1
|
Wen J, Guo T, Xu J, Duanmu X, Tan S, Zhang M, Xu X, Guan X. Weak brain function and anxiety-related loop in harm-avoidance personality: A resting-state functional magnetic resonance imaging study. Brain Res Bull 2025; 220:111174. [PMID: 39701427 DOI: 10.1016/j.brainresbull.2024.111174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Personality is a unique and relatively stable psychological concept that defines individual human beings. It strongly influences long-term behavioral styles such as emotional expression. This study aims to elucidate the brain functional underpinning behind personality. METHODS A total of 97 young subjects were included. All subjects completed personality, emotion, and cognition scales, and resting-state functional magnetic resonance imaging scan. All subjects were divided into subtypes of harm avoidance (HA) and reward dependence (RD) by clustering analysis. Graph theory analysis and network-based analysis were used to explore the brain functional configurations of personalities. RESULTS HA subjects showed lower network metrics (P = 0.018) and node metrics (P < 0.009). A negative component network was observed in HA subjects (P < 0.001). Functional topology metrics were negatively correlated with the HA score. The amygdala-IPG functional connectivity mediated the positive correlation between personality HA and state anxiety. CONCLUSION Personality HA is associated with decreased functional configuration, which could influence emotion by downregulating amygdala-IPG coupling. These findings provide insight into how the brain shapes personality and related emotions.
Collapse
Affiliation(s)
- Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojie Duanmu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sijia Tan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Lumaca M, Keller PE, Baggio G, Pando-Naude V, Bajada CJ, Martinez MA, Hansen JH, Ravignani A, Joe N, Vuust P, Vulić K, Sandberg K. Frontoparietal network topology as a neural marker of musical perceptual abilities. Nat Commun 2024; 15:8160. [PMID: 39289390 PMCID: PMC11408523 DOI: 10.1038/s41467-024-52479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Why are some individuals more musical than others? Neither cognitive testing nor classical localizationist neuroscience alone can provide a complete answer. Here, we test how the interplay of brain network organization and cognitive function delivers graded perceptual abilities in a distinctively human capacity. We analyze multimodal magnetic resonance imaging, cognitive, and behavioral data from 200+ participants, focusing on a canonical working memory network encompassing prefrontal and posterior parietal regions. Using graph theory, we examine structural and functional frontoparietal network organization in relation to assessments of musical aptitude and experience. Results reveal a positive correlation between perceptual abilities and the integration efficiency of key frontoparietal regions. The linkage between functional networks and musical abilities is mediated by working memory processes, whereas structural networks influence these abilities through sensory integration. Our work lays the foundation for future investigations into the neurobiological roots of individual differences in musicality.
Collapse
Affiliation(s)
- M Lumaca
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.
| | - P E Keller
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia
| | - G Baggio
- Language Acquisition and Language Processing Lab, Norwegian University of Science and Technology, Trondheim, Norway
| | - V Pando-Naude
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - C J Bajada
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta / University of Malta Magnetic Resonance Imaging Research Platform, Msida, Malta
| | - M A Martinez
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - J H Hansen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - A Ravignani
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - N Joe
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - P Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - K Vulić
- Department for Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - K Sandberg
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Di Plinio S, Northoff G, Ebisch S. The degenerate coding of psychometric profiles through functional connectivity archetypes. Front Hum Neurosci 2024; 18:1455776. [PMID: 39318702 PMCID: PMC11419991 DOI: 10.3389/fnhum.2024.1455776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Degeneracy in the brain-behavior code refers to the brain's ability to utilize different neural configurations to support similar functions, reflecting its adaptability and robustness. This study aims to explore degeneracy by investigating the non-linear associations between psychometric profiles and resting-state functional connectivity (RSFC). Methods The study analyzed RSFC data from 500 subjects to uncover the underlying neural configurations associated with various psychometric outcomes. Self-organized maps (SOM), a type of unsupervised machine learning algorithm, were employed to cluster the RSFC data. And identify distinct archetypal connectivity profiles characterized by unique within- and between-network connectivity patterns. Results The clustering analysis using SOM revealed several distinct archetypal connectivity profiles within the RSFC data. Each archetype exhibited unique connectivity patterns that correlated with various cognitive, physical, and socioemotional outcomes. Notably, the interaction between different SOM dimensions was significantly associated with specific psychometric profiles. Discussion This study underscores the complexity of brain-behavior interactions and the brain's capacity for degeneracy, where different neural configurations can lead to similar behavioral outcomes. These findings highlight the existence of multiple brain architectures capable of producing similar behavioral outcomes, illustrating the concept of neural degeneracy, and advance our understanding of neural degeneracy and its implications for cognitive and emotional health.
Collapse
Affiliation(s)
- Simone Di Plinio
- Department of Neuroscience Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| | - Georg Northoff
- Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Sjoerd Ebisch
- Department of Neuroscience Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| |
Collapse
|
4
|
Adamovich T, Ismatullina V, Chipeeva N, Zakharov I, Feklicheva I, Malykh S. Task-specific topology of brain networks supporting working memory and inhibition. Hum Brain Mapp 2024; 45:e70024. [PMID: 39258339 PMCID: PMC11387957 DOI: 10.1002/hbm.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
Network neuroscience explores the brain's connectome, demonstrating that dynamic neural networks support cognitive functions. This study investigates how distinct cognitive abilities-working memory and cognitive inhibitory control-are supported by unique brain network configurations constructed by estimating whole-brain networks using mutual information. The study involved 195 participants who completed the Sternberg Item Recognition task and Flanker tasks while undergoing electroencephalography recording. A mixed-effects linear model analyzed the influence of network metrics on cognitive performance, considering individual differences and task-specific dynamics. The findings indicate that working memory and cognitive inhibitory control are associated with different network attributes, with working memory relying on distributed networks and cognitive inhibitory control on more segregated ones. Our analysis suggests that both strong and weak connections contribute to cognitive processes, with weak connections potentially leading to a more stable and support networks of memory and cognitive inhibitory control. The findings indirectly support the network neuroscience theory of intelligence, suggesting different functional topology of networks inherent to various cognitive functions. Nevertheless, we propose that understanding individual variations in cognitive abilities requires recognizing both shared and unique processes within the brain's network dynamics.
