1
|
The Impact of Nano-Crystal Hydroxyapatites on the Regeneration of Bone Defects. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2021-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Calcium hydroxyapatite is a widely used material for replacing bone defects. However, the effectiveness of nano-crystalline calcium hydroxyapatite produced from eggshells in the replacement of bone defects has not been investigated yet. The study aimed to evaluate the effectiveness of using nano-crystalline calcium hydroxyapatite made from eggshell for the healing of bone defect of the femur in rats. Forty-eight (n=48) rats underwent a surgical procedure to simulate femoral defect. The animals were sub-divided into 4 groups (each with n=12) depending on the methods of bone defect replacement: I control group (CG) (without bone defect replacement); II intervention group (the bone defect was replaced by PRP (PRP); III intervention group (the bone defect was replaced by nano-crystalline hydroxyapatite obtained from eggshell) (HA) and IV interventional group (the bone defect was replaced by a combination of hydroxyapatite and PRP) (HA+PRP). The degree of effectiveness of studied methods was assessed using radiological (on the 14th day), histological (on the 61st day), and biomechanical analysis (on the 61st day). According to radiographic data, the CG group had the lowest level of bone regeneration after 14 days (4.2 ±1.7%). In the HA + PRP group, the level of bone regeneration was 22.1±7.1 %, which was higher in comparison with the rates of consolidation of bone defects in the HA group (20.7± 9.3) (p = 0.023). According to the histo-morphometry data, the rates of bone tissue regeneration in the PRP group (19.8 ±4.2%) were higher in comparison with the CG group (12.7 ± 7.3%), (p>0.05). In the HA+PRP group, bone regeneration rates (48.9±9.4 %) were significantly higher (p=0.001) than in the HA group (35.1±9.8%). According to the results of biomechanical assessment under the maximum stress (121.0722), the maximum bending deformation of the contralateral bone without defect was 0.028746, which was higher than the indicators of the HA+PRP group, where at the maximum stress (90.67979) the bending deformation was 0.024953 (p>0.05). Compared to CG, PRP, and HA, biomechanical bone strength was significantly higher in the HA + PRP group (p≤0.01). At the maximum stress (51.81391), the maximum bending strain in the CG group was 0.03869, which was lower than in the PRP group, where the maximum stress and bending strain were 59.45824 and 0.055171, respectively (p>0.05). However, the bone strength of the HA group was statistically significantly higher compared to the CG and PRP groups (p<0.01).
The results demonstrated the effectiveness of the use of nanocrystalline calcium hydroxyapatite obtained from eggshell in the healing of a bone defect. The best results were observed in the group of the combined use of nano-crystalline calcium hydroxyapatite and PRP.
Collapse
|
2
|
Jing L, Rota S, Olivier F, Momier D, Guigonis JM, Schaub S, Samson M, Bouler JM, Scimeca JC, Rochet N, Lagadec P. Proteomic analysis identified LBP and CD14 as key proteins in blood/biphasic calcium phosphate microparticle interactions. Acta Biomater 2021; 127:298-312. [PMID: 33831568 DOI: 10.1016/j.actbio.2021.03.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/03/2021] [Accepted: 03/31/2021] [Indexed: 12/25/2022]
Abstract
Immediately upon implantation, scaffolds for bone repair are exposed to the patient's blood. Blood proteins adhere to the biomaterial surface and the protein layer affects both blood cell functions and biomaterial bioactivity. Previously, we reported that 80-200 µm biphasic calcium phosphate (BCP) microparticles embedded in a blood clot, induce ectopic woven bone formation in mice, when 200-500 µm BCP particles induce mainly fibrous tissue. Here, in a LC-MS/MS proteomic study we compared the differentially expressed blood proteins (plasma and blood cell proteins) and the deregulated signaling pathways of these osteogenic and fibrogenic blood composites. We showed that blood/BCP-induced osteogenesis is associated with a higher expression of fibrinogen (FGN) and an upregulation of the Myd88- and NF-κB-dependent TLR4 signaling cascade. We also highlighted the key role of the LBP/CD14 proteins in the TLR4 activation of blood cells by BCP particles. As FGN is an endogenous ligand of TLR4, able to modulate blood composite stiffness, we propose that different FGN concentrations modify the blood clot mechanical properties, which in turn modulate BCP/blood composite osteoactivity through TLR4 signaling. The present findings provide an insight at the protein level, into the mechanisms leading to an efficient bone reconstruction by blood/BCP composites. STATEMENT OF SIGNIFICANCE: Upon implantation, scaffolds for bone repair are exposed to the patient's blood. Blood proteins adhere to bone substitute surface and this protein layer affects both biomaterial bioactivity and bone healing. Therefore, for the best outcome for patients, it is crucial to understand the molecular interactions between blood and bone scaffolds. Biphasic calcium phosphate (BCP) ceramics are considered as the gold standard in bone reconstruction surgery. Here, using proteomic analyses we showed that the osteogenic properties of 80-200 µm BCP particles embedded in a blood clot is associated with a higher expression of fibrinogen. Fibrinogen upregulates the Myd88- and NF-κB-dependent TLR4 pathway in blood cells and, BCP-induced TLR4 activation is mediated by the LBP and CD14 proteins.
Collapse
|
3
|
Exploring the Biomaterial-Induced Secretome: Physical Bone Substitute Characteristics Influence the Cytokine Expression of Macrophages. Int J Mol Sci 2021; 22:ijms22094442. [PMID: 33923149 PMCID: PMC8123010 DOI: 10.3390/ijms22094442] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
In addition to their chemical composition various physical properties of synthetic bone substitute materials have been shown to influence their regenerative potential and to influence the expression of cytokines produced by monocytes, the key cell-type responsible for tissue reaction to biomaterials in vivo. In the present study both the regenerative potential and the inflammatory response to five bone substitute materials all based on β-tricalcium phosphate (β-TCP), but which differed in their physical characteristics (i.e., granule size, granule shape and porosity) were analyzed for their effects on monocyte cytokine expression. To determine the effects of the physical characteristics of the different materials, the proliferation of primary human osteoblasts growing on the materials was analyzed. To determine the immunogenic effects of the different materials on human peripheral blood monocytes, cells cultured on the materials were evaluated for the expression of 14 pro- and anti-inflammatory cytokines, i.e., IL-6, IL-10, IL-1β, VEGF, RANTES, IL-12p40, I-CAM, IL-4, V-CAM, TNF-α, GM-CSF, MIP-1α, Il-8 and MCP-1 using a Bio-Plex® Multiplex System. The granular shape of bone substitutes showed a significant influence on the osteoblast proliferation. Moreover, smaller pore sizes, round granular shape and larger granule size increased the expression of GM-CSF, RANTES, IL-10 and IL-12 by monocytes, while polygonal shape and the larger pore sizes increased the expression of V-CAM. The physical characteristics of a bone biomaterial can influence the proliferation rate of osteoblasts and has an influence on the cytokine gene expression of monocytes in vitro. These results indicate that the physical structure of a biomaterial has a significant effect of how cells interact with the material. Thus, specific characteristics of a material may strongly affect the regenerative potential in vivo.
Collapse
|
4
|
Girard N, Cauvin ERJ, Gauthier O, Gatel L. The Use of Biphasic Calcium Phosphate Substitute (BCP) in Mandibular Defects in Dogs: Use of CBCT to Evaluate Bone Healing. J Vet Dent 2021; 37:210-219. [PMID: 33550889 DOI: 10.1177/0898756421989120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aimed to assess the use of cone beam computed tomography (CBCT) to follow-up bone healing of mandibular bone defects in dogs, filled with a combination of autologous blood and millimetric BCP granules. CBCT was performed ≥4 weeks postoperatively. CBCT gray-scale values were measured from multiplanar reconstructions of the defects and compared to that of normal contralateral mandibular bone and to pure BCP/blood composite time 0 (T0) value. Other parameters, determined by affecting grades according to specific criteria included: bone ridge margin restoration; biomaterial homogeneity; bone-biomaterial interface. Results: 8 dogs with 14 defects were included. Median age was 7.2 years (1-15 years). Follow-up CBCT was performed 1 to 7.5 months postoperatively (mean 3.3 months). Defect CBCT gray-scale values at follow-up were significantly greater than T0 (p < 0.05). Ratios of maximum and minimum densities of the defects to contralateral mandibular bone followed a linear correlation with time (p < 0.05). The bone ridge margin was adequately restored in all the defects and significantly correlated with time (p = 0.03). Biomaterial homogeneity was fair to good in 11 defects and significantly correlated with the bone ridge margin parameter (p = 0.05) and time (p = 0.006). There was no significant correlation with the bone-material interface. The latter was satisfactory in 12 defects and significantly correlated with time (p = 0.01) but not with the other parameters. The biomaterial was more homogeneous in smaller defects and with increasing time. CBCT allowed effective assessment of bone healing via the measurement of CBCT gray-scale values and assessment of multiple radiological variables.
Collapse
Affiliation(s)
- Nicolas Girard
- Azurvet Veterinary Referal Center, Saint Laurent du Var, France
| | | | - Olivier Gauthier
- Department of Small Animal Surgery and Dentistry, 173572Oniris College of Veterinary Medicine, Nantes, France
| | - Laure Gatel
- Azurvet Veterinary Referal Center, Saint Laurent du Var, France
| |
Collapse
|
5
|
Abstract
Keratin-based biomaterials represent an attractive opportunity in the fields of wound healing and tissue regeneration, not only for their chemical and physical properties, but also for their ability to act as a delivery system for a variety of payloads. Importantly, keratins are the only natural biomaterial that is not targeted by specific tissue turnover-related enzymes, giving it potential stability advantages and greater control over degradation after implantation. However, in-situ polymerization chemistry in some keratin systems are not compatible with cells, and incorporation within constructs such as hydrogels may lead to hypoxia and cell death. To address these challenges, we envisioned a pre-formed keratin microparticle on which cells could be seeded, while other payloads (e.g. drugs, growth factors or other biologic compounds) could be contained within, although studies investigating the potential partitioning between phases during emulsion polymerization would need to be conducted. This study employs well-established water-in-oil emulsion procedures as well as a suspension culture method to load keratin-based microparticles with bone marrow-derived mesenchymal stem cells. Fabricated microparticles were characterized for size, porosity and surface structure and further analyzed to investigate their ability to form gels upon hydration. The suspension culture technique was validated based on the ability for loaded cells to maintain their viability and express actin and vinculin proteins, which are key indicators of cell attachment and growth. Maintenance of expression of markers associated with cell plasticity was also investigated. As a comparative model, a collagen-coated microparticle (Sigma) of similar size was used. Results showed that an oxidized form of keratin ("keratose" or "KOS") formed unique microparticle structures of various size that appeared to contain a fibrous sub-structure. Cell adhesion and viability was greater on keratin microparticles compared to collagen-coated microparticles, while marker expression was retained on both.
