52.000 people is considered. The infected group is younger, includes more men, and is less morbid compared to the vaccinated group. After the first 90 days, these differences increased. Analysis of the second 90 days shows differences between analysis approaches and between age groups. There are age-related differences in mortality. Considering the outcome SARS-CoV-2 infection, the effect of vaccination versus infection varies by age, showing a disadvantage for the vaccinated in the younger population, while no significant difference was found in the elderly. Discussion To compare the effects of immunization through infection or vaccination, we emphasize consideration of several investigations. It is crucial to examine two observation periods: The first and second 90-day intervals following infection or vaccination. Additionally, methods to address imbalances are essential and need to be used. This approach supports fair comparisons, allows for more comprehensive conclusions and helps prevent biased interpretations.
Collapse
Affiliation(s)
- Susanne Weber
- Institute of Medical Biometry and Statistics, Division Methods in Clinical Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Freiburg Center for Data Analysis and Modeling, University of Freiburg, Freiburg, Germany
| | - Pontus Hedberg
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Pontus Naucler
- Department of Medicine, Solna, Karolinska Institutet and Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Wolkewitz
- Institute of Medical Biometry and Statistics, Division Methods in Clinical Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Freiburg Center for Data Analysis and Modeling, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Lataster R. Re: ''Risk and benefit of mRNA COVID-19 vaccines for the omicron variant by age, sex, and presence of comorbidity: a quality-adjusted life years analysis''. Am J Epidemiol 2024; 193:928-929. [PMID: 38100362 PMCID: PMC11145902 DOI: 10.1093/aje/kwad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/07/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Affiliation(s)
- Raphael Lataster
- Centre for Continuing Education, University of Sydney, Sydney, NSW 2042, Australia
| |
Collapse
|
8
|
Aboulela A, Taha M, Ghazal A, Baess A, Elsheredy A. Alternations in miR-155 and miR-200 serum levels can serve as biomarkers for COVID-19 in the post-mass vaccination era. Mol Biol Rep 2024; 51:689. [PMID: 38796651 DOI: 10.1007/s11033-024-09630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/09/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Mass vaccination and natural immunity reduced the severity of COVID-19 cases. SARS-CoV-2 ongoing genome variations imply the use of confirmatory serologic biomarkers besides PCR for reliable diagnosis. MicroRNA molecules are intrinsic components of the innate immune system. The expression of miR155-5p and miR200c-3p was previously correlated with SARS-CoV-2 pathogenesis. This case-control study was conducted during the third peak of the COVID-19 pandemic in Egypt and aimed to calculate the accuracy of miR155-5p and miR200c-3p as biomarkers for COVID-19. METHODS AND RESULTS Thirty out of 400 COVID-19 patients at a main University hospital in Alexandria were included in the study along with 20 age-matched healthy controls. Plasma samples were collected for total and differential CBC. Relative quantitation of miR155-5p and miR200c-3p expression from WBCs was done by RT-qPCR. The expression of miR155-5p and miR200c-3p was positively correlated and was significantly downregulated in COVID-19 patients compared to the healthy control group (p ˂ 0.005). Both miR155-5p and miR200c-3p were of 76% and 74% accuracy as diagnostic biomarkers of COVID-19, respectively. Regarding the differentiation between mild and moderate cases, their accuracy was 80% and 70%, respectively. CONCLUSIONS miR155-5p and miR200c-3p expression can be used to confirm the diagnosis of COVID-19 and discriminate between mild and moderate cases, with a moderate degree of accuracy.
Collapse
Affiliation(s)
- Aliaa Aboulela
- Medical Research Institute, Microbiology Department, Alexandria University, Alexandria, Egypt
| | - Mona Taha
- Medical Research Institute, Microbiology Department, Alexandria University, Alexandria, Egypt
| | - Abeer Ghazal
- Medical Research Institute, Microbiology Department, Alexandria University, Alexandria, Egypt
| | - Ayman Baess
- Faculty of Medicine, Chest Diseases Department, Alexandria University, Alexandria, Egypt
| | - Amel Elsheredy
- Medical Research Institute, Microbiology Department, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
9
|
Rodriguez Velásquez S, Biru LE, Hakiza SM, Al-Gobari M, Triulzi I, Dalal J, Varela CBG, Botero Mesa S, Keiser O. Long-term levels of protection of different types of immunity against the Omicron variant: a rapid literature review. Swiss Med Wkly 2024; 154:3732. [PMID: 38749028 DOI: 10.57187/s.3732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
INTRODUCTION With the emergence of newer SARS-CoV-2 variants and their substantial effects on the levels and duration of protection against infection, an understanding of these characteristics of the protection conferred by humoral and cellular immunity can aid in the proper development and implementation of vaccine and safety guidelines. METHODS We conducted a rapid literature review and searched five electronic databases weekly from 1 November 2021 to 30 September 2022. Studies that assessed the humoral or cellular immunity conferred by infection, vaccination or a hybrid (combination of both) in adults and risk groups (immunocompromised and older populations) were identified. Studies were eligible when they reported data on immunological assays of COVID-19 (related to vaccination and/or infection) or the effectiveness of protection (related to the effectiveness of vaccination and/or infection). RESULTS We screened 5103 studies and included 205 studies, of which 70 provided data on the duration of protection against SARS-CoV-2 infection. The duration of protection of adaptive immunity was greatly impacted by Omicron and its subvariants: levels of protection were low by 3-6 months from exposure to infection/vaccination. Although more durable, cellular immunity also showed signs of waning by 6 months. First and second mRNA vaccine booster doses increased the levels of protection against infection and severe disease from Omicron and its subvariants but continued to demonstrate a high degree of waning over time. CONCLUSION All humoral immunities (infection-acquired, vaccine-acquired and hybrid) waned by 3-6 months. Cellular immunity was more durable but showed signs of waning by 6 months. Hybrid immunity had the highest magnitude of protection against SARS-CoV-2 infection. Boosting may be recommended as early as 3-4 months after the last dose, especially in risk groups.
Collapse
Affiliation(s)
- Sabina Rodriguez Velásquez
- Institute of Global Health, University of Geneva, Geneva, Switzerland
- The GRAPH Network, Geneva, Switzerland
| | - Loza Estifanos Biru
- Institute of Global Health, University of Geneva, Geneva, Switzerland
- The GRAPH Network, Geneva, Switzerland
| | - Sandrine Marie Hakiza
- Institute of Global Health, University of Geneva, Geneva, Switzerland
- The GRAPH Network, Geneva, Switzerland
| | - Muaamar Al-Gobari
- The GRAPH Network, Geneva, Switzerland
- HIV/AIDS Unit Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Isotta Triulzi
- The GRAPH Network, Geneva, Switzerland
- Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | - Sara Botero Mesa
- Institute of Global Health, University of Geneva, Geneva, Switzerland
- The GRAPH Network, Geneva, Switzerland
| | - Olivia Keiser
- Institute of Global Health, University of Geneva, Geneva, Switzerland
- The GRAPH Network, Geneva, Switzerland
| |
Collapse
|
10
|
Song G, Li R, Cheng MQ. Safety, immunogenicity, and protective effective of inhaled COVID-19 vaccines: A systematic review and meta-analysis. J Med Virol 2024; 96:e29625. [PMID: 38650361 DOI: 10.1002/jmv.29625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
This study aimed to examine the safety, immunogenicity and protective effective of inhaled COVID-19 vaccines (ICVs). Literature research was done through EMBASE, Cochrane, PubMed, and Web of Science up to 10 March 2024. Pooled estimates with corresponding 95% confidence intervals (CI) were computed and compared using the random effects and common effects model. Of the 15 studies, 11 analyzed safety, 13 analyzed immunogenicity, and 3 analyzed protective effective. The results showed a favorable safety profile of ICVs for primary vaccination series, however it does not always seem to produce the expected immune response and protective effective. Meta-analysis of ICVs booster vaccinations (BVs) showed that the levels of neutralizing antibody Geometric mean titer (nAb-GMT) with aerosolised Ad5-nCoV (AAd5-nCoV) were all higher than those with inactivated vaccine (INA-nCoV) (standard mean difference (SMD) = 2.32; 95% CI: 1.96-2.69) and intramuscular Ad5-nCoV (IMAd5-nCoV) (SMD = 0.31; 95% CI: 0.14-0.48) against the original strain of SARS-CoV-2. Importantly, we also observed similar results in the omicron variant. In addition, ICV in BVs has high mucosal immunity to IgA antibodies. The risk of adverse events was comparable or lower for AAd5-nCoV compared to INA-nCoV or IMAd5-nCoV. Current evidence shows that the safety profile of ICVs were well. The booster dose of AAd5-nCoV had a high immune response (including mucosal immunity) and provided protection against COVID-19 caused by the SARS-CoV-2 omicron variant. Further studies are needed to investigate the long-term safety of intranasal vaccine booster protection and various types of ICVs.