Collapse
Affiliation(s)
- Timofey Adamovich
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| | - Victoria Ismatullina
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| | - Nadezhda Chipeeva
- Federal State Institution “National Medical Research Center for Children's Health” of the Ministry of Health of the Russian FederationMoscowRussia
| | - Ilya Zakharov
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| | | | - Sergey Malykh
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| |
Collapse
|
5
|
Giannakopoulou O, Kakkos I, Dimitrakopoulos GN, Tarousi M, Sun Y, Bezerianos A, Koutsouris DD, Matsopoulos GK. Individual Variability in Brain Connectivity Patterns and Driving-Fatigue Dynamics. SENSORS (BASEL, SWITZERLAND) 2024; 24:3894. [PMID: 38931678 PMCID: PMC11207888 DOI: 10.3390/s24123894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Mental fatigue during driving poses significant risks to road safety, necessitating accurate assessment methods to mitigate potential hazards. This study explores the impact of individual variability in brain networks on driving fatigue assessment, hypothesizing that subject-specific connectivity patterns play a pivotal role in understanding fatigue dynamics. By conducting a linear regression analysis of subject-specific brain networks in different frequency bands, this research aims to elucidate the relationships between frequency-specific connectivity patterns and driving fatigue. As such, an EEG sustained driving simulation experiment was carried out, estimating individuals' brain networks using the Phase Lag Index (PLI) to capture shared connectivity patterns. The results unveiled notable variability in connectivity patterns across frequency bands, with the alpha band exhibiting heightened sensitivity to driving fatigue. Individualized connectivity analysis underscored the complexity of fatigue assessment and the potential for personalized approaches. These findings emphasize the importance of subject-specific brain networks in comprehending fatigue dynamics, while providing sensor space minimization, advocating for the development of efficient mobile sensor applications for real-time fatigue detection in driving scenarios.
Collapse
Affiliation(s)
- Olympia Giannakopoulou
- Biomedical Engineering Laboratory, National Technical University of Athens, 15772 Athens, Greece; (O.G.); (D.D.K.); (G.K.M.)
| | - Ioannis Kakkos
- Biomedical Engineering Laboratory, National Technical University of Athens, 15772 Athens, Greece; (O.G.); (D.D.K.); (G.K.M.)
- Department of Biomedical Engineering, University of West Attica, 12243 Athens, Greece
| | | | - Marilena Tarousi
- Biomedical Engineering Laboratory, National Technical University of Athens, 15772 Athens, Greece; (O.G.); (D.D.K.); (G.K.M.)
| | - Yu Sun
- Key Laboratory for Biomedical Engineering of Ministry of Education of China, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Anastasios Bezerianos
- Brain Dynamics Laboratory, Barrow Neurological Institute (BNI), St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA;
| | - Dimitrios D. Koutsouris
- Biomedical Engineering Laboratory, National Technical University of Athens, 15772 Athens, Greece; (O.G.); (D.D.K.); (G.K.M.)
| | - George K. Matsopoulos
- Biomedical Engineering Laboratory, National Technical University of Athens, 15772 Athens, Greece; (O.G.); (D.D.K.); (G.K.M.)
| |
Collapse
|
6
|
Matkovič A, Anticevic A, Murray JD, Repovš G. Static and dynamic fMRI-derived functional connectomes represent largely similar information. Netw Neurosci 2023; 7:1266-1301. [PMID: 38144686 PMCID: PMC10631791 DOI: 10.1162/netn_a_00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/06/2023] [Indexed: 12/26/2023] Open
Abstract
Functional connectivity (FC) of blood oxygen level-dependent (BOLD) fMRI time series can be estimated using methods that differ in sensitivity to the temporal order of time points (static vs. dynamic) and the number of regions considered in estimating a single edge (bivariate vs. multivariate). Previous research suggests that dynamic FC explains variability in FC fluctuations and behavior beyond static FC. Our aim was to systematically compare methods on both dimensions. We compared five FC methods: Pearson's/full correlation (static, bivariate), lagged correlation (dynamic, bivariate), partial correlation (static, multivariate), and multivariate AR model with and without self-connections (dynamic, multivariate). We compared these methods by (i) assessing similarities between FC matrices, (ii) by comparing node centrality measures, and (iii) by comparing the patterns of brain-behavior associations. Although FC estimates did not differ as a function of sensitivity to temporal order, we observed differences between the multivariate and bivariate FC methods. The dynamic FC estimates were highly correlated with the static FC estimates, especially when comparing group-level FC matrices. Similarly, there were high correlations between the patterns of brain-behavior associations obtained using the dynamic and static FC methods. We conclude that the dynamic FC estimates represent information largely similar to that of the static FC.
Collapse
Affiliation(s)
- Andraž Matkovič
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - John D. Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Grega Repovš
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Goekoop R, de Kleijn R. Hierarchical network structure as the source of hierarchical dynamics (power-law frequency spectra) in living and non-living systems: How state-trait continua (body plans, personalities) emerge from first principles in biophysics. Neurosci Biobehav Rev 2023; 154:105402. [PMID: 37741517 DOI: 10.1016/j.neubiorev.2023.105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Living systems are hierarchical control systems that display a small world network structure. In such structures, many smaller clusters are nested within fewer larger ones, producing a fractal-like structure with a 'power-law' cluster size distribution (a mereology). Just like their structure, the dynamics of living systems shows fractal-like qualities: the timeseries of inner message passing and overt behavior contain high frequencies or 'states' (treble) that are nested within lower frequencies or 'traits' (bass), producing a power-law frequency spectrum that is known as a 'state-trait continuum' in the behavioral sciences. Here, we argue that the power-law dynamics of living systems results from their power-law network structure: organisms 'vertically encode' the deep spatiotemporal structure of their (anticipated) environments, to the effect that many small clusters near the base of the hierarchy produce high frequency signal changes and fewer larger clusters at its top produce ultra-low frequencies. Such ultra-low frequencies exert a tonic regulatory pressure that produces morphological as well as behavioral traits (i.e., body plans and personalities). Nested-modular structure causes higher frequencies to be embedded within lower frequencies, producing a power-law state-trait continuum. At the heart of such dynamics lies the need for efficient energy dissipation through networks of coupled oscillators, which also governs the dynamics of non-living systems (e.q., earthquakes, stock market fluctuations). Since hierarchical structure produces hierarchical dynamics, the development and collapse of hierarchical structure (e.g., during maturation and disease) should leave specific traces in system dynamics (shifts in lower frequencies, i.e. morphological and behavioral traits) that may serve as early warning signs to system failure. The applications of this idea range from (bio)physics and phylogenesis to ontogenesis and clinical medicine.