Collapse
Affiliation(s)
- Marc Thompson
- US Army Institute of Surgical Research, Burn and Soft Tissue Research Division, Fort Sam Houston, TX, USA
| | - Aaron Giuffre
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Claire McClenny
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark Van Dyke
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
6
|
Granel H, Bossard C, Nucke L, Wauquier F, Rochefort GY, Guicheux J, Jallot E, Lao J, Wittrant Y. Optimized Bioactive Glass: the Quest for the Bony Graft. Adv Healthc Mater 2019; 8:e1801542. [PMID: 30941912 DOI: 10.1002/adhm.201801542] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/25/2019] [Indexed: 12/21/2022]
Abstract
Technological advances have provided surgeons with a wide range of biomaterials. Yet improvements are still to be made, especially for large bone defect treatment. Biomaterial scaffolds represent a promising alternative to autologous bone grafts but in spite of the numerous studies carried out on this subject, no biomaterial scaffold is yet completely satisfying. Bioactive glass (BAG) presents many qualifying characteristics but they are brittle and their combination with a plastic polymer appears essential to overcome this drawback. Recent advances have allowed the synthesis of organic-inorganic hybrid scaffolds combining the osteogenic properties of BAG and the plastic characteristics of polymers. Such biomaterials can now be obtained at room temperature allowing organic doping of the glass/polymer network for a homogeneous delivery of the doping agent. Despite these new avenues, further studies are required to highlight the biological properties of these materials and particularly their behavior once implanted in vivo. This review focuses on BAG with a particular interest in their combination with polymers to form organic-inorganic hybrids for the design of innovative graft strategies.
Collapse
Affiliation(s)
- Henri Granel
- INRA, UMR 1019, UNH, CRNH Auvergne F‐63009 Clermont‐Ferrand France
- Université d'Auvergne, Unité de Nutrition HumaineClermont Université BP 10448 F‐63000 Clermont‐Ferrand France
| | - Cédric Bossard
- CNRS/IN2P3, Laboratoire de Physique de ClermontUniversité Clermont Auvergne BP 10448 F‐63000 Clermont‐Ferrand France
| | - Lisa Nucke
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Ressource Ecology‐Bautzner Landstraße 400 01328 Dresden Germany
| | - Fabien Wauquier
- INRA, UMR 1019, UNH, CRNH Auvergne F‐63009 Clermont‐Ferrand France
- Université d'Auvergne, Unité de Nutrition HumaineClermont Université BP 10448 F‐63000 Clermont‐Ferrand France
| | - Gael Y. Rochefort
- Faculté de Chirurgie Dentaire, Paris Descartes, EA2496, Laboratoires PathologiesImagerie et Biothérapies orofaciales 1 rue Maurice Arnoux 92120 Montrouge France
| | - Jérôme Guicheux
- Inserm, UMR 1229, RMeSRegenerative Medicine and SkeletonUniversité de Nantes, Oniris Nantes, F‐44042 France
- UFR OdontologieUniversité de Nantes Nantes, F‐44042, France
- CHU Nantes, PHU4 OTONNNantes, F‐44093, France
| | - Edouard Jallot
- CNRS/IN2P3, Laboratoire de Physique de ClermontUniversité Clermont Auvergne BP 10448 F‐63000 Clermont‐Ferrand France
| | - Jonathan Lao
- CNRS/IN2P3, Laboratoire de Physique de ClermontUniversité Clermont Auvergne BP 10448 F‐63000 Clermont‐Ferrand France
| | - Yohann Wittrant
- INRA, UMR 1019, UNH, CRNH Auvergne F‐63009 Clermont‐Ferrand France
- Université d'Auvergne, Unité de Nutrition HumaineClermont Université BP 10448 F‐63000 Clermont‐Ferrand France
| |
Collapse
|
7
|
|
8
|
Rolvien T, Barbeck M, Wenisch S, Amling M, Krause M. Cellular Mechanisms Responsible for Success and Failure of Bone Substitute Materials. Int J Mol Sci 2018; 19:E2893. [PMID: 30249051 PMCID: PMC6213546 DOI: 10.3390/ijms19102893] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
Bone grafts, i.e., autologous, allogeneic or synthetic bone substitute materials play an increasing role in reconstructive orthopedic surgery. While the indications and materials differ, it is important to understand the cellular mechanisms regarding their integration and remodeling, which are discussed in this review article. Osteoconductivity describes the new bone growth on the graft, while osteoinductivity represents the differentiation of undifferentiated cells into bone forming osteoblasts. The best case is that both mechanisms are accompanied by osteogenesis, i.e., bone modeling and remodeling of the graft material. Graft incorporation is mediated by a number of molecular pathways that signal the differentiation and activity of osteoblasts and osteoclasts (e.g., parathyroid hormone (PTH) and receptor activator of nuclear factor κβ ligand (RANKL), respectively). Direct contact of the graft and host bone as well as the presence of a mechanical load are a prerequisite for the successful function of bone grafts. Interestingly, while bone substitutes show good to excellent clinical outcomes, their histological incorporation has certain limits that are not yet completely understood. For instance, clinical studies have shown contrasting results regarding the complete or incomplete resorption and remodeling of allografts and synthetic grafts. In this context, a foreign body response can lead to complete material degradation via phagocytosis, however it may also cause a fibrotic reaction to the bone substitute. Finally, the success of bone graft incorporation is also limited by other factors, including the bone remodeling capacities of the host, the material itself (e.g., inadequate resorption, toxicity) and the surgical technique or preparation of the graft.
Collapse
Affiliation(s)
- Tim Rolvien
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Mike Barbeck
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Sabine Wenisch
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35385 Giessen, Germany.
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany.
| | - Matthias Krause
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
9
|
Rh Owen G, Dard M, Larjava H. Hydoxyapatite/beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. J Biomed Mater Res B Appl Biomater 2017; 106:2493-2512. [PMID: 29266701 DOI: 10.1002/jbm.b.34049] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 01/07/2023]
Abstract
Bone is a composite material composed of collagen and calcium phosphate (CaP) mineral. The collagen gives bone its flexibility while the inorganic material gives bone its resilience. The CaP in bone is similar in composition and structure to the mineral hydroxyapatite (HA) and is bioactive, osteoinductive and osteoconductive. Therefore synthetic versions of bone apatite (BA) have been developed to address the demand for autologous bone graft substitutes. Synthetic HA (s-HA) are stiff and strong, but brittle. These lack of physical attributes limit the use of synthetic apatites in situations where no physical loading of the apatite occurs. s-HA chemical properties differ from BA and thus change the physical and mechanical properties of the material. Consequently, s-HA is more chemically stable than BA and thus its resorption rate is slower than the rate of bone regeneration. One solution to this problem is to introduce a faster resorbing CaP, such as β-tricalcium phosphate (β-TCP), when synthesizing the material creating a biphasic (s-HA and β-TCP) formulation of calcium phosphate (BCP). The focus of this review is to introduce the major differences between BCP and biological apatites and how material scientists have overcome the inadequacies of the synthetic counterparts. Examples of BCP performance in vitro and in vivo following structural and chemical modifications are provided as well as novel ultrastructural data. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2493-2512, 2018.
Collapse
Affiliation(s)
- Gethin Rh Owen
- Department of Oral, Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Michel Dard
- College of Dentistry, New York University, New York, New York
| | - Hannu Larjava
- Department of Oral, Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
10
|
Bouler J, Pilet P, Gauthier O, Verron E. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomater 2017; 53:1-12. [PMID: 28159720 DOI: 10.1016/j.actbio.2017.01.076] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/04/2017] [Accepted: 01/27/2017] [Indexed: 12/23/2022]
Abstract
Autologous bone graft is considered as the gold standard in bone reconstructive surgery. However, the quantity of bone available is limited and the harvesting procedure requires a second surgical site resulting in severe complications. Due to these limits, scientists and clinicians have considered alternatives to autologous bone graft. Calcium phosphates (CaPs) biomaterials including biphasic calcium phosphate (BCP) ceramics have proven efficacy in numerous clinical indications. Their specific physico-chemical properties (HA/TCP ratio, dual porosity and subsequent interconnected architecture) control (regulate/condition) the progressive resorption and the bone substitution process. By describing the most significant biological responses reported in the last 30years, we review the main events that made their clinical success. We also discuss about their exciting future applications as osteoconductive scaffold for delivering various bioactive molecules or bone cells in bone tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE Nowadays, BCPs are definitely considered as the gold standard of bone substitutes in bone reconstructive surgery. Among the numerous clinical studies in literature demonstrating the performance of BCP, Passuti et al. and Randsford et al. studies largely contributed to the emergence of the BCPs. It could be interesting to come back to the main events that made their success and could explain their large adhesion from scientists to clinicians. This paper aims to review the most significant biological responses reported in the last 30years, of these BCP-based materials. We also discuss about their exciting future applications as osteoconductive scaffold for delivering various bioactive molecules or bone cells in bone tissue engineering and regenerative medicine.
