1
|
Goya-Jorge E, Bondue P, Gonza I, Laforêt F, Antoine C, Boutaleb S, Douny C, Scippo ML, de Ribaucourt JC, Crahay F, Delcenserie V. Butyrogenic, bifidogenic and slight anti-inflammatory effects of a green kiwifruit powder (Kiwi FFG®) in a human gastrointestinal model simulating mild constipation. Food Res Int 2023; 173:113348. [PMID: 37803696 DOI: 10.1016/j.foodres.2023.113348] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
Green kiwi (Actinidia deliciosa var. Hayward) is a fruit with important nutritional attributes and traditional use as a laxative. In this work, we studied in vitro the colonic fermentation of a standardized green kiwifruit powder (Kiwi FFG®) using representative intestinal microbial content of mildly constipated women. Static (batch) and dynamic configurations of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) were used to estimate the impact of Kiwi FFG® in the human gut. Analysis of metabolites revealed a significant butyrogenic effect of the kiwifruit powder and, consistently, butyrate-producing bacterial populations (i.e., Faecalibacterium prausnitzii, Cluster IV, Roseburia spp.) were greatly increased in the dynamic gastrointestinal model. Bifidobacterium spp. was also found boosted in the microflora of ascending and transverse colon sections, and a significant rise of Akkermansia muciniphila was identified in the transverse colon. Reporter gene assays using human intestinal cells (HT-29) showed that kiwifruit fermentation metabolites activate the aryl hydrocarbon receptor (AhR) transcriptional pathway, which is an important regulator of intestinal homeostasis and immunity. Moreover, modulation in the production of human interleukins (IL-6 and IL-10) in Caco-2 cells suggested a potential mild anti-inflammatory effect of the kiwifruit powder and its gut microbiota-derived metabolites. Our results suggested a potential health benefit of Kiwi FFG® in the gut microbiota, particularly in the context of constipated people.
Collapse
Affiliation(s)
- Elizabeth Goya-Jorge
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | - Pauline Bondue
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium; ORTIS S.A., Hinter der Heck 46, 4750 Elsenborn, Belgium
| | - Irma Gonza
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | - Fanny Laforêt
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | - Céline Antoine
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | - Samiha Boutaleb
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | - Caroline Douny
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | | | | | - Véronique Delcenserie
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium.
| |
Collapse
|
2
|
Bester A, O'Brien M, Cotter PD, Dam S, Civai C. Shotgun Metagenomic Sequencing Revealed the Prebiotic Potential of a Fruit Juice Drink with Fermentable Fibres in Healthy Humans. Foods 2023; 12:2480. [PMID: 37444219 DOI: 10.3390/foods12132480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Fibre-based dietary interventions are at the forefront of gut microbiome modulation research, with a wealth of 16S rRNA information to demonstrate the prebiotic effects of isolated fibres. However, there is a distinct lack of data relating to the effect of a combination of soluble and insoluble fibres in a convenient-to-consume fruit juice food matrix on gut microbiota structure, diversity, and function. Here, we aimed to determine the impact of the MOJU Prebiotic Shot, an apple, lemon, ginger, and raspberry fruit juice drink blend containing chicory inulin, baobab, golden kiwi, and green banana powders, on gut microbiota structure and function. Healthy adults (n = 20) were included in a randomised, double-blind, placebo-controlled, cross-over study, receiving 60 mL MOJU Prebiotic Shot or placebo (without the fibre mix) for 3 weeks with a 3-week washout period between interventions. Shotgun metagenomics revealed significant between-group differences in alpha and beta diversity. In addition, the relative abundance of the phyla Actinobacteria and Desulfobacteria was significantly increased as a result of the prebiotic intervention. Nine species were observed to be differentially abundant (uncorrected p-value of <0.05) as a result of the prebiotic treatment. Of these, Bifidobacterium adolescentis and CAG-81 sp900066785 (Lachnospiraceae) were present at increased abundance relative to baseline. Additionally, KEGG analysis showed an increased abundance in pathways associated with arginine biosynthesis and phenylacetate degradation during the prebiotic treatment. Our results show the effects of the daily consumption of 60 mL MOJU Prebiotic Shot for 3 weeks and provide insight into the functional potential of B. adolescentis.
Collapse
Affiliation(s)
- Adri Bester
- London Agri Food Innovation Clinic (LAFIC), School of Applied Sciences, London South Bank University, London SE1 0AA, UK
| | | | | | | | - Claudia Civai
- London Agri Food Innovation Clinic (LAFIC), School of Applied Sciences, London South Bank University, London SE1 0AA, UK
| |
Collapse
|
3
|
Sasso J, Ammar RM, Tenchov R, Lemmel S, Kelber O, Grieswelle M, Zhou QA. Gut Microbiome-Brain Alliance: A Landscape View into Mental and Gastrointestinal Health and Disorders. ACS Chem Neurosci 2023; 14:1717-1763. [PMID: 37156006 PMCID: PMC10197139 DOI: 10.1021/acschemneuro.3c00127] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Gut microbiota includes a vast collection of microorganisms residing within the gastrointestinal tract. It is broadly recognized that the gut and brain are in constant bidirectional communication, of which gut microbiota and its metabolic production are a major component, and form the so-called gut microbiome-brain axis. Disturbances of microbiota homeostasis caused by imbalance in their functional composition and metabolic activities, known as dysbiosis, cause dysregulation of these pathways and trigger changes in the blood-brain barrier permeability, thereby causing pathological malfunctions, including neurological and functional gastrointestinal disorders. In turn, the brain can affect the structure and function of gut microbiota through the autonomic nervous system by regulating gut motility, intestinal transit and secretion, and gut permeability. Here, we examine data from the CAS Content Collection, the largest collection of published scientific information, and analyze the publication landscape of recent research. We review the advances in knowledge related to the human gut microbiome, its complexity and functionality, its communication with the central nervous system, and the effect of the gut microbiome-brain axis on mental and gut health. We discuss correlations between gut microbiota composition and various diseases, specifically gastrointestinal and mental disorders. We also explore gut microbiota metabolites with regard to their impact on the brain and gut function and associated diseases. Finally, we assess clinical applications of gut-microbiota-related substances and metabolites with their development pipelines. We hope this review can serve as a useful resource in understanding the current knowledge on this emerging field in an effort to further solving of the remaining challenges and fulfilling its potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Ramy M. Ammar
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Rumiana Tenchov
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Steven Lemmel
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Olaf Kelber
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Malte Grieswelle
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Qiongqiong Angela Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| |
Collapse
|
4
|
Zhao N, Liu C, Li N, Zhou S, Guo Y, Yang S, Liu H. Role of Interleukin-22 in ulcerative colitis. Biomed Pharmacother 2023; 159:114273. [PMID: 36696801 DOI: 10.1016/j.biopha.2023.114273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Ulcerative Colitis (UC) is a chronic disease, in the progression of which an immune overreaction may play an important role. IL-22 is a member of the IL-10 superfamily of cytokines and is pleiotropic in immune regulation and inflammatory responses. IL-22 can produce protective effects, promote wound healing and tissue regeneration, while it can also induce inflammatory reactions when it is chronically overexpressed. Extensive literatures reported that IL-22 played an essential role in the pathogenic development of UC. IL-22 participates in the whole disease process of UC involving signaling pathways, gene expression regulation, and intestinal flora imbalance, making IL-22 a possible candidate for the treatment of UC. In this paper, the latest knowledge to further elucidate the role of IL-22 in UC was summarized and analyzed.