Collapse
Affiliation(s)
- R Goekoop
- Free University Amsterdam, Department of Behavioral and Movement Sciences, Parnassia Academy, Parnassia Group, PsyQ, Department of Anxiety Disorders, Early Detection and Intervention Team (EDIT), Lijnbaan 4, 2512VA The Hague, the Netherlands.
| | - R de Kleijn
- Faculty of Social and Behavioral Sciences, Department of Cognitive Psychology, Pieter de la Courtgebouw, Postbus 9555, 2300 RB Leiden, the Netherlands
| |
Collapse
|
8
|
O'Neil-Pirozzi TM, Cappon DB, Pascual-Leone A. Adherence to cognitive and physical exercise engagement: a challenge to successful dementia risk reduction and prevention efforts. FRONTIERS IN DEMENTIA 2023; 2:1254986. [PMID: 39081974 PMCID: PMC11285648 DOI: 10.3389/frdem.2023.1254986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/10/2023] [Indexed: 08/02/2024]
Abstract
With human life expectancy and proportion of older adults increasing, global use of evidence-supported preventative methods to minimize risk of brain-related disabilities such as Alzheimer's disease and other dementias-as well as interventions to slow rate of disease progression-is important. Sustained engagement in cognitive and physical exercise programs may prevent or delay dementia onset as well as maximize health and function of those with dementia. Despite awareness of the importance of cognitive and physical exercise to brain health, exercise program adherence by older adults is extremely challenging. In this Perspective article, we summarize what is known about contributors to exercise program adherence and strategies to promote it. We discuss our viewpoint on knowledge gaps regarding exercise adherence and research that needs to be conducted. We conclude by proposing a multi-dimensional exercise adherence assessment framework that includes portable neurophysiologic technologies to inform initial design and updating of individualized exercise programs that optimize sustained exercise program engagement and, ultimately, maximize brain health in older adults with and without mild cognitive impairment and dementia.
Collapse
Affiliation(s)
- Therese M. O'Neil-Pirozzi
- Cognitive-Community Integration Lab, Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, United States
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Davide B. Cappon
- Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife, Boston, MA, United States
- Deanna and Sidney Wolk Center for Memory Health at Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife, Boston, MA, United States
- Deanna and Sidney Wolk Center for Memory Health at Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a La UAB, Badalona, Spain
| |
Collapse
|
9
|
Madole JW, Buchanan CR, Rhemtulla M, Ritchie SJ, Bastin ME, Deary IJ, Cox SR, Tucker-Drob EM. Strong intercorrelations among global graph-theoretic indices of structural connectivity in the human brain. Neuroimage 2023; 275:120160. [PMID: 37169117 DOI: 10.1016/j.neuroimage.2023.120160] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/06/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023] Open
Abstract
Graph-theoretic metrics derived from neuroimaging data have been heralded as powerful tools for uncovering neural mechanisms of psychological traits, psychiatric disorders, and neurodegenerative diseases. In N = 8,185 human structural connectomes from UK Biobank, we examined the extent to which 11 commonly-used global graph-theoretic metrics index distinct versus overlapping information with respect to interindividual differences in brain organization. Using unthresholded, FA-weighted networks we found that all metrics other than Participation Coefficient were highly intercorrelated, both with each other (mean |r| = 0.788) and with a topologically-naïve summary index of brain structure (mean edge weight; mean |r| = 0.873). In a series of sensitivity analyses, we found that overlap between metrics is influenced by the sparseness of the network and the magnitude of variation in edge weights. Simulation analyses representing a range of population network structures indicated that individual differences in global graph metrics may be intrinsically difficult to separate from mean edge weight. In particular, Closeness, Characteristic Path Length, Global Efficiency, Clustering Coefficient, and Small Worldness were nearly perfectly collinear with one another (mean |r| = 0.939) and with mean edge weight (mean |r| = 0.952) across all observed and simulated conditions. Global graph-theoretic measures are valuable for their ability to distill a high-dimensional system of neural connections into summary indices of brain organization, but they may be of more limited utility when the goal is to index separable components of interindividual variation in specific properties of the human structural connectome.
Collapse
Affiliation(s)
- James W Madole
- Department of Psychology, University of Texas at Austin, Austin, TX, USA; VA Puget Sound Health Care System, Seattle Division, Seattle, WA, USA.
| | - Colin R Buchanan
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Mijke Rhemtulla
- Department of Psychology, University of California, Davis, CA, USA
| | - Stuart J Ritchie
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Mark E Bastin
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Elliot M Tucker-Drob
- Department of Psychology, University of Texas at Austin, Austin, TX, USA; Population Research Center and Center on Aging and Population Sciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
10
|
Bukhari H, Su C, Dhamala E, Gu Z, Jamison K, Kuceyeski A. Graph-matching distance between individuals' functional connectomes varies with relatedness, age, and cognitive score. Hum Brain Mapp 2023; 44:3541-3554. [PMID: 37042411 PMCID: PMC10203814 DOI: 10.1002/hbm.26296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023] Open
Abstract
Functional connectomes (FCs), represented by networks or graphs that summarize coactivation patterns between pairs of brain regions, have been related at a population level to age, sex, cognitive/behavioral scores, life experience, genetics, and disease/disorders. However, quantifying FC differences between individuals also provides a rich source of information with which to map to differences in those individuals' biology, experience, genetics or behavior. In this study, graph matching is used to create a novel inter-individual FC metric, called swap distance, that quantifies the distance between pairs of individuals' partial FCs, with a smaller swap distance indicating the individuals have more similar FC. We apply graph matching to align FCs between individuals from the the Human Connectome ProjectN = 997 and find that swap distance (i) increases with increasing familial distance, (ii) increases with subjects' ages, (iii) is smaller for pairs of females compared to pairs of males, and (iv) is larger for females with lower cognitive scores compared to females with larger cognitive scores. Regions that contributed most to individuals' swap distances were in higher-order networks, that is, default-mode and fronto-parietal, that underlie executive function and memory. These higher-order networks' regions also had swap frequencies that varied monotonically with familial relatedness of the individuals in question. We posit that the proposed graph matching technique provides a novel way to study inter-subject differences in FC and enables quantification of how FC may vary with age, relatedness, sex, and behavior.