Collapse
|
11
|
Neves N, Campos BB, Almeida IF, Costa PC, Cabral AT, Barbosa MA, Ribeiro CC. Strontium-rich injectable hybrid system for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:818-827. [DOI: 10.1016/j.msec.2015.10.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/10/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022]
|
12
|
Barbeck M, Dard M, Kokkinopoulou M, Markl J, Booms P, Sader RA, Kirkpatrick CJ, Ghanaati S. Small-sized granules of biphasic bone substitutes support fast implant bed vascularization. BIOMATTER 2015; 5:e1056943. [PMID: 26083163 PMCID: PMC4581126 DOI: 10.1080/21592535.2015.1056943] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The present study investigated the influence of granule size of 2 biphasic bone substitutes (BoneCeramic® 400–700 μm and 500–1000 μm) on the induction of multinucleated giant cells (MNGCs) and implant bed vascularization in a subcutaneous implantation model in rats. Furthermore, degradation mechanisms and particle phagocytosis of both materials were examined by transmission electron microscopy (TEM). Both granule types induced tissue reactions involving primarily mononuclear cells and only small numbers of MNGCs. Higher numbers of MNGCs were detected in the group with small granules starting on day 30, while higher vascularization was observed only at day 10 in this group. TEM analysis revealed that both mono- and multinucleated cells were involved in the phagocytosis of the materials. Additionally, the results allowed recognition of the MNGCs as the foreign body giant cell phenotype. Histomorphometrical analysis of the size of phagocytosed particles showed no differences between the 2 granule types. The results indicate that granule size seems to have impact on early implant bed vascularization and also on the induction of MNGCs in the late phase of the tissue reaction. Furthermore, the results revealed that a synthetic bone substitute material can induce tissue reactions similar to those of some xenogeneic materials, thus pointing to a need to elucidate their “ideal” physical characteristics. The results also show that granule size in the range studied did not alter phagocytosis by mononuclear cells. Finally, the investigation substantiates the differentiation of material-induced MNGCs, which are of the foreign body giant cell type.
Collapse
Affiliation(s)
- M Barbeck
- a Institute of Pathology; Repair-Lab ; University Medical Center of the Johannes Gutenberg University ; Mainz , Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Cheng TL, Murphy CM, Ravarian R, Dehghani F, Little DG, Schindeler A. Bisphosphonate-adsorbed ceramic nanoparticles increase bone formation in an injectable carrier for bone tissue engineering. J Tissue Eng 2015; 6:2041731415609448. [PMID: 26668709 PMCID: PMC4669987 DOI: 10.1177/2041731415609448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/09/2015] [Indexed: 12/23/2022] Open
Abstract
Sucrose acetate isobutyrate (SAIB) is a sugar-based carrier. We have previously applied SAIB as a minimally invasive system for the co-delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) and found synergy when co-delivering zoledronic acid (ZA) and hydroxyapatite (HA) nanoparticles. Alternative bioceramics were investigated in a murine SAIB/rhBMP-2 injection model. Neither beta-tricalcium phosphate (TCP) nor Bioglass (BG) 45S5 had a significant effect on bone volume (BV) alone or in combination with the ZA. 14C-labelled ZA binding assays showed particle size and ceramic composition affected binding with nano-HA > micro-HA > TCP > BG. Micro-HA and nano-HA increased BV in a rat model of rhBMP-2/SAIB injection (+278% and +337%), and BV was further increased with ZA–adsorbed micro-HA and nano-HA (+530% and +889%). These data support the use of ZA–adsorbed nanoparticle-sized HA as an optimal additive for the SAIB/rhBMP-2 injectable system for bone tissue engineering.
Collapse
Affiliation(s)
- Tegan L Cheng
- Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Westmead, NSW, Australia ; Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Ciara M Murphy
- Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Westmead, NSW, Australia ; Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Roya Ravarian
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia
| | - David G Little
- Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Westmead, NSW, Australia ; Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Aaron Schindeler
- Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Westmead, NSW, Australia ; Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
Schlickewei CW, Laaff G, Andresen A, Klatte TO, Rueger JM, Ruesing J, Epple M, Lehmann W. Bone augmentation using a new injectable bone graft substitute by combining calcium phosphate and bisphosphonate as composite--an animal model. J Orthop Surg Res 2015. [PMID: 26205381 PMCID: PMC4513618 DOI: 10.1186/s13018-015-0263-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Objective The aim of this study was to create a new injectable bone graft substitute by combining the features of calcium phosphate and bisphosphonate as a composite bone graft to support bone healing and to evaluate the effect of alendronate to the bone healing process in an animal model. Material and method In this study, 24 New Zealand white rabbits were randomly divided into two groups: a calcium phosphate alendronate group and a calcium phosphate control group. A defect was created at the proximal medial tibia and filled with the new created injectable bone graft substitute calcium phosphate alendronate or with calcium phosphate. Healing process was documented by fluoroscopy. To evaluate the potential of the bone graft substitute, the proximal tibia was harvested 2, 4, and 12 weeks after operation. Histomorphological analysis was focused on the evaluation of the dynamic bone parameters using the Osteomeasure system. Results Radiologically, the bone graft materials were equally absorbed. No fracture was documented. The bones healed normally. After 2 weeks, the histological analysis showed an increased new bone formation for both materials. The osteoid volume per bone volume (OV/BV) was significantly higher for the calcium phosphate group. After 4 weeks, the results were almost equal. The trabecular thickness (Tb.Th) increased in comparison to week 2 in both groups with a slight advantage for the calcium phosphate group. The total mass of the bone graft (KEM.Ar) and the bone graft substitute surface density (KEM.Pm) were consistently decreasing. After 12 weeks, the new bone volume per tissue volume (BV/TV) was still constantly growing. Both bone grafts show a good integration. New bone was formed on the surface of both bone grafts. The calcium phosphate as well as the calcium phosphate alendronate paste had been enclosed by the bone. The trabecular thickness was higher in both groups compared to the first time point. Conclusion Calcium phosphate proved its good potential as a bone graft substitute. Initially, the diagrams seem to show a tendency that alendronate improves the known properties of calcium phosphate as a bone graft substitute. The composite graft induced a good and constant new bone formation. Not only the graft was incorporated into the bone but also a new bone was formed on its surface. But we could not prove a significant difference between the grafts. Both implants proved their function as a bone graft substitute, but the bisphosphonate alendronate does not support the bone healing process sufficiently that the known properties of calcium phosphate as a bone graft substitute were improved in the sense of a composite graft. In this study, alendronate used as a bone graft in a healthy bony environment did not influence the bone healing process in a positive or negative way.
Collapse
Affiliation(s)
- Carsten W Schlickewei
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Georg Laaff
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Anne Andresen
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Till O Klatte
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Johannes M Rueger
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Johannes Ruesing
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany
| | - Wolfgang Lehmann
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
15
|
Wang L, Barbieri D, Zhou H, de Bruijn JD, Bao C, Yuan H. Effect of particle size on osteoinductive potential of microstructured biphasic calcium phosphate ceramic. J Biomed Mater Res A 2014; 103:1919-29. [PMID: 25203625 DOI: 10.1002/jbm.a.35325] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/26/2014] [Accepted: 09/03/2014] [Indexed: 02/05/2023]
Abstract
Material factors such as chemistry, surface microstructure and geometry have shown their influence on osteoinduction of calcium phosphate ceramics. Hereby we report that osteoinduction of a micro-structured biphasic calcium phosphate ceramic (BCP) has a relation with the particle sizes. BCP particles with the size of 212-300 µm, 106-212 µm, 45-106 µm, and smaller than 45 µm were prepared and implanted in paraspinal muscle of dogs for 12 weeks. Histological evaluation of the explants showed abundant bone in all samples with particle size of 212-300 µm, 106-212 µm, and 45-106 µm, while no bone was seen in any sample having particle size smaller than 45 µm. Bone was formed as early as 3 weeks after implantation in implants having BCP particles bigger than 45 µm and the volume of the formed bone was similar among the implants with particles larger than 45 µm after 12 weeks implantation. The results herein show that a size limitation of microstructured calcium phosphate ceramic particles for osteoinduction. It is most likely that the particle size affect inductive bone formation via macroporous structures for body fluid infiltration, cell/tissue ingrowth and angiogenesis.
Collapse
Affiliation(s)
- Liao Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | | | | | | | | | | |
Collapse
|
16
|
Comparative Study of hydroxyapatite prepared from seashells and eggshells as a bone graft material. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-014-0056-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
17
|
Struillou X, Rakic M, Badran Z, Macquigneau L, Colombeix C, Pilet P, Verner C, Gauthier O, Weiss P, Soueidan A. The association of hydrogel and biphasic calcium phosphate in the treatment of dehiscence-type peri-implant defects: an experimental study in dogs. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2749-2760. [PMID: 23912791 DOI: 10.1007/s10856-013-5019-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/22/2013] [Indexed: 06/02/2023]
Abstract
Hydrogel polymers have many applications in regenerative medicine. The aim of this study in dogs was to investigate bone regeneration in dehiscence-type peri-implant defects created surgically and treated with (i) biphasic calcium phosphate (BCP) granules alone; (ii) a composite putty hydroxypropyl methylcellulose (HPMC)/BCP (MBCP/putty); and (iii) a polymer crosslinked membrane of silanized-HPMC (Si-HPMC/BCP) compared with empty controls. At 3 months, new bone formation was significantly more important in defects filled with HPMC/BCP or Si-HPMC/BCP compared with spontaneous healing in control (P = 0.032 and P = 0.046 respectively) and more substantial compared with BCP alone. Furthermore, new bone formation in direct contact with the implant surface was observed in all three groups treated with BCP. The addition of HPMC to the BCP granules may have enhanced the initial stability of the material within the blood clot in these large and complex osseous defects. The Si-HPMC hydrogel may also act as an occlusive membrane covering the BCP, which could improve the stability of the granules in the defect area. However, the crosslinking time of the Si-HPMC is too long for easy handling and the mechanical properties remain to be improved. The composite MBCP/putty appears to be a valuable bone-graft material in complex defects in periodontology and implantology. These encouraging results should now be confirmed in clinical studies.