Collapse
Affiliation(s)
- Gao Song
- Department of Pharmacy, Puer People's Hospital, Pu'er, China
| | - Rong Li
- Department of Pharmacy, Puer People's Hospital, Pu'er, China
| | - Meng-Qun Cheng
- Department of Reproductive Medicine, Puer People's Hospital, Pu'er, China
| |
Collapse
|
11
|
Kavikondala S, Haeussler K, Wang X, Bausch-Jurken MT, Nassim M, Mishra NK, Malmenäs M, Sharma P, Van de Velde N, Green N, Beck E. Comparative Effectiveness of mRNA-1273 and BNT162b2 COVID-19 Vaccines Among Older Adults: Systematic Literature Review and Meta-Analysis Using the GRADE Framework. Infect Dis Ther 2024; 13:779-811. [PMID: 38498109 PMCID: PMC11058186 DOI: 10.1007/s40121-024-00936-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 03/20/2024] Open
Abstract
INTRODUCTION The mRNA vaccines mRNA-1273 and BNT162b2 demonstrated high efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in phase 3 clinical trials, including among older adults. To inform coronavirus disease 2019 (COVID-19) vaccine selection, this systematic literature review (SLR) and meta-analysis assessed the comparative effectiveness of mRNA-1273 versus BNT162b2 in older adults. METHODS We systematically searched for relevant studies reporting COVID-19 outcomes with mRNA vaccines in older adults aged ≥ 50 years by first cross-checking relevant published SLRs. Based on the cutoff date from a previous similar SLR, we then searched the WHO COVID-19 Research Database for relevant articles published between April 9, 2022, and June 2, 2023. Outcomes of interest were SARS-CoV-2 infection, symptomatic SARS-CoV-2 infection, severe SARS-CoV-2 infection, COVID-19-related hospitalization, and COVID-19-related death following ≥ 2 vaccine doses. Random effects meta-analysis models were used to pool risk ratios (RRs) across studies. Heterogeneity was evaluated using chi-square testing. Evidence certainty was assessed per GRADE framework. RESULTS Twenty-four non-randomized real-world studies reporting clinical outcomes with mRNA vaccines in individuals aged ≥ 50 years were included in the meta-analysis. Vaccination with mRNA-1273 was associated with significantly lower risk of SARS-CoV-2 infection (RR 0.72 [95% confidence interval (CI) 0.64‒0.80]), symptomatic SARS-CoV-2 infection (RR 0.72 [95% CI 0.62‒0.83]), severe SARS-CoV-2 infection (RR 0.67 [95% CI 0.57‒0.78]), and COVID-19-related hospitalization (RR 0.65 [95% CI 0.53‒0.79]) but not COVID-19-related death (RR 0.80 [95% CI 0.64‒1.00]) compared with BNT162b2. There was considerable heterogeneity between studies for all outcomes (I2 > 75%) except death (I2 = 0%). Multiple subgroup and sensitivity analyses excluding specific studies generally demonstrated consistent results. Certainty of evidence across outcomes was rated as low (type 3) or very low (type 4), reflecting the lack of randomized controlled trial data. CONCLUSION Meta-analysis of 24 observational studies demonstrated significantly lower risk of asymptomatic, symptomatic, and severe infections and hospitalizations with the mRNA-1273 versus BNT162b2 vaccine in older adults aged ≥ 50 years.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ekkehard Beck
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA.
| |
Collapse
|
12
|
Inoue W, Kimura Y, Okamoto S, Nogimori T, Sakaguchi-Mikami A, Yamamoto T, Tsunetsugu-Yokota Y. SARS-CoV-2-Specific Immune Responses in Vaccination and Infection during the Pandemic in 2020-2022. Viruses 2024; 16:446. [PMID: 38543812 PMCID: PMC10974545 DOI: 10.3390/v16030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 05/23/2024] Open
Abstract
To gain insight into how immunity develops against SARS-CoV-2 from 2020 to 2022, we analyzed the immune response of a small group of university staff and students who were either infected or vaccinated. We investigated the levels of receptor-binding domain (RBD)-specific and nucleocapsid (N)-specific IgG and IgA antibodies in serum and saliva samples taken early (around 10 days after infection or vaccination) and later (around 1 month later), as well as N-specific T-cell responses. One patient who had been infected in 2020 developed serum RBD and N-specific IgG antibodies, but declined eight months later, then mRNA vaccination in 2021 produced a higher level of anti-RBD IgG than natural infection. In the vaccination of naïve individuals, vaccines induced anti-RBD IgG, but it declined after six months. A third vaccination boosted the IgG level again, albeit to a lower level than after the second. In 2022, when the Omicron variant became dominant, familial transmission occurred among vaccinated people. In infected individuals, the levels of serum anti-RBD IgG antibodies increased later, while anti-N IgG peaked earlier. The N-specific activated T cells expressing IFN γ or CD107a were detected only early. Although SARS-CoV-2-specific salivary IgA was undetectable, two individuals showed a temporary peak in RBD- and N-specific IgA antibodies in their saliva on the second day after infection. Our study, despite having a small sample size, revealed that SARS-CoV-2 infection triggers the expected immune responses against acute viral infections. Moreover, our findings suggest that the temporary mucosal immune responses induced early during infection may provide better protection than the currently available intramuscular vaccines.
Collapse
Affiliation(s)
- Wakana Inoue
- Department of Medical Technology, School of Health Sciences and Graduate School of Medical Technology, Tokyo University of Technology, Tokyo 144-8535, Japan; (W.I.); (Y.K.); (S.O.); (A.S.-M.)
| | - Yuta Kimura
- Department of Medical Technology, School of Health Sciences and Graduate School of Medical Technology, Tokyo University of Technology, Tokyo 144-8535, Japan; (W.I.); (Y.K.); (S.O.); (A.S.-M.)
| | - Shion Okamoto
- Department of Medical Technology, School of Health Sciences and Graduate School of Medical Technology, Tokyo University of Technology, Tokyo 144-8535, Japan; (W.I.); (Y.K.); (S.O.); (A.S.-M.)
| | - Takuto Nogimori
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; (T.N.); (T.Y.)
| | - Akane Sakaguchi-Mikami
- Department of Medical Technology, School of Health Sciences and Graduate School of Medical Technology, Tokyo University of Technology, Tokyo 144-8535, Japan; (W.I.); (Y.K.); (S.O.); (A.S.-M.)
| | - Takuya Yamamoto
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; (T.N.); (T.Y.)
- Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Department of Virology and Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yasuko Tsunetsugu-Yokota
- Department of Medical Technology, School of Health Sciences and Graduate School of Medical Technology, Tokyo University of Technology, Tokyo 144-8535, Japan; (W.I.); (Y.K.); (S.O.); (A.S.-M.)
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; (T.N.); (T.Y.)
- Research Institute, The World New Prosperity (WNP), Tokyo 169-0075, Japan
| |
Collapse
|
13
|
Poukka E, van Roekel C, Turunen T, Baum U, Kramer R, Begier E, Presser L, Teirlinck A, Heikkinen T, Knol M, Nohynek H. Effectiveness of Vaccines and Monoclonal Antibodies Against Respiratory Syncytial Virus: Generic Protocol for Register-Based Cohort Study. J Infect Dis 2024; 229:S84-S91. [PMID: 37930815 DOI: 10.1093/infdis/jiad484] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
Several immunization products are currently being developed against respiratory syncytial virus (RSV) for children, pregnant females, and older adults, and some products have already received authorization. Therefore, studies to monitor the effectiveness of these products are needed in the following years. To assist researchers to conduct postmarketing studies, we developed a generic protocol for register-based cohort studies to evaluate immunization product effectiveness against RSV-specific and nonspecific outcomes. To conduct a study on the basis of this generic protocol, the researchers can use any relevant databases or healthcare registers that are available at the study site.
Collapse
Affiliation(s)
- Eero Poukka
- Infectious Disease Control and Vaccinations Unit, Department of Health Security, Finnish Institute for Health and Welfare
- Department of Public Health, Faculty of Medicine, University of Helsinki, Finland
| | - Caren van Roekel
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Topi Turunen
- Infectious Disease Control and Vaccinations Unit, Department of Health Security, Finnish Institute for Health and Welfare
| | - Ulrike Baum
- Infectious Disease Control and Vaccinations Unit, Department of Health Security, Finnish Institute for Health and Welfare
| | | | | | - Lance Presser
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Anne Teirlinck
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Terho Heikkinen
- Department of Pediatrics, University of Turku and Turku University Hospital, Finland
| | - Mirjam Knol
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Hanna Nohynek
- Infectious Disease Control and Vaccinations Unit, Department of Health Security, Finnish Institute for Health and Welfare
| |
Collapse
|
14
|
Lee CY, Kuo HW, Liu YL, Chuang JH, Chou JH. Population-Based Evaluation of Vaccine Effectiveness against SARS-CoV-2 Infection, Severe Illness, and Death, Taiwan. Emerg Infect Dis 2024; 30:478-489. [PMID: 38295401 PMCID: PMC10902541 DOI: 10.3201/eid3003.230893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Taiwan provided several COVID-19 vaccine platforms: mRNA (BNT162b2, mRNA-1273), adenoviral vector-based (AZD1222), and protein subunit (MVC-COV1901). After Taiwan shifted from its zero-COVID strategy in April 2022, population-based evaluation of vaccine effectiveness (VE) became possible. We conducted an observational cohort study of 21,416,151 persons to examine VE against SARS-CoV-2 infection, moderate and severe illness, and death during March 22, 2021-September 30, 2022. After adjusting for age and sex, we found that persons who completed 3 vaccine doses (2 primary, 1 booster) or received MVC-COV1901 as the primary series had the lowest hospitalization incidence (0.04-0.20 cases/100,000 person-days). We also found 95.8% VE against hospitalization for 3 doses of BNT162b2, 91.0% for MVC-COV1901, 81.8% for mRNA-1273, and 65.7% for AZD1222, which had the lowest overall VE. Our findings indicated that protein subunit vaccines provide similar protection against SARS-CoV-2---associated hospitalization as mRNA vaccines and can inform mix-and-match vaccine selection in other countries.
Collapse
|
15
|
Aninagyei E, Ayivor-Djanie R, Gyamfi J, Aboagye ME, Kpeli GS, Ampofo WK, Gyapong JO, Duedu KO. Pre-vaccination seroprevalence of SARS-CoV-2 antibodies in the Volta Region, Ghana. IJID REGIONS 2024; 10:179-182. [PMID: 38328557 PMCID: PMC10847139 DOI: 10.1016/j.ijregi.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Objectives Before administration of the first dose of the AstraZeneca 2019 SARS-CoV-2 vaccine to selected prioritized groups in the Volta regional capital of Ghana, we determined the pre-vaccination status of prospective recipients and established the baseline exposure status 1 year after the first case was reported. Methods After informed consent, blood samples were collected for the detection of SARS-CoV-2 immunoglobulin (Ig) M/IgG antibodies using rapid diagnostic test kits. A total of 409 individuals (mean age 27 years) consented and participated in the study, comprising 70% students and others were health staff and educators who presented themselves for vaccination. Results The overall exposure rate of SARS-CoV-2 was 12.7% (95% confidence interval [CI] 9.6-16.3). The prevalence of SARS-CoV-2 IgM and IgG were 4.2% (95% CI 2.4-6.6) and 5.6% (95% CI 3.6-8.3), respectively. IgM and IgG were detected in 2.9% (95% CI 1.5-5.1) of the respondents. The exposure rates were higher in participants over 40 years old (15.5%). Participants without a history of COVID-19-like symptoms had an exposure rate of 13.0% and those without any chronic diseases was 13.2%. Conclusion Pre-vaccination exposure was relatively low and underscored the need for vaccination i to increase protection in communities and disease outcomes.
Collapse
Affiliation(s)
- Enoch Aninagyei
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Reuben Ayivor-Djanie
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Ghana
| | - Jones Gyamfi
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
- School of Health & Life Sciences, Teesside University, Middlesbrough, United Kingdom
| | - Marfo Edward Aboagye
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Grace Semabia Kpeli
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - William Kwabena Ampofo
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - John Owusu Gyapong
- Centre for Neglected Tropical Diseases, Institute of Health Research, University of Health and Allied Sciences, Ho, Ghana
| | - Kwabena Obeng Duedu
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
- College of Life Sciences, Faculty of Health, Education and Life Sciences, Birmingham City University, City South Campus, Birmingham, United Kingdom
| |
Collapse
|
16
|
Chen H, Chen S, Liu L, Fang Y, Liang X, Liang D, Su L, Peng W, Zhou X, Luo J, Wang Z. Inactivated COVID-19 vaccination and SARS-CoV-2 infection among Chinese adults in the "living with COVID" era. Heliyon 2024; 10:e25803. [PMID: 38379961 PMCID: PMC10877243 DOI: 10.1016/j.heliyon.2024.e25803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
The objective of this research was to examine the correlation between the status of inactivated COVID-19 vaccination and self-reported confirmed SARS-CoV-2 infection among adults after China entered the "living with COVID" era. A cross-sectional online survey was conducted among parents or guardians of students attending all 220 kindergartens and 105 primary or secondary schools in Longhua District of Shenzhen, China during March 1 to 9, 2023. The participating schools invited all parents or guardians of their students to complete the online survey. The study focused on a sub-sample of 68,584 participants who were either unvaccinated (n = 2152) or only receiving inactivated COVID-19 vaccination (n = 66,432). Logistic regression was employed for data analysis. Prior to the implementation of the "living with COVID" policy, 83.5% of the participants received three doses of inactivated COVID-19 vaccines; 63.0% reported being infected with the SARS-CoV-2 after the policy change. In a multivariate analysis, participants who had received a third dose within the past 6 months were less likely to be infected with SARS-CoV-2, as compared to those who had not completed the primary vaccination series (4-6 months: AOR: 0.84, 95%CI: 0.77, 0.92; ≤3 months: AOR: 0.82, 95%CI: 0.73, 0.92). Despite the high coverage, our results suggested that three doses of inactivated COVID-19 vaccines did not provide adequate protection against SARS-CoV-2 infection among Chinese adults.
Collapse
Affiliation(s)
- Hongbiao Chen
- Department Epidemiology and Infectious Disease Control, Longhua District Centre for Disease Control and Prevention, Shenzhen, 518110, China
| | - Siyu Chen
- Centre for Health Behaviours Research, JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Lei Liu
- Department of Disease Control, Longgang District Nanwan Centre for Public Health, Shenzhen, 518100, China
| | - Yuan Fang
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong, 999077, China
| | - Xue Liang
- Centre for Health Behaviours Research, JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Dongmei Liang
- Department of Environmental and School Health Supervision, Baoan District Centre for Public Health, Shenzhen, 518000, China
| | - Lixian Su
- Department of Child Healthcare, Shenzhen Futian District Maternity & Child Healthcare Hospital, Shenzhen, 518045, China
| | - Weijun Peng
- Department Epidemiology and Infectious Disease Control, Longhua District Centre for Disease Control and Prevention, Shenzhen, 518110, China
| | - Xiaofeng Zhou
- Department Epidemiology and Infectious Disease Control, Longhua District Centre for Disease Control and Prevention, Shenzhen, 518110, China
| | - Jingwei Luo
- Department Epidemiology and Infectious Disease Control, Longhua District Centre for Disease Control and Prevention, Shenzhen, 518110, China
| | - Zixin Wang
- Centre for Health Behaviours Research, JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, 999077, Hong Kong, China
| |
Collapse
|
17
|
Wang L, Pan J, Fu Y, Lou H, Chen Y, Yang Y, Liu S. A Case of an 86-Year-Old Male Survivor with Human Respiratory Syncytial Virus and SARS-CoV-2 Virus Coinfection. China CDC Wkly 2024; 6:148-150. [PMID: 38476819 PMCID: PMC10926047 DOI: 10.46234/ccdcw2024.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Affiliation(s)
- Lan Wang
- Department of Geriatrics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
| | - Jinren Pan
- Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou City, Zhejiang Province, China
| | - Yajie Fu
- Department of Laboratory Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, China
| | - Haiyan Lou
- Department of Radiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
| | - Yin Chen
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou City, Zhejiang Province, China
| | - Yunmei Yang
- Department of Geriatrics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
| | - Shelan Liu
- Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou City, Zhejiang Province, China
| |
Collapse
|
18
|
Kassianos G, MacDonald P, Aloysius I, Pather S. Responses to Common Misconceptions Relating to COVID-19 Variant-Adapted mRNA Vaccines. Vaccines (Basel) 2024; 12:57. [PMID: 38250870 PMCID: PMC10819631 DOI: 10.3390/vaccines12010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the waning of immunity over time has necessitated the use of booster doses of original coronavirus disease 2019 (COVID-19) vaccines. This has also led to the development and implementation of variant-adapted messenger RNA (mRNA) vaccines that include an Omicron sub-lineage component in addition to the antigen based on the wild-type virus spike protein. Subsequent emergence of the recombinant XBB sub-lineages triggered the development of monovalent XBB-based variant-adapted mRNA vaccines, which are available for vaccination campaigns in late 2023. Misconceptions about new variant-adapted vaccines may exacerbate vaccine fatigue and drive the lack of vaccine acceptance. This article aims to address common concerns about the development and use of COVID-19 variant-adapted mRNA vaccines that have emerged as SARS-CoV-2 has continued to evolve.
Collapse
Affiliation(s)
- George Kassianos
- Royal College of General Practitioners, London NW1 2FB, UK;
- British Global and Travel Health Association, London NW1 2FB, UK
| | | | | | | |
Collapse
|
19
|
Tomioka K, Uno K, Yamada M. Risk of severe COVID-19 in unvaccinated patients during the period from wild-type to Omicron variant: real-world evidence from Japan. Environ Health Prev Med 2024; 29:10. [PMID: 38447970 PMCID: PMC10937246 DOI: 10.1265/ehpm.23-00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/03/2023] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Many studies have reported that the Omicron variant is less pathogenic than the Delta variant and the wild-type. Epidemiological evidence regarding the risk of severe COVID-19 from the wild-type to the Omicron variant has been lacking. METHODS Study participants were COVID-19 patients aged 18 and older without previous COVID-19 infection who were notified to the Nara Prefecture Chuwa Public Health Center from January 2020 to March 2023, during the periods from the wild-type to the Omicron variant. The outcome variable was severe COVID-19 (i.e., ICU admission or COVID-19-related death). The explanatory variable was SARS-CoV-2 variant type or the number of COVID-19 vaccinations. Covariates included gender, age, risk factors for aggravation, and the number of general hospital beds per population. The generalized estimating equations of negative binomial regression models were used to estimate the adjusted incidence proportion (AIP) with 95% confidence interval (CI) for severe COVID-19. RESULTS Among 77,044 patients included in the analysis, 14,556 (18.9%) were unvaccinated and 520 (0.7%) developed severe COVID-19. Among unvaccinated patients, the risk of severe COVID-19 increased in the Alpha/Delta variants and decreased in the Omicron variant compared to the wild-type (AIP [95% CI] was 1.55 [1.06-2.27] in Alpha/Delta and 0.25 [0.15-0.40] in Omicron), but differed by age. Especially in patients aged ≥80, there was no significant difference in the risk of severe COVID-19 between the wild-type and the Omicron variant (AIP [95% CI] = 0.59 [0.27-1.29]). Regarding the preventive effect of vaccines, among all study participants, the number of vaccinations was significantly associated with the prevention of severe COVID-19, regardless of variant type. After stratified analyses by age, patients aged ≥80 remained a significant association for all variant types. On the other hand, the number of vaccinations had no association in Omicron BA.5 of patients aged 18-64. CONCLUSIONS Patients aged ≥80 had less reduction in risk of severe COVID-19 during the Omicron variant period, and a greater preventive effect of vaccines against severe COVID-19, compared to younger people. Our findings suggest that booster vaccination is effective and necessary for older people, especially aged ≥80.
Collapse
Affiliation(s)
- Kimiko Tomioka
- Nara Prefectural Health Research Center, Nara Medical University, Nara, Japan
- Chuwa Public Health Center of Nara Prefectural Government, Nara, Japan
| | - Kenji Uno
- Chuwa Public Health Center of Nara Prefectural Government, Nara, Japan
- Department of Infectious Diseases, Minami-Nara General Medical Center, Nara, Japan
| | - Masahiro Yamada
- Chuwa Public Health Center of Nara Prefectural Government, Nara, Japan
| |
Collapse
|
20
|
Nishiyama T, Miyamatsu Y, Park H, Nakamura N, Yokokawa Shibata R, Iwami S, Nagasaki Y. Modeling COVID-19 vaccine booster-elicited antibody response and impact of infection history. Vaccine 2023; 41:7655-7662. [PMID: 38008663 DOI: 10.1016/j.vaccine.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/28/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
The 3-dose COVID-19 vaccine (booster vaccination) has been offered worldwide. As booster vaccinations continue, it is important to understand the antibody dynamics elicited by booster vaccination in order to evaluate and develop vaccination needs and strategies. Here, we investigated longitudinal data by monitoring IgG antibodies against the receptor binding domain (RBD) in health care workers. We extended our previously developed mathematical model to booster vaccines and successfully fitted antibody titers over time in the absence and presence of past SARS-CoV-2 infection. Quantitative analysis using our mathematical model indicated that anti-RBD IgG titers increase to a comparable extent after booster vaccination, regardless of the presence or absence of infection, but infection history extends the duration of antibody response by 1.28 times. Such a mathematical modeling approach can be used to inform future vaccination strategies on the basis of an individual's immune history. Our simple quantitative approach can be extended to any kind of vaccination and therefore can form a basis for policy decisions regarding the distribution of booster vaccines to strengthen immunity in future pandemics.