Collapse
Affiliation(s)
- Hussain Bukhari
- Department of NeuroscienceWeill Cornell MedicineNew YorkNew YorkUSA
| | - Chang Su
- Department of BiostatisticsYale UniversityNew HavenConnecticutUSA
| | - Elvisha Dhamala
- Department of PsychologyYale UniversityNew HavenConnecticutUSA
| | - Zijin Gu
- Department of Electrical and Computer EngineeringCornell UniversityIthacaNew YorkUSA
| | - Keith Jamison
- Department of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
| | - Amy Kuceyeski
- Department of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
| |
Collapse
|
11
|
Matkovič A, Anticevic A, Murray JD, Repovš G. Static and dynamic functional connectomes represent largely similar information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525348. [PMID: 36747845 PMCID: PMC9900764 DOI: 10.1101/2023.01.24.525348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Functional connectivity (FC) of blood-oxygen-level-dependent (BOLD) fMRI time series can be estimated using methods that differ in sensitivity to the temporal order of time points (static vs. dynamic) and the number of regions considered in estimating a single edge (bivariate vs. multivariate). Previous research suggests that dynamic FC explains variability in FC fluctuations and behavior beyond static FC. Our aim was to systematically compare methods on both dimensions. We compared five FC methods: Pearson's/full correlation (static, bivariate), lagged correlation (dynamic, bivariate), partial correlation (static, multivariate) and multivariate AR model with and without self-connections (dynamic, multivariate). We compared these methods by (i) assessing similarities between FC matrices, (ii) by comparing node centrality measures, and (iii) by comparing the patterns of brain-behavior associations. Although FC estimates did not differ as a function of sensitivity to temporal order, we observed differences between the multivariate and bivariate FC methods. The dynamic FC estimates were highly correlated with the static FC estimates, especially when comparing group-level FC matrices. Similarly, there were high correlations between the patterns of brain-behavior associations obtained using the dynamic and static FC methods. We conclude that the dynamic FC estimates represent information largely similar to that of the static FC.
Collapse
Affiliation(s)
- Andraž Matkovič
- Department of Psychology, Faculty of Arts, University of Ljubljana
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, United States
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
| | - John D. Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, United States
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
- Department of Psychiatry, Yale University, New Haven, United States
| | - Grega Repovš
- Department of Psychology, Faculty of Arts, University of Ljubljana
| |
Collapse
|
12
|
Corr P, Mobbs D. Editorial: an emerging field with bright prospects. PERSONALITY NEUROSCIENCE 2023; 6:e1. [PMID: 36843660 PMCID: PMC9947592 DOI: 10.1017/pen.2022.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 02/03/2023]
Affiliation(s)
- Philip Corr
- Department of Psychology, City, University of London, London, United Kingdom of Great Britain and Northern Ireland
| | - Dean Mobbs
- California Institute of Technology, 1200 Wilson Ave, Pasadena, CA, USA
| |
Collapse
|
13
|
Lam YS, Li J, Ke Y, Yung WH. Variational dimensions of cingulate cortex functional connectivity and implications in neuropsychiatric disorders. Cereb Cortex 2022; 32:5682-5697. [PMID: 35193144 DOI: 10.1093/cercor/bhac045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023] Open
Abstract
Significant variations in brain functional connectivity exist in the healthy population, rendering the identification and characterization of their abnormalities in neuropsychiatric disorders difficult. Here, we proposed a new principal component analysis (PCA) approach to study variations in functional connectivity, focusing on major hubs of the salience network and default mode network, namely the anterior and posterior cingulate cortices. We analyzed the intersubject variability of human functional magnetic resonance imaging connectivity obtained from healthy, autistic, and schizophrenic subjects. Utilizing data from 1000 Functional Connectomes Project, COBRE, and ABIDE 1 database, we characterized the normal variations of the cingulate cortices with respect to top PCA dimensions. We showed that functional connectivity variations of the 2 cingulate cortices are constrained, in a parallel manner, by competing or cooperating interactions with different sensorimotor, associative, and limbic networks. In schizophrenic and autistic subjects, diffuse and subtle network changes along the same dimensions were found, which suggest significant behavioral implications of the variational dimensions. Furthermore, we showed that individual dynamic functional connectivity tends to fluctuate along the principal components of connectivity variations across individuals. Our results demonstrate the strength of this new approach in addressing the intrinsic variations of network connectivity in human brain and identifying their subtle changes in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yin-Shing Lam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jiaxin Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| |
Collapse
|
14
|
DeYoung CG, Beaty RE, Genç E, Latzman RD, Passamonti L, Servaas MN, Shackman AJ, Smillie LD, Spreng RN, Viding E, Wacker J. Personality Neuroscience: An Emerging Field with Bright Prospects. PERSONALITY SCIENCE 2022; 3:e7269. [PMID: 36250039 PMCID: PMC9561792 DOI: 10.5964/ps.7269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Personality neuroscience is the study of persistent psychological individual differences, typically in the general population, using neuroscientific methods. It has the potential to shed light on the neurobiological mechanisms underlying individual differences and their manifestation in ongoing behavior and experience. The field was inaugurated many decades ago, yet has only really gained momentum in the last two, as suitable technologies have become widely available. Personality neuroscience employs a broad range of methods, including molecular genetics, pharmacological assays or manipulations, electroencephalography, and various neuroimaging modalities, such as magnetic resonance imaging and positron emission tomography. Although exciting progress is being made in this young field, much remains unknown. In this brief review, we discuss discoveries that have been made, methodological challenges and advances, and important questions that remain to be answered. We also discuss best practices for personality neuroscience research and promising future directions for the field.
Collapse
Affiliation(s)
| | | | - Erhan Genç
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | | | - Luca Passamonti
- University of Cambridge, Cambridge, UK
- Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Michelle N. Servaas
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Krendl AC, Betzel RF. Social cognitive network neuroscience. Soc Cogn Affect Neurosci 2022; 17:510-529. [PMID: 35352125 PMCID: PMC9071476 DOI: 10.1093/scan/nsac020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 12/31/2022] Open
Abstract
Over the past three decades, research from the field of social neuroscience has identified a constellation of brain regions that relate to social cognition. Although these studies have provided important insights into the specific neural regions underlying social behavior, they may overlook the broader neural context in which those regions and the interactions between them are embedded. Network neuroscience is an emerging discipline that focuses on modeling and analyzing brain networks-collections of interacting neural elements. Because human cognition requires integrating information across multiple brain regions and systems, we argue that a novel social cognitive network neuroscience approach-which leverages methods from the field of network neuroscience and graph theory-can advance our understanding of how brain systems give rise to social behavior. This review provides an overview of the field of network neuroscience, discusses studies that have leveraged this approach to advance social neuroscience research, highlights the potential contributions of social cognitive network neuroscience to understanding social behavior and provides suggested tools and resources for conducting network neuroscience research.