Collapse
Affiliation(s)
- Xavier Struillou
- Laboratory of Osteo-Articular and Dental Tissue Engineering (LIOAD), INSERM, U791, 1 Place Alexis Ricordeau, 44042, Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Krause M, Oheim R, Catala-Lehnen P, Pestka JM, Hoffmann C, Huebner W, Peters F, Barvencik F, Amling M. Metaphyseal bone formation induced by a new injectable β-TCP-based bone substitute: a controlled study in rabbits. J Biomater Appl 2013; 28:859-68. [PMID: 23669497 DOI: 10.1177/0885328213484816] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Adequate filling of bone defects still poses a challenge in every day clinical work. As many bone defects are irregularly shaped the need for appropriate scaffolds reaching the complete defect surface are great. The purpose of this pre-clinical pilot study was to investigate the handling, biocompatibility, biodegradation and osteoconductivity of a new pasty bone substitute (pure phase β-TCP, hyaluronic acid, methylcellulose) in bone tissue. METHODS In an unilateral tibial defect model the peri-implant and bone tissue response to the new pasty bone substitute was tested in New Zealand white rabbits for up to 24 weeks compared to empty controls. Analysis included HR-pQCT scans, histomorphometric evaluation and quantification of vascularization of un-decalcified histological slices. RESULTS After 1 week the experimental group presented significantly higher new bone volume fraction (p = 0.021) primarily consisting of immature bone matrix and higher vessel density compared to controls (p = 0.013). After 4 weeks bone formation was not significantly different to controls but was distributed more evenly throughout the defect. Bone matrix was now mineralized and trabeculae were thicker than in controls (p = 0.002) indicating faster intramedullary bone maturation. Controls presented extensive periosteal bone formation, major fibrous tissue influx and high vascularization. After 12 and 24 weeks there was no new bone detectable. There were no severe signs of inflammation at all time points. CONCLUSION The substitute showed an early induction of bone formation. It promoted accelerated intramedullary bone repair and maturation and prevented periosteal bone formation indicating its potential use for reconstructive surgery of bone defects.
Collapse
Affiliation(s)
- Matthias Krause
- 1Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Velard F, Braux J, Amedee J, Laquerriere P. Inflammatory cell response to calcium phosphate biomaterial particles: an overview. Acta Biomater 2013; 9:4956-63. [PMID: 23036944 DOI: 10.1016/j.actbio.2012.09.035] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
Abstract
Bone is a metabolically active and highly organized tissue consisting of a mineral phase of hydroxyapatite (HA) and amorphous calcium phosphate (CaP) crystals deposited in an organic matrix. One objective of bone tissue engineering is to mimic the chemical and structural properties of this complex tissue. CaP ceramics, such as sintered HA and beta-tricalcium phosphate, are widely used as bone substitutes or prosthesis coatings because of their osteoconductive properties. These ceramic interactions with tissues induce a cell response that can be different according to the composition of the material. In this review, we discuss inflammatory cell responses to CaP materials to provide a comprehensive overview of mechanisms governing the integration or loosening of implants, which remains a major concern in tissue engineering. A focus on the effects of the functionalization of CaP biomaterials highlights potential ways to increase tissue integration and limit rejection processes.
Collapse
|
20
|
Bongio M, van den Beucken JJJP, Leeuwenburgh SCG, Jansen JA. Preclinical evaluation of injectable bone substitute materials. J Tissue Eng Regen Med 2012; 9:191-209. [DOI: 10.1002/term.1637] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 07/25/2012] [Accepted: 09/27/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Matilde Bongio
- Department of Biomaterials; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | | | | | - John A. Jansen
- Department of Biomaterials; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| |
Collapse
|
21
|
Fedorovich NE, Leeuwenburgh SC, van der Helm YJM, Alblas J, Dhert WJA. The osteoinductive potential of printable, cell-laden hydrogel-ceramic composites. J Biomed Mater Res A 2012; 100:2412-20. [PMID: 22539500 DOI: 10.1002/jbm.a.34171] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 01/22/2012] [Accepted: 02/29/2012] [Indexed: 11/05/2022]
Abstract
Hydrogels used as injectables or in organ printing often lack the appropriate stimuli to direct osteogenic differentiation of embedded multipotent stromal cells (MSCs), resulting in limited bone formation in these matrices. Addition of calcium phosphate (CaP) particles to the printing mixture is hypothesized to overcome this drawback. In this study we have investigated the effect of CaP particles on the osteoinductive potential of cell-laden hydrogel-CaP composite matrices. To this end, apatitic nanoparticles have been included in Matrigel constructs where after the viability of embedded progenitor cells was assessed in vitro. In addition, the osteoinductive potential of cell-laden Matrigel containing apatitic nanoparticles was investigated in vivo and compared with composites containing osteoinductive biphasic calcium phosphate (BCP) microparticles after subcutaneous implantation in immunodeficient mice. Histological and immunohistochemical analysis of the tissue response as well as in vivo bone formation revealed that apatitic nanoparticles were osteoinductive and induced osteoclast activation, but without bone formation. The BCP particles were more effective in inducing elaborate bone formation at the ectopic location.
Collapse
Affiliation(s)
- Natalja E Fedorovich
- Department of Orthopaedics, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Lee SW, Kim SG, Balázsi C, Chae WS, Lee HO. Comparative study of hydroxyapatite from eggshells and synthetic hydroxyapatite for bone regeneration. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113:348-55. [DOI: 10.1016/j.tripleo.2011.03.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
|
23
|
Ghanaati S, Barbeck M, Hilbig U, Hoffmann C, Unger R, Sader R, Peters F, Kirkpatrick C. An injectable bone substitute composed of beta-tricalcium phosphate granules, methylcellulose and hyaluronic acid inhibits connective tissue influx into its implantation bed in vivo. Acta Biomater 2011; 7:4018-28. [PMID: 21784183 DOI: 10.1016/j.actbio.2011.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 06/27/2011] [Accepted: 07/05/2011] [Indexed: 10/18/2022]
Abstract
In this study, the in vivo tissue reaction to a new triphasic and injectable paste-like bone-substitute material composed of beta-tricalcium phosphate (β-TCP), methylcellulose and hyaluronic acid was analyzed. Using a subcutaneous implantation model, the interaction of these materials and the peri-implant tissue reaction were tested in Wistar rats for up to 60 days by means of established histological methods, including histomorphometrical analysis. The study focused on tissue integration, classification of the cellular inflammatory response and the degradation of the material. Groups composed of animals injected only with β-TCP granules, sham-operated animals and animals injected with saline were used as controls. After implantation, the triphasic bone-substitute material was present as a bulk-like structure with an inner and outer core. Over a period of 60 days, the material underwent continuous degradation from the periphery towards the core. The implantation bed of the β-TCP granule control group was invaded by phagocytes and formed a poorly vascularized connective tissue soon after implantation. This inflammatory response continued throughout the study period and filled the implantation bed. Significantly, the combination of the three biocompatible materials into one injectable paste-like bone-substitute material enabled modification of the tissue reaction to the implant and resulted in a longer in vivo lifetime than that of β-TCP granules alone. In addition, this combination increased the vascularization of the implantation bed, which is essential for successful tissue regeneration.
Collapse
|
24
|
Checchi V, Savarino L, Montevecchi M, Felice P, Checchi L. Clinical-radiographic and histological evaluation of two hydroxyapatites in human extraction sockets: a pilot study. Int J Oral Maxillofac Surg 2011; 40:526-32. [PMID: 21282040 DOI: 10.1016/j.ijom.2010.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 11/26/2010] [Accepted: 12/21/2010] [Indexed: 11/30/2022]
Abstract
After tooth extraction the healing process involves bone resorption and soft tissue contraction, events that can compromise the ideal implant placement with functional and aesthetic limitations. Following tooth extraction, a socket preservation technique can limit bone resorption. This study evaluated two different types of hydroxyapatite (HA) grafting materials placed into fresh extraction sockets, 6 months after tooth extraction, histologically, clinically and radiographically. Ten extraction sockets from 10 patients were divided in two groups: 5 sockets received a biomimetic HA and 5 received nanocrystalline HA. After 6 months, before implant placement, samples from the grafted area were harvested and evaluated clinically, radiographically and histologically. The percentages of bone, osteoid areas and residual material in the two groups were not statistically different. All samples showed great variability with extensive bone formation and total material resorption or amounts of osteoid tissue that filled the spaces between the residual material particles. The authors did not find any differences between biomimetic and nanocrystalline HA and assume that, within the limits of this study, both these materials could be applied into fresh extraction sockets to limit bone resorption. A control material and a much larger sample size are needed to confirm these findings.
Collapse
Affiliation(s)
- V Checchi
- Department of Odontostomatological, Orthodontic and Surgical Sciences, Second University of Naples, Via De Crecchio 6, Naples, Italy.
| | | | | | | | | |
Collapse
|
25
|
Bercier A, Gonçalves S, Lignon O, Fitremann J. Calcium Phosphate Bone Cements Including Sugar Surfactants: Part One-Porosity, Setting Times and Compressive Strength. MATERIALS 2010; 3:4695-4709. [PMID: 28883348 PMCID: PMC5445786 DOI: 10.3390/ma3104695] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 09/20/2010] [Accepted: 09/28/2010] [Indexed: 11/16/2022]
Abstract
Addition of sugar surfactants, sucrose fatty acid esters and alkylpolyglucosides, to calcium phosphate cement designed for bone reconstruction is described. Thanks to their surface activity and through their adsorption at the surface of the calcium phosphate particles, they both induced a strong increase in the porosity (quantified by Image Analysis) and brought a very good workability. Other properties typically studied for these cements are reported, including setting times, compressive strength, cohesion in water, and effect of sterilization on these properties. The whole study brought good insight in the interest of adding these mild surfactants to improve several properties of the calcium phosphate cement, without impairing their function.
