1
|
Manchal N, Young MK, Castellanos ME, Leggat P, Adegboye O. A systematic review and meta-analysis of ambient temperature and precipitation with infections from five food-borne bacterial pathogens. Epidemiol Infect 2024; 152:e98. [PMID: 39168633 DOI: 10.1017/s0950268824000839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Studies on climate variables and food pathogens are either pathogen- or region-specific, necessitating a consolidated view on the subject. This study aims to systematically review all studies on the association of ambient temperature and precipitation on the incidence of gastroenteritis and bacteraemia from Salmonella, Shigella, Campylobacter, Vibrio, and Listeria species. PubMed, Ovid MEDLINE, Scopus, and Web of Science databases were searched up to 9 March 2023. We screened 3,204 articles for eligibility and included 83 studies in the review and three in the meta-analysis. Except for one study on Campylobacter, all showed a positive association between temperature and Salmonella, Shigella, Vibrio sp., and Campylobacter gastroenteritis. Similarly, most of the included studies showed that precipitation was positively associated with these conditions. These positive associations were found regardless of the effect measure chosen. The pooled incidence rate ratio (IRR) for the three studies that included bacteraemia from Campylobacter and Salmonella sp. was 1.05 (95 per cent confidence interval (95% CI): 1.03, 1.06) for extreme temperature and 1.09 (95% CI: 0.99, 1.19) for extreme precipitation. If current climate trends continue, our findings suggest these pathogens would increase patient morbidity, the need for hospitalization, and prolonged antibiotic courses.
Collapse
Affiliation(s)
- Naveen Manchal
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Megan K Young
- Metro North Public Health Unit, Metro North Hospital and Health Service, Brisbane, Australia
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
- Faculty of Medicine, School of Public Health, University of Queensland, Brisbane, QLD, Australia
| | - Maria Eugenia Castellanos
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Centre for Vector-Borne and Neglected Tropical Diseases, James Cook University, Townsville, QLD, Australia
| | - Peter Leggat
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Centre for Vector-Borne and Neglected Tropical Diseases, James Cook University, Townsville, QLD, Australia
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Oyelola Adegboye
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Centre for Vector-Borne and Neglected Tropical Diseases, James Cook University, Townsville, QLD, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|
2
|
Luo PY, Chen MX, Kuang WT, Ni H, Zhao J, Dai HY, Ren X, Yi SH, Hong XQ, Zha WT, Lv Y. Hysteresis effects of different levels of storm flooding on susceptible enteric infectious diseases in a central city of China. BMC Public Health 2023; 23:1874. [PMID: 37759167 PMCID: PMC10537077 DOI: 10.1186/s12889-023-16754-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Recently, attention has focused on the impact of global climate change on infectious diseases. Storm flooding is an extreme weather phenomenon that not only impacts the health of the environment but also worsens the spread of pathogens. This poses a significant challenge to public health security. However, there is still a lack of research on how different levels of storm flooding affect susceptible enteric infectious diseases over time. METHODS Data on enteric infectious diseases, storm flooding events, and meteorology were collected for Changsha, Hunan Province, between 2016 and 2020. The Wilcoxon Rank Sum Test was used to identify the enteric infectious diseases that are susceptible to storm flooding. Then, the lagged effects of different levels of storm flooding on susceptible enteric infectious diseases were analyzed using a distributed lag nonlinear model. RESULTS There were eleven storm flooding events in Changsha from 2016 to 2020, concentrated in June and July. 37,882 cases of enteric infectious diseases were reported. During non-flooding days, the daily incidence rates of typhoid/paratyphoid and bacillary dysentery were 0.3/100,000 and 0.1/100,000, respectively. During flooding days, the corresponding rates increased to 2.0/100,000 and 0.8/100,000, respectively. The incidence rates of both diseases showed statistically significant differences between non-flooding and flooding days. Correlation analysis shows that the best lags for typhoid/paratyphoid and bacillary dysentery relative to storm flooding events may be 1 and 3 days. The results of the distributed lag nonlinear model showed that typhoid/paratyphoid had the highest cumulative RR values of 2.86 (95% CI: 1.71-4.76) and 8.16 (95% CI: 2.93-22.67) after 4 days of general flooding and heavy flooding, respectively; and bacillary dysentery had the highest cumulative RR values of 1.82 (95% CI: 1.40-2.35) and 3.31 (95% CI: 1.97-5.55) after 5 days of general flooding and heavy flooding, respectively. CONCLUSIONS Typhoid/paratyphoid and bacillary dysentery are sensitive enteric infectious diseases related to storm flooding in Changsha. There is a lagging effect of storm flooding on the onset of typhoid/paratyphoid and bacillary dysentery, with the best lagging periods being days 1 and 3, respectively. The cumulative risk of typhoid/paratyphoid and bacillary dysentery was highest at 4/5 days lag, respectively. The higher of storm flooding, the higher the risk of disease, which suggests that the authorities should take appropriate preventive and control measures before and after storm flooding.
