1
|
Yang Z, Xu Y, Zheng R, Ye L, Lv G, Cao Z, Han R, Li M, Zhu Y, Cao Q, Ding Y, Wang J, Tan Y, Liu F, Wei D, Tan W, Jiang W, Sun J, Sun S, Shao J, Deng Y, Gao W, Wang W, Zhao R, Qiu L, Chen E, Zhang X, Wang S, Ning G, Xu Y, Bi Y. COVID-19 Rebound After VV116 vs Nirmatrelvir-Ritonavir Treatment: A Randomized Clinical Trial. JAMA Netw Open 2024; 7:e241765. [PMID: 38477921 PMCID: PMC10938176 DOI: 10.1001/jamanetworkopen.2024.1765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/19/2024] [Indexed: 03/14/2024] Open
Abstract
Importance With the widespread use of anti-SARS-CoV-2 drugs, accumulating data have revealed potential viral load rebound after treatment. Objective To compare COVID-19 rebound after a standard 5-day course of antiviral treatment with VV116 vs nirmatrelvir-ritonavir. Design, Setting, and Participants This is a single-center, investigator-blinded, randomized clinical trial conducted in Shanghai, China. Adult patients with mild-to-moderate COVID-19 and within 5 days of SARS-CoV-2 infection were enrolled between December 20, 2022, and January 19, 2023, and randomly allocated to receive either VV116 or nirmatrelvir-ritonavir. Interventions Participants in the VV116 treatment group received oral 600-mg VV116 tablets every 12 hours on day 1 and 300 mg every 12 hours on days 2 through 5. Participants in the nirmatrelvir-ritonavir treatment group received oral nirmatrelvir-ritonavir tablets with 300 mg of nirmatrelvir plus 100 mg of ritonavir every 12 hours for 5 days. Participants were followed up every other day until day 28 and every week until day 60. Main Outcomes and Measures The primary outcome was viral load rebound (VLR), defined as a half-log increase in viral RNA copies per milliliter compared with treatment completion. Secondary outcomes included a reduction in the cycle threshold value of 1.5 or more, time until VLR, and symptom rebound, defined as an increase of more than 2 points in symptom score compared with treatment completion. The primary outcome and secondary outcomes were analyzed using the full analysis set. Sensitivity analyses were conducted using the per protocol set. Adverse events were analyzed using the safety analysis set. Results The full analysis set included 345 participants (mean [SD] age, 53.2 [16.8] years; 175 [50.7%] were men) who received VV116 (n = 165) or nirmatrelvir-ritonavir (n = 180). Viral load rebound occurred in 33 patients (20.0%) in the VV116 group and 39 patients (21.7%) in the nirmatrelvir-ritonavir group (P = .70). Symptom rebound occurred in 41 of 160 patients (25.6%) in the VV116 group and 40 of 163 patients (24.5%) in the nirmatrelvir-ritonavir group (P = .82). Viral whole-genome sequencing of 24 rebound cases revealed the same lineage at baseline and at viral load rebound in each case. Conclusions and Relevance In this randomized clinical trial of patients with mild-to-moderate COVID-19, viral load rebound and symptom rebound were both common after a standard 5-day course of treatment with either VV116 or nirmatrelvir-ritonavir. Prolongation of treatment duration might be investigated to reduce COVID-19 rebound. Trial Registration Chinese Clinical Trial Registry Identifier: ChiCTR2200066811.
Collapse
Affiliation(s)
- Zhitao Yang
- Emergency Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruizhi Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Ye
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Lv
- Shanghai Institute of Hematology, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhujun Cao
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rulai Han
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyue Zhu
- Department of Geriatrics, Medical Center on Aging, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyu Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Ding
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Tan
- Shanghai Institute of Hematology, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Liu
- Shanghai Institute of Hematology, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Wei
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Tan
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Jiang
- Research and Development Administration Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shouyue Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Shao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Deng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiyi Gao
- Division of Medical Affairs, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Qiu
- Administrative Office, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Erzhen Chen
- Emergency Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxin Zhang
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Trials Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengyue Wang
- Shanghai Institute of Hematology, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiping Xu
- Clinical Trials Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Ribeiro RM, Choudhary MC, Deo R, Giganti MJ, Moser C, Ritz J, Greninger AL, Regan J, Flynn JP, Wohl DA, Currier JS, Eron JJ, Hughes MD, Smith DM, Chew KW, Daar ES, Perelson AS, Li JZ. Variant-Specific Viral Kinetics in Acute COVID-19. J Infect Dis 2023; 228:S136-S143. [PMID: 37650233 PMCID: PMC10469346 DOI: 10.1093/infdis/jiad314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Understanding variant-specific differences in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral kinetics may explain differences in transmission efficiency and provide insights on pathogenesis and prevention. We evaluated SARS-CoV-2 kinetics from nasal swabs across multiple variants (Alpha, Delta, Epsilon, Gamma) in placebo recipients of the ACTIV-2/A5401 trial. Delta variant infection led to the highest maximum viral load and shortest time from symptom onset to viral load peak. There were no significant differences in time to viral clearance across the variants. Viral decline was biphasic with first- and second-phase decays having half-lives of 11 hours and 2.5 days, respectively, with differences among variants, especially in the second phase. These results suggest that while variant-specific differences in viral kinetics exist, post-peak viral load all variants appeared to be efficiently cleared by the host. Clinical Trials Registration. NCT04518410.