Collapse
Affiliation(s)
- Ariane Bercier
- Université de Toulouse, Laboratoire des IMRCP, CNRS-Université Paul Sabatier, Bâtiment 2R1, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | | | - Olivier Lignon
- Teknimed SA, 11 rue Apollo, ZI Montredon, 31240 L'UNION, France
| | - Juliette Fitremann
- Université de Toulouse, Laboratoire des IMRCP, CNRS-Université Paul Sabatier, Bâtiment 2R1, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France.
| |
Collapse
|
26
|
Agis H, Beirer B, Watzek G, Gruber R. Effects of carboxymethylcellulose and hydroxypropylmethylcellulose on the differentiation and activity of osteoclasts and osteoblasts. J Biomed Mater Res A 2010; 95:504-9. [DOI: 10.1002/jbm.a.32842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Xu W, Ma J, Jabbari E. Material properties and osteogenic differentiation of marrow stromal cells on fiber-reinforced laminated hydrogel nanocomposites. Acta Biomater 2010; 6:1992-2002. [PMID: 19995620 DOI: 10.1016/j.actbio.2009.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 11/24/2009] [Accepted: 12/01/2009] [Indexed: 12/01/2022]
Abstract
The fibrils in the bone matrix are glued together by extracellular matrix proteins to form laminated structures (osteons) to provide elasticity and a supportive substrate for osteogenesis. The objective of this work was to investigate material properties and osteogenic differentiation of bone marrow stromal (BMS) cells seeded on osteon-mimetic fiber-reinforced hydrogel/apatite composites. Layers of electrospun poly(l-lactide) fiber mesh coated with a poly(lactide-co-ethylene oxide fumarate) (PLEOF) hydrogel precursor solution were stacked and pressed together, and crosslinked to produce a laminated fiber-reinforced composite. Hydroxyapatite (HA) nanocrystals were added to the precursor solution to produce an osteoconductive matrix for BMS cells. Acrylamide-terminated Arg-Gly-Asp (RGD) peptide (Ac-GRGD) was conjugated to the PLEOF/HA hydrogel phase to promote focal point adhesion of BMS cells. Laminates were characterized with respect to the Young's modulus, degradation kinetics and osteogenic differentiation of BMS cells. The moduli of the laminates under dry and wet conditions were significantly higher than those of the fiber mesh and PLEOF/HA hydrogel, and within the range of values reported for wet human cancellous bone. At days 14 and 21, alkaline phosphatase (ALPase) activity of the laminates was significantly higher than those of the fiber mesh and hydrogel. Lamination significantly increased the extent of mineralization of BMS cells and laminates with HA and conjugated with RGD (Lam-RGD-HA) had 2.7-, 3.5- and 2.8-fold higher calcium content (compared to laminates without HA or RGD) after 7, 14 and 21days, respectively. The Lam-RGD-HA group had significantly higher expression of osteopontin and osteocalcin compared to the hydrogel or laminates without HA or RGD, consistent with the higher ALPase activity and calcium content of Lam-RGD-HA. Laminated osteon-mimetic structures have the potential to provide mechanical strength to the regenerating region as well as supporting the differentiation of progenitor cells to the osteogenic lineage.
Collapse
Affiliation(s)
- Weijie Xu
- Biomimetic Materials and Tissue Engineering Laboratories, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | | | | |
Collapse
|
28
|
Faucheux C, Verron E, Soueidan A, Josse S, Arshad MD, Janvier P, Pilet P, Bouler JM, Bujoli B, Guicheux J. Controlled release of bisphosphonate from a calcium phosphate biomaterial inhibits osteoclastic resorption in vitro. J Biomed Mater Res A 2009; 89:46-56. [PMID: 18404716 DOI: 10.1002/jbm.a.31989] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Calcium phosphate biomaterials such as calcium deficient apatite (CDA) have been contemplated as carrier for delivery of bisphosphonate in bone tissues. In the present work, we have investigated the in vitro biological properties of Zoledronate-loaded CDA. CDA was loaded with zoledronate according to a previously described coating process. 31P MAS NMR spectra demonstrated the effective loading of zoledronate onto CDA. Using 14C labeled zoledronate, we then demonstrated the in vitro release of zoledronate from CDA. In a first set of experiments, we confirmed that Zoledronate reduced the number of TRAP-, vitronectin receptor-, and F-actin ring-positive cells as well as the resorption activity of osteoclasts obtained from a total rabbit bone cell culture. Interestingly, Zoledronate-loaded CDA and its extractive solutions decreased the osteoclastic resorption. Finally, zoledronate-loaded CDA did not affect the viability and alkaline phosphatase activity of primary osteoblastic cells. These data demonstrate that CDA is effective for loading and release of zoledronate. The released zoledronate inhibited osteoclastic resorption without affecting osteoblasts. Our findings therefore suggest that such a drug delivery system would allow an increase in the efficiency of bisphosphonates by being locally available. Further experiments are now required to evaluate the in vivo antiresorptive activity of this concept.
Collapse
Affiliation(s)
- C Faucheux
- INSERM, U791, LIOAD, Nantes, F-44042 France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Enkel B, Dupas C, Armengol V, Akpe Adou J, Bosco J, Daculsi G, Jean A, Laboux O, LeGeros RZ, Weiss P. Bioactive materials in endodontics. Expert Rev Med Devices 2008; 5:475-94. [PMID: 18573047 DOI: 10.1586/17434440.5.4.475] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Endodontic treatment in dentistry is a delicate procedure and many treatment attempts fail. Despite constant development of new root canal filling techniques, the clinician is confronted with both a complex root canal system and the use of filling materials that are harmful for periapical tissues. This paper evaluates reported studies on biomaterials used in endodontics, including calcium hydroxide, mineral trioxide aggregate, calcium phosphate ceramics and calcium phosphate cements. Special emphasis is made on promising new biomaterials, such as injectable bone substitute and injectable calcium phosphate cements. These materials, which combine biocompatibility, bioactivity and rheological properties, could be good alternatives in endodontics as root canal fillers. They could also be used as drug-delivery vehicles (e.g., for antibiotics and growth factors) or as scaffolds in pulp tissue engineering.
Collapse
Affiliation(s)
- Bénédicte Enkel
- Nantes University Hospital, Pôle Odontologie, ERT 10-51 Equipe de Recherche Clinique en Odontologie et Chirurgie Osseuse, Faculté de Chirurgie Dentaire 1 Place Alexis Ricordeau, Nantes Cedex 01, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Medina Ledo H, Thackray AC, Jones IP, Marquis PM, Macaskie LE, Sammons RL. Microstructure and composition of biosynthetically synthesised hydroxyapatite. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:3419-3427. [PMID: 18568391 DOI: 10.1007/s10856-008-3485-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 05/21/2008] [Indexed: 05/26/2023]
Abstract
Biosynthetic hydroxyapatite (HA) manufactured utilising the bacterium Serratia sp. NCIMB40259 was characterised using X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), energy dispersive X-ray analysis (EDX) scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction (ED). SEM/EDX showed that the non-sintered material consisted mainly of calcium-deficient HA (CDHA) with a Ca/P ratio of 1.61 +/- 0.06 and crystal size (from TEM) of 50 +/- 10 nm. ED analysis of non-sintered powder showed resolvable ring patterns ascribed to (0002), (1122) and (0006) planes of crystalline HA. The crystallinity of the samples improved with heat treatment from approximately 9.4% (non-sintered) to 53% (1,200 degrees C). Samples heated at 600 degrees C and sintered at 1,200 degrees C were identified by XRD and FTIR as mainly CDHA with some sodium calcium phosphate in the sintered samples. Ca/P ratios (SEM/EDX) were 1.62 and 1.52, respectively. Single crystal spot patterns characteristic of HA were seen with commercial HA and Serratia HA heated at 600 degrees C. After sintering at 1,200 degrees C the material consisted of needle-like crystals with a length between 86 and 323 nm (from TEM) or 54-111 nm (from XRD) and lattice parameters of a = 9.441 A and c = 6.875 A. This study indicated that the material produced by Serratia bacteria was initially mainly nanophase calcium deficient hydroxyapatite, which sintered to a more highly crystalline form. With further refinements the method could be used as an inexpensive route for hydroxyapatite production for biomaterials applications.
Collapse
Affiliation(s)
- Hilda Medina Ledo
- School of Engineering, Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | | | | | |
Collapse
|
31
|
Oliveira SM, Barrias CC, Almeida IF, Costa PC, Ferreira MRP, Bahia MF, Barbosa MA. Injectability of a bone filler system based on hydroxyapatite microspheres and a vehicle within situgel-forming ability. J Biomed Mater Res B Appl Biomater 2008; 87:49-58. [DOI: 10.1002/jbm.b.31066] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Rothamel D, Schwarz F, Herten M, Engelhardt E, Donath K, Kuehn P, Becker J. Dimensional ridge alterations following socket preservation using a nanocrystalline hydroxyapatite paste. A histomorphometrical study in dogs. Int J Oral Maxillofac Surg 2008; 37:741-7. [DOI: 10.1016/j.ijom.2008.04.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Revised: 11/07/2007] [Accepted: 04/17/2008] [Indexed: 11/28/2022]
|
33
|
Kong YM, Kim HE, Kim HW. Phase conversion of tricalcium phosphate into Ca-deficient apatite during sintering of hydroxyapatite–tricalcium phosphate biphasic ceramics. J Biomed Mater Res B Appl Biomater 2008; 84:334-9. [PMID: 17595029 DOI: 10.1002/jbm.b.30876] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this study, we report a new observation on the phase conversion that occurs during the sintering of hydroxyapatite (HA)-tricalcium phosphate (TCP) biphasic ceramics. During the sintering of the HA-TCP mixture powders, a large amount of TCP was converted into HA, as detected by X-ray diffraction. The amount of TCP transformed into HA was approximately 10-90% of that initially added. From the electron probe microscopy analysis, the HA transformed from TCP was found to be Ca-deficient with Ca/P ratios of 1.62-1.64. The dissolution behavior and osteoblastic responses in a series of HA-TCP biphasic ceramics (10-90% TCP) were assessed. The solubility of the HA-TCP biphasic ceramics was intermediate between that of the HA and TCP pure ceramics. However, in the case of the HA-90% TCP biphasic ceramic, the solubility was even higher than that of pure TCP. The cell proliferation and alkaline phosphatase activity of the cells on the biphasic ceramics were lower than those on pure HA, but higher than those on pure TCP. However, particularly in the HA-50% TCP biphasic composition, the cellular responses were significantly higher than those on pure HA. It is considered that the Ca-deficient apatite newly formed from the TCP may affect in some way the solubility and biological properties of the HA-TCP biphasic ceramics.