Collapse
Affiliation(s)
- Piao-Yi Luo
- Key Laboratory of Molecular Epidemiology of Hunan Province, Medical School of Hunan Normal University, Changsha, 410000, Hunan, China
| | - Meng-Xiang Chen
- Key Laboratory of Molecular Epidemiology of Hunan Province, Medical School of Hunan Normal University, Changsha, 410000, Hunan, China
| | - Wen-Tao Kuang
- Key Laboratory of Molecular Epidemiology of Hunan Province, Medical School of Hunan Normal University, Changsha, 410000, Hunan, China
| | - Han Ni
- Key Laboratory of Molecular Epidemiology of Hunan Province, Medical School of Hunan Normal University, Changsha, 410000, Hunan, China
| | - Jin Zhao
- Key Laboratory of Molecular Epidemiology of Hunan Province, Medical School of Hunan Normal University, Changsha, 410000, Hunan, China
- Changsha Center for Disease Control and Prevention, Changsha, 410000, Hunan, China
| | - Hao-Yun Dai
- Key Laboratory of Molecular Epidemiology of Hunan Province, Medical School of Hunan Normal University, Changsha, 410000, Hunan, China
| | - Xiang Ren
- Key Laboratory of Molecular Epidemiology of Hunan Province, Medical School of Hunan Normal University, Changsha, 410000, Hunan, China
| | - Shang-Hui Yi
- Key Laboratory of Molecular Epidemiology of Hunan Province, Medical School of Hunan Normal University, Changsha, 410000, Hunan, China
| | - Xiu-Qin Hong
- Hunan Provincial People's Hospital Affiliated to Hunan Normal University, Changsha, 410000, Hunan, China
| | - Wen-Ting Zha
- Key Laboratory of Molecular Epidemiology of Hunan Province, Medical School of Hunan Normal University, Changsha, 410000, Hunan, China.
| | - Yuan Lv
- Key Laboratory of Molecular Epidemiology of Hunan Province, Medical School of Hunan Normal University, Changsha, 410000, Hunan, China.
| |
Collapse
|
3
|
Xin X, Jia J, Hu X, Han Y, Liang J, Jiang F. Association between floods and the risk of dysentery in China: a meta-analysis. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:1245-1253. [PMID: 33660029 DOI: 10.1007/s00484-021-02096-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/05/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
The association between floods and the risk of dysentery remain controversial. Therefore, we performed a meta-analysis to clarify this relationship. A literature search was performed in PubMed, Web of science, and Embase for relevant articles published up to November 2019. Random-effects model was used to pool relative risks with 95% confidence intervals. The sensitivity analysis was carried out to evaluate the stability of the results. Publication bias was estimated using Egger's test. Eleven studies from 10 articles evaluated the association between floods and the risk of dysentery in China. The pooled RR (95% CI) of dysentery for the flooded time versus non-flooded period was 1.48 (95% CI: 1.14-1.91). Significant association was found in subgroup analysis stratified by dysentery styles [dysentery: 1.61 (95% CI: 1.34-1.93) and bacillary dysentery: 1.46 (95% CI: 1.06-2.01)]. The pooled RR (95%CI) of sensitivity analysis for dysentery was 1.26 (95% CI: 1.05-1.52). No significant publication bias was found in our meta-analysis. This meta-analysis confirms that floods have significantly increased the risk of dysentery in China. Our findings will provide more evidence to reduce negative health outcomes of floods in China.