Collapse
Affiliation(s)
- Nan Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Ning Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Shuang Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Yuting Guo
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Shihua Yang
- Department of Oncology, The Fifth People's Hospital of Jinan, Jinan 250022, PR China.
| | - Huimin Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
5
|
Zhou Z, He W, Tian H, Zhan P, Liu J. Thyme ( Thymus vulgaris L.) polyphenols ameliorate DSS-induced ulcerative colitis of mice by mitigating intestinal barrier damage, regulating gut microbiota, and suppressing TLR4/NF-κB-NLRP3 inflammasome pathways. Food Funct 2023; 14:1113-1132. [PMID: 36594593 DOI: 10.1039/d2fo02523j] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thyme (Thymus vulgaris L.) is an important medicinal and edible homologous plant, and the composition and bioactivity of its polyphenol extracts have attracted widespread attention from researchers. In this study, the polyphenols in thyme were separated and identified by UPLC/MS-MS and UPLC-DAD, and the intervention effect and mechanism of thyme polyphenols (TP) on ulcerative colitis (UC) were analyzed in combination with dextran sulfate sodium salt (DSS)-induced mice colitis model. It was found that the main substances of TP were scutellarin (160.68 ± 2.09 mg g-1), rosmarinic acid (80.33 ± 1.74 mg g-1), scutellarein (56.53 ± 1.32 mg g-1), apigenin-7-O-glucuronide (21.06 ± 0.68 mg g-1), gallic acid (13.80 ± 0.73 mg g-1), and ferulic acid (12.00 ± 0.20 mg g-1). TP and sulfasalazine, which were respectively supplemented to these experimental mice at 200 mg per kg bw and 100 mg per kg bw, showed similar effects on alleviating intestinal inflammation, as indicated by the consistency of the decreased NLRP3 and TLR4 proteins and inhibited pro-inflammatory cytokine secretion in NF-κB inflammatory signaling pathway. Furthermore, the treatment with TP at doses of 200 and 400 mg per kg bw both effectively upregulated tight junction protein expression and enhanced intestinal epithelial cell integrity. Consistently, the abundany of probiotics including Blautia, Bacteroides, Romboutsia, and Faecalibaculum associated with the synthesis of short chain fatty acids (SCFAs) were elevated, whereas harmful bacteria including Escherichia Shigella, Muribaculum, and Clostridium sensu stricto 1 associated with the inflammatory process were significantly inhibited. Notably, TP supplemented at the dose of 100 mg per kg bw showed weak mitigated effects on the above symptoms, while the other two TP experimental groups showed similar promising therapeutic potential, suggesting that such beneficial effects required a certain dose of TP to be achieved. These results indicated that TP could suppress the TLR4/NLRP3-NF-κB inflammasome pathways, protect the intestinal epithelial barrier, and remodel the disordered gut microbiota, which suggested that TP might be a promising dietary strategy for UC.
Collapse
Affiliation(s)
- Zuman Zhou
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710100, China.
| | - Wanying He
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710100, China.
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710100, China.
| | - Ping Zhan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710100, China.
| | - Jianshu Liu
- Shaanxi Provincial Research Center of Functional Food Engineering Technology, Xi'an 710100, China
| |
Collapse
|
6
|
Procházková N, Falony G, Dragsted LO, Licht TR, Raes J, Roager HM. Advancing human gut microbiota research by considering gut transit time. Gut 2023; 72:180-191. [PMID: 36171079 PMCID: PMC9763197 DOI: 10.1136/gutjnl-2022-328166] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/10/2022] [Indexed: 02/04/2023]
Abstract
Accumulating evidence indicates that gut transit time is a key factor in shaping the gut microbiota composition and activity, which are linked to human health. Both population-wide and small-scale studies have identified transit time as a top covariate contributing to the large interindividual variation in the faecal microbiota composition. Despite this, transit time is still rarely being considered in the field of the human gut microbiome. Here, we review the latest research describing how and why whole gut and segmental transit times vary substantially between and within individuals, and how variations in gut transit time impact the gut microbiota composition, diversity and metabolism. Furthermore, we discuss the mechanisms by which the gut microbiota may causally affect gut motility. We argue that by taking into account the interindividual and intraindividual differences in gut transit time, we can advance our understanding of diet-microbiota interactions and disease-related microbiome signatures, since these may often be confounded by transient or persistent alterations in transit time. Altogether, a better understanding of the complex, bidirectional interactions between the gut microbiota and transit time is required to better understand gut microbiome variations in health and disease.
Collapse
Affiliation(s)
- Nicola Procházková
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Gwen Falony
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
- Center for Microbiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Tine Rask Licht
- National Food Institute, Technical University, Kgs. Lyngby, Denmark
| | - Jeroen Raes
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
- Center for Microbiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Henrik M Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
7
|
Panelli S, D'Auria E, Papaleo S, Alvaro A, Bandi C, Comandatore F, Zuccotti G. Biotics in pediatrics: a short overview. Minerva Pediatr (Torino) 2022; 74:682-687. [PMID: 35822582 DOI: 10.23736/s2724-5276.22.06989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of this review was to provide a general overview to the topic of this special issue. In this study the available categories of biotics were defined (i.e., probiotics, prebiotics, postobiotics and synbiotics) as first actors of therapies that target the gut flora, with the aim to modify it in a specific direction, generally with the goal of controlling inflammatory phenomena. The points that must be considered when evaluating the results of these interventions, and, specifically, the changes in gut microbiota following the assumption of biotics were analyzed. This context typically represented the one of clinical trials aimed at inducing or maintaining remission in pediatric autoimmune inflammatory diseases, that often yield conflicting results. We finally attempted to draft possible research developments for the next years.
Collapse
Affiliation(s)
- Simona Panelli
- Department of Biomedical and Clinical Sciences, "Romeo ed Enrica Invernizzi" Pediatric Clinical Research Center, University of Milan, Milan, Italy -
| | - Enza D'Auria
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Stella Papaleo
- Department of Biomedical and Clinical Sciences, "Romeo ed Enrica Invernizzi" Pediatric Clinical Research Center, University of Milan, Milan, Italy
| | - Alessandro Alvaro
- Department of Biosciences, "Romeo ed Enrica Invernizzi" Pediatric Clinical Research Center, University of Milan, Milan, Italy
| | - Claudio Bandi
- Department of Biosciences, "Romeo ed Enrica Invernizzi" Pediatric Clinical Research Center, University of Milan, Milan, Italy
| | - Francesco Comandatore
- Department of Biomedical and Clinical Sciences, "Romeo ed Enrica Invernizzi" Pediatric Clinical Research Center, University of Milan, Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Fernández-Alonso M, Aguirre Camorlinga A, Messiah SE, Marroquin E. Effect of adding probiotics to an antibiotic intervention on the human gut microbial diversity and composition: a systematic review. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction. Millions of antibiotic prescriptions are written annually in the USA.
Gap Statement. Probiotics reduce antibiotic-induced gastrointestinal side effects; however, the effect of probiotics on preserving gut microbial composition in response to antibiotics is not well understood.
Aim. To evaluate whether the addition of probiotics is capable of reverting the changes in alpha diversity and gut microbial composition commonly observed in adult participants receiving antibiotics.
Methodology. A search was conducted by two researchers following the PRISMA guidelines using PubMed, Science Direct, Cochrane and Embase from January to December 2021 with the following inclusion criteria: (i) randomized clinical trials assessing the effect of antibiotics, probiotics or antibiotics+probiotics; (ii) 16S rRNA; (iii) adult participants; and (iv) in English. Once data was extracted in tables, a third researcher compared, evaluated and merged the collected data. The National Institutes of Health (NIH) rating system was utilized to analyse risk of bias.
Results. A total of 29 articles (n=11 antibiotics, n=11 probiotics and n=7 antibiotics+probiotics) met the inclusion criteria. The lack of standardization of protocols to analyse the gut microbial composition and the wide range of selected antibiotics/probiotics complicated data interpretation; however, despite these discrepancies, probiotic co-administration with antibiotics seemed to prevent some, but not all, of the gut microbial diversity and composition changes induced by antibiotics, including restoration of health-related bacteria such as
Faecalibacterium prausnitzii
.
Conclusion. Addition of probiotics to antibiotic interventions seems to preserve alpha diversity and ameliorate the changes to gut microbial composition caused by antibiotic interventions.
Collapse
Affiliation(s)
- Melissa Fernández-Alonso
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
| | | | - Sarah E. Messiah
- Center for Pediatric Population Health, UTHealth School of Public Health and Children's Health System of Texas, Dallas, TX, USA
- School of Public Health, University of Texas Health Science Center at Houston, Dallas Campus, Dallas, TX, USA
| | - Elisa Marroquin
- Department of Nutritional Sciences, College of Science and Engineering, Texas Christian University, Fort Worth, TX, USA
| |
Collapse
|
9
|
Kiwifruit and Kiwifruit Extracts for Treatment of Constipation: A Systematic Review and Meta-Analysis. Can J Gastroenterol Hepatol 2022; 2022:7596920. [PMID: 36247043 PMCID: PMC9560827 DOI: 10.1155/2022/7596920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION This systematic review aimed to summarize evidence to determine the effectiveness of kiwifruit or kiwifruit extracts in the treatment of constipation. METHODS Electronic databases were searched from inception to May 2022 without any age or language limitations. Eligible studies enrolled participants with constipation who were randomized to receive kiwifruit or kiwifruit extracts vs. any nonkiwifruit control. Standardized mean difference (SMD) and mean difference (MD) with confidence intervals (CI) were determined for the following outcomes: frequency of spontaneous bowel movements (SBM), abdominal pain and straining, as well as stool type as determined by the Bristol Stool Scale (BSS). The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach was used to rate the certainty of evidence. Our review was registered on PROSPERO (CRD42021239397). RESULTS Seven RCTs, including 399 participants (82% female; mean age: 42 years (SD 14.6)), were included. Compared with placebo (n = 95), kiwifruit extracts might increase the weekly frequency of SBM (MD: 1.36; 95% CI: -0.44, 3.16) with low certainty of evidence; moreover, it had an uncertain effect on BSS (SMD: 1.54; 95% CI: -1.33, 4.41) with very low certainty of evidence. Additionally, compared with placebo (n = 119), kiwifruit or its extracts reduced abdominal pain (SMD: -1.44, 95% CI -2.83, -1.66) with moderate certainty of the evidence and improved frequency of straining (SMD: -0.29; 95% CI: -1.03, 0.47). Compared with psyllium, kiwifruit may increase the weekly frequency of SBM (MD: 1.01; 95% CI: -0.02, 2.04) with moderate certainty evidence, and may increase the value on the BSS (indicating softer stools) (MD: 0.63; 95% CI: 0.01, 1.25)with low certainty of evidence. Compared to placebo, kiwifruit-encapsulated extracts may result in an increase in minor adverse events (relative risk: 4.58; 95% CI: 0.79, 26.4). CONCLUSIONS Among individuals with constipation, there is an overall low certainty of evidence indicating that kiwifruit may increase SBM when compared to placebo or psyllium. Although overall results are promising, establishing the role of kiwifruit in constipation requires large, methodologically rigorous trials. Protocol Registration: PROSPERO registration number CRD42021239397.
Collapse
|
10
|
Dang C, Zhao K, Xun Y, Feng L, Zhang D, Cui L, Cui Y, Jia X, Wang S. In vitro Intervention of Lactobacillus paracasei N1115 Can Alter Fecal Microbiota and Their SCFAs Metabolism of Pregnant Women with Constipation and Diarrhea. Curr Microbiol 2022; 79:212. [DOI: 10.1007/s00284-022-02906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
|
11
|
He H, Sun Y, Zhang S, Zhang H, Su W, Guo Z, Zhang Y, Wen J, Li X, Hu J, Nie S. Arabinogalactan,
Bifidobacterium longum
, and
Faecalibacterium prausnitzii
improve insulin resistance in high‐fat diet‐induced C57BL/6J mice. EFOOD 2022. [DOI: 10.1002/efd2.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Huijun He
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Yonggan Sun
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Shanshan Zhang
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Wenwen Su
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Zheyu Guo
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Yanli Zhang
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Jiajia Wen
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Xiajialong Li
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| |
Collapse
|
12
|
Liao W, Li W, Liu S, Tang D, Chen Y, Wang Y, Xie Z, Huang J. Potential prebiotic effects of nonabsorptive components of Keemun and Dianhong black tea: an in vitro study. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Application of In Vivo Imaging Techniques and Diagnostic Tools in Oral Drug Delivery Research. Pharmaceutics 2022; 14:pharmaceutics14040801. [PMID: 35456635 PMCID: PMC9025904 DOI: 10.3390/pharmaceutics14040801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 02/04/2023] Open
Abstract
Drug absorption following oral administration is determined by complex and dynamic interactions between gastrointestinal (GI) physiology, the drug, and its formulation. Since many of these interactions are not fully understood, the COST action on “Understanding Gastrointestinal Absorption-related Processes (UNGAP)” was initiated in 2017, with the aim to improve the current comprehension of intestinal drug absorption and foster future developments in this field. In this regard, in vivo techniques used for the characterization of human GI physiology and the intraluminal behavior of orally administered dosage forms in the GI tract are fundamental to gaining deeper mechanistic understanding of the interplay between human GI physiology and drug product performance. In this review, the potential applications, advantages, and limitations of the most important in vivo techniques relevant to oral biopharmaceutics are presented from the perspectives of different research fields.