Collapse
Affiliation(s)
- Young-Min Kong
- Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Korea
| | | | | |
Collapse
|
34
|
Reynolds MA, Aichelmann-Reidy ME, Kassolis JD, Prasad HS, Rohrer MD. Calcium sulfate–carboxymethylcellulose bone graft binder: Histologic and morphometric evaluation in a critical size defect. J Biomed Mater Res B Appl Biomater 2007; 83:451-8. [PMID: 17443667 DOI: 10.1002/jbm.b.30815] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Calcium sulfate (CS) is widely used as a bone graft binder and expander. Recent reports indicate that carboxymethylcellulose (CMC) can improve the clinical properties of CS when used as binder for particulate bone grafts; however, limited information is available on the effects of CMC on bone regeneration. The purpose of this study was to evaluate the histologic and morphometric characteristics of bone formation in calvarial defects grafted with a CS-based putty containing 10% CMC in combination with allogeneic demineralized bone matrix (DBM). Bone formation and graft/binder resorption were compared with a surgical grade CS and DBM in paired critical-sized calvarial defects in 25 Wistar rats (350-450 g). Six animals each provided paired defects at 7, 14, 21, and 28 days postsurgery for nondecalcified processing and microscopic analysis. Defects grafted with CS or CS-CMC putty as the DBM binder exhibited similar patterns and proportions of bone formation, fibrous tissue/marrow, and residual DBM particles. Comparable mean +/- SD proportions of new bone formation (31.7 +/- 9.5 and 33.7 +/- 12.9), fibrous tissue/marrow (54.2 +/- 8.3 and 53.0 +/- 10.8), residual DBM particles (8.3 +/- 6.8 and 10.1 +/- 6.3), and residual binder material (5.5 +/- 4.6 and 3.7 +/- 3.5) were found at 28 days for defects grafted with CS and CS-CMC putty, respectively. Thus, CMC was found to improve the handling characteristics of CS and, when used in conjunction with DBM, supported comparable levels bone formation and patterns of binder/scaffold resorption as CS and DBM in a calvarial defect model.
Collapse
Affiliation(s)
- Mark A Reynolds
- Department of Periodontics, University of Maryland, Dental School, Baltimore, Maryland, USA.
| | | | | | | | | |
Collapse
|
35
|
Blouin S, Moreau MF, Weiss P, Daculsi G, Baslé MF, Chappard D. Evaluation of an injectable bone substitute (betaTCP/hydroxyapatite/hydroxy-propyl-methyl-cellulose) in severely osteopenic and aged rats. J Biomed Mater Res A 2006; 78:570-80. [PMID: 16739169 DOI: 10.1002/jbm.a.30721] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The use of injectable biomaterials is of interest in osteoporotic patients to locally restore bone mass in sites at risk of fracture. An injectable bone substitute (IBS1 made of betaTCP/hydroxyapatite as a calcium phosphate substitute and hydroxy-propyl-methyl-cellulose as a polymer carrier) was used in a severely osteopenic rat model obtained by combining orchidectomy (ORX) and disuse (paralysis induced by botulinum toxin - BTX). Fifty-six aged male rats were randomized into three groups: 18 were SHAM operated; 38 were ORX and BTX injected in the right hindlimb; they constituted the OP (osteoporotic) group. One month after ORX-BTX surgery, 20 of these OP rats received a IBS1 injection in the right femur (OP-IBS1 rats). Animals were studied at the time of IBS1 injection 1 month post ORX-BTX (M1), 1 month (M2) and 2 months (M3) after IBS1 injection. Bone mass (BV/TV) and microarchitectural parameters were measured by microCT. BV/TV was decreased after ORX-BTX; ORX and BTX had cumulative effects on bone loss (differences maximized on the right femur). BV/TV (combining the volume of both bone and material in OP-IBS1 rats) was elevated at M1 but decreased at M2. Marked bone formation was found onto the biomaterial granules but bone had a woven texture. A marked increase in the number of nonosteoclastic TRAcP+ cells was found in the implanted area. IBS1 induced new bone formation shortly after implantation but both IBS1 and woven bone were resorbed without inducing lamellar bone. Biomaterial trials must be conducted with long-term implantation periods, in aged osteoporotic animals.
Collapse
Affiliation(s)
- S Blouin
- INSERM, EMI 0335 - LHEA, Faculté de Médecine, 49045 ANGERS Cedex, France
| | | | | | | | | | | |
Collapse
|
36
|
Sanginario V, Ginebra MP, Tanner KE, Planell JA, Ambrosio L. Biodegradable and semi-biodegradable composite hydrogels as bone substitutes: morphology and mechanical characterization. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2006; 17:447-54. [PMID: 16688585 DOI: 10.1007/s10856-006-8472-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 07/07/2005] [Indexed: 05/09/2023]
Abstract
Biodegradable and semi-biodegradable composite hydrogels are proposed as bone substitutes. They consist of an hydrophilic biodegradable polymer (HYAFF 11) as matrix and two ceramic powders (alpha-TCP and HA) as reinforcement. Both components of these composites have been of great interest in biomedical applications due to their excellent biocompatibility and tissue interactions, however they have never been investigated as bone substitute composites. Morphological and mechanical analysis have shown that the two fillers behave in a very different way. In the HYAFF 11/alpha-TCP composite, alpha-TCP is able to hydrolyze in contact with water while in the HYAFF 11 matrix. As a result, the composite sets and hardens, and entangled CDHA crystals are formed in the hydrogel phase and increases in the mechanical properties are obtained. In the HYAFF11/HA composite the ceramic reinforcement acts as inert phase leading to lower mechanical properties. Both mechanical properties and microstructure analysis have demonstrated the possibility to design hydrophilic biodegradable composite structures for bone tissue substitution applications.
Collapse
Affiliation(s)
- V Sanginario
- Institute of Composite and Biomedical Materials, National Research Council, Piazzale Tecchio 80, 80125, Naples, Italy
| | | | | | | | | |
Collapse
|
37
|
Fellah BH, Weiss P, Gauthier O, Rouillon T, Pilet P, Daculsi G, Layrolle P. Bone repair using a new injectable self-crosslinkable bone substitute. J Orthop Res 2006; 24:628-35. [PMID: 16514642 DOI: 10.1002/jor.20125] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A new injectable and self-crosslinkable bone substitute (IBS2) was developed for filling bone defects. The IBS2 consisted of a chemically modified polymer solution mixed with biphasic calcium phosphate (BCP) ceramic particles. The polymer hydroxypropylmethyl cellulose was functionalized with silanol groups (Si-HPMC) and formed a viscous solution (3 wt %) in alkaline medium. With a decrease in pH, self-hardening occurred due to the formation of intermolecular -Si-O- bonds. During setting, BCP particles, 40 to 80 microm in diameter, were added to the polymer solution at a weight ratio of 50/50. The resulting injectable material was bilaterally implanted into critically sized bone defects at the distal femoral epiphyses of nine New Zealand White rabbits. The IBS2 filled the bone defects entirely and remained in place. After 8 weeks, bone had grown centripetally and progressed towards the center of the defects. Newly formed bone, ceramic, and nonmineralized tissue ratios were 24.6% +/- 5.6%, 21.6% +/- 5.8%, and 53.7% +/- 0.1%, respectively. Mineralized and mature bone was observed between and in contact with the BCP particles. The bone/ceramic apposition was 73.4% +/- 10.6%. The yield strength for the IBS2-filled defects was 16.4 +/- 7.2 MPa, significantly higher than for the host trabecular bone tissue (2.7 +/- 0.4 MPa). This study showed that BCP particles supported the bone healing process by osteoconduction while the Si-HPMC hydrogel created intergranular space for bone ingrowth. This new injectable and self-crosslinkable bone substitute could be used conveniently in orthopedic surgery for filling critical-size bone defects.
Collapse
Affiliation(s)
- Borhane H Fellah
- INSERM U791, Osteoarticular and Dental Tissue Engineering, Faculty of Dental Surgery, Place Alexis Ricordeau, 44042 Nantes, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Macaskie LE, Yong P, Paterson-Beedle M, Thackray AC, Marquis PM, Sammons RL, Nott KP, Hall LD. A novel non line-of-sight method for coating hydroxyapatite onto the surfaces of support materials by biomineralization. J Biotechnol 2005; 118:187-200. [PMID: 15964651 DOI: 10.1016/j.jbiotec.2005.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 02/25/2005] [Accepted: 03/04/2005] [Indexed: 11/20/2022]
Abstract
A novel method is described for the non line-of-sight coating of hydroxyapatite onto polyurethane reticulated foam and titanium discs. This utilises a biofilm of Serratia sp. NCIMB 40259 which, when challenged with a solution containing calcium chloride and phosphatase substrate, manufactures biofilm-bound material identified as hydroxyapatite by X-ray powder diffraction analysis. Non-invasive magnetic resonance imaging was used to visualize the biofilm coating throughout the foam labyrinth and to measure the thickness of the film within reticulated foam cubes in situ. The film developed within the cube matrices was similar to that measured on the surface of a glass slide. Using LaPO(4) deposition as a model system the metallised biofilm was visualised in two-dimensional slices throughout three-dimensional images acquired by magnetic resonance imaging. A similar encrustation of hydroxyapatite on the surface of biofilm grown on titanium discs was confirmed by scanning electron microscopy. Potential applications for bio-hydroxyapatite as possible bone implant precursors are discussed.