Collapse
Affiliation(s)
- Anne C Krendl
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Richard F Betzel
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
16
|
Hilger K, Markett S. Personality network neuroscience: Promises and challenges on the way toward a unifying framework of individual variability. Netw Neurosci 2021; 5:631-645. [PMID: 34746620 PMCID: PMC8567832 DOI: 10.1162/netn_a_00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/22/2021] [Indexed: 11/21/2022] Open
Abstract
We propose that the application of network theory to established psychological personality conceptions has great potential to advance a biologically plausible model of human personality. Stable behavioral tendencies are conceived as personality “traits.” Such traits demonstrate considerable variability between individuals, and extreme expressions represent risk factors for psychological disorders. Although the psychometric assessment of personality has more than hundred years tradition, it is not yet clear whether traits indeed represent “biophysical entities” with specific and dissociable neural substrates. For instance, it is an open question whether there exists a correspondence between the multilayer structure of psychometrically derived personality factors and the organizational properties of traitlike brain systems. After a short introduction into fundamental personality conceptions, this article will point out how network neuroscience can enhance our understanding about human personality. We will examine the importance of intrinsic (task-independent) brain connectivity networks and show means to link brain features to stable behavioral tendencies. Questions and challenges arising from each discipline itself and their combination are discussed and potential solutions are developed. We close by outlining future trends and by discussing how further developments of network neuroscience can be applied to personality research.
Collapse
Affiliation(s)
- Kirsten Hilger
- Department of Psychology I, Julius-Maximilians University Würzburg, Würzburg, Germany
| | | |
Collapse
|
17
|
Wang X, Li Q, Zhao Y, He Y, Ma B, Fu Z, Li S. Decomposition of individual-specific and individual-shared components from resting-state functional connectivity using a multi-task machine learning method. Neuroimage 2021; 238:118252. [PMID: 34116155 DOI: 10.1016/j.neuroimage.2021.118252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022] Open
Abstract
Resting-state functional connectivity (RSFC) can be used for mapping large-scale human brain networks during rest. There is considerable interest in distinguishing the individual-shared and individual-specific components in RSFC for the better identification of individuals and prediction of behavior. Therefore, we propose a multi-task learning based sparse convex alternating structure optimization (MTL-sCASO) method to decompose RSFC into individual-specific connectivity and individual-shared connectivity. We used synthetic data to validate the efficacy of the MTL-sCASO method. In addition, we verified that individual-specific connectivity achieves higher identification rates than the Pearson correlation (PC) method, and the individual-specific components observed in 886 individuals from the Human Connectome Project (HCP) examined in two sessions over two consecutive days might serve as individual fingerprints. Individual-specific connectivity has low inter-subject similarity (-0.005±0.023), while individual-shared connectivity has high inter-subject similarity (0.822±0.061). We also determined the anatomical locations (region or subsystem) related to individual attributes and common features. We find that individual-specific connectivity exhibits low degree centrality in the sensorimotor processing system but high degree centrality in the control system. Importantly, the individual-specific connectivity estimated by the MTL-sCASO method accurately predicts behavioral scores (improved by 9.4% compared to the PC method) in the cognitive dimension. The decomposition of individual-specific and individual-shared components from RSFC provides a new approach for tracing individual traits and group analysis using functional brain networks.
Collapse
Affiliation(s)
- Xuetong Wang
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Qiongling Li
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Yan Zhao
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Yirong He
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Baoqiang Ma
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Zhenrong Fu
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Shuyu Li
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
18
|
Cremers H, van Zutphen L, Duken S, Domes G, Sprenger A, Waldorp L, Arntz A. Borderline personality disorder classification based on brain network measures during emotion regulation. Eur Arch Psychiatry Clin Neurosci 2021; 271:1169-1178. [PMID: 33263789 PMCID: PMC8354902 DOI: 10.1007/s00406-020-01201-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Borderline Personality Disorder (BPD) is characterized by an increased emotional sensitivity and dysfunctional capacity to regulate emotions. While amygdala and prefrontal cortex interactions are regarded as the critical neural mechanisms underlying these problems, the empirical evidence hereof is inconsistent. In the current study, we aimed to systematically test different properties of brain connectivity and evaluate the predictive power to detect borderline personality disorder. Patients with borderline personality disorder (n = 51), cluster C personality disorder (n = 26) and non-patient controls (n = 44), performed an fMRI emotion regulation task. Brain network analyses focused on two properties of task-related connectivity: phasic refers to task-event dependent changes in connectivity, while tonic was defined as task-stable background connectivity. Three different network measures were estimated (strength, local efficiency, and participation coefficient) and entered as separate models in a nested cross-validated linear support vector machine classification analysis. Borderline personality disorder vs. non-patient controls classification showed a balanced accuracy of 55%, which was not significant under a permutation null-model, p = 0.23. Exploratory analyses did indicate that the tonic strength model was the highest performing model (balanced accuracy 62%), and the amygdala was one of the most important features. Despite being one of the largest data-sets in the field of BPD fMRI research, the sample size may have been limited for this type of classification analysis. The results and analytic procedures do provide starting points for future research, focusing on network measures of tonic connectivity, and potentially focusing on subgroups of BPD.
Collapse
Affiliation(s)
- Henk Cremers
- Department of Clinical Psychology, University of Amsterdam, Nieuwe Achtergracht 129B, 1001 NK, Amsterdam, The Netherlands.
| | - Linda van Zutphen
- grid.5012.60000 0001 0481 6099Department of Clinical Psychological Science, Maastricht University, Maastricht, The Netherlands
| | - Sascha Duken
- grid.7177.60000000084992262Department of Clinical Psychology, University of Amsterdam, Nieuwe Achtergracht 129B, 1001 NK Amsterdam, The Netherlands
| | - Gregor Domes
- grid.12391.380000 0001 2289 1527Department of Biological and Clinical Psychology, University of Trier, Trier, Germany
| | - Andreas Sprenger
- grid.4562.50000 0001 0057 2672Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Lourens Waldorp
- grid.7177.60000000084992262Department of Psychological Methods, University of Amsterdam, Amsterdam, The Netherlands
| | - Arnoud Arntz
- grid.7177.60000000084992262Department of Clinical Psychology, University of Amsterdam, Nieuwe Achtergracht 129B, 1001 NK Amsterdam, The Netherlands ,grid.5012.60000 0001 0481 6099Department of Clinical Psychological Science, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
19
|
Kabbara A, Paban V, Hassan M. The dynamic modular fingerprints of the human brain at rest. Neuroimage 2020; 227:117674. [PMID: 33359336 DOI: 10.1016/j.neuroimage.2020.117674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 11/27/2022] Open
Abstract
The human brain is a dynamic modular network that can be decomposed into a set of modules, and its activity changes continually over time. At rest, several brain networks, known as Resting-State Networks (RSNs), emerge and cross-communicate even at sub-second temporal scale. Here, we seek to decipher the fast reshaping in spontaneous brain modularity and its relationships with RSNs. We use Electro/Magneto-Encephalography (EEG/MEG) to track the dynamics of modular brain networks, in three independent datasets (N = 568) of healthy subjects at rest. We show the presence of strikingly consistent RSNs, and a splitting phenomenon of some of these networks, especially the default mode network, visual, temporal and dorsal attentional networks. We also demonstrate that between-subjects variability in mental imagery is associated with the temporal characteristics of specific modules, particularly the visual network. Taken together, our findings show that large-scale electrophysiological networks have modularity-dependent dynamic fingerprints at rest.
Collapse
Affiliation(s)
- A Kabbara
- Univ Rennes, LTSI - U1099, Rennes F-35000, France
| | - V Paban
- Aix Marseille University, CNRS, LNSC, Marseille, France
| | - M Hassan
- Univ Rennes, LTSI - U1099, Rennes F-35000, France; NeuroKyma, Rennes F-35000, France.
| |
Collapse
|
20
|
The Multilayer Network Approach in the Study of Personality Neuroscience. Brain Sci 2020; 10:brainsci10120915. [PMID: 33260895 PMCID: PMC7761383 DOI: 10.3390/brainsci10120915] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
It has long been understood that a multitude of biological systems, from genetics, to brain networks, to psychological factors, all play a role in personality. Understanding how these systems interact with each other to form both relatively stable patterns of behaviour, cognition and emotion, but also vast individual differences and psychiatric disorders, however, requires new methodological insight. This article explores a way in which to integrate multiple levels of personality simultaneously, with particular focus on its neural and psychological constituents. It does so first by reviewing the current methodology of studies used to relate the two levels, where psychological traits, often defined with a latent variable model are used as higher-level concepts to identify the neural correlates of personality (NCPs). This is known as a top-down approach, which though useful in revealing correlations, is not able to include the fine-grained interactions that occur at both levels. As an alternative, we discuss the use of a novel complex system approach known as a multilayer network, a technique that has recently proved successful in revealing veracious interactions between networks at more than one level. The benefits of the multilayer approach to the study of personality neuroscience follow from its well-founded theoretical basis in network science. Its predictive and descriptive power may surpass that of statistical top-down and latent variable models alone, potentially allowing the discernment of more complete descriptions of individual differences, and psychiatric and neurological changes that accompany disease. Though in its infancy, and subject to a number of methodological unknowns, we argue that the multilayer network approach may contribute to an understanding of personality as a complex system comprised of interrelated psychological and neural features.
Collapse
|
21
|
Saghayi M, Greenberg J, O’Grady C, Varno F, Hashmi MA, Bracken B, Matwin S, Lazar SW, Hashmi JA. Brain network topology predicts participant adherence to mental training programs. Netw Neurosci 2020; 4:528-555. [PMID: 32885114 PMCID: PMC7462432 DOI: 10.1162/netn_a_00136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/02/2020] [Indexed: 11/04/2022] Open
Abstract
Adherence determines the success and benefits of mental training (e.g., meditation) programs. It is unclear why some participants engage more actively in programs for mental training than others. Understanding neurobiological factors that predict adherence is necessary for understanding elements of learning and to inform better designs for new learning regimens. Clustering patterns in brain networks have been suggested to predict learning performance, but it is unclear whether these patterns contribute to motivational aspects of learning such as adherence. This study tests whether configurations of brain connections in resting-state fMRI scans can be used to predict adherence to two programs: meditation and creative writing. Results indicate that greater system segregation and clustering predict the number of practice sessions and class participation in both programs at a wide range of network thresholds (corrected p value < 0.05). At a local level, regions in subcortical circuitry such as striatum and accumbens predicted adherence in all subjects. Furthermore, there were also some important distinctions between groups: Adherence to meditation was predicted by connectivity within local network of the anterior insula and default mode network; and in the writing program, adherence was predicted by network neighborhood of frontal and temporal regions. Four machine learning methods were applied to test the robustness of the brain metric for classifying individual capacity for adherence and yielded reasonable accuracy. Overall, these findings underscore the fact that adherence and the ability to perform prescribed exercises is associated with organizational patterns of brain connectivity.
Collapse
Affiliation(s)
- Marzie Saghayi
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, NSHA, Halifax, Canada
| | | | - Christopher O’Grady
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, NSHA, Halifax, Canada
| | - Farshid Varno
- Faculty of Computer Science, Dalhousie University, Halifax, Canada
| | | | | | - Stan Matwin
- Faculty of Computer Science, Dalhousie University, Halifax, Canada
- Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
| | - Sara W. Lazar
- Harvard Medical School, Mass General Hospital, Boston, MA, USA
| | - Javeria Ali Hashmi
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, NSHA, Halifax, Canada
| |
Collapse
|
22
|
Tang R, Braver TS. Towards an Individual Differences Perspective in Mindfulness Training Research: Theoretical and Empirical Considerations. Front Psychol 2020; 11:818. [PMID: 32508702 PMCID: PMC7248295 DOI: 10.3389/fpsyg.2020.00818] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/02/2020] [Indexed: 11/13/2022] Open
Abstract
A growing body of research indicates that mindfulness training can have beneficial effects on critical aspects of psychological well-being, cognitive function, and brain health. Although these benefits have been generalized to the population level, individual variability in observed effects of mindfulness training has not been systematically investigated. Research on other similar forms of psychological intervention demonstrates that individual differences are prominent in terms of intervention responsiveness and outcomes. Furthermore, individual characteristics such as personality traits have been shown to play a crucial role in influencing the effects of intervention. In light of these lines of evidence, we review representative work on individual differences in mindfulness training and advocate for an individual difference perspective in mindfulness training research. We discuss relevant empirical evidence of individual differences potentially influencing behavioral outcomes of mindfulness training, focusing on both cognitive function and psychological well-being. Finally, theoretical considerations and potentially fruitful research strategies and directions for studying individual differences in mindfulness training are discussed, including those involving cognitive neuroscience methods.