Collapse
|
14
|
Bayer SB, Frampton CM, Gearry RB, Barbara G. Habitual Green Kiwifruit Consumption Is Associated with a Reduction in Upper Gastrointestinal Symptoms: A Systematic Scoping Review. Adv Nutr 2022; 13:846-856. [PMID: 35266507 PMCID: PMC9156379 DOI: 10.1093/advances/nmac025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Kiwifruit have known positive effects on digestion. During clinical intervention trials using kiwifruit to improve constipation, upper gastrointestinal (GI) symptoms such as abdominal discomfort and pain, indigestion, and reflux were also alleviated. We aimed to evaluate the evidence for upper GI symptom relief by kiwifruit in clinical trials on participants with functional constipation (FC), irritable bowel syndrome with constipation (IBS-C), and healthy participants, and to elucidate which symptoms may be relieved and whether a difference exists between the effects of gold and green kiwifruit. We executed a systematic scoping review of 3 electronic databases from 1947 through January 2021 to identify clinical trials that reported effects of green or gold kiwifruit or kiwifruit compounds on upper GI symptoms as secondary outcomes in healthy participants or participants with FC or IBS-C. Studies were divided into those using the Gastrointestinal Symptom Rating Scale (GSRS) and those using alternative measurement tools. GSRS outcomes were pooled and statistically analyzed; non-GSRS outcomes were summarized. We identified 12 clinical trials with a total of 661 participants (124 controls, 537 receiving intervention) providing evidence for symptom relief of upper GI symptoms by kiwifruit intake. Only 5 of the 12 clinical trials used the GSRS to assess upper GI symptom relief. We found good evidence that green kiwifruit may reduce abdominal discomfort and pain, and some evidence that kiwifruit consumption may attenuate indigestion. Pooled GSRS outcome analysis indicates an average reduction of -0.85 (95% CI: -1.1, -0.57; Z = 6.1) in abdominal pain scores and -0.33 (95% CI: -0.52, -0.15; Z = -3.5) in indigestion scores with habitual kiwifruit consumption. While the number of studies reporting on upper GI symptom relief with a comparable measurement is limited, there is consistent evidence for the efficacy of kiwifruit on upper GI symptom relief. More research to strengthen the evidence is recommended.
Collapse
Affiliation(s)
| | - Chris M Frampton
- Biostatistics and Computational Biology Unit, University of Otago Christchurch, Christchurch, New Zealand
| | - Richard B Gearry
- Gastrointestinal Unit for Translational Studies, Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy,IRCCS Azienda Ospedaliero-Universitaria, Bologna,Italy
| |
Collapse
|
15
|
Maioli TU, Borras-Nogues E, Torres L, Barbosa SC, Martins VD, Langella P, Azevedo VA, Chatel JM. Possible Benefits of Faecalibacterium prausnitzii for Obesity-Associated Gut Disorders. Front Pharmacol 2021; 12:740636. [PMID: 34925006 PMCID: PMC8677946 DOI: 10.3389/fphar.2021.740636] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic disorders are an increasing concern in the industrialized world. Current research has shown a direct link between the composition of the gut microbiota and the pathogenesis of obesity and diabetes. In only a few weeks, an obesity-inducing diet can lead to increased gut permeability and microbial dysbiosis, which contributes to chronic inflammation in the gut and adipose tissues, and to the development of insulin resistance. In this review, we examine the interplay between gut inflammation, insulin resistance, and the gut microbiota, and discuss how some probiotic species can be used to modulate gut homeostasis. We focus primarily on Faecalibacterium prausnitzii, a highly abundant butyrate-producing bacterium that has been proposed both as a biomarker for the development of different gut pathologies and as a potential treatment due to its production of anti-inflammatory metabolites.
Collapse
Affiliation(s)
- Tatiani Uceli Maioli
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Université Paris Saclay, INRAE, AgroParisTech, Micalis, Jouy-en-Josas, France
| | | | - Licia Torres
- Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sara Candida Barbosa
- Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vinicius Dantas Martins
- Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Philippe Langella
- Université Paris Saclay, INRAE, AgroParisTech, Micalis, Jouy-en-Josas, France
| | - Vasco Ariston Azevedo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jean-Marc Chatel
- Université Paris Saclay, INRAE, AgroParisTech, Micalis, Jouy-en-Josas, France
| |
Collapse
|
16
|
Lv WQ, Lin X, Shen H, Liu HM, Qiu X, Li BY, Shen WD, Ge CL, Lv FY, Shen J, Xiao HM, Deng HW. Human gut microbiome impacts skeletal muscle mass via gut microbial synthesis of the short-chain fatty acid butyrate among healthy menopausal women. J Cachexia Sarcopenia Muscle 2021; 12:1860-1870. [PMID: 34472211 PMCID: PMC8718076 DOI: 10.1002/jcsm.12788] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/20/2021] [Accepted: 08/04/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Increasing evidence suggests that human gut microbiome plays an important role in variation of skeletal muscle mass (SMM). However, specific causal mechanistic relationship of human gut microbiome with SMM remains largely unresolved. Understanding the causal mechanistic relationship may provide a basis for novel interventions for loss of SMM. This study investigated whether human gut microbiome has a causal effect on SMM among Chinese community-dwelling healthy menopausal women. METHODS Estimated SMM was derived from whole-body dual-energy X-ray absorptiometry. We performed integrated analyses on whole-genome sequencing, shotgun metagenomic sequencing, and serum short-chain fatty acids (SCFAs), as well as available host SMM measurements among community-dwelling healthy menopausal women (N = 482). We combined the results with summary statistics from genome-wide association analyses for human gut microbiome (N = 952) and SMM traits (N = 28 330). As a prerequisite for causality, we used a computational protocol that was proposed to measure correlations among gut metagenome, metabolome, and the host trait to investigate the relationship between human gut microbiome and SMM. Causal inference methods were applied to assess the potential causal effects of gut microbial features on SMM, through one-sample and two-sample Mendelian randomization (MR) analyses, respectively. RESULTS In metagenomic association analyses, the increased capacity for gut microbial synthesis of the SCFA butyrate was significantly associated with serum butyrate levels [Spearman correlation coefficient (SCC) = 0.13, P = 0.02] and skeletal muscle index (SCC = 0.084, P = 0.002). Of interest was the finding that two main butyrate-producing bacterial species were both positively associated with the increased capacity for gut microbial synthesis of butyrate [Faecalibacterium prausnitzii (SCC = 0.25, P = 6.6 × 10-7 ) and Butyricimonas virosa (SCC = 0.15, P = 0.001)] and for skeletal muscle index [F. prausnitzii (SCC = 0.16, P = 6.2 × 10-4 ) and B. virosa (SCC = 0.17, P = 2.4 × 10-4 )]. One-sample MR results showed a causal effect between gut microbial synthesis of the SCFA butyrate and appendicular lean mass (β = 0.04, 95% confidence interval 0.029 to 0.051, P = 0.003). Two-sample MR results further confirmed the causal effect between gut microbial synthesis of the SCFA butyrate and appendicular lean mass (β = 0.06, 95% confidence interval 0 to 0.13, P = 0.06). CONCLUSIONS Our results may help the future development of novel intervention approaches for preventing or alleviating loss of SMM.