Collapse
Affiliation(s)
- Lynne E Macaskie
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Jegoux F, Goyenvalle E, Bagot D'arc M, Aguado E, Daculsi G. In vivo biological performance of composites combining micro-macroporous biphasic calcium phosphate granules and fibrin sealant. Arch Orthop Trauma Surg 2005; 125:153-9. [PMID: 15761734 DOI: 10.1007/s00402-004-0748-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Fibrin glues are currently used by surgeons and can facilitate the handling of biomaterials. Combining fibrin glue with calcium phosphate bioceramics gives a mouldable composite that cements the granules into the implantation site. In addition to the mechanical aspect of the composite, it has been suggested that the mixture also promotes wound healing. These human blood derivatives contain natural (aprotinin) or synthetic (tranexamic acid) antifibrinolytic substances. We compared the bioactivity of two composites combining calcium phosphate granules with two different types of fibrin glue, one with aprotinin and the other with tranexamic acid. MATERIALS AND METHODS The composite was composed of fibrin glue (Tissucol) and 1 to 2 mm granules of biphasic calcium phosphate granules (MBCP) with a volume ratio of 1 for 2. Bone cavities were drilled in 12 New Zealand rabbits and filled with a composite with aprotinin-fibrin glue on the right condyle and one with tranexamic acid-fibrin glue on the left condyle. The rabbits were randomized into two groups: 3 and 6 weeks of delay. Light microscopy, scanning electron microscopy and image analysis were performed. RESULTS No adverse reactions were observed in either sample. Bony ingrowth associated with bioceramic resorption by osteoclastic TRAP-positive cells was noted. No significant difference was observed between the two composites. The bony ingrowth and ceramic resorption were qualitatively and quantitatively similar with both composites. CONCLUSION This study demonstrated that the choice of a natural (aprotinin) or synthetic (tranexamic acid) antifibrinolytic agent in the fibrin sealant associated with calcium phosphate granules and used as a bone substitute had no effect on the bioactivity of the composite. It remained efficient in bone reconstruction, no adverse effects were observed, and the bony ingrowth was qualitatively and quantitatively equivalent with the two types of fibrin sealant.
Collapse
Affiliation(s)
- Franck Jegoux
- EMI 99 03, Dental Surgery Faculty, INSERM Research Center on Materials of Biological Interest, Place A. Ricordeau, 44042 Nantes Cedex, France
| | | | | | | | | |
Collapse
|
40
|
Malard O, Guicheux J, Bouler JM, Gauthier O, de Montreuil CB, Aguado E, Pilet P, LeGeros R, Daculsi G. Calcium phosphate scaffold and bone marrow for bone reconstruction in irradiated area: a dog study. Bone 2005; 36:323-30. [PMID: 15780959 DOI: 10.1016/j.bone.2004.07.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 07/03/2004] [Accepted: 07/09/2004] [Indexed: 11/24/2022]
Abstract
Squamous cell carcinomas (SCC) of the upper aero-digestive tract are characterized by a high incidence of bone invasion; their treatment often requires large and damaging surgical resections and radiotherapy. Surgical and radiotherapeutic procedures generate irreversible effects on normal tissues, involving injuries on their reparation properties, especially on bone. The quality of life of patients undergoing major surgery and radiotherapy in maxillary and mandible areas is often reduced but could be improved by bone reconstructions. Bone reconstructions are rarely performed because surgery is complex and unsafe in irradiated bone. The aim of the study was to evaluate the bone reconstruction possibilities of macroporous biphasic calcium phosphate (MBCP) associated to autologous bone marrow (BM) graft injected after irradiation. MBCP hollowed blocks were specially designed and implanted in tibia and femur bone before irradiation in a dog model. Implants were removed after 18 weeks. This is the first report of experiments performed after radiation delivery using high fractionated doses approximating usual treatment of SCC in human. The quality of the bone adjacent to implanted MBCP and the bone ingrowth's rates were evaluated. The qualitative and quantitative role of BM grafts associated with the MBCP implants was determined, using scanning electron microscopy linked to quantitative image analysis. A direct contact between newly formed bone and MBCP implants associated to BM graft was observed, without fibrous interposition. The new-bone formation was statistically increased inside the MBCP (P=0.0126) by BM grafts. This study demonstrates that BM graft added to MBCP constitute an appropriate material to be considered in case of bone defect occurring in irradiated tissue, and could be foreseen for use after bone removal for oncologic obligations.
Collapse
Affiliation(s)
- Olivier Malard
- INSERM EM 9903, Matériaux d'intérêt biologique, Faculté de chirurgie dentaire, 1, place A. Ricordeau, BP 84215, 44042 Nantes Cedex 01, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yong P, Macaskie LE, Sammons RL, Marquis PM. Synthesis of nanophase hydroxyapatite by a Serratia sp. from waste-water containing inorganic phosphate. Biotechnol Lett 2004; 26:1723-30. [PMID: 15604826 DOI: 10.1007/s10529-004-3744-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Synthesis of nanophase hydroxyapatite (HA) on a bacterial surface was achieved at the expense of CaCl2 and inorganic phosphate (Pi). After initial nucleation, calcium was precipitated on and around the cells as calcium phosphate at the expense of inorganic phosphate in the challenge solution, with no precipitation in cell-free controls. HA was also biomanufactured using inorganic phosphate ions scavenged from a phosphate-containing waste-water. With additional Ca2+, the concentration of phosphate was decreased from 0.27 (approximately 25 ppm) to approximately 0.02 m (approximately 2 ppm) in the waste-water. Crystals of calcium phosphate manufactured by the cells were located by scanning electron microscopy (SEM) and identified as HA by X-ray powder diffraction, with an average crystal size calculated as approximately 25 nm. Possible application of bioHA as a biomaterial and implications for one-step 'waste-into product' are discussed.
Collapse
Affiliation(s)
- P Yong
- School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|
42
|
Boix D, Gauthier O, Guicheux J, Pilet P, Weiss P, Grimandi G, Daculsi G. Alveolar bone regeneration for immediate implant placement using an injectable bone substitute: an experimental study in dogs. J Periodontol 2004; 75:663-71. [PMID: 15212348 PMCID: PMC4710785 DOI: 10.1902/jop.2004.75.5.663] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The aim of the present study was to assess the efficacy of a ready-to-use injectable bone substitute for bone regeneration around dental implants placed into fresh extraction sockets. METHODS Third and fourth mandibular premolars were extracted from three beagle dogs and the interradicular septa were surgically reduced to induce a mesial bone defect. Thereafter, titanium implants were immediately placed. On the left side of the jaw, mesial bone defects were filled with an injectable bone substitute (IBS), obtained by combining a polymer and biphasic calcium phosphate ceramic granules. The right defects were left unfilled as controls. After 3 months of healing, specimens were prepared for histological and histomorphometric evaluations. RESULTS No post-surgical complications were observed during the healing period. In all experimental conditions, histological observations revealed a lamellar bone formation in contact with the implant. Histomorphometric analysis showed that IBS triggers a significant (P<0.05) increase in terms of the number of threads in contact with bone, bone-to-implant contact, and peri-implant bone density of approximately 8.6%, 11.0%, and 14.7%, respectively. In addition, no significant difference was observed when number of threads, bone-to-implant contact, and bone density in the filled defects were compared to the no-defect sites. CONCLUSION It is concluded that an injectable bone substitute composed of a polymeric carrier and calcium phosphate significantly increases bone regeneration around immediately placed implants.
Collapse
Affiliation(s)
- Damien Boix
- Matériaux d'Intérêt Biologique
INSERMUniversité de NantesFaculté de Chirurgie Dentaire 1 Place Alexis Ricordeau BP84215 44042 Nantes
| | - Olivier Gauthier
- Matériaux d'Intérêt Biologique
INSERMUniversité de NantesFaculté de Chirurgie Dentaire 1 Place Alexis Ricordeau BP84215 44042 Nantes
- Département de Chirurgie
Ecole Nationale Vétérinaire de Nantes44307 Nantes
| | - Jérôme Guicheux
- Matériaux d'Intérêt Biologique
INSERMUniversité de NantesFaculté de Chirurgie Dentaire 1 Place Alexis Ricordeau BP84215 44042 Nantes
| | - Paul Pilet
- Centre de Microscopie Electronique
Université de Nantes1 Place Alexis Ricordeau 44042 Nantes
| | - Pierre Weiss
- Matériaux d'Intérêt Biologique
INSERMUniversité de NantesFaculté de Chirurgie Dentaire 1 Place Alexis Ricordeau BP84215 44042 Nantes
- * Correspondence should be addressed to Pierre Weiss
| | - Gaël Grimandi
- Matériaux d'Intérêt Biologique
INSERMUniversité de NantesFaculté de Chirurgie Dentaire 1 Place Alexis Ricordeau BP84215 44042 Nantes
| | - Guy Daculsi
- Matériaux d'Intérêt Biologique
INSERMUniversité de NantesFaculté de Chirurgie Dentaire 1 Place Alexis Ricordeau BP84215 44042 Nantes
| |
Collapse
|
43
|
Chazono M, Tanaka T, Komaki H, Fujii K. Bone formation and bioresorption after implantation of injectable ?-tricalcium phosphate granules-hyaluronate complex in rabbit bone defects. ACTA ACUST UNITED AC 2004; 70:542-9. [PMID: 15307158 DOI: 10.1002/jbm.a.30094] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this study was to evaluate the effects of a complex of beta-tricalcium phosphate (beta-TCP) granules and 3.5% hyaluronate (beta-TCP granules-HY complex) compared with a beta-TCP block, in terms of osteoconductivity and biodegradability, to determine whether this complex would be a good candidate for bone void filler. Both materials were implanted into cavities drilled in rabbit femoral condyles. New bone formation and mineral apposition rate were evaluated to analyze osteoconductivity, whereas residual beta-TCP within the defects and tartrate-resistant acid phosphatase (TRAP) cellular activity were studied for beta-TCP resorption. The results show that both the beta-TCP block and the beta-TCP granules-HY complex support bone ingrowth; however, bioresorption was rapid for beta-TCP granules-HY but weak for beta-TCP block. This biodegradation mechanism was considered to be a cell-mediated disintegration by numerous TRAP-positive giant cells. The time lag between the peak value of TRAP-positive giant cell population and that of new bone formation rate suggests that a coupling-like phenomenon could be occurring in the beta-TCP-filled bone defects. In addition, beta-TCP granules-HY complex, which is an injectable, pastelike material, has similar osteoconductive properties to beta-TCP block. Thus, this complex may be useful as a bone filler in clinical application.