Collapse
Affiliation(s)
- Rongxiang Tang
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | | |
Collapse
|
23
|
Automatic Recognition of Personality Profiles Using EEG Functional Connectivity During Emotional Processing. Brain Sci 2020; 10:brainsci10050278. [PMID: 32375222 PMCID: PMC7288068 DOI: 10.3390/brainsci10050278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/03/2022] Open
Abstract
Personality is the characteristic set of an individual’s behavioral and emotional patterns that evolve from biological and environmental factors. The recognition of personality profiles is crucial in making human–computer interaction (HCI) applications realistic, more focused, and user friendly. The ability to recognize personality using neuroscientific data underpins the neurobiological basis of personality. This paper aims to automatically recognize personality, combining scalp electroencephalogram (EEG) and machine learning techniques. As the resting state EEG has not so far been proven efficient for predicting personality, we used EEG recordings elicited during emotion processing. This study was based on data from the AMIGOS dataset reflecting the response of 37 healthy participants. Brain networks and graph theoretical parameters were extracted from cleaned EEG signals, while each trait score was dichotomized into low- and high-level using the k-means algorithm. A feature selection algorithm was used afterwards to reduce the feature-set size to the best 10 features to describe each trait separately. Support vector machines (SVM) were finally employed to classify each instance. Our method achieved a classification accuracy of 83.8% for extraversion, 86.5% for agreeableness, 83.8% for conscientiousness, 83.8% for neuroticism, and 73% for openness.
Collapse
|
24
|
Kao CH, Khambhati AN, Bassett DS, Nassar MR, McGuire JT, Gold JI, Kable JW. Functional brain network reconfiguration during learning in a dynamic environment. Nat Commun 2020; 11:1682. [PMID: 32245973 PMCID: PMC7125157 DOI: 10.1038/s41467-020-15442-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 03/06/2020] [Indexed: 11/09/2022] Open
Abstract
When learning about dynamic and uncertain environments, people should update their beliefs most strongly when new evidence is most informative, such as when the environment undergoes a surprising change or existing beliefs are highly uncertain. Here we show that modulations of surprise and uncertainty are encoded in a particular, temporally dynamic pattern of whole-brain functional connectivity, and this encoding is enhanced in individuals that adapt their learning dynamics more appropriately in response to these factors. The key feature of this whole-brain pattern of functional connectivity is stronger connectivity, or functional integration, between the fronto-parietal and other functional systems. Our results provide new insights regarding the association between dynamic adjustments in learning and dynamic, large-scale changes in functional connectivity across the brain.
Collapse
Affiliation(s)
- Chang-Hao Kao
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Ankit N Khambhati
- Department of Neurological Surgery, University of California, San Francisco, CA, 94122, USA
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Matthew R Nassar
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA.,Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA
| | - Joseph T McGuire
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Joshua I Gold
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph W Kable
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
25
|
Kabbara A, Paban V, Weill A, Modolo J, Hassan M. Brain Network Dynamics Correlate with Personality Traits. Brain Connect 2020; 10:108-120. [DOI: 10.1089/brain.2019.0723] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | - Arnaud Weill
- LNSC, Aix Marseille University, CNRS, Marseille, France
| | | | | |
Collapse
|
26
|
Wu Q, Yue Z, Ge Y, Ma D, Yin H, Zhao H, Liu G, Wang J, Dou W, Pan Y. Brain Functional Networks Study of Subacute Stroke Patients With Upper Limb Dysfunction After Comprehensive Rehabilitation Including BCI Training. Front Neurol 2020; 10:1419. [PMID: 32082238 PMCID: PMC7000923 DOI: 10.3389/fneur.2019.01419] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022] Open
Abstract
Brain computer interface (BCI)-based training is promising for the treatment of stroke patients with upper limb (UL) paralysis. However, most stroke patients receive comprehensive treatment that not only includes BCI, but also routine training. The purpose of this study was to investigate the topological alterations in brain functional networks following comprehensive treatment, including BCI training, in the subacute stage of stroke. Twenty-five hospitalized subacute stroke patients with moderate to severe UL paralysis were assigned to one of two groups: 4-week comprehensive treatment, including routine and BCI training (BCI group, BG, n = 14) and 4-week routine training without BCI support (control group, CG, n = 11). Functional UL assessments were performed before and after training, including, Fugl-Meyer Assessment-UL (FMA-UL), Action Research Arm Test (ARAT), and Wolf Motor Function Test (WMFT). Neuroimaging assessment of functional connectivity (FC) in the BG was performed by resting state functional magnetic resonance imaging. After training, as compared with baseline, all clinical assessments (FMA-UL, ARAT, and WMFT) improved significantly (p < 0.05) in both groups. Meanwhile, better functional improvements were observed in FMA-UL (p < 0.05), ARAT (p < 0.05), and WMFT (p < 0.05) in the BG. Meanwhile, FC of the BG increased across the whole brain, including the temporal, parietal, and occipital lobes and subcortical regions. More importantly, increased inter-hemispheric FC between the somatosensory association cortex and putamen was strongly positively associated with UL motor function after training. Our findings demonstrate that comprehensive rehabilitation, including BCI training, can enhance UL motor function better than routine training for subacute stroke patients. The reorganization of brain functional networks topology in subacute stroke patients allows for increased coordination between the multi-sensory and motor-related cortex and the extrapyramidal system. Future long-term, longitudinal, controlled neuroimaging studies are needed to assess the effectiveness of BCI training as an approach to promote brain plasticity during the subacute stage of stroke.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zan Yue
- Institute of Robotics and Intelligent Systems, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yunxiang Ge
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Di Ma
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Hang Yin
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Hongliang Zhao
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Gang Liu
- Institute of Robotics and Intelligent Systems, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jing Wang