Collapse
Affiliation(s)
- Xueling Xin
- Department of Acute Infectious Diseases, Municipal Centre of Disease Control and Prevention of Qingdao, Qingdao Institute of Prevention Medicine, No.175 Shandong Road, Qingdao City, 266033, Shandong Province, People's Republic of China
| | - Jing Jia
- Department of Acute Infectious Diseases, Municipal Centre of Disease Control and Prevention of Qingdao, Qingdao Institute of Prevention Medicine, No.175 Shandong Road, Qingdao City, 266033, Shandong Province, People's Republic of China
| | - Xiaowen Hu
- Department of Acute Infectious Diseases, Municipal Centre of Disease Control and Prevention of Qingdao, Qingdao Institute of Prevention Medicine, No.175 Shandong Road, Qingdao City, 266033, Shandong Province, People's Republic of China
| | - Yalin Han
- Department of Acute Infectious Diseases, Municipal Centre of Disease Control and Prevention of Qingdao, Qingdao Institute of Prevention Medicine, No.175 Shandong Road, Qingdao City, 266033, Shandong Province, People's Republic of China
| | - Jiwei Liang
- Department of Acute Infectious Diseases, Municipal Centre of Disease Control and Prevention of Qingdao, Qingdao Institute of Prevention Medicine, No.175 Shandong Road, Qingdao City, 266033, Shandong Province, People's Republic of China
| | - Fachun Jiang
- Department of Acute Infectious Diseases, Municipal Centre of Disease Control and Prevention of Qingdao, Qingdao Institute of Prevention Medicine, No.175 Shandong Road, Qingdao City, 266033, Shandong Province, People's Republic of China.
| |
Collapse
|
4
|
Charnley GEC, Kelman I, Gaythorpe KAM, Murray KA. Traits and risk factors of post-disaster infectious disease outbreaks: a systematic review. Sci Rep 2021; 11:5616. [PMID: 33692451 PMCID: PMC7970931 DOI: 10.1038/s41598-021-85146-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/23/2021] [Indexed: 01/31/2023] Open
Abstract
Infectious disease outbreaks are increasingly recognised as events that exacerbate impacts or prolong recovery following disasters. Yet, our understanding of the frequency, geography, characteristics and risk factors of post-disaster disease outbreaks globally is lacking. This limits the extent to which disease outbreak risks can be prepared for, monitored and responded to following disasters. Here, we conducted a global systematic review of post-disaster outbreaks and found that outbreaks linked to conflicts and hydrological events were most frequently reported, and most often caused by bacterial and water-borne agents. Lack of adequate WASH facilities and poor housing were commonly reported risk factors. Displacement, through infrastructure damage, can lead to risk cascades for disease outbreaks; however, displacement can also be an opportunity to remove people from danger and ultimately protect health. The results shed new light on post-disaster disease outbreaks and their risks. Understanding these risk factors and cascades, could help improve future region-specific disaster risk reduction.
Collapse
Affiliation(s)
- Gina E C Charnley
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK.
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK.
| | - Ilan Kelman
- Institute for Risk and Disaster Reduction, Faculty of Mathematical and Physical Sciences, University College London, London, UK
- Institute for Global Health, Faculty of Population Health, University College London, London, UK
- University of Agder, Kristiansand, Norway
| | - Katy A M Gaythorpe
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Kris A Murray
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
- MRC Unit The Gambia At London, School of Hygiene and Tropical Medicine, Fajara, The Gambia
| |
Collapse
|
5
|
Kraay ANM, Man O, Levy MC, Levy K, Ionides E, Eisenberg JNS. Understanding the Impact of Rainfall on Diarrhea: Testing the Concentration-Dilution Hypothesis Using a Systematic Review and Meta-Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:126001. [PMID: 33284047 PMCID: PMC7720804 DOI: 10.1289/ehp6181] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Projected increases in extreme weather may change relationships between rain-related climate exposures and diarrheal disease. Whether rainfall increases or decreases diarrhea rates is unclear based on prior literature. The concentration-dilution hypothesis suggests that these conflicting results are explained by the background level of rain: Rainfall following dry periods can flush pathogens into surface water, increasing diarrhea incidence, whereas rainfall following wet periods can dilute pathogen concentrations in surface water, thereby decreasing diarrhea incidence. OBJECTIVES In this analysis, we explored the extent to which the concentration-dilution hypothesis is supported by published literature. METHODS To this end, we conducted a systematic search for articles assessing the relationship between rain, extreme rain, flood, drought, and season (rainy vs. dry) and diarrheal illness. RESULTS A total of 111 articles met our inclusion criteria. Overall, the literature largely supports the concentration-dilution hypothesis. In particular, extreme rain was associated with increased diarrhea when it followed a dry period [incidence rate ratio ( IRR ) = 1.26 ; 95% confidence interval (CI): 1.05, 1.51], with a tendency toward an inverse association for extreme rain following wet periods, albeit nonsignificant, with one of four relevant studies showing a significant inverse association (IRR = 0.911 ; 95% CI: 0.771, 1.08). Incidences of bacterial and parasitic diarrhea were more common during rainy seasons, providing pathogen-specific support for a concentration mechanism, but rotavirus diarrhea showed the opposite association. Information on timing of cases within the rainy season (e.g., early vs. late) was lacking, limiting further analysis. We did not find a linear association between nonextreme rain exposures and diarrheal disease, but several studies found a nonlinear association with low and high rain both being associated with diarrhea. DISCUSSION Our meta-analysis suggests that the effect of rainfall depends on the antecedent conditions. Future studies should use standard, clearly defined exposure variables to strengthen understanding of the relationship between rainfall and diarrheal illness. https://doi.org/10.1289/EHP6181.