Collapse
Affiliation(s)
- Wan-Qiang Lv
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hui-Min Liu
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiang Qiu
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bo-Yang Li
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Wen-Di Shen
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chang-Li Ge
- LC-Bio Technologies Co., Ltd., Hangzhou, China
| | - Feng-Ye Lv
- LC-Bio Technologies Co., Ltd., Hangzhou, China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Hong-Mei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hong-Wen Deng
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
17
|
Predicting the Role of the Human Gut Microbiome in Constipation Using Machine-Learning Methods: A Meta-Analysis. Microorganisms 2021; 9:microorganisms9102149. [PMID: 34683469 PMCID: PMC8539211 DOI: 10.3390/microorganisms9102149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Constipation is a common condition that affects the health and the quality of life of patients. Recent studies have suggested that the gut microbiome is associated with constipation, but these studies were mainly focused on a single research cohort. Thus, we aimed to construct a classification model based on fecal bacterial and identify the potential gut microbes’ biomarkers. (2) Methods: We collected 3056 fecal amplicon sequence data from five research cohorts. The data were subjected to a series of analyses, including alpha- and beta-diversity analyses, phylogenetic profiling analyses, and systematic machine learning to obtain a comprehensive understanding of the association between constipation and the gut microbiome. (3) Results: The alpha diversity of the bacterial community composition was higher in patients with constipation. Beta diversity analysis evidenced significant partitions between the two groups on the base of gut microbiota composition. Further, machine learning based on feature selection was performed to evaluate the utility of the gut microbiome as the potential biomarker for constipation. The Gradient Boosted Regression Trees after chi2 feature selection was the best model, exhibiting a validation performance of 70.7%. (4) Conclusions: We constructed an accurate constipation discriminant model and identified 15 key genera, including Serratia, Dorea, and Aeromonas, as possible biomarkers for constipation.
Collapse
|
18
|
Katsirma Z, Dimidi E, Rodriguez-Mateos A, Whelan K. Fruits and their impact on the gut microbiota, gut motility and constipation. Food Funct 2021; 12:8850-8866. [PMID: 34505614 DOI: 10.1039/d1fo01125a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fruits are the seed-bearing product of plants and have considerable nutritional importance in the human diet. The consumption of fruits is among the dietary strategies recommended for constipation due to its potential effects on the gut microbiota and gut motility. Dietary fiber from fruits has been the subject of research on the impact on gut microbiota, gut motility and constipation, however, fruits also contain other components that impact the intestinal luminal environment that may impact these outcomes including sorbitol and (poly)phenols. This review aims to explore the mechanisms of action and effectiveness of fruits and fruit products on the gut microbiota, gut motility and constipation, with a focus on fiber, sorbitol and (poly)phenols. In vitro, animal and human studies investigating the effects of fruits on gut motility and gut microbiota were sought through electronic database searches, hand searching and consulting with experts. Various fruits have been shown to modify the microbiota in human studies including blueberry powder (lactobacilli, bifidobacteria), prunes (bifidobacteria), kiwi fruit (Bacteroides, Faecalibacterium prausnitzii) and raisins (Ruminococcus, F. prausnitzii). Prunes, raisins and apple fiber isolate have been shown to increase fecal weight in humans, whilst kiwifruit to increase small bowel and fecal water content. Apple fiber isolate, kiwifruit, fig paste, and orange extract have been shown to reduce gut transit time, while prunes have not. There is limited evidence on which fruit components play a predominant role in regulating gut motility and constipation, or whether a synergy of multiple components is responsible for such effects.
Collapse
Affiliation(s)
- Zoi Katsirma
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, UK.
| | - Eirini Dimidi
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, UK.
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, UK.
| | - Kevin Whelan
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, UK.
| |
Collapse
|
19
|
Li H, Christman LM, Li R, Gu L. Synergic interactions between polyphenols and gut microbiota in mitigating inflammatory bowel diseases. Food Funct 2021; 11:4878-4891. [PMID: 32490857 DOI: 10.1039/d0fo00713g] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic and recurring inflammatory conditions in the colon and intestine. Their etiology is not fully understood but involves the combination of gut dysbiosis, genetics, immune functions, and environmental factors including diet. Polyphenols from plant-based food synergistically interact with gut microbiota to suppress inflammation and alleviate symptoms of IBD. Polyphenols increase the diversity of gut microbiota, improve the relative abundance of beneficial bacteria, and inhibit the pathogenic species. Polyphenols not absorbed in the small intestine are catabolized in the colon by microbiota into microbial metabolites, many of which have higher anti-inflammatory activity and bioavailability than their precursors. The polyphenols and their microbial metabolites alleviate IBD through reduction of oxidative stress, inhibition of inflammatory cytokines secretion (TNF-α, IL-6, IL-8, and IL-1β), suppression of NF-κB, upregulation of Nrf2, gut barrier protection, and modulation of immune function. Future studies are needed to discover unknown microbial metabolites of polyphenols and correlate specific gut microbes with microbial metabolites and IBD mitigating activity. A better knowledge of the synergistic interactions between polyphenols and gut microbiota will help to devise more effective prevention strategies for IBD. This review focuses on the role of polyphenols, gut microbiota and their synergistic interactions on the alleviation of IBD as well as current trends and future directions of IBD management.
Collapse
Affiliation(s)
- Hao Li
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA.
| | - Lindsey M Christman
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA.
| | - Ruiqi Li
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA.
| | - Liwei Gu
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
20
|
Romano S, Savva GM, Bedarf JR, Charles IG, Hildebrand F, Narbad A. Meta-analysis of the Parkinson's disease gut microbiome suggests alterations linked to intestinal inflammation. NPJ Parkinsons Dis 2021. [PMID: 33692356 DOI: 10.1101/2020.08.10.20171397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
The gut microbiota is emerging as an important modulator of neurodegenerative diseases, and accumulating evidence has linked gut microbes to Parkinson's disease (PD) symptomatology and pathophysiology. PD is often preceded by gastrointestinal symptoms and alterations of the enteric nervous system accompany the disease. Several studies have analyzed the gut microbiome in PD, but a consensus on the features of the PD-specific microbiota is missing. Here, we conduct a meta-analysis re-analyzing the ten currently available 16S microbiome datasets to investigate whether common alterations in the gut microbiota of PD patients exist across cohorts. We found significant alterations in the PD-associated microbiome, which are robust to study-specific technical heterogeneities, although differences in microbiome structure between PD and controls are small. Enrichment of the genera Lactobacillus, Akkermansia, and Bifidobacterium and depletion of bacteria belonging to the Lachnospiraceae family and the Faecalibacterium genus, both important short-chain fatty acids producers, emerged as the most consistent PD gut microbiome alterations. This dysbiosis might result in a pro-inflammatory status which could be linked to the recurrent gastrointestinal symptoms affecting PD patients.
