1
|
Ma S, Liu J, Zhao Y, Wang Y, Zhao R. In ovo betaine injection improves breast muscle growth in newly hatched goslings through FXR/IGF-2 pathway. Poult Sci 2024; 103:104075. [PMID: 39094501 PMCID: PMC11345595 DOI: 10.1016/j.psj.2024.104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
Betaine has been shown to enhance growth performance and increase breast muscle yield in ducks and broilers through various mechanisms, including the modification of DNA methylation. However, the impact of in ovo betaine injection on muscle growth in newly hatched goslings remains unclear. In this study, fifty eggs were injected with saline or betaine at 7.5 mg/egg prior to incubation, and the subsequent effects on breast muscle growth in the newly hatched goslings were investigated. Betaine significantly increased (P < 0.05) the hatch weight, breast muscle weight, and breast muscle index, accompanied by an augmentation in muscle bundle cross-sectional area. Concurrently, betaine significantly upregulated (P < 0.05) the expression levels of myogenic regulatory factors, including myogenin (MyoG) and paired box 7 (Pax7) both mRNA and protein, while downregulating (P < 0.05) the mRNA and protein levels of myostatin (MSTN). Histological analysis revealed a higher abundance of proliferating cell nuclear antigen (PCNA) and Pax7 immune-positive cells in the breast muscle of the betaine group, consistent with elevated PCNA and Pax7 mRNA and protein levels. Additionally, significantly increased (P < 0.05) contents of insulin-like growth factor 1 (IGF-1) and insulin-like growth factor 2 (IGF-2) were observed in the breast muscle of the betaine group, so was mRNA expression of IGF-1, IGF-2, and insulin-like growth factor 1 receptor (IGF-1R). Betaine also significantly in8creased (P < 0.05) global DNA methylation of the breast muscle, accompanied by enhanced mRNA and protein levels of methionine cycle and DNA methylation-related enzymes, Interestingly, the promoter regions of IGF-1, IGF-2, and IGF-1R genes were significantly hypomethylated (P < 0.05). Moreover, in ovo betaine injection significantly upregulated (P < 0.05) the protein level of farnesoid X receptor (FXR) in breast muscle and FXR binding to the promoter of IGF-2 gene. These findings suggest that in ovo betaine injection promotes breast muscle growth during embryonic development in goslings through the FXR-mediated IGF-2 pathway, ultimately improving hatch weight and breast muscle weight.
Collapse
Affiliation(s)
- Shuai Ma
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Liu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yulan Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yan Wang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
2
|
Zhang D, Xu F, Liu Y. Research progress on regulating factors of muscle fiber heterogeneity in poultry: a review. Poult Sci 2024; 103:104031. [PMID: 39033575 PMCID: PMC11295477 DOI: 10.1016/j.psj.2024.104031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/23/2024] Open
Abstract
Control of meat quality traits is an important goal of any farm animal production, including poultry. A better understanding of the biochemical properties of muscle fiber properties that drive muscle development and ultimately meat quality constitutes one of the major challenging topics in animal production and meat science. In this paper, the existing classification methods of skeletal muscle fibers in poultry were reviewed and the relationship between contractile and metabolic characteristics of muscle fibers and poultry meat quality was described. Finally, a comprehensive review of multiple potential factors affecting muscle fiber distribution and conversion is presented, including breed, sex, hormones, growth performance, diet, muscle position, exercise, and ambient temperature. We emphasize that knowledge of muscle fiber typing is essential to better understand how to control muscