1
|
Bowman CE. Do astigmatid teeth matter: a tribological review of cheliceral chelae in co-occuring mites from UK beehives. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:567-686. [PMID: 38639851 DOI: 10.1007/s10493-023-00876-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/26/2023] [Indexed: 04/20/2024]
Abstract
The dentition of the chelal moveable digit in cohabiting astigmatids from UK beehives (i.e., Carpoglyphus lactis (Linnaeus), Glycyphagus domesticus (DeGeer), and Tyrophagus putrescentiae (Schrank)) is characterised for the first time using quantitative tribological measures within a 2D mechanical model. The trophic function of astigmatid chelae are reviewed in terms of macroscopic tools used by humans including hooking devices, pliers, shears, rasps and saws. Comparisons to oribatid claws and isopod dactyli are made. The overall pattern of the moveable digit form of T. putrescentiae is not just a uniformly shrunken/swollen version between the other two taxa at either the macro- or micro-scale. Mastication surface macro-roughness values are in the range of international Roughness Grade Numbers N5-N6. The moveable digit of C. lactis has low rugosity values compared to the glycyphagid and acarid (which are topographically more similar and match that roughness typical of some coral reef surfaces). C. lactis has the most plesiomorphic moveable digit form. The mastication surface of all three species as a chewing tool is distinctly ornamented despite the moveable digit of C. lactis looking like a bar-like beam. The latter has more opportunities to be a multifunctional tool behaviourally than the other two species. Little evidence of any differences in the 'spikiness' of any 'toothiness' is found. Some differences with laboratory cultured specimens are found in C. lactis and possibly T. putrescentiae suggesting where selection on the digit may be able to occur. The chelal surface of T. putrescentiae has been deformed morphologically during evolution the most, that of C. lactis the least. Repeated localised surface differentiation is a feature of the moveable digit in G. domesticus compared to the likely more concerted changes over certain nearby locations in T. putrescentiae. An impactful chelal teeth design is present in G. domesticus but this is more equivocal in T. putrescentiae. Pockets within the mastication surface of the glycyphagid (and to some extent for the acarid) may produce foodstuff crunch forces of the scale of the chelal tips of oribatids. The moveable digit dentition of G. domesticus is adapted to shred foodstuff (like a ripsaw) more than that of the grazing/shearing dentition of T. putrescentiae. The collecting 'picker' design of C. lactis posterior teeth matches the size of Bettsia alvei hyphae which attacks hive-stored pollen. Detritus accumulated in chelal digit gullets through a sawing action matches the smallest observed ingested material. The dentition of C. lactis should produce less friction when moving through food material than G. domesticus. C. lactis is the most hypocarnivorous and may 'skim' through fluids when feeding. Astigmatid teeth do matter. The three commensal species can avoid direct competition. Future work is proposed in detail.
Collapse
Affiliation(s)
- Clive E Bowman
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
| |
Collapse
|
2
|
Hu J, Xu X, Li F, Han F. Tooth replacement in the early-diverging neornithischian Jeholosaurus shangyuanensis and implications for dental evolution and herbivorous adaptation in Ornithischia. BMC Ecol Evol 2024; 24:46. [PMID: 38627692 PMCID: PMC11020315 DOI: 10.1186/s12862-024-02233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Tooth replacement patterns of early-diverging ornithischians, which are important for understanding the evolution of the highly specialized dental systems in hadrosaurid and ceratopsid dinosaurs, are poorly known. The early-diverging neornithischian Jeholosaurus, a small, bipedal herbivorous dinosaur from the Early Cretaceous Jehol Biota, is an important taxon for understanding ornithischian dental evolution, but its dental morphology was only briefly described previously and its tooth replacement is poorly known. RESULTS CT scanning of six specimens representing different ontogenetic stages of Jeholosaurus reveals significant new information regarding the dental system of Jeholosaurus, including one or two replacement teeth in nearly all alveoli, relatively complete tooth resorption, and an increase in the numbers of alveoli and replacement teeth during ontogeny. Reconstructions of Zahnreihen indicate that the replacement pattern of the maxillary dentition is similar to that of the dentary dentition but with a cyclical difference. The maxillary tooth replacement rate in Jeholosaurus is probably 46 days, which is faster than that of most other early-diverging ornithischians. During the ontogeny of Jeholosaurus, the premaxillary tooth replacement rate slows from 25 days to 33 days with similar daily dentine formation. CONCLUSIONS The tooth replacement rate exhibits a decreasing trend with ontogeny, as in Alligator. In a phylogenetic context, fast tooth replacement and multi-generation replacement teeth have evolved at least twice independently in Ornithopoda, and our analyses suggest that the early-diverging members of the major ornithischian clades exhibit different tooth replacement patterns as an adaption to herbivory.
Collapse
Affiliation(s)
- Jinfeng Hu
- School of Earth Sciences, China University of Geosciences, 388 Lumo Road, 430074, Wuhan, Hubei Province, China
| | - Xing Xu
- Center for Vertebrate Evolutionary Biology, Yunnan University, Kunming, China
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Fuqiang Li
- Yifu Museum of China University of Geosciences, Wuhan, Hubei, China
| | - Fenglu Han
- School of Earth Sciences, China University of Geosciences, 388 Lumo Road, 430074, Wuhan, Hubei Province, China.
| |
Collapse
|
3
|
Ballell A, Mai B, Benton MJ. Divergent strategies in cranial biomechanics and feeding ecology of the ankylosaurian dinosaurs. Sci Rep 2023; 13:18242. [PMID: 37880323 PMCID: PMC10600113 DOI: 10.1038/s41598-023-45444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023] Open
Abstract
Ankylosaurs were important megaherbivores of Jurassic and Cretaceous ecosystems. Their distinctive craniodental anatomy and mechanics differentiated them from coexisting hadrosaurs and ceratopsians, and morphological evidence suggests dietary niche partitioning between sympatric ankylosaurids and nodosaurids. Here, we investigate the skull biomechanics of ankylosaurs relative to feeding function. First, we compare feeding functional performance between nodosaurids and ankylosaurids applying finite element analysis and lever mechanics to the skulls of Panoplosaurus mirus (Nodosauridae) and Euoplocephalus tutus (Ankylosauridae). We also compare jaw performance across a wider sample of ankylosaurs through lever mechanics and phylogenetic comparative methods. Mandibular stress levels are higher in Euoplocephalus, supporting the view that Panoplosaurus consumed tougher foodstuffs. Bite force and mechanical advantage (MA) estimates indicate that Panoplosaurus had a relatively more forceful and efficient bite than Euoplocephalus. There is little support for a role of the secondary palate in resisting feeding loads in the two ankylosaur clades. Several ankylosaurs converged on similar jaw mechanics, while some nodosaurids specialised towards high MA and some ankylosaurids evolved low MA jaws. Our study supports the hypothesis that ankylosaurs partitioned dietary niches in Late Cretaceous ecosystems and reveals that the two main ankylosaur clades evolved divergent evolutionary pathways in skull biomechanics and feeding habits.
Collapse
Affiliation(s)
- Antonio Ballell
- Bristol Palaeobiology Group, School of Earth Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.
| | - Bohao Mai
- Bristol Palaeobiology Group, School of Earth Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Michael J Benton
- Bristol Palaeobiology Group, School of Earth Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.
| |
Collapse
|
4
|
Laboury A, Scheyer TM, Klein N, Stubbs TL, Fischer V. High phenotypic plasticity at the dawn of the eosauropterygian radiation. PeerJ 2023; 11:e15776. [PMID: 37671356 PMCID: PMC10476616 DOI: 10.7717/peerj.15776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/29/2023] [Indexed: 09/07/2023] Open
Abstract
The initial radiation of Eosauropterygia during the Triassic biotic recovery represents a key event in the dominance of reptiles secondarily adapted to marine environments. Recent studies on Mesozoic marine reptile disparity highlighted that eosauropterygians had their greatest morphological diversity during the Middle Triassic, with the co-occurrence of Pachypleurosauroidea, Nothosauroidea and Pistosauroidea, mostly along the margins of the Tethys Ocean. However, these previous studies quantitatively analysed the disparity of Eosauropterygia as a whole without focussing on Triassic taxa, thus limiting our understanding of their diversification and morphospace occupation during the Middle Triassic. Our multivariate morphometric analyses highlight a clearly distinct colonization of the ecomorphospace by the three clades, with no evidence of whole-body convergent evolution with the exception of the peculiar pistosauroid Wangosaurus brevirostris, which appears phenotypically much more similar to nothosauroids. This global pattern is mostly driven by craniodental differences and inferred feeding specializations. We also reveal noticeable regional differences among nothosauroids and pachypleurosauroids of which the latter likely experienced a remarkable diversification in the eastern Tethys during the Pelsonian. Our results demonstrate that the high phenotypic plasticity characterizing the evolution of the pelagic plesiosaurians was already present in their Triassic ancestors, casting eosauropterygians as particularly adaptable animals.
Collapse
Affiliation(s)
- Antoine Laboury
- Evolution & Diversity Dynamics Lab, Université de Liège, Liège, Belgium
| | | | - Nicole Klein
- Institute of Geosciences, Paleontology, University of Bonn, Bonn, Germany
| | - Thomas L. Stubbs
- School of Life, Health & Chemical Sciences, Open University, Milton Keynes, United Kingdom
| | - Valentin Fischer
- Evolution & Diversity Dynamics Lab, Université de Liège, Liège, Belgium
| |
Collapse
|
5
|
Hedrick BP. Dots on a screen: The past, present, and future of morphometrics in the study of nonavian dinosaurs. Anat Rec (Hoboken) 2023. [PMID: 36922704 DOI: 10.1002/ar.25183] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/28/2022] [Accepted: 02/12/2023] [Indexed: 03/18/2023]
Abstract
Using morphometrics to study nonavian dinosaur fossils is a practice that predates the origin of the word "dinosaur." By the 1970s, linear morphometrics had become established as a valuable tool for analyzing intra- and interspecific variation in nonavian dinosaurs. With the advent of more recent techniques such as geometric morphometrics and more advanced statistical approaches, morphometric analyses of nonavian dinosaurs have proliferated, granting unprecedented insight into many aspects of their biology and evolution. I outline the past, present, and future of morphometrics as applied to the study of nonavian dinosaurs zeroing in on five aspects of nonavian dinosaur paleobiology where morphometrics has been widely utilized to advance our knowledge: systematics, sexual dimorphism, locomotion, macroevolution, and trackways. Morphometric methods are especially susceptible to taphonomic distortion. As such, the impact of taphonomic distortion on original fossil shape is discussed as are current and future methods for quantifying and accounting for distortion with the goal of reducing the taphonomic noise to biological signal ratio. Finally, the future of morphometrics in nonavian dinosaur paleobiology is discussed as paleobiologists move into a "virtual paleobiology" framework, whereby digital renditions of fossils are captured via methods such as photogrammetry and computed tomography. These primary data form the basis for three-dimensional (3D) geometric morphometric analyses along with a slew of other forms of analyses. These 3D specimen data form part of the extended specimen and help to democratize paleobiology, unlocking the specimen from the physical museum and making the specimen available to researchers across the world.
Collapse
Affiliation(s)
- Brandon P Hedrick
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
6
|
Tseng ZJ. Evolution: Mix-and-match adaptations in plant-eating dinosaurs. Curr Biol 2023; 33:R103-R106. [PMID: 36750019 DOI: 10.1016/j.cub.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ornithischian dinosaurs were primary consumers in Mesozoic ecosystems, their evolution intricately linked to challenges of a plant-heavy diet. Whether phenotypic similarities among different ornithischian lineages imply a common functional solution to herbivory is unclear. New research suggests that they evolved herbivory via multiple biomechanical pathways.
Collapse
Affiliation(s)
- Z Jack Tseng
- Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
7
|
Ballell A, Benton MJ, Rayfield EJ. Dental form and function in the early feeding diversification of dinosaurs. SCIENCE ADVANCES 2022; 8:eabq5201. [PMID: 36525501 PMCID: PMC9757754 DOI: 10.1126/sciadv.abq5201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/05/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Dinosaurs evolved a remarkable diversity of dietary adaptations throughout the Mesozoic, but the origins of different feeding modes are uncertain, especially the multiple origins of herbivory. Feeding habits of early dinosaurs have mostly been inferred from qualitative comparisons of dental morphology with extant analogs. Here, we use biomechanical and morphometric methods to investigate the dental morphofunctional diversity of early dinosaurs in comparison with extant squamates and crocodylians and predict their diets using machine learning classification models. Early saurischians/theropods are consistently classified as carnivores. Sauropodomorphs underwent a dietary shift from faunivory to herbivory, experimenting with diverse diets during the Triassic and Early Jurassic, and early ornithischians were likely omnivores. Obligate herbivory was a late evolutionary innovation in both clades. Carnivory is the most plausible ancestral diet of dinosaurs, but omnivory is equally likely under certain phylogenetic scenarios. This early dietary diversity was fundamental in the rise of dinosaurs to ecological dominance.
Collapse
|
8
|
García-Girón J, Chiarenza AA, Alahuhta J, DeMar DG, Heino J, Mannion PD, Williamson TE, Wilson Mantilla GP, Brusatte SL. Shifts in food webs and niche stability shaped survivorship and extinction at the end-Cretaceous. SCIENCE ADVANCES 2022; 8:eadd5040. [PMID: 36475805 PMCID: PMC9728968 DOI: 10.1126/sciadv.add5040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
It has long been debated why groups such as non-avian dinosaurs became extinct whereas mammals and other lineages survived the Cretaceous/Paleogene mass extinction 66 million years ago. We used Markov networks, ecological niche partitioning, and Earth System models to reconstruct North American food webs and simulate ecospace occupancy before and after the extinction event. We find a shift in latest Cretaceous dinosaur faunas, as medium-sized species counterbalanced a loss of megaherbivores, but dinosaur niches were otherwise stable and static, potentially contributing to their demise. Smaller vertebrates, including mammals, followed a consistent trajectory of increasing trophic impact and relaxation of niche limits beginning in the latest Cretaceous and continuing after the mass extinction. Mammals did not simply proliferate after the extinction event; rather, their earlier ecological diversification might have helped them survive.
Collapse
Affiliation(s)
- Jorge García-Girón
- Geography Research Unit, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
- Department of Biodiversity and Environmental Management, University of León, Campus de Vegazana, 24007 León, Spain
| | - Alfio Alessandro Chiarenza
- Departamento de Ecoloxía e Bioloxía Animal, Grupo de Ecología Animal, Centro de Investigacion Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Janne Alahuhta
- Geography Research Unit, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - David G. DeMar
- Department of Biology, University of Washington and the Burke Museum of Natural History and Culture, Seattle, WA 98105, USA
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Jani Heino
- Geography Research Unit, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - Philip D. Mannion
- Department of Earth Sciences, University College London, Gower Street, WC1E 6BT London, UK
| | | | - Gregory P. Wilson Mantilla
- Department of Biology, University of Washington and the Burke Museum of Natural History and Culture, Seattle, WA 98105, USA
| | - Stephen L. Brusatte
- School of GeoSciences, Grant Institute, University of Edinburgh, James Hutton Road, EH9 3FE Edinburgh, UK
| |
Collapse
|
9
|
Lautenschlager S. Functional and ecomorphological evolution of orbit shape in mesozoic archosaurs is driven by body size and diet. Commun Biol 2022; 5:754. [PMID: 35953708 PMCID: PMC9372157 DOI: 10.1038/s42003-022-03706-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/12/2022] [Indexed: 11/08/2022] Open
Abstract
The orbit is one of several skull openings in the archosauromorph skull. Intuitively, it could be assumed that orbit shape would closely approximate the shape and size of the eyeball resulting in a predominantly circular morphology. However, a quantification of orbit shape across Archosauromorpha using a geometric morphometric approach demonstrates a large morphological diversity despite the fact that the majority of species retained a circular orbit. This morphological diversity is nearly exclusively driven by large (skull length > 1000 mm) and carnivorous species in all studied archosauromorph groups, but particularly prominently in theropod dinosaurs. While circular orbit shapes are retained in most herbivores and smaller species, as well as in juveniles and early ontogenetic stages, large carnivores adopted elliptical and keyhole-shaped orbits. Biomechanical modelling using finite element analysis reveals that these morphologies are beneficial in mitigating and dissipating feeding-induced stresses without additional reinforcement of the bony structure of the skull.