Collapse
Affiliation(s)
- Takara Nishiyama
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yuichiro Miyamatsu
- Department of Neurosurgery, National Hospital Organization Kyushu Medical Center, Fukuoka 810-8563, Japan; Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-0054, Japan
| | - Hyeongki Park
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Naotoshi Nakamura
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Risa Yokokawa Shibata
- Department of Advanced Transdisciplinary Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shingo Iwami
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan; Institute of Mathematics for Industry, Kyushu University, Fukuoka 819-0395, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan; NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo 135-8550, Japan; Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), RIKEN, Wako 351-0198, Japan; Science Groove Inc., Fukuoka 810-0041, Japan.
| | - Yoji Nagasaki
- Department of Infectious Disease, Clinical Research Institute, National Hospital Organization Kyushu Medical Center,1-8-1 Jigyohama, Chuo-ku, Fukuoka 810-8563, Japan.
| |
Collapse
|
21
|
Zheng L, Liu S, Lu F. Impact of National Omicron Outbreak at the end of 2022 on the future outlook of COVID-19 in China. Emerg Microbes Infect 2023; 12:2191738. [PMID: 36920784 PMCID: PMC10044155 DOI: 10.1080/22221751.2023.2191738] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Affiliation(s)
- Liwei Zheng
- Department of Microbiology & Infectious Disease Center, School of Basic Medicine, Peking University Health Science Center, Beijing, People’s Republic of China
| | | | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medicine, Peking University Health Science Center, Beijing, People’s Republic of China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing, People’s Republic of China
| |
Collapse
|
22
|
Nieto MA, Caballero N, Remolina CI, Moreno S, Vega D, Quintero J. Incidence and risk factors related to SARS-CoV-2 infection, reinfection, and seroconversion: Analysis of a healthcare workers cohort from a university hospital in Colombia. IJID REGIONS 2023; 9:63-71. [PMID: 37928802 PMCID: PMC10623274 DOI: 10.1016/j.ijregi.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023]
Abstract
Objectives To determine the incidence and factors associated with SARS-CoV-2 infection and seroconversion among healthcare workers (HCWs) during the COVID-19 pandemic in a university hospital in Colombia. Methods We analyzed the CoVIDA-Fundación Santa Fe de Bogotá (FSFB) cohort, consisting of 419 HCWs from the FSFB university hospital. The cohort was followed during active surveillance (June 25, 2020, to April 30, 2021) and passive surveillance (May 01, 2021, to March 16, 2022) periods. Incidence rates for SARS-CoV-2 infection, reinfection, and seroconversion were estimated, considering pre- and post-COVID-19 vaccination. Cox proportional-hazards models were used to identify factors related to infection and seroconversion during the active surveillance period. Results COVID-19 incidence rate ranged between 16-52 cases per 1000 person-month. SARS-CoV-2 reinfections were rare, ranging between less than one case to 13 cases per 1000 person-month. The seroconversion rates ranged between 52-55 cases per 1000 person-month. High socioeconomic level was a protective factor for SARS-CoV-2 infection, while SARS-CoV-2 infection was the main factor associated with seroconversion. Conclusion This study provides insights into the incidence and risk factors of SARS-CoV-2 infection among HCWs in a Colombian university hospital. The findings may offer valuable guidance for reducing virus spread within healthcare settings.
Collapse
Affiliation(s)
- María A. Nieto
- Population Health, Fundación Santa Fe de Bogotá, Bogotá D.C., Colombia
- School of Medicine, Universidad de Los Andes, Bogotá D.C., Colombia
| | - Nohemí Caballero
- Population Health, Fundación Santa Fe de Bogotá, Bogotá D.C., Colombia
- School of Medicine, Universidad de Los Andes, Bogotá D.C., Colombia
| | - Camila I. Remolina
- Population Health, Fundación Santa Fe de Bogotá, Bogotá D.C., Colombia
- School of Medicine, Universidad de Los Andes, Bogotá D.C., Colombia
| | - Sergio Moreno
- School of Medicine, Universidad de Los Andes, Bogotá D.C., Colombia
| | - Daniela Vega
- Population Health, Fundación Santa Fe de Bogotá, Bogotá D.C., Colombia
- School of Medicine, Universidad de Los Andes, Bogotá D.C., Colombia
| | - Juliana Quintero
- Population Health, Fundación Santa Fe de Bogotá, Bogotá D.C., Colombia
- Department of Internal Medicine, Fundación Santa Fe de Bogotá, Bogotá D.C., Colombia
| |
Collapse
|
23
|
Polykretis P, Donzelli A, Lindsay JC, Wiseman D, Kyriakopoulos AM, Mörz M, Bellavite P, Fukushima M, Seneff S, McCullough PA. Autoimmune inflammatory reactions triggered by the COVID-19 genetic vaccines in terminally differentiated tissues. Autoimmunity 2023; 56:2259123. [PMID: 37710966 DOI: 10.1080/08916934.2023.2259123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
As a result of the spread of SARS-CoV-2, a global pandemic was declared. Indiscriminate COVID-19 vaccination has been extended to include age groups and naturally immune people with minimal danger of suffering serious complications due to COVID-19. Solid immuno-histopathological evidence demonstrates that the COVID-19 genetic vaccines can display a wide distribution within the body, affecting tissues that are terminally differentiated and far away from the injection site. These include the heart and brain, which may incur in situ production of spike protein eliciting a strong autoimmunological inflammatory response. Due to the fact that every human cell which synthesises non-self antigens, inevitably becomes the target of the immune system, and since the human body is not a strictly compartmentalised system, accurate pharmacokinetic and pharmacodynamic studies are needed in order to determine precisely which tissues can be harmed. Therefore, our article aims to draw the attention of the scientific and regulatory communities to the critical need for biodistribution studies for the genetic vaccines against COVID-19, as well as for rational harm-benefit assessments by age group.
Collapse
Affiliation(s)
- Panagis Polykretis
- "Allineare Sanità e Salute" Foundation, Milano, Italy
- Independent Medical Scientific Commission (CMSi), Milano, Italy
| | - Alberto Donzelli
- "Allineare Sanità e Salute" Foundation, Milano, Italy
- Independent Medical Scientific Commission (CMSi), Milano, Italy
| | - Janci C Lindsay
- Toxicology & Molecular Biology, Toxicology Support Services, LLC, Sealy, TX, USA
| | | | | | | | | | | | - Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
| | | |
Collapse
|
24
|
Yao L, Chemaitelly H, Goldman E, Gudina EK, Khalil A, Ahmed R, James AB, Roca A, Fallah MP, Macnab A, Cho WC, Eikelboom J, Qamar FN, Kremsner P, Oliu-Barton M, Sisa I, Tadesse BT, Marks F, Wang L, Kim JH, Meng X, Wang Y, Fly AD, Wang CY, Day SW, Howard SC, Graff JC, Maida M, Ray K, Franco-Paredes C, Mashe T, Ngongo N, Kaseya J, Ndembi N, Hu Y, Bottazzi ME, Hotez PJ, Ishii KJ, Wang G, Sun D, Aleya L, Gu W. Time to establish an international vaccine candidate pool for potential highly infectious respiratory disease: a community's view. EClinicalMedicine 2023; 64:102222. [PMID: 37811488 PMCID: PMC10550631 DOI: 10.1016/j.eclinm.2023.102222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
In counteracting highly infectious and disruptive respiratory diseases such as COVID-19, vaccination remains the primary and safest way to prevent disease, reduce the severity of illness, and save lives. Unfortunately, vaccination is often not the first intervention deployed for a new pandemic, as it takes time to develop and test vaccines, and confirmation of safety requires a period of observation after vaccination to detect potential late-onset vaccine-associated adverse events. In the meantime, nonpharmacologic public health interventions such as mask-wearing and social distancing can provide some degree of protection. As climate change, with its environmental impacts on pathogen evolution and international mobility continue to rise, highly infectious respiratory diseases will likely emerge more frequently and their impact is expected to be substantial. How quickly a safe and efficacious vaccine can be deployed against rising infectious respiratory diseases may be the most important challenge that humanity will face in the near future. While some organizations are engaged in addressing the World Health Organization's "blueprint for priority diseases", the lack of worldwide preparedness, and the uncertainty around universal vaccine availability, remain major concerns. We therefore propose the establishment of an international candidate vaccine pool repository for potential respiratory diseases, supported by multiple stakeholders and countries that contribute facilities, technologies, and other medical and financial resources. The types and categories of candidate vaccines can be determined based on information from previous pandemics and epidemics. Each participant country or region can focus on developing one or a few vaccine types or categories, together covering most if not all possible potential infectious diseases. The safety of these vaccines can be tested using animal models. Information for effective candidates that can be potentially applied to humans will then be shared across all participants. When a new pandemic arises, these pre-selected and tested vaccines can be quickly tested in RCTs for human populations.