Collapse
Affiliation(s)
- Stefano Romano
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| | - George M Savva
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Janis R Bedarf
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Ian G Charles
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | - Falk Hildebrand
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- Earlham Institute, Norwich Research Park, Norwich, UK.
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| |
Collapse
|
21
|
Meta-analysis of the Parkinson's disease gut microbiome suggests alterations linked to intestinal inflammation. NPJ Parkinsons Dis 2021; 7:27. [PMID: 33692356 PMCID: PMC7946946 DOI: 10.1038/s41531-021-00156-z] [Citation(s) in RCA: 324] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota is emerging as an important modulator of neurodegenerative diseases, and accumulating evidence has linked gut microbes to Parkinson's disease (PD) symptomatology and pathophysiology. PD is often preceded by gastrointestinal symptoms and alterations of the enteric nervous system accompany the disease. Several studies have analyzed the gut microbiome in PD, but a consensus on the features of the PD-specific microbiota is missing. Here, we conduct a meta-analysis re-analyzing the ten currently available 16S microbiome datasets to investigate whether common alterations in the gut microbiota of PD patients exist across cohorts. We found significant alterations in the PD-associated microbiome, which are robust to study-specific technical heterogeneities, although differences in microbiome structure between PD and controls are small. Enrichment of the genera Lactobacillus, Akkermansia, and Bifidobacterium and depletion of bacteria belonging to the Lachnospiraceae family and the Faecalibacterium genus, both important short-chain fatty acids producers, emerged as the most consistent PD gut microbiome alterations. This dysbiosis might result in a pro-inflammatory status which could be linked to the recurrent gastrointestinal symptoms affecting PD patients.
Collapse
|
22
|
Faecalibacterium prausnitzii: A Next-Generation Probiotic in Gut Disease Improvement. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2021. [DOI: 10.1155/2021/6666114] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The researchers are paying more attention to the role of gut commensal bacteria in health development beyond the classical pathogens. It has been widely demonstrated that dysbiosis, which means the alternations of the gut microbial structure, is closely associated with development of intestinal chronic inflammation-related diseases such as inflammatory bowel disease (IBD), and even infectious diseases including bacterial and viral infection. Thus, for reshaping ecological balance, a growing body of the literatures have proposed numerous strategies to modulate the structure of the gut microbiota, which provide more revelation for amelioration of these inflammation or infection-related diseases. While the ameliorative effects of traditional probiotics seem negligeable, emerging next generation probiotics (NGPs) start to receive great attention as new preventive and therapeutic tools. Encouragingly, within the last decade, the intestinal symbiotic bacterium Faecalibacterium prausnitzii has emerged as the “sentinel of the gut,” with multifunction of anti-inflammation, gut barrier enhancement, and butyrate production. A lower abundance of F. prausnitzii has been shown in IBD, Clostridium difficile infection (CDI), and virus infection such as COVID-19. It is reported that intervention with higher richness of F. prausnitzii through dietary modulation, fecal microbiota transplantation, or culture strategy can protect the mice or the subjects from inflammatory diseases. Therefore, F. prausnitzii may have potential ability to reduce microbial translocation and inflammation, preventing occurrences of gastrointestinal comorbidities especially in COVID-19 patients.
Collapse
|
23
|
The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorganisms 2020; 8:microorganisms8111715. [PMID: 33139627 PMCID: PMC7692443 DOI: 10.3390/microorganisms8111715] [Citation(s) in RCA: 760] [Impact Index Per Article: 190.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/13/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023] Open
Abstract
The two most important bacterial phyla in the gastrointestinal tract, Firmicutes and Bacteroidetes, have gained much attention in recent years. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to have an important influence in maintaining normal intestinal homeostasis. Increased or decreased F/B ratio is regarded as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel disease (IBD). Probiotics as live microorganisms can confer health benefits to the host when administered in adequate amounts. There is considerable evidence of their nutritional and immunosuppressive properties including reports that elucidate the association of probiotics with the F/B ratio, obesity, and IBD. Orally administered probiotics can contribute to the restoration of dysbiotic microbiota and to the prevention of obesity or IBD. However, as the effects of different probiotics on the F/B ratio differ, selecting the appropriate species or mixture is crucial. The most commonly tested probiotics for modifying the F/B ratio and treating obesity and IBD are from the genus Lactobacillus. In this paper, we review the effects of probiotics on the F/B ratio that lead to weight loss or immunosuppression.
Collapse
|
24
|
Puértolas-Balint F, Schroeder BO. Does an Apple a Day Also Keep the Microbes Away? The Interplay Between Diet, Microbiota, and Host Defense Peptides at the Intestinal Mucosal Barrier. Front Immunol 2020; 11:1164. [PMID: 32655555 PMCID: PMC7325984 DOI: 10.3389/fimmu.2020.01164] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
A crucial mechanism of intestinal defense includes the production and secretion of host defense peptides (HDPs). HDPs control pathogens and commensals at the intestinal interface by direct killing, by sequestering vital ions, or by causing bacterial cells to aggregate in the mucus layer. Accordingly, the combined activity of various HDPs neutralizes gut bacteria before reaching the mucosa and thus helps to maintain the homeostatic balance between the host and its microbes at the mucosal barrier. Defects in the mucosal barrier have been associated with various diseases that are on the rise in the Western world. These include metabolic diseases, such as obesity and type 2 diabetes, and inflammatory intestinal disorders, including ulcerative colitis and Crohn's disease, the two major entities of inflammatory bowel disease. While the etiology of these diseases is multifactorial, highly processed Western-style diet (WSD) that is rich in carbohydrates and fat and low in dietary fiber content, is considered to be a contributing lifestyle factor. As such, WSD does not only profoundly affect the resident microbes in the intestine, but can also directly alter HDP function, thereby potentially contributing to intestinal mucosal barrier dysfunction. In this review we aim to decipher the complex interaction between diet, microbiota, and HDPs. We discuss how HDP expression can be modulated by specific microbes and their metabolites as well as by dietary factors, including fibers, lipids, polyphenols and vitamins. We identify several dietary compounds that lead to reduced HDP function, but also factors that stimulate HDP production in the intestine. Furthermore, we argue that the effect of HDPs against commensal bacteria has been understudied when compared to pathogens, and that local environmental conditions also need to be considered. In addition, we discuss the known molecular mechanisms behind HDP modulation. We believe that a better understanding of the diet-microbiota-HDP interdependence will provide insights into factors underlying modern diseases and will help to identify potential dietary interventions or probiotic supplementation that can promote HDP-mediated intestinal barrier function in the Western gut.