- Institute of Robotics and Intelligent Systems, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Weibei Dou
- Department of Electronic Engineering, Tsinghua University, Beijing, China.,Beijing National Research Center for Information Science and Technology, Beijing, China
| | - Yu Pan
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
27
|
Toschi N, Passamonti L. Intra-cortical myelin mediates personality differences. J Pers 2019; 87:889-902. [PMID: 30317636 PMCID: PMC6767500 DOI: 10.1111/jopy.12442] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/26/2018] [Accepted: 10/06/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Differences in myelination in the cortical mantle are important neurobiological mediators of variability in cognitive, emotional, and behavioral functioning. Past studies have found that personality traits reflecting such variability are linked to neuroanatomical and functional changes in prefrontal and temporo-parietal cortices. Whether these effects are partially mediated by the differences in intra-cortical myelin remains to be established. METHOD To test this hypothesis, we employed vertex-wise intra-cortical myelin maps in n = 1,003 people from the Human Connectome Project. Multivariate regression analyses were used to test for the relationship between intra-cortical myelin and each of the five-factor model's personality traits, while accounting for age, sex, intelligence quotient, total intracranial volume, and the remaining personality traits. RESULTS Neuroticism negatively related to frontal-pole myelin and positively to occipital cortex myelin. Extraversion positively related to superior parietal myelin. Openness negatively related to anterior cingulate myelin, while Agreeableness positively related to orbitofrontal myelin. Conscientiousness positively related to frontal-pole myelin and negatively to myelin content in the dorsal anterior cingulate cortex. CONCLUSIONS Intra-cortical myelin levels in brain regions with prolonged myelination are positively associated with personality traits linked to favorable outcome measures. These findings improve our understanding of the neurobiological underpinnings of variability in common behavioral dispositions.
Collapse
Affiliation(s)
- Nicola Toschi
- Department of Biomedicine & PreventionUniversity “Tor Vergata”RomeItaly
- Department of RadiologyMartinos Center for Biomedical ImagingBostonMassachusetts
| | - Luca Passamonti
- Institute of Bioimaging & Molecular PhysiologyNational Research CouncilMilanoItaly
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
28
|
Girn M, Mills C, Christoff K. Linking brain network reconfiguration and intelligence: Are we there yet? Trends Neurosci Educ 2019; 15:62-70. [PMID: 31176472 DOI: 10.1016/j.tine.2019.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/22/2019] [Accepted: 04/04/2019] [Indexed: 01/08/2023]
Abstract
Recent applications of dynamic network analyses to functional neuroimaging data have revealed relationships between a number of cognition conditions and the dynamic reconfiguration of brain networks. Here we critically review such applications of network neuroscience to intelligence. After providing an overview of network neuroscience, we center our discussion around the recently proposed Network Neuroscience Theory of Intelligence (Barbey, 2017). We evaluate and review existing empirical support for the theses made by this theory and argue that while studies strongly suggest their plausibility, evidence to date has largely been indirect. We propose avenues for future research to directly evaluate these theses by overcoming the methodological and analytical shortcomings of previous studies. In doing so, our goal is to stimulate future empirical investigations and present valuable ways forward in the network neuroscience of intelligence.
Collapse
Affiliation(s)
- Manesh Girn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Department of Psychology, University of British Columbia, Vancouver, British Columbia.
| | - Caitlin Mills
- Department of Psychology, University of New Hampshire, Durham, New Hampshire
| | - Kalina Christoff
- Department of Psychology, University of British Columbia, Vancouver, British Columbia; Centre for Brain Health, University of British Columbia, Vancouver, British Columbia
| |
Collapse
|
29
|
Paban V, Modolo J, Mheich A, Hassan M. Psychological resilience correlates with EEG source-space brain network flexibility. Netw Neurosci 2019; 3:539-550. [PMID: 30984906 PMCID: PMC6444909 DOI: 10.1162/netn_a_00079] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/17/2019] [Indexed: 12/01/2022] Open
Abstract
We aimed at identifying the potential relationship between the dynamical properties of the human functional network at rest and one of the most prominent traits of personality, namely resilience. To tackle this issue, we used resting-state EEG data recorded from 45 healthy subjects. Resilience was quantified using the 10-item Connor-Davidson Resilience Scale (CD-RISC). By using a sliding windows approach, brain networks in each EEG frequency band (delta, theta, alpha, and beta) were constructed using the EEG source-space connectivity method. Brain networks dynamics were evaluated using the network flexibility, linked with the tendency of a given node to change its modular affiliation over time. The results revealed a negative correlation between the psychological resilience and the brain network flexibility for a limited number of brain regions within the delta, alpha, and beta bands. This study provides evidence that network flexibility, a metric of dynamic functional networks, is strongly correlated with psychological resilience as assessed from personality testing. Beyond this proof-of-principle that reliable EEG-based quantities representative of personality traits can be identified, this motivates further investigation regarding the full spectrum of personality aspects and their relationship with functional networks.
Collapse
Affiliation(s)
| | - Julien Modolo
- University of Rennes, INSERM, LTSI-U1099, F-35000 Rennes, France
| | - Ahmad Mheich
- University of Rennes, INSERM, LTSI-U1099, F-35000 Rennes, France
| | - Mahmoud Hassan
- University of Rennes, INSERM, LTSI-U1099, F-35000 Rennes, France
| |
Collapse
|
30
|
Markett S, Wudarczyk OA, Biswal BB, Jawinski P, Montag C. Affective Network Neuroscience. Front Neurosci 2018; 12:895. [PMID: 30618543 PMCID: PMC6298244 DOI: 10.3389/fnins.2018.00895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/15/2018] [Indexed: 01/25/2023] Open
Affiliation(s)
- Sebastian Markett
- Department of Psychology, Humboldt University Berlin, Berlin, Germany
| | - Olga A. Wudarczyk
- Department of Psychiatry & Psychotherapy, RWTH Aachen, Aachen, Germany
| | - Bharat B. Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Philippe Jawinski
- Department of Psychology, Humboldt University Berlin, Berlin, Germany
| | - Christian Montag
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Department of Molecular Psychology, Insitute of Psychology and Education, Ulm University, Ulm, Germany
| |
Collapse
|