Collapse
Affiliation(s)
- Ruy M Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, New Mexico
| | - Manish C Choudhary
- Division of Infectious Diseases, Brigham & Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
| | - Rinki Deo
- Division of Infectious Diseases, Brigham & Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
| | - Mark J Giganti
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Carlee Moser
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Justin Ritz
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | | - James Regan
- Division of Infectious Diseases, Brigham & Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
| | - James P Flynn
- Division of Infectious Diseases, Brigham & Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
| | - David A Wohl
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill
| | - Judith S Currier
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Joseph J Eron
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill
| | - Michael D Hughes
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Davey M Smith
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, California
| | - Kara W Chew
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Eric S Daar
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, California
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, New Mexico
| | - Jonathan Z Li
- Division of Infectious Diseases, Brigham & Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
| |
Collapse
|
3
|
Corchis-Scott R, Geng Q, Al Riahi AM, Labak A, Podadera A, Ng KKS, Porter LA, Tong Y, Dixon JC, Menard SL, Seth R, McKay RM. Actionable wastewater surveillance: application to a university residence hall during the transition between Delta and Omicron resurgences of COVID-19. Front Public Health 2023; 11:1139423. [PMID: 37265515 PMCID: PMC10230041 DOI: 10.3389/fpubh.2023.1139423] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Wastewater surveillance has gained traction during the COVID-19 pandemic as an effective and non-biased means to track community infection. While most surveillance relies on samples collected at municipal wastewater treatment plants, surveillance is more actionable when samples are collected "upstream" where mitigation of transmission is tractable. This report describes the results of wastewater surveillance for SARS-CoV-2 at residence halls on a university campus aimed at preventing outbreak escalation by mitigating community spread. Another goal was to estimate fecal shedding rates of SARS-CoV-2 in a non-clinical setting. Passive sampling devices were deployed in sewer laterals originating from residence halls at a frequency of twice weekly during fall 2021 as the Delta variant of concern continued to circulate across North America. A positive detection as part of routine sampling in late November 2021 triggered daily monitoring and further isolated the signal to a single wing of one residence hall. Detection of SARS-CoV-2 within the wastewater over a period of 3 consecutive days led to a coordinated rapid antigen testing campaign targeting the residence hall occupants and the identification and isolation of infected individuals. With knowledge of the number of individuals testing positive for COVID-19, fecal shedding rates were estimated to range from 3.70 log10 gc ‧ g feces-1 to 5.94 log10 gc ‧ g feces-1. These results reinforce the efficacy of wastewater surveillance as an early indicator of infection in congregate living settings. Detections can trigger public health measures ranging from enhanced communications to targeted coordinated testing and quarantine.
Collapse
Affiliation(s)
- Ryland Corchis-Scott
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Qiudi Geng
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Abdul Monem Al Riahi
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Amr Labak
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Ana Podadera
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Kenneth K. S. Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Lisa A. Porter
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Jess C. Dixon
- Department of Kinesiology, University of Windsor, Windsor, ON, Canada
| | | | - Rajesh Seth
- Civil and Environmental Engineering, University of Windsor, Windsor, ON, Canada
| | - R. Michael McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
4
|
Deo R, Choudhary MC, Moser C, Ritz J, Daar ES, Wohl DA, Greninger AL, Eron JJ, Currier JS, Hughes MD, Smith DM, Chew KW, Li JZ. Symptom and Viral Rebound in Untreated SARS-CoV-2 Infection. Ann Intern Med 2023; 176:348-354. [PMID: 36802755 PMCID: PMC10052317 DOI: 10.7326/m22-2381] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Although symptom and viral rebound have been reported after nirmatrelvir-ritonavir treatment, the trajectories of symptoms and viral load during the natural course of COVID-19 have not been well described. OBJECTIVE To characterize symptom and viral rebound in untreated outpatients with mild to moderate COVID-19. DESIGN Retrospective analysis of participants in a randomized, placebo-controlled trial. (ClinicalTrials.gov: NCT04518410). SETTING Multicenter trial. PATIENTS 563 participants receiving placebo in the ACTIV-2/A5401 (Adaptive Platform Treatment Trial for Outpatients With COVID-19) platform trial. MEASUREMENTS Participants recorded the severity of 13 symptoms daily between days 0 and 28. Nasal swabs were collected for SARS-CoV-2 RNA testing on days 0 to 14, 21, and 28. Symptom rebound was defined as a 4-point increase in total symptom score after improvement any time after study entry. Viral rebound was defined as an increase of at least 0.5 log10 RNA copies/mL from the immediately preceding time point to a viral load of 3.0 log10 copies/mL or higher. High-level viral rebound was defined as an increase of at least 0.5 log10 RNA copies/mL to a viral load of 5.0 log10 copies/mL or higher. RESULTS Symptom rebound was identified in 26% of participants at a median of 11 days after initial symptom onset. Viral rebound was detected in 31% and high-level viral rebound in 13% of participants. Most symptom and viral rebound events were transient, because 89% of symptom rebound and 95% of viral rebound events occurred at only a single time point before improving. The combination of symptom and high-level viral rebound was observed in 3% of participants. LIMITATION A largely unvaccinated population infected with pre-Omicron variants was evaluated. CONCLUSION Symptom or viral relapse in the absence of antiviral treatment is common, but the combination of symptom and viral rebound is rare. PRIMARY FUNDING SOURCE National Institute of Allergy and Infectious Diseases.