Collapse
Affiliation(s)
- Stephan Lautenschlager
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
10
|
Wyenberg-Henzler T. Ecomorphospace occupation of large herbivorous dinosaurs from Late Jurassic through to Late Cretaceous time in North America. PeerJ 2022; 10:e13174. [PMID: 35433123 PMCID: PMC9009330 DOI: 10.7717/peerj.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/06/2022] [Indexed: 01/12/2023] Open
Abstract
Following the Late Jurassic, megaherbivore communities in North America undergo a dramatic turnover in faunal composition: sauropods decline to the point of becoming relatively minor components of ecosystems, stegosaurs become extinct, and hadrosaurids, ceratopsids and ankylosaurs rise in diversity and abundance. Although a variety of causes have been proposed to account for the dramatic decrease in sauropod diversity following the Late Jurassic and could have also been applicable to the disappearance of stegosaurs, the potential for competitive replacement of sauropods by hadrosauroids as an explanation has been previously dismissed due to morphological differences without further investigation. Using twelve ecomorphological correlates of the skull, this study provides a preliminary investigation into ecomorphospace occupation of major megaherbivore clades from the Late Jurassic through to the Late Cretaceous of North America and assess if morphological differences were enough to have potentially facilitated dietary niche partitioning between sauropods and iguanodontians and stegosaurs and ankylosaurs. Overlap in reconstructed ecomorphospace was observed between sauropods (particularly non-diplodocid sauropods) and iguanodontians, as would be expected if morphological differences were not enough to facilitate niche partitioning, contrary to original claims used to dismiss the competitive replacement hypothesis. Overlap was also observed between stegosaurs and ankylosaurs, particularly between Late Cretaceous ankylosaurs. Whether this overlap is reflective competitive replacement or opportunistic occupation of recently vacated niches will require further assessment as sampling of some clades prior to the Late Cretaceous is too poor to make a reliable assessment and several underlying assumptions necessary for competition to occur (e.g., resource limitation) still need investigation. Teasing out the cause(s) of the 'sauropod decline' and extinction of stegosaurs in North America following the Late Jurassic will require future research not only into the competitive exclusion hypothesis, but other hypotheses as well with better sampling from Early Cretaceous and Late Jurassic intervals.
Collapse
|
11
|
Singh SA, Elsler A, Stubbs TL, Bond R, Rayfield EJ, Benton MJ. Niche partitioning shaped herbivore macroevolution through the early Mesozoic. Nat Commun 2021; 12:2796. [PMID: 33990610 PMCID: PMC8121902 DOI: 10.1038/s41467-021-23169-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/16/2021] [Indexed: 02/04/2023] Open
Abstract
The Triassic (252-201 Ma) marks a major punctuation in Earth history, when ecosystems rebuilt themselves following the devastating Permian-Triassic mass extinction. Herbivory evolved independently several times as ecosystems comprising diverse assemblages of therapsids, parareptiles and archosauromorphs rose and fell, leading to a world dominated by dinosaurs. It was assumed that dinosaurs prevailed either through long-term competitive replacement of the incumbent clades or rapidly and opportunistically following one or more extinction events. Here we use functional morphology and ecology to explore herbivore morphospace through the Triassic and Early Jurassic. We identify five main herbivore guilds (ingestion generalists, prehension specialists, durophagous specialists, shearing pulpers, and heavy oral processors), and find that herbivore clades generally avoided competition by almost exclusively occupying different guilds. Major ecosystem remodelling was triggered multiple times by external environmental challenges, and previously dominant herbivores were marginalised by newly emerging forms. Dinosaur dominance was a mix of opportunity following disaster, combined with competitive advantage in their new world.
Collapse
Affiliation(s)
- Suresh A Singh
- School of Earth Sciences, University of Bristol, Bristol, UK.
| | - Armin Elsler
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - Thomas L Stubbs
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - Russell Bond
- School of Earth Sciences, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
12
|
Cawley JJ, Marramà G, Carnevale G, Villafaña JA, López-Romero FA, Kriwet J. Rise and fall of †Pycnodontiformes: Diversity, competition and extinction of a successful fish clade. Ecol Evol 2021; 11:1769-1796. [PMID: 33614003 PMCID: PMC7882952 DOI: 10.1002/ece3.7168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/25/2022] Open
Abstract
†Pycnodontiformes was a successful lineage of primarily marine fishes that broadly diversified during the Mesozoic. They possessed a wide variety of body shapes and were adapted to a broad range of food sources. Two other neopterygian clades possessing similar ecological adaptations in both body morphology (†Dapediiformes) and dentition (Ginglymodi) also occurred in Mesozoic seas. Although these groups occupied the same marine ecosystems, the role that competitive exclusion and niche partitioning played in their ability to survive alongside each other remains unknown. Using geometric morphometrics on both the lower jaw (as constraint for feeding adaptation) and body shape (as constraint for habitat adaptation), we show that while dapediiforms and ginglymodians occupy similar lower jaw morphospace, pycnodontiforms are completely separate. Separation also occurs between the clades in body shape so that competition reduction between pycnodontiforms and the other two clades would have resulted in niche partitioning. Competition within pycnodontiforms seemingly was reduced further by evolving different feeding strategies as shown by disparate jaw shapes that also indicate high levels of plasticity. Acanthomorpha was a teleostean clade that evolved later in the Mesozoic and which has been regarded as implicated in driving the pycnodontiforms to extinction. Although they share similar body shapes, no coeval acanthomorphs had similar jaw shapes or dentitions for dealing with hard prey like pycnodontiforms do and so their success being a factor in pycnodontiform extinction is unlikely. Sea surface temperature and eustatic variations also had no impact on pycnodontiform diversity patterns according to our results. Conversely, the occurrence and number of available reefs and hardgrounds as habitats through time seems to be the main factor in pycnodontiform success. Decline in such habitats during the Late Cretaceous and Palaeogene might have had deleterious consequences for pycnodontiform diversity. Acanthomorphs occupied the niches of pycnodontiforms during the terminal phase of their existence.