Collapse
Affiliation(s)
- Lan Yao
- Department of Nutrition and Health Science, College of Health, Ball State University, Muncie, IN 47306, USA
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Centre, Memphis, TN 38163, USA
| | - Hiam Chemaitelly
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation – Education City, Doha, Qatar
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Emanuel Goldman
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Esayas Kebede Gudina
- Department of Internal Medicine, Jimma University Institute of Health, Jimma, Ethiopia
| | - Asma Khalil
- Fetal Medicine Unit, St George’s Hospital, St George’s University of London, London, UK
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK
| | - Rahaman Ahmed
- Cell Biology and Genetics Department, University of Lagos, Lagos 101017, Nigeria
- Centre for Human Virology and Genomics, Microbiology Department, Nigerian Institute of Medical Research, Lagos 100001, Nigeria
| | - Ayorinde Babatunde James
- Department of Biochemistry and Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Anna Roca
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara 273, The Gambia
| | - Mosoka Papa Fallah
- Refuge Place International, Monrovia, Liberia
- Centre for Emerging Infectious Diseases Policy and Research, Boston University, Boston, MA, USA
- Africa Centre for Disease Control, Addis Ababa, Ethiopia
| | - Andrew Macnab
- The Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, South Africa
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | - John Eikelboom
- Population Health Research Institute, McMaster University and Hamilton Health Sciences Hamilton, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Farah Naz Qamar
- Department of Pediatrics and Child Health, Aga Khan University Hospital, National Stadium Rd, Karachi, Sindh 74800, Pakistan
| | - Peter Kremsner
- Institut für Tropenmedizin, Universität Tübingen, Germany
- Centre de Recherches Medicales de Lambarene, Gabon
| | - Miquel Oliu-Barton
- Université Paris Dauphine – PSL, Pl. du Maréchal de Lattre de Tassigny, Paris 75016, France
- Bruegel, Rue de la Charité 33, Brussels 1210, Belgium
| | - Ivan Sisa
- College of Health Sciences, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | | | - Florian Marks
- International Vaccine Institute, Seoul, Republic of Korea
| | - Lishi Wang
- Department of Basic Medicine, Inner Mongolia Medical University, Jinshan Development Zone, Huhhot, China
| | - Jerome H. Kim
- International Vaccine Institute, Seoul, Republic of Korea
- Seoul National University, College of Natural Sciences, Seoul, Republic of Korea
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Alyce D. Fly
- Department of Nutrition and Health Science, College of Health, Ball State University, Muncie, IN 47306, USA
| | - Cong-Yi Wang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Centre for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sara W. Day
- College of Nursing, University of Tennessee Health Science Center, Memphis, TN 38105, USA
| | - Scott C. Howard
- College of Nursing, University of Tennessee Health Science Center, Memphis, TN 38105, USA
| | - J. Carolyn Graff
- College of Nursing, University of Tennessee Health Science Center, Memphis, TN 38105, USA
| | - Marcello Maida
- Gastroenterology and Endoscopy Unit, S. Elia-Raimondi Hospital, Caltanissetta 93100, Italy
| | - Kunal Ray
- School of Biological Science, Ramkrishna Mission Vivekananda Education & Research Institute, Narendrapur 700103, West Bengal, India
| | - Carlos Franco-Paredes
- Hospital Infantil de Mexico, Federico Gomez, Mexico
- Department of Microbiology, Immunology, and Pathology, Colorado State University, USA
| | - Tapfumanei Mashe
- One Health Office, Ministry of Health and Child Care, Harare, Zimbabwe
- World Health Organization, Harare, Zimbabwe
| | | | | | | | - Yu Hu
- Institute of Haematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Clinical and Research Centre of Thrombosis and Hemostasis, Wuhan, China
| | - Maria Elena Bottazzi
- Department of Pediatrics, Texas Children's Hospital Centre for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Peter J. Hotez
- Department of Pediatrics, Texas Children's Hospital Centre for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ken J. Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Vaccine Design Centre, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Centre for Vaccine Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dianjun Sun
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University; Key Laboratory of Etiologic Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health 23618104, 157 Baojian Road, Harbin, Heilongjiang 150081, China
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon Cedex F-25030, France
| | - Weikuan Gu
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Centre, Memphis, TN 38163, USA
- Research Service, Memphis VA Medical Centre, 1030 Jefferson Avenue, Memphis, TN 38104, USA
| |
Collapse
|
25
|
Jarlhelt I, Pérez-Alós L, Bayarri-Olmos R, Hansen CB, Petersen MS, Weihe P, Armenteros JJA, Madsen JR, Nielsen JPS, Hilsted LM, Iversen KK, Bundgaard H, Nielsen SD, Garred P. Distinguishing SARS-CoV-2 infection and vaccine responses up to 18 months post-infection using nucleocapsid protein and receptor-binding domain antibodies. Microbiol Spectr 2023; 11:e0179623. [PMID: 37738355 PMCID: PMC10580960 DOI: 10.1128/spectrum.01796-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/04/2023] [Indexed: 09/24/2023] Open
Abstract
The prediction of the durability of immunity against COVID-19 is relevant, and longitudinal studies are essential for unraveling the details regarding protective SARS-CoV-2 antibody responses. It has become challenging to discriminate between COVID-19 vaccine- and infection-induced immune responses since all approved vaccines in Europe and the USA are based on the viral spike (S) protein, which is also the most commonly used antigen in immunoassays measuring immunoglobulins (Igs) against SARS-CoV-2. We have developed a nucleocapsid (N) protein-based sandwich ELISA for detecting pan anti-SARS-CoV-2 Ig with a sensitivity and specificity of 97%. Generalized mixed models were used to determine the degree of long-term humoral immunity against the N protein and the receptor-binding domain (RBD) of the S protein in a cohort of infected individuals to distinguish between COVID-19 vaccine- and infection-induced immunity. N-specific waning could be observed in individuals who did not experience reinfection, while individuals who experienced reinfection had a new significant increase in N-specific Ig levels. In individuals that seroconverted without a reinfection, 70.1% remained anti-N seropositive after 550 days. The anti-RBD Ig dynamics were unaffected by reinfection but exhibited a clear increase in RBD-specific Ig when vaccination was initiated. In conclusion, a clear difference in the dynamics of the antibody response against N protein and RBD was observed over time. Anti-N protein-specific Igs can be detected up to 18 months after SARS-CoV-2 infection allowing long-term discrimination of infectious and vaccine antibody responses.IMPORTANCELongitudinal studies are essential to unravel details regarding the protective antibody responses after COVID-19 infection and vaccination. It has become challenging to distinguish long-term immune responses to SARS-CoV-2 infection and vaccination since most approved vaccines are based on the viral spike (S) protein, which is also mostly used in immunoassays measuring immunoglobulins (Igs) against SARS-CoV-2. We have developed a novel nucleocapsid (N) protein-based sandwich ELISA for detecting pan-anti-SARS-CoV-2 Ig, exhibiting high sensitivity and specificity. Generalized mixed models were used to determine long-term humoral immunity in a cohort of infected individuals from the Faroe Islands, distinguishing between COVID-19 vaccine- and infection-induced immunity. A clear difference in the dynamics of the antibody response against N protein and S protein was observed over time, and the anti-N protein-specific Igs could be detected up to 18 months after SARS-CoV-2 infection. This enables long-term discrimination between natural infection and vaccine-dependent antibody responses.