Collapse
Affiliation(s)
- Alicia N. M. Kraay
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Olivia Man
- Department of Epidemiology, University of Michigan–Ann Arbor, Ann Arbor, Michigan, USA
| | - Morgan C. Levy
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- School of Global Policy and Strategy, University of California San Diego, La Jolla, California, USA
| | - Karen Levy
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Edward Ionides
- Department of Epidemiology, University of Michigan–Ann Arbor, Ann Arbor, Michigan, USA
| | | |
Collapse
|
6
|
Wu X, Liu J, Li C, Yin J. Impact of climate change on dysentery: Scientific evidences, uncertainty, modeling and projections. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136702. [PMID: 31981871 DOI: 10.1016/j.scitotenv.2020.136702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Dysentery is water-borne and food-borne infectious disease and its incidence is sensitive to climate change. Although the impact of climate change on dysentery is being studied in specific areas, a systematic review is lacking. We searched the worldwide literature using three sets of keywords and six databases. We identified and selected 98 studies during 1866-2019 and reviewed the relevant findings. Climate change, including long-term variations in factors, such as temperature, precipitation, and humidity, and short-term variations in extreme weather events, such as floods and drought, mostly had a harmful impact on dysentery incidence. However, some uncertainty over the exact effects of climate factors exists, specifically in the different indexes for the same climate factor, various determinant indexes for different dysentery burdens, and divergent effects for different population groups. These complicate the accurate quantification of such impacts. We generalized two types of methods: sensitivity analysis, used to detect the sensitivity of dysentery to climate change, including Pearson's and Spearman's correlations; and mathematical models, which quantify the impact of climate on dysentery, and include models that examine the associations (including negative binomial regression models) and quantify correlations (including single generalized additive models and mixed models). Projection studies mostly predict disease risks, and some predict disease incidence based on climate models under RCP 4.5. Since some geographic heterogeneity exists in the climate-dysentery relationship, modeling and projection of dysentery incidence on a national or global scale remain challenging. The reviewed results have implications for the present and future. Current research should be extended to select appropriate and robust climate-dysentery models, reasonable disease burden measure, and appropriate climate models and scenarios. We recommend future studies focus on qualitative investigation of the mechanism involved in the impact of climate on dysentery, and accurate projection of dysentery incidence, aided by advancing accuracy of extreme weather forecasting.
Collapse
Affiliation(s)
- Xiaoxu Wu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China.
| | - Jianing Liu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Chenlu Li
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Jie Yin
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Levy K, Smith SM, Carlton EJ. Climate Change Impacts on Waterborne Diseases: Moving Toward Designing Interventions. Curr Environ Health Rep 2019; 5:272-282. [PMID: 29721700 DOI: 10.1007/s40572-018-0199-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE Climate change threatens progress achieved in global reductions of infectious disease rates over recent decades. This review summarizes literature on potential impacts of climate change on waterborne diseases, organized around a framework of questions that can be addressed depending on available data. RECENT FINDINGS A growing body of evidence suggests that climate change may alter the incidence of waterborne diseases, and diarrheal diseases in particular. Much of the existing work examines historical relationships between weather and diarrhea incidence, with a limited number of studies projecting future disease rates. Some studies take social and ecological factors into account in considerations of historical relationships, but few have done so in projecting future conditions. The field is at a point of transition, toward incorporating social and ecological factors into understanding the relationships between climatic factors and diarrheal diseases and using this information for future projections. The integration of these components helps identify vulnerable populations and prioritize adaptation strategies.