Collapse
Affiliation(s)
- Fabiola Puértolas-Balint
- Laboratory for Molecular Infection Medicine Sweden (MIMS) -The Nordic EMBL Partnership for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Bjoern O Schroeder
- Laboratory for Molecular Infection Medicine Sweden (MIMS) -The Nordic EMBL Partnership for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
25
|
Mortaş H, Bilici S, Karakan T. The circadian disruption of night work alters gut microbiota consistent with elevated risk for future metabolic and gastrointestinal pathology. Chronobiol Int 2020; 37:1067-1081. [PMID: 32602753 DOI: 10.1080/07420528.2020.1778717] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Day and night cycles are the most important cue for the central clock of human beings, and they are also important for the gut clock. The aim of the study is to determine the differences in the gut microbiota of rotational shift workers when working the day versus night shift. Fecal samples and other data were collected from 10 volunteer male security officers after 4 weeks of day shift work (07:00-15:00 h) and also after 2 weeks of night shift work (23:00-07:00 h). In total, 20 stool samples were collected for analysis of gut microbiota (10 subjects x 2 work shifts) and stored at -80°C until analysis by 16 S rRNA sequencing. The relative abundances of Bacteroidetes were reduced and those of Actinobacteria and Firmicutes increased when working the night compared to day shift. Faecalibacterium abundance was found to be a biomarker of the day shift work. Dorea longicatena and Dorea formicigenerans were significantly more abundant in individuals when working the night shift. Rotational day and night shift work causes circadian rhythm disturbance with an associated alteration in the abundances of gut microbiota, leading to the concern that such induced alteration of gut microbiota may at least partially contribute to an increased risk of future metabolic syndrome and gastrointestinal pathology.
Collapse
Affiliation(s)
- Hande Mortaş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University , Ankara, Turkey
| | - Saniye Bilici
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University , Ankara, Turkey
| | - Tarkan Karakan
- Department of Internal Medicine Gastroenterology, Faculty of Medicine, Gazi University , Ankara, Turkey
| |
Collapse
|
26
|
Nishiwaki H, Ito M, Ishida T, Hamaguchi T, Maeda T, Kashihara K, Tsuboi Y, Ueyama J, Shimamura T, Mori H, Kurokawa K, Katsuno M, Hirayama M, Ohno K. Meta-Analysis of Gut Dysbiosis in Parkinson's Disease. Mov Disord 2020; 35:1626-1635. [PMID: 32557853 DOI: 10.1002/mds.28119] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND PD may begin with the intestinal accumulation of α-synuclein fibrils, which can be causally associated with gut dysbiosis. The variability of gut microbiota across countries prevented us from identifying shared gut dysbiosis in PD. OBJECTIVES To identify gut dysbiosis in PD across countries. METHODS We performed 16S ribosomal RNA gene sequencing analysis of gut microbiota in 223 patients with PD and 137 controls, and meta-analyzed gut dysbiosis by combining our dataset with four previously reported data sets from the United States, Finland, Russia, and Germany. We excluded uncommon taxa from our analyses. For pathway analysis, we developed the Kyoto Encyclopedia of Genes and Genomes orthology set enrichment analysis method. RESULTS After adjusting for confounding factors (body mass index, constipation, sex, age, and catechol-O-methyl transferase inhibitor), genera Akkermansia and Catabacter, as well as families Akkermansiaceae, were increased, whereas genera Roseburia, Faecalibacterium, and Lachnospiraceae ND3007 group were decreased in PD. Catechol-O-methyl transferase inhibitor intake markedly increased family Lactobacillaceae. Inspection of these bacteria in 12 datasets that were not included in the meta-analysis revealed that increased genus Akkermansia and decreased genera Roseburia and Faecalibacterium were frequently observed across countries. Kyoto Encyclopedia of Genes and Genomes orthology set enrichment analysis revealed changes in short-chain fatty acid metabolisms in our dataset. CONCLUSIONS We report that intestinal mucin layer-degrading Akkermansia is increased and that short-chain fatty acid-producing Roseburia and Faecalibacterium are decreased in PD across countries. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Hiroshi Nishiwaki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiro Ishida
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | | | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Jun Ueyama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Mori
- Genome Evolution Laboratory, Department of Informatics, National Institute of Genetics, Mishima, Japan
| | - Ken Kurokawa
- Genome Evolution Laboratory, Department of Informatics, National Institute of Genetics, Mishima, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
27
|
Verhoog S, Taneri PE, Roa Díaz ZM, Marques-Vidal P, Troup JP, Bally L, Franco OH, Glisic M, Muka T. Dietary Factors and Modulation of Bacteria Strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: A Systematic Review. Nutrients 2019; 11:nu11071565. [PMID: 31336737 PMCID: PMC6683038 DOI: 10.3390/nu11071565] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
Akkermansia muciniphila and Faecalibacterium prausnitzii are highly abundant human gut microbes in healthy individuals, and reduced levels are associated with inflammation and alterations of metabolic processes involved in the development of type 2 diabetes. Dietary factors can influence the abundance of A. muciniphila and F. prausnitzii, but the evidence is not clear. We systematically searched PubMed and Embase to identify clinical trials investigating any dietary intervention in relation to A. muciniphila and F. prausnitzii. Overall, 29 unique trials were included, of which five examined A. muciniphila, 19 examined F. prausnitzii, and six examined both, in a total of 1444 participants. A caloric restriction diet and supplementation with pomegranate extract, resveratrol, polydextrose, yeast fermentate, sodium butyrate, and inulin increased the abundance of A. muciniphila, while a diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols decreased the abundance of A. muciniphila. For F. prausnitzii, the main studied intervention was prebiotics (e.g. fructo-oligosaccharides, inulin type fructans, raffinose); seven studies reported an increase after prebiotic intervention, while two studies reported a decrease, and four studies reported no difference. Current evidence suggests that some dietary factors may influence the abundance of A. muciniphila and F. prausnitzii. However, more research is needed to support these microflora strains as targets of microbiome shifts with dietary intervention and their use as medical nutrition therapy in prevention and management of chronic disease.