Collapse
Affiliation(s)
- Ida Jarlhelt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen, Denmark
| | - Laura Pérez-Alós
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Cecilie Bo Hansen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen, Denmark
| | - Maria Skaalum Petersen
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands, Denmark
- Center of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands, Denmark
| | - Pál Weihe
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands, Denmark
- Center of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands, Denmark
| | | | - Johannes Roth Madsen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen, Denmark
- Department of Emergency Medicine, Herlev-Gentofte Hospital, Copenhagen, Denmark
| | - Jacob Pohl Stangerup Nielsen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen, Denmark
- Department of Emergency Medicine, Herlev-Gentofte Hospital, Copenhagen, Denmark
| | | | - Kasper Karmark Iversen
- Department of Emergency Medicine, Herlev-Gentofte Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Heart Center, Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
| | - Susanne Dam Nielsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Viro-immunology Research Unit, Department of Infectious Diseases, Section 8632, Rigshospitalet, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Xie G, Wang L, Zhang J. How are countries responding differently to COVID-19: a systematic review of guidelines on isolation measures. Front Public Health 2023; 11:1190519. [PMID: 37719732 PMCID: PMC10502310 DOI: 10.3389/fpubh.2023.1190519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Isolation strategies have been implemented in numerous countries worldwide during the ongoing community transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, various countries and organizations have implemented their isolation measures at varying intensities, even during the same period. Therefore, we systematically reviewed the key information contained in currently available guidelines regarding the isolation of the general population, aiming to better identify the heterogeneity of the current isolation strategies. Methods We conducted searches in four evidence-based medicine (EBM) databases and five guideline websites to identify guidelines, guidance, protocols, and policy documents published by authoritative advisory bodies or healthcare organizations, which provided information on the implementation of isolation for general populations with COVID-19. One author extracted data using a standardized data extraction checklist, and a second author double-checked all extractions for completeness and correctness. Discrepancies were resolved through discussion. The information extracted from the included articles was summarized both narratively and using tables. Results We included 15 articles that provided information on isolation measures recommended by nine different countries and organizations. The included articles consistently recommended isolating individuals with a positive COVID-19 test, regardless of the presence of symptoms. However, there were variations in the duration of isolation, and substantial differences also existed in the criteria for ending the isolation of COVID-19 patients. Conclusion Different countries and organizations have substantial differences in their isolation policies. This reminds us that scientifically sound guidelines on isolation that balance the risk of prematurely ending isolation with the burden of prolonged isolation are a crucial topic of discussion when faced with a pandemic.
Collapse
Affiliation(s)
- Guangmei Xie
- Reproductive Medicine Center, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu, China
- Reproductive Medicine Center, Gansu Provincial Central Hospital, Lanzhou, Gansu, China
| | - Li Wang
- Reproductive Medicine Center, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu, China
- Reproductive Medicine Center, Gansu Provincial Central Hospital, Lanzhou, Gansu, China
| | - Jun Zhang
- School of Nursing, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
27
|
Lind ML, Dorion M, Houde AJ, Lansing M, Lapidus S, Thomas R, Yildirim I, Omer SB, Schulz WL, Andrews JR, Hitchings MDT, Kennedy BS, Richeson RP, Cummings DAT, Ko AI. Evidence of leaky protection following COVID-19 vaccination and SARS-CoV-2 infection in an incarcerated population. Nat Commun 2023; 14:5055. [PMID: 37598213 PMCID: PMC10439918 DOI: 10.1038/s41467-023-40750-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023] Open
Abstract
Whether SARS-CoV-2 infection and COVID-19 vaccines confer exposure-dependent ("leaky") protection against infection remains unknown. We examined the effect of prior infection, vaccination, and hybrid immunity on infection risk among residents of Connecticut correctional facilities during periods of predominant Omicron and Delta transmission. Residents with cell, cellblock, and no documented exposure to SARS-CoV-2 infected residents were matched by facility and date. During the Omicron period, prior infection, vaccination, and hybrid immunity reduced the infection risk of residents without a documented exposure (HR: 0.36 [0.25-0.54]; 0.57 [0.42-0.78]; 0.24 [0.15-0.39]; respectively) and with cellblock exposures (0.61 [0.49-0.75]; 0.69 [0.58-0.83]; 0.41 [0.31-0.55]; respectively) but not with cell exposures (0.89 [0.58-1.35]; 0.96 [0.64-1.46]; 0.80 [0.46-1.39]; respectively). Associations were similar during the Delta period and when analyses were restricted to tested residents. Although associations may not have been thoroughly adjusted due to dataset limitations, the findings suggest that prior infection and vaccination may be leaky, highlighting the potential benefits of pairing vaccination with non-pharmaceutical interventions in crowded settings.
Collapse
Affiliation(s)
- Margaret L Lind
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| | - Murilo Dorion
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Amy J Houde
- Connecticut Department of Correction, Wethersfield, CT, USA
| | - Mary Lansing
- Connecticut Department of Correction, Wethersfield, CT, USA
| | - Sarah Lapidus
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Russell Thomas
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Inci Yildirim
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Saad B Omer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale Institute for Global Health, Yale School of Public Health, New Haven, CT, USA
- UT Southwestern, School of Public Health, Dallas, TX, USA
| | - Wade L Schulz
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Matt D T Hitchings
- Department of Biostatistics, College of Public Health & Health Professions, University of Florida, Gainesville, FL, USA
| | | | | | - Derek A T Cummings
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil.