Collapse
Affiliation(s)
- Karen Levy
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA, 30322, USA.
| | - Shanon M Smith
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA, 30322, USA
| | - Elizabeth J Carlton
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, 13001 E 17th Place B119, Aurora, CO, 80045, USA
| |
Collapse
|
8
|
Chan EYY, Ho JY, Hung HHY, Liu S, Lam HCY. Health impact of climate change in cities of middle-income countries: the case of China. Br Med Bull 2019; 130:5-24. [PMID: 31070715 PMCID: PMC6587073 DOI: 10.1093/bmb/ldz011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 01/31/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND This review examines the human health impact of climate change in China. Through reviewing available research findings under four major climate change phenomena, namely extreme temperature, altered rainfall pattern, rise of sea level and extreme weather events, relevant implications for other middle-income population with similar contexts will be synthesized. SOURCES OF DATA Sources of data included bilingual peer-reviewed articles published between 2000 and 2018 in PubMed, Google Scholar and China Academic Journals Full-text Database. AREAS OF AGREEMENT The impact of temperature on mortality outcomes was the most extensively studied, with the strongest cause-specific mortality risks between temperature and cardiovascular and respiratory mortality. The geographical focuses of the studies indicated variations in health risks and impacts of different climate change phenomena across the country. AREAS OF CONTROVERSY While rainfall-related studies predominantly focus on its impact on infectious and vector-borne diseases, consistent associations were not often found. GROWING POINTS Mental health outcomes of climate change had been gaining increasing attention, particularly in the context of extreme weather events. The number of projection studies on the long-term impact had been growing. AREAS TIMELY FOR DEVELOPING RESEARCH The lack of studies on the health implications of rising sea levels and on comorbidity and injury outcomes warrants immediate attention. Evidence is needed to understand health impacts on vulnerable populations living in growing urbanized cities and urban enclaves, in particular migrant workers. Location-specific climate-health outcome thresholds (such as temperature-mortality threshold) will be needed to support evidence-based clinical management plans and health impact mitigation strategies to protect vulnerable communities.
Collapse
Affiliation(s)
- Emily Y Y Chan
- Collaborating Centre for Oxford University and CUHK for Disaster and Medical Humanitarian Response (CCOUC), Division of Global Health and Humanitarian Medicine, The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Division of Global Health and Humanitarian Medicine, The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- François-Xavier Bagnoud Center for Health & Human Rights, Harvard University, Boston, MA, USA
| | - Janice Y Ho
- Division of Global Health and Humanitarian Medicine, The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Heidi H Y Hung
- Division of Global Health and Humanitarian Medicine, The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Sida Liu
- Division of Global Health and Humanitarian Medicine, The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Holly C Y Lam
- Collaborating Centre for Oxford University and CUHK for Disaster and Medical Humanitarian Response (CCOUC), Division of Global Health and Humanitarian Medicine, The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Liu Z, Lao J, Zhang Y, Liu Y, Zhang J, Wang H, Jiang B. Association between floods and typhoid fever in Yongzhou, China: Effects and vulnerable groups. ENVIRONMENTAL RESEARCH 2018; 167:718-724. [PMID: 30241731 DOI: 10.1016/j.envres.2018.08.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Little information about the effects of floods on typhoid fever is available in previous studies. This study aimed to examine the relationships between floods and typhoid fever and to identify the vulnerable groups in Yongzhou, China. METHODS Weekly typhoid fever data, flood data and meteorological data during the flood season (April to September) from 2005 to 2012 were collected for this study. A Poisson generalized linear model combined with a distributed lag non-linear model was conducted to quantify the lagged and cumulative effects of floods on typhoid fever, considering the confounding effects of long-term trend, seasonality, and meteorological variables. The model was also used to calculate risk ratios of floods for weekly typhoid fever cases among various subpopulations. RESULTS After adjusting for long-term trend, seasonality, and meteorological variables, floods were associated with an increased number of typhoid fever cases with a risk ratio of 1.46 (95% CI: 1.10-1.92) at 1-week lag and a cumulative risk ratio of 1.76 (95% CI: 1.21-2.57) at lag 0-1 weeks. Males, people aged 0-4 years old, people aged 15-64 years old, farmers, and children appeared to be more vulnerable than the others. CONCLUSIONS Our study indicates that floods could significantly increase the risks of typhoid fever with lag effects of 1 week in the study areas. Precautionary measures should be taken with a focus on the identified vulnerable groups in order to control the transmission of typhoid fever associated with floods.