Collapse
Affiliation(s)
- John J Cawley
- Faculty of Earth Science, Geography and Astronomy Department of Palaeontology University of Vienna Geozentrum Vienna Austria
| | - Giuseppe Marramà
- Dipartimento di Scienze della Terra Università degli Studi di Torino Torino Italy
| | - Giorgio Carnevale
- Dipartimento di Scienze della Terra Università degli Studi di Torino Torino Italy
| | - Jaime A Villafaña
- Faculty of Earth Science, Geography and Astronomy Department of Palaeontology University of Vienna Geozentrum Vienna Austria.,Centro de Investigación en Recursos Naturales y Sustentabilidad Universidad Bernardo O'Higgins Santiago Chile.,Paleontological Institute and Museum University of Zurich Zurich Switzerland
| | - Faviel A López-Romero
- Faculty of Earth Science, Geography and Astronomy Department of Palaeontology University of Vienna Geozentrum Vienna Austria
| | - Jürgen Kriwet
- Faculty of Earth Science, Geography and Astronomy Department of Palaeontology University of Vienna Geozentrum Vienna Austria
| |
Collapse
|
13
|
Button DJ, Zanno LE. Repeated Evolution of Divergent Modes of Herbivory in Non-avian Dinosaurs. Curr Biol 2020; 30:158-168.e4. [DOI: 10.1016/j.cub.2019.10.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 09/08/2019] [Accepted: 10/25/2019] [Indexed: 01/13/2023]
|
14
|
Cranial Musculature in Herbivorous Dinosaurs: A Survey of Reconstructed Anatomical Diversity and Feeding Mechanisms. Anat Rec (Hoboken) 2019; 303:1104-1145. [DOI: 10.1002/ar.24283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/14/2019] [Accepted: 08/22/2019] [Indexed: 11/07/2022]
|
15
|
Bronzati M, Müller RT, Langer MC. Skull remains of the dinosaur Saturnalia tupiniquim (Late Triassic, Brazil): With comments on the early evolution of sauropodomorph feeding behaviour. PLoS One 2019; 14:e0221387. [PMID: 31490962 PMCID: PMC6730896 DOI: 10.1371/journal.pone.0221387] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/07/2019] [Indexed: 11/28/2022] Open
Abstract
Saturnalia tupiniquim is a sauropodomorph dinosaur from the Late Triassic (Carnian–c. 233 Ma) Santa Maria Formation of Brazil. Due to its phylogenetic position and age, it is important for studies focusing on the early evolution of both dinosaurs and sauropodomorphs. The osteology of Saturnalia has been described in a series of papers, but its cranial anatomy remains mostly unknown. Here, we describe the skull bones of one of its paratypes (only in the type-series to possess such remains) based on CT Scan data. The newly described elements allowed estimating the cranial length of Saturnalia and provide additional support for the presence of a reduced skull (i.e. two thirds of the femoral length) in this taxon, as typical of later sauropodomorphs. Skull reduction in Saturnalia could be related to an increased efficiency for predatory feeding behaviour, allowing fast movements of the head in order to secure small and elusive prey, a hypothesis also supported by data from its tooth and brain morphology. A principal co-ordinates analysis of the sauropodomorph jaw feeding apparatus shows marked shifts in morphospace occupation in different stages of the first 30 million years of their evolutionary history. One of these shifts is observed between non-plateosaurian and plateosaurian sauropodomorphs, suggesting that, despite also having an omnivorous diet, the feeding behaviour of some early Carnian sauropodomorphs, such as Saturnalia, was markedly different from that of later Triassic taxa. A second shift, between Late Triassic and Early Jurassic taxa, is congruent with a floral turnover hypothesis across the Triassic-Jurassic boundary.