Collapse
Affiliation(s)
- Masaaki Chazono
- Department of Orthopaedic Surgery, Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | |
Collapse
|
44
|
Weiss P, Obadia L, Magne D, Bourges X, Rau C, Weitkamp T, Khairoun I, Bouler JM, Chappard D, Gauthier O, Daculsi G. Synchrotron X-ray microtomography (on a micron scale) provides three-dimensional imaging representation of bone ingrowth in calcium phosphate biomaterials. Biomaterials 2003; 24:4591-601. [PMID: 12951002 DOI: 10.1016/s0142-9612(03)00335-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This study used synchrotron X-ray microtomography on a micron scale to compare three-dimensional (3D) bone ingrowth after implantation of various calcium phosphate bone substitutes in a rabbit model. The advantage of using this new method for the study of biomaterials was then compared with histomorphometry for analysis of interconnection and bone ingrowth. The study focused on the newly formed bone-biomaterial interface. Macroporous Biphasic Calcium Phosphate (MBCP) ceramic blocks and two different injectable calcium phosphate biomaterials [an injectable bone substitute (IBS) consisting of a biphasic calcium phosphate granule suspension in hydrosoluble polymer and a calcium phosphate cement material (CPC)] were studied after in vivo implantation. Absorption or phase-contrast microtomography was performed with the dedicated set-up at beamline ID22. Experimental spatial resolution was between 1 and 1.4 microm, depending on experimental radiation. All calcium phosphates tested showed osteoconduction. IBS observations after 3D reconstruction showed interconnected bioactive biomaterial with total open macroporosity and complete bone ingrowth as early as 3 weeks after implantation. This experimentation was consistent with two-dimensional histomorphometric analysis, which confirmed its suitability for biomaterials. This 3D study relates the different types of bone substitution to biomaterial architecture. As porosity and interconnection increase, bone ingrowth becomes greater at the expense of the bone substitute: IBS>MBCP>CPC.
Collapse
Affiliation(s)
- P Weiss
- Laboratoire de Recherche sur les Matériaux d'Intérêt Biologique INSERM 99-03, Faculté de Chirurgie Dentaire, 1 place Alexis Ricordeau, 44042 Nantes cedex 01, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Legrand AP, Bresson B, Guidoin R, Famery R. Mineralization followup with the use of NMR spectroscopy and others. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2003; 63:390-5. [PMID: 12115745 DOI: 10.1002/jbm.10255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-resolution solid state NMR spectroscopy appears to be a powerful method for a better understanding of bone structures and bone substitutes and implants. It is particularly efficient to estimate osteoformation via bioceramic bone colonization. Pathological calcification occurring in bioprosthetic heart valves and breast prostheses can be characterized as a complement to X-ray spectrometry.
Collapse
Affiliation(s)
- André P Legrand
- Laboratoire de Physique Quantique, FRE CNRS 2312, Paris, France.
| | | | | | | |
Collapse
|
46
|
Laquerriere P, Grandjean-Laquerriere A, Jallot E, Balossier G, Frayssinet P, Guenounou M. Importance of hydroxyapatite particles characteristics on cytokines production by human monocytes in vitro. Biomaterials 2003; 24:2739-47. [PMID: 12711520 DOI: 10.1016/s0142-9612(03)00089-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Calcium phosphate bioceramics have been applied as bone substitutes for several decades. Aseptic loosening after total joint arthroplasty is a major problem in orthopaedic surgery. Hydroxyapatite particles from materials wear have been reported as the main cause of implant failure. For this reason, an investigation into possible wear particles from materials used in the implant may lead to longevity after arthroplasty. Monocytes are among the first cells to colonize the inflammatory site. In the present study, we have evaluated the inflammatory response after exposition to particles with different characteristics (size, sintering temperature and shape). Our data demonstrate that the most important characteristic was the shape and the size of the particles. The needle shaped particles induced the larger production of TNF-alpha, IL-6 and IL-10 by cells. To a less manner, the smallest particles induced an increase of the expression and production of the cytokines studied (TNF-alpha, IL-6 and IL-10). The sintering temperature appeared to be a less important characteristic even though it was involved in the dissolution/precipitation process.
Collapse
Affiliation(s)
- Patrice Laquerriere
- Laboratoire de Micoscopie Electronique, UFR Sciences, IFR 53, 21 rue Clément Ader, BP 138, 51685 Reims Cedex 2, France.
| | | | | | | | | | | |
Collapse
|
47
|
Gauthier O, Khairoun I, Bosco J, Obadia L, Bourges X, Rau C, Magne D, Bouler JM, Aguado E, Daculsi G, Weiss P. Noninvasive bone replacement with a new injectable calcium phosphate biomaterial. J Biomed Mater Res A 2003; 66:47-54. [PMID: 12833430 DOI: 10.1002/jbm.a.10506] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The use of injectable calcium phosphate (CaP) biomaterials in noninvasive surgery should provide efficient bone colonization and implantation. Two different kinds of injectable biomaterials are presently under development: ionic hydraulic bone cements that harden in vivo after injection, and an association of biphasic calcium phosphate (BCP) ceramic granules and a water-soluble polymer vehicle (a technique particularly investigated by our group), providing an injectable CaP bone substitute (IBS). In our study, we compared these two approaches, using physicochemical characterizations and in vivo evaluations in light microscopy, scanning electron microscopy, and three-dimensional microtomography with synchrotron technology. Three weeks after implantation in rabbit bone, both biomaterials showed perfect biocompatibility and bioactivity, but new bone formation and degradation of the biomaterial were significantly greater for BCP granules than for ionic cement. Newly formed bone developed, binding the BCP granules together, whereas new bone grew only on the surface of the cement, which remained dense, with no obvious degradation 3 weeks after implantation. This study confirms that BCP granules carried by a cellulosic polymer conserve bioactivity and are conducive to earlier and more extensive bone substitution than a carbonated-hydroxyapatite bone cement. The presence of intergranular spaces in the BCP preparation, as shown on microtomography imaging, seems particularly favorable, allowing body fluids to reach each BCP granule immediately after implantation. Thus, the IBS functions as a completely interconnected ceramic with total open macroporosity. This new bone replacement approach should facilitate microinvasive bone surgery and local delivery of bone therapy agents.
Collapse
Affiliation(s)
- O Gauthier
- Laboratoire de Recherche sur les Matériaux d'Intérêt Biologique INSERM 99-03, Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 01, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Silva SN, Pereira MM, Goes AM, Leite MF. Effect of biphasic calcium phosphate on human macrophage functions in vitro. J Biomed Mater Res A 2003; 65:475-81. [PMID: 12761838 DOI: 10.1002/jbm.a.10544] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bioceramics may initiate several and complex biological reactions in host tissues. The cell-biomaterial interaction can determine macrophage activation that may elicit and sustain inflammatory response at the implant site. The current study describes some of the in vitro phenomena regarding the effect of surface reactivity of biphasic calcium phosphate (BCP) granules on human macrophages locomotion and secretion. X-ray diffraction analysis indicated that the synthesized ceramic presented 80% hydroxyapatite and 20% tricalcium phosphate. When BCP was put in contact with human macrophage cells, we observed that cells and BCP granules attached to each other. Cells attached to BCP presented a higher intracellular free Ca(2+) concentration compared with nonattached neighbors and secreted calcium phosphate particles into the medium. Energy dispersive X-ray analysis showed that the secreted particles presented a calcium/phosphorus ratio of 1.64 +/- 0.05, similar to hydroxyapatite. We propose that the secreted particles create a transition zone that allows further macrophage adhesion.
Collapse
Affiliation(s)
- S N Silva
- Departamento de Eng. Metalúrgica e de Materiais, Universidade Federal de Minas Gerais, Rua Espírito Santo, 35-sala 206, Belo Horizonte-MG-30160-030, Brazil
| | | | | | | |
Collapse
|
49
|
Bourgeois B, Laboux O, Obadia L, Gauthier O, Betti E, Aguado E, Daculsi G, Bouler JM. Calcium-deficient apatite: a first in vivo study concerning bone ingrowth. J Biomed Mater Res A 2003; 65:402-8. [PMID: 12746888 DOI: 10.1002/jbm.a.10518] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biphasic calcium phosphate (BCP) materials are increasingly used to restore bone loss in surgery. Calcium-deficient apatites (CDA), the precursors of BCP, are closer in structure to biological apatites and can be associated with therapeutic agents to form drug-delivery systems. The purpose of this first in vivo study of CDA was to evaluate the osteoconductive properties of two composites, consisting of 40-80 microm granules carried by a cellulose-derived polymer, used to fill critical size bone defects in rabbit femoral ends. Animals were sacrificed 2 or 3 weeks after implantation. Histomorphometric analysis of scanning electron microscopy implant surface files was performed using gray level threshold that distinguish between bone or materials (white) and noncalcified tissue (black). Quantitative results for new bone formation showed no significant differences between the composites or the implantation periods. However, nearly all of the CDA disappeared early while supporting more extensive bone colonization than biphasic calcium phosphates implanted in the same conditions.
Collapse
Affiliation(s)
- B Bourgeois
- Equipe Mixte INSERM 99-03 Matériaux d'Intérêt Biologique, Faculté de Chirurgie Dentaire, BP 84215-44042 Nantes Cedex 1, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bourges X, Weiss P, Daculsi G, Legeay G. Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use. Adv Colloid Interface Sci 2002; 99:215-28. [PMID: 12509115 DOI: 10.1016/s0001-8686(02)00035-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Synthesis of grafting silane on a hydro soluble cellulose ether (HPMC) was described. In alkaline medium, this derivate is under gel form. With a decrease of the pH, a self-hardening occurs due to the silanol condensation. For potential biomedical use, we described the silated-HPMC synthesis, the gel behavior after steam sterilization and the parameters of the silanol condensation i.e. pH, silane percentage and temperature. Minimum kinetic of the condensation was observed for pH between 5.5 and 6.5. So temperature catalyzed the reaction and the self-hardening speed was increased by silane percentage.
Collapse
Affiliation(s)
- Xavier Bourges
- INSERM E 99-03, Laboratoire des Tissus Calcifiés, Faculté de Chirurgie Dentaire, 1 place Alexis Ricordeau, 44042 Nantes, France.
| | | | | | | |
Collapse
|