Collapse
Affiliation(s)
- Zhidong Liu
- Department of Epidemiology, School of Public Health, Shandong University, Jinan, Shandong Province, People's Republic of China; Shandong University Climate Change and Health Center, Jinan, Shandong Province, People's Republic of China
| | - Jiahui Lao
- Department of Epidemiology, School of Public Health, Shandong University, Jinan, Shandong Province, People's Republic of China; Shandong University Climate Change and Health Center, Jinan, Shandong Province, People's Republic of China
| | - Ying Zhang
- School of Public Health, China Studies Centre, The University of Sydney, New South Wales, Australia
| | - Yanyu Liu
- Department of Epidemiology, School of Public Health, Shandong University, Jinan, Shandong Province, People's Republic of China; Shandong University Climate Change and Health Center, Jinan, Shandong Province, People's Republic of China
| | - Jing Zhang
- Department of Epidemiology, School of Public Health, Shandong University, Jinan, Shandong Province, People's Republic of China; Shandong University Climate Change and Health Center, Jinan, Shandong Province, People's Republic of China
| | - Hui Wang
- Department of Medical Administration, Second Hospital of Shandong University, No. 247 BeiYuan Road, 250033 Jinan, Shandong Province, People's Republic of China.
| | - Baofa Jiang
- Department of Epidemiology, School of Public Health, Shandong University, Jinan, Shandong Province, People's Republic of China; Shandong University Climate Change and Health Center, Jinan, Shandong Province, People's Republic of China.
| |
Collapse
|
10
|
Screening China Emergency Medical Team (CEMT) Members: A Self-Leadership Perspective. Prehosp Disaster Med 2018; 33:596-601. [DOI: 10.1017/s1049023x18000961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractObjectiveThis study aims at establishing the self-leadership development model (SLM) of China Emergency Medical Team (CEMT) members as a supplement to current selection standards of CEMT members.MethodsRaw dataset was obtained through two ways: in-depth interviews and documentary materials (memoirs and articles). The in-depth interviews were conducted with a purposive sample of 12 CEMT members, all of whom have participated in multiple disaster relief activities and have been CEMT members for more than two years. This paper followed a grounded theory methodology dealing with all data.ResultsBased on tasks, the SLM-CEMT consists of three basic parts: (1) making plans; (2) action; and (3) outcomes. Different parts involve various self-leadership strategies, of which five are the original dimensions of previous research (goal-setting, visualizing successful performance, self-talk, self-reward, and self-correcting feedback) and three are new dimensions (role clarity, self-initiative, and self-vigilance).Conclusions:The SLM-CEMT, with the three new parts, provides a new look at screening CEMT members as well as pondering on future research. Based on the SLM-CEMT, administrators could screen more qualified CEMT members. For the limitations, future work will be on the generalization and confirmation of this model.HaoX,LiX,ZhengJ.Screening China Emergency Medical Team (CEMT) members: a self-leadership perspective.Prehosp Disaster Med.2018;33(6):596–601.
Collapse
|
11
|
The Effect of Seasonal Floods on Health: Analysis of Six Years of National Health Data and Flood Maps. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15040665. [PMID: 29614051 PMCID: PMC5923707 DOI: 10.3390/ijerph15040665] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/21/2018] [Accepted: 03/29/2018] [Indexed: 01/17/2023]
Abstract
There is limited knowledge on the effect of seasonal flooding on health over time. We quantified the short- and long-term effects of floods on selected health indicators at public healthcare facilities in 11 districts in Cambodia, a flood-prone setting. Counts of inpatient discharge diagnoses and outpatient consultations for diarrhea, acute respiratory infections, skin infections, injuries, noncommunicable diseases and vector-borne diseases were retrieved from public healthcare facilities for each month between January 2008 and December 2013. Flood water was mapped by month, in square kilometers, from satellite data. Poisson regression models with three lag months were constructed for the health problems in each district, controlled for seasonality and long-term trends. During times of flooding and three months after, there were small to moderate increases in visits to healthcare facilities for skin infections, acute respiratory infections, and diarrhea, while no association was seen at one to two months. The associations were small to moderate, and a few of our results were significant. We observed increases in care seeking for diarrhea, skin infections, and acute respiratory infections following floods, but the associations are uncertain. Additional research on previous exposure to flooding, using community- and facility-based data, would help identify expected health risks after floods in flood-prone settings.