Collapse
Affiliation(s)
- Mario Bronzati
- Laboratório de Paleontologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- * E-mail: (MB); (MCL)
| | - Rodrigo T. Müller
- Centro de Apoio à Pesquisa Paleontológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Max C. Langer
- Laboratório de Paleontologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- * E-mail: (MB); (MCL)
| |
Collapse
|
16
|
Abstract
Dinosaurs were large-bodied land animals of the Mesozoic that gave rise to birds. They played a fundamental role in structuring Jurassic–Cretaceous ecosystems and had physiology, growth, and reproductive biology unlike those of extant animals. These features have made them targets of theoretical macroecology. Dinosaurs achieved substantial structural diversity, and their fossil record documents the evolutionary assembly of the avian body plan. Phylogeny-based research has allowed new insights into dinosaur macroevolution, including the adaptive landscape of their body size evolution, patterns of species diversification, and the origins of birds and bird-like traits. Nevertheless, much remains unknown due to incompleteness of the fossil record at both local and global scales. This presents major challenges at the frontier of paleobiological research regarding tests of macroecological hypotheses and the effects of dinosaur biology, ecology, and life history on their macroevolution.
Collapse
Affiliation(s)
- Roger B.J. Benson
- Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, United Kingdom
| |
Collapse
|
17
|
Varela L, Tambusso PS, McDonald HG, Fariña RA. Phylogeny, Macroevolutionary Trends and Historical Biogeography of Sloths: Insights From a Bayesian Morphological Clock Analysis. Syst Biol 2018; 68:204-218. [DOI: 10.1093/sysbio/syy058] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 09/10/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Luciano Varela
- Departamento de Paleontología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - P Sebastián Tambusso
- Departamento de Paleontología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - H Gregory McDonald
- Bureau of Land Management, Utah State Office, 440 West 200 South, Salt Lake City, UT 84101 USA
| | - Richard A Fariña
- Departamento de Paleontología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| |
Collapse
|
18
|
Becerra MG, Pol D, Rössner GE, Rauhut OWM. Heterodonty and double occlusion in Manidens condorensis: a unique adaptation in an Early Jurassic ornithischian improving masticatory efficiency. Naturwissenschaften 2018; 105:41. [DOI: 10.1007/s00114-018-1569-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 10/14/2022]
|
19
|
Navarro CA, Martin-Silverstone E, Stubbs TL. Morphometric assessment of pterosaur jaw disparity. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172130. [PMID: 29765665 PMCID: PMC5936930 DOI: 10.1098/rsos.172130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/26/2018] [Indexed: 05/28/2023]
Abstract
Pterosaurs were a successful group of Mesozoic flying reptiles. They were the first vertebrate group to achieve powered flight and varied enormously in morphology and ecology, occupying a variety of niches and developing specialized feeding strategies. Ecomorphological principles suggest this variation should be reflected by great morphological diversity in the lower jaw, given that the mandible served as the primary apparatus for prey acquisition. Here we present the first study of mandibular shape disparity in pterosaurs and aim to characterize major aspects of variation. We use a combination of geometric morphometric approaches, incorporating both outline analysis using elliptical Fourier analysis and semi-landmark approaches. Our results show that morphological convergence is prevalent and many pterosaurs, belonging to diverse dietary groups and subclades, overlap in morphospace and possessed relatively simple 'rod-shaped' jaws. There is no clear trend of size distributions in pterosaur mandibular morphospace, and larger forms are widely distributed. Additionally, there is limited functional signal within pterosaur lower jaw morphospace. Instead, the development of a large anterior ventral crest represents the major component of disparity. This suggests that a socio-sexual trait was a key driver for innovation in pterosaur lower jaw shape.
Collapse
Affiliation(s)
- Charlie A. Navarro
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
| | - Elizabeth Martin-Silverstone
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
- Ocean and Earth Science, National Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, UK
| | - Thomas L. Stubbs
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
| |
Collapse
|