Collapse
Affiliation(s)
- Sanne Verhoog
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland.
| | - Petek Eylul Taneri
- Corlu Cancer Early Diognosis and Training Center, 59100 Tekirdag, Turkey
| | - Zayne M Roa Díaz
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - John P Troup
- Standard Process Inc Nutrition Innovation Center, Kannapolis, NC 28018, USA
| | - Lia Bally
- Department of Diabetes, Endocrinology, Clinical Nutrition and Metabolism, Bern University Hospital, 3010 Bern, Switzerland
| | - Oscar H Franco
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| | - Marija Glisic
- Leibniz Institute for Prevention Research and Epidemiology-BIPS, 28359 Bremen, Germany
| | - Taulant Muka
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
28
|
A synbiotic concept containing spore-forming Bacillus strains and a prebiotic fiber blend consistently enhanced metabolic activity by modulation of the gut microbiome in vitro. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2019; 1:100021. [PMID: 31517286 PMCID: PMC6733369 DOI: 10.1016/j.ijpx.2019.100021] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/27/2022]
Abstract
A standardized in vitro simulation of the human gastrointestinal tract (M-SHIME®) was used to assess the effect of repeated daily administration of a synbiotic formulation, containing five spore-forming Bacillus strains and a prebiotic fiber blend, on the microbial activity and composition of three simulated human subjects. Firstly, while confirming recent findings, deeper phylogenetic insight was obtained in the resident M-SHIME® microbiota, demonstrating that the model maintains a diverse and representative, colon region-specific luminal and mucosal microbial community. Supplementation of the synbiotic concept increased microbial diversity in the distal colon areas, whereas specific enhancement of Bacillaceae levels was observed in the ascending colon suggesting a successful engraftment of the Bacillus spores, which probably resulted in a stimulatory effect on, among others, Bifidobacteriaceae, Lactobacillaceae, Prevotellaceae, Tannerellaceae and Faecalibacterium prausnitzii contributing directly or indirectly to stimulation of acetate, propionate and butyrate production. When compared with a previous study investigating the Bacillus strains, the generated data suggest a synergistic effect on the intestinal microbiota for the synbiotic formulation. Given the fact that the probiotic strains have been shown to impact post-prandial metabolic endotoxemia in human individuals, it might be interesting to further investigate the efficacy of the synbiotic concept in protecting against obesity-related disorders.
Collapse
Key Words
- AC, ascending colon
- DC, descending colon
- Endotoxemia
- FOS, fructooligosaccharides
- Faecalibacterium prausnitzii
- Fructooligosaccharides
- GALT, gut associated lymphoid tissue
- GOS, galactooligosaccharides
- Galactooligosaccharides
- M-SHIME, mucosal Simulator of the Human Intestinal Microbial Ecosystem
- OTU, operational taxonomic unit
- Obesity
- SCFA, short-chain fatty acid
- TC, transverse colon
- XOS, xylooligosaccharides
- Xylooligosaccharides
- qPCR, quantitative polymerase chain reaction
Collapse
|
29
|
Fayfman M, Flint K, Srinivasan S. Obesity, Motility, Diet, and Intestinal Microbiota-Connecting the Dots. Curr Gastroenterol Rep 2019; 21:15. [PMID: 30887257 DOI: 10.1007/s11894-019-0680-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The goal of the present review is to explore the relationship between dietary changes and alterations in gut microbiota that contribute to disorders of gut motility and obesity. RECENT FINDINGS We review the microbiota changes that are seen in obesity, diarrhea, and constipation and look at potential mechanisms of how dysbiosis can predispose to these. We find that microbial metabolites, particularly short chain fatty acids, can lead to signaling changes in the host enterocytes. Microbial alteration leading to both motility disorders and obesity may be mediated by the release of hormones including glucagon-like peptides 1 and 2 (GLP-1, GLP-2) and polypeptide YY (PYY). These pathways provide avenues for microbiota-targeted interventions that can treat both disorders of motility and obesity. In summary, multiple mechanisms contribute to the interplay between the microbial dysbiosis, obesity, and dysmotility.
Collapse
Affiliation(s)
- Maya Fayfman
- Emory University School of Medicine, Atlanta, GA, USA
| | - Kristen Flint
- Emory University School of Medicine, Atlanta, GA, USA
| | - Shanthi Srinivasan
- Emory University School of Medicine, Atlanta, GA, USA. .,Atlanta Veterans Affairs Medical Center, Decatur, GA, USA. .,Emory University, Rm 201, 615 Michael Street, Atlanta, GA, 30322, USA.
| |
Collapse
|
30
|
Miron I, Dumitrascu DL. GASTROINTESTINAL MOTILITY DISORDERS IN OBESITY. ACTA ENDOCRINOLOGICA-BUCHAREST 2019; 15:497-504. [PMID: 32377248 DOI: 10.4183/aeb.2019.497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) motility, which is important for the digestion and absorption, may be altered in obesity. The aim of this review is to present the GI motility changes occurring in obesity, as well as their underlying mechanisms. We have conducted a systematic review of the published literature concerning GI motility and obesity and have described recent published data on the changes throughout the entire GI tract. Most recent discoveries include evidence supporting the increase of gastroesophageal reflux disease in obesity and inhibition of gastric motility. Intestinal transit of the distal small bowel generally slows down, ensuring enough time for digestion and absorption. Constipation is more frequent in obese patients than in those with a normal weight. The gut-brain axis plays an important role in the pathophysiology of GI motility disorders in obesity. This bidirectional communication is achieved by way of neurons, hormones, metabolites derived from intestinal microbiota and cytokines. The molecular mechanisms of GI motility changes in obesity are complex. Current data offer a starting point for further research needed to clarify the association of obesity with GI motility disorders.
Collapse
Affiliation(s)
- I Miron
- "Iuliu Hatieganu" University of Medicine and Pharmacy, 3 Medical Clinic, Cluj-Napoca, Romania
| | - D L Dumitrascu
- "Iuliu Hatieganu" Dept of Internal Medicine, Cluj-Napoca, Romania
| |
Collapse
|
31
|
Causal Relationship between Diet-Induced Gut Microbiota Changes and Diabetes: A Novel Strategy to Transplant Faecalibacterium prausnitzii in Preventing Diabetes. Int J Mol Sci 2018; 19:ijms19123720. [PMID: 30467295 PMCID: PMC6320976 DOI: 10.3390/ijms19123720] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
The incidence of metabolic disorders, including diabetes, has elevated exponentially during the last decades and enhanced the risk of a variety of complications, such as diabetes and cardiovascular diseases. In the present review, we have highlighted the new insights on the complex relationships between diet-induced modulation of gut microbiota and metabolic disorders, including diabetes. Literature from various library databases and electronic searches (ScienceDirect, PubMed, and Google Scholar) were randomly collected. There exists a complex relationship between diet and gut microbiota, which alters the energy balance, health impacts, and autoimmunity, further causes inflammation and metabolic dysfunction, including diabetes. Faecalibacterium prausnitzii is a butyrate-producing bacterium, which plays a vital role in diabetes. Transplantation of F. prausnitzii has been used as an intervention strategy to treat dysbiosis of the gut’s microbial community that is linked to the inflammation, which precedes autoimmune disease and diabetes. The review focuses on literature that highlights the benefits of the microbiota especially, the abundant of F. prausnitzii in protecting the gut microbiota pattern and its therapeutic potential against inflammation and diabetes.
Collapse
|