| |
Collapse
|
28
|
Yang Y, Guo L, Yuan J, Xu Z, Gu Y, Zhang J, Guan Y, Liang J, Lu H, Liu Y. Viral and antibody dynamics of acute infection with SARS-CoV-2 omicron variant (B.1.1.529): a prospective cohort study from Shenzhen, China. THE LANCET. MICROBE 2023; 4:e632-e641. [PMID: 37459867 DOI: 10.1016/s2666-5247(23)00139-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/21/2022] [Accepted: 04/27/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Elucidating viral dynamics within the host is important for designing public health measures against SARS-CoV-2, particularly during the early stages of infection when transmission potential rapidly increases. We aimed to analyse the viral and antibody dynamics of the omicron variant in relation to symptom onset or laboratory confirmation and replication dynamics throughout the infection course. METHODS In this prospective cohort study, patients with laboratory-confirmed SARS-CoV-2 infection who were admitted to Shenzhen Third People's Hospital (Shenzhen, China) between Jan 11, 2020, and April 24, 2022, were screened for eligibility. We included immunocompetent individuals with acute SARS-CoV-2 infection without antiviral agents targeting SARS-CoV-2. Serial nasopharyngeal swabs and plasma samples were analysed for viral RNAs and specific IgG antibodies of SARS-CoV-2. The comparative viral and antibody kinetics in association with symptom onset or laboratory confirmation and replication dynamics throughout the infection course were calculated by the locally estimated scatterplot smoothing curve fitting polynomial regression. The associations between viral and antibody dynamics and vaccination, age, sex, disease severity, and underlying health conditions were analysed using the Mann-Whitney U test and the Gehan-Breslow-Wilcoxon method. FINDINGS 15 406 serial nasopharyngeal swabs and 2324 plasma samples were taken from 2043 individuals with acute SARS-CoV-2 infection (n=217 prototype [A.1] and D614G [B.1] variant [wild-type]; n=105 delta variant [B.1.617.2]; n=1721 omicron variant [B.1.1.529]) and were included for the analyses. The mean Ct value of omicron variant on the first day post symptom onset (dpo; defined as the first day post laboratory confirmation in asymptomatic participants) was 22·65 (95% CI 22·05-23·26). Peak viral load was reached with a mean Ct value of 17·63 (17·47-17·79) at a mean of 3·19 dpo (95% CI 3·09-3·28), and viral clearance (Ct values ≥35) was reached at a mean of 13·50 dpo (95% CI 13·32-13·67). Omicron variant showed faster viral replication and clearance than wild-type SARS-CoV-2 and delta variant, and the viral load at the first dpo and the peak viral load was lower than delta variant but higher than wild-type SARS-CoV-2. Age, sex, disease severity, and underlying health conditions were associated with the viral dynamics of omicron variant, with faster viral clearance found in young (aged 0-14 years), male, and asymptomatic participants, and those without underlying health conditions. Replication dynamics thoughout the infection course showed that peak viral load was reached at a mean of 5·06 dpo (4·76-5·36) and viral clearance took a mean of 14·27 days (13·6-14·93) for omicron variant. SARS-CoV-2-specific IgG increased earlier and faster to significantly higher concentrations in breakthrough infection than naive infection with omicron variant, despite long intervals (≥7 months) between the last dose of vaccination and infection. INTERPRETATION Our data provide a comprehensive overview of the longitudinal viral and antibody dynamics of omicron variant in people with acute SARS-CoV-2 infection, with important implications for public health strategies, including population screening, antiviral treatment, isolation periods, and vaccination. FUNDING National Natural Science Foundation of China and Emergency Key Program of Guangzhou Laboratory. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Liping Guo
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Jing Yuan
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Zhixiang Xu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yuchen Gu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Jiaqi Zhang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yuan Guan
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Jinhu Liang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Hongzhou Lu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
29
|
Cohen C, Pulliam J. COVID-19 infection, reinfection, and the transition to endemicity. Lancet 2023; 401:798-800. [PMID: 36930672 PMCID: PMC9934854 DOI: 10.1016/s0140-6736(22)02634-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 02/18/2023]
Affiliation(s)
- Cheryl Cohen
- Centre for Respiratory Disease and Meningitis, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Juliet Pulliam
- South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
30
|
Hanai T. Further quantitative in silico analysis of SARS-CoV-2 S-RBD Omicron BA.4, BA.5, BA.2.75, BQ.1, and BQ.1.1 transmissibility. Talanta 2023; 254:124127. [PMID: 36462284 PMCID: PMC9682881 DOI: 10.1016/j.talanta.2022.124127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
The Covid-19 variants' transmissibility was further quantitatively analyzed in silico to study the binding strength with ACE-2 and find the binding inhibitors. The molecular interaction energy values of their optimized complex structures (MIFS) demonstrated that Omicron BA.4 and 5's MIFS value (344.6 kcal mol-1) was equivalent to wild-type MIFS (346.1 kcal mol-1), that of Omicron BQ.1 and BQ. 1.1's MIFS value (309.9 and 364.6 kcal mol-1). Furthermore, the MIFS value of Omicron BA.2.75 (515.1 kcal mol-1) was about Delta-plus (511.3 kcal mol-1). The binding strength of Omicron BA.4, BA. 5, and BQ.1.1 may be neglectable, but that of Omicron BA.2.75 was urging. Furthermore, the 79 medicine candidates were analyzed as the binding inhibitors from binding strength with ACE-2. Only carboxy compounds were repulsed from the ACE-2 binding site indicating that further modification of medical treatment candidates may produce an effective binding inhibitor.
Collapse
Affiliation(s)
- Toshihiko Hanai
- Health Research Foundation, Research Institute for Production Development 4F, Sakyo-Ku, Kyoto, 606-0805, Japan.
| |
Collapse
|
31
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
32
|
Meng Y, Irwin DM, Shen Y. Ecology of SARS-CoV-2 in the post-pandemic era. THE LANCET. MICROBE 2022; 4:e208. [PMID: 36565710 PMCID: PMC9771448 DOI: 10.1016/s2666-5247(22)00361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Yafei Meng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Yongyi Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| |
Collapse
|
33
|
Grassi T, Lobreglio G, Panico A, Rosato C, Zizza A, Lazzari R, Chicone M, Indino F, Bagordo F. Kinetics of Humoral Immunity against SARS-CoV-2 in Healthcare Workers after the Third Dose of BNT162b2 mRNA Vaccine. Vaccines (Basel) 2022; 10:vaccines10111948. [PMID: 36423043 PMCID: PMC9696835 DOI: 10.3390/vaccines10111948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
Protection provided by COVID-19 vaccines is compromised due to waning immunity over time. This study aimed to assess the level of antibodies anti-S-RBD of SARS-CoV-2 in a cohort of healthcare workers before and, on average, one and four months after the third dose of the BNT162b2 vaccine. The determination of antibodies was carried out in serum samples using an electrochemiluminescence immunoassay (ECLIA). All 34 participants (10 males, 24 females, 19 participants <50 years old, 15 participants ≥50 years old) showed a significant antibody level increase after the booster dose. Subsequently, a significant decrease in the antibody concentration was observed, with a reduction of about 60% after 150 days from the booster. Six subjects were infected by SARS-CoV-2 after the booster and showed a significantly higher antibody concentration on average four months after the third dose compared to naïve ones. Male and female participants had a similar trend in the antibody decline, while older subjects, compared to the younger ones, had a slightly slower decrease, even if they developed a lower level of antibodies after the third dose. These findings support the importance of the booster dose and underline the need for surveillance programs to better understand the antibody kinetics and optimize vaccination strategies.
Collapse
Affiliation(s)
- Tiziana Grassi
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy
| | - Giambattista Lobreglio
- Clinical Pathology and Microbiology Unit, Vito Fazzi General Hospital, 73100 Lecce, Italy
| | - Alessandra Panico
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy
- Correspondence: (A.P.); (A.Z.)
| | - Chiara Rosato
- Clinical Pathology and Microbiology Unit, Vito Fazzi General Hospital, 73100 Lecce, Italy
| | - Antonella Zizza
- Institute of Clinical Physiology, National Research Council, 73100 Lecce, Italy
- Correspondence: (A.P.); (A.Z.)
| | - Roberta Lazzari
- Clinical Pathology and Microbiology Unit, Vito Fazzi General Hospital, 73100 Lecce, Italy
| | - Michele Chicone
- Clinical Pathology and Microbiology Unit, Vito Fazzi General Hospital, 73100 Lecce, Italy
| | - Floriano Indino
- Clinical Pathology and Microbiology Unit, Vito Fazzi General Hospital, 73100 Lecce, Italy
| | - Francesco Bagordo
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, 70121 Bari, Italy
| |
Collapse
|