Collapse
Affiliation(s)
- Rinki Deo
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (R.D., M.C.C., J.Z.L.)
| | - Manish C Choudhary
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (R.D., M.C.C., J.Z.L.)
| | - Carlee Moser
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts (C.M., J.R., M.D.H.)
| | - Justin Ritz
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts (C.M., J.R., M.D.H.)
| | - Eric S Daar
- Lundquist Institute at Harbor-University of California, Los Angeles Medical Center, Torrance, California (E.S.D.)
| | - David A Wohl
- University of North Carolina, Chapel Hill, North Carolina (D.A.W., J.J.E.)
| | | | - Joseph J Eron
- University of North Carolina, Chapel Hill, North Carolina (D.A.W., J.J.E.)
| | - Judith S Currier
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California (J.S.C., K.W.C.)
| | - Michael D Hughes
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts (C.M., J.R., M.D.H.)
| | - Davey M Smith
- University of California, San Diego, San Diego, California (D.M.S.)
| | - Kara W Chew
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California (J.S.C., K.W.C.)
| | - Jonathan Z Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (R.D., M.C.C., J.Z.L.)
| |
Collapse
|
5
|
Deo R, Choudhary MC, Moser C, Ritz J, Daar ES, Wohl DA, Greninger AL, Eron JJ, Currier JS, Hughes MD, Smith DM, Chew KW, Li JZ. Viral and Symptom Rebound in Untreated COVID-19 Infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.08.01.22278278. [PMID: 35982660 PMCID: PMC9387151 DOI: 10.1101/2022.08.01.22278278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background There are reports of viral RNA and symptom rebound in people with COVID-19 treated with nirmatrelvir/ritonavir. Since the natural course of viral and symptom trajectories of COVID-19 has not been well described, we evaluated the incidence of viral and symptom rebound in untreated outpatients with mild-moderate COVID-19. Methods The study population included 568 participants enrolled in the ACTIV-2/A5401 platform trial who received placebo. Anterior nasal swabs were collected for SARS-CoV-2 RNA testing on days 0-14, 21 and 28. Participants recorded the severity of 13 targeted symptoms daily from day 0 to 28. Viral rebound was defined as ≥0.5 log10 viral RNA copies/mL increase and symptom rebound was defined as a 4-point total symptom score increase from baseline. Baseline was defined as study day 4 (primary analysis) or 8 days from symptom onset (secondary analysis). Findings In both the primary and secondary analyses, 12% of participants had viral rebound. Viral rebounders were older than non-rebounders (median 54 vs 47 years, P=0.04). Symptom rebound occurred in 27% of participants after initial symptom improvement and in 10% of participants after initial symptom resolution. The combination of high-level viral rebound to ≥5.0 log10 RNA copies/mL and symptom rebound after initial improvement was observed in 1-2% of participants. Interpretation Viral RNA rebound or symptom relapse in the absence of antiviral treatment is common, but the combination of high-level viral and symptom rebound is rare.
Collapse
Affiliation(s)
- Rinki Deo
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Carlee Moser
- Harvard T.H. Chan School of Public Health, Boston, MA
| | - Justin Ritz
- Harvard T.H. Chan School of Public Health, Boston, MA
| | - Eric S Daar
- Lundquist Institute at Harbor-University of California, Los Angeles Medical Center, Torrance, CA
| | | | | | | | - Judith S Currier
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | | | | | - Kara W Chew
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | - Jonathan Z Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|