Collapse
|
12
|
Veenema TG, Thornton CP, Lavin RP, Bender AK, Seal S, Corley A. Climate Change-Related Water Disasters' Impact on Population Health. J Nurs Scholarsh 2017; 49:625-634. [PMID: 28834176 DOI: 10.1111/jnu.12328] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE Rising global temperatures have resulted in an increased frequency and severity of cyclones, hurricanes, and flooding in many parts of the world. These climate change-related water disasters (CCRWDs) have a devastating impact on communities and the health of residents. Clinicians and policymakers require a substantive body of evidence on which to base planning, prevention, and disaster response to these events. The purpose of this study was to conduct a systematic review of the literature concerning the impact of CCRWDs on public health in order to identify factors in these events that are amenable to preparedness and mitigation. Ultimately, this evidence could be used by nurses to advocate for greater preparedness initiatives and inform national and international disaster policy. DESIGN AND METHODS A systematic literature review of publications identified through a comprehensive search of five relevant databases (PubMed, Cumulative Index to Nursing and Allied Health Literature [CINAHL], Embase, Scopus, and Web of Science) was conducted using a modified Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach in January 2017 to describe major themes and associated factors of the impact of CCRWDs on population health. FINDINGS Three major themes emerged: environmental disruption resulting in exposure to toxins, population susceptibility, and health systems infrastructure (failure to plan-prepare-mitigate, inadequate response, and lack of infrastructure). Direct health impact was characterized by four major categories: weather-related morbidity and mortality, waterborne diseases/water-related illness, vector-borne and zoonotic diseases, and psychiatric/mental health effects. Scope and duration of the event are factors that exacerbate the impact of CCRWDs. Discussion of specific factors amenable to mitigation was limited. Flooding as an event was overrepresented in this analysis (60%), and the majority of the research reviewed was conducted in high-income or upper middle-/high-income countries (62%), despite the fact that low-income countries bear a disproportionate share of the burden on morbidity and mortality from CCRWDs. CONCLUSIONS Empirical evidence related to CCRWDs is predominately descriptive in nature, characterizing the cascade of climatic shifts leading to major environmental disruption and exposure to toxins, and their resultant morbidity and mortality. There is inadequate representation of research exploring potentially modifiable factors associated with CCRWDs and their impact on population health. This review lays the foundation for a wide array of further areas of analysis to explore the negative health impacts of CCRWDs and for nurses to take a leadership role in identifying and advocating for evidence-based policies to plan, prevent, or mitigate these effects. CLINICAL RELEVANCE Nurses comprise the largest global healthcare workforce and are in a position to advocate for disaster preparedness for CCRWDs, develop more robust environmental health policies, and work towards mitigating exposure to environmental toxins that may threaten human health.
Collapse
Affiliation(s)
- Tener Goodwin Veenema
- Beta Nu, Associate Professor, School of Nursing, Department Acute and Chronic Care, Johns Hopkins School of Nursing Center for Humanitarian Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Clifton P Thornton
- Beta Nu, Clinical Nurse Practitioner, The Johns Hopkins University School of Medicine, Johns Hopkins Charlotte Bloomberg Children's Hospital, Baltimore, MD, USA
| | - Roberta Proffitt Lavin
- Associate Dean for Academic Programs, University of Missouri-St. Louis, College of Nursing, St. Louis, MO, USA
| | - Annah K Bender
- Research Associate, University of Missouri-St. Louis, College of Nursing, St. Louis, MO, USA
| | - Stella Seal
- Associate Director, Hospital, Health System and Community Services, Welch Medical Library, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Corley
- Beta Nu, Johns Hopkins School of Nursing, Johns Hopkins School of Public Health, Baltimore, MD, USA
| |
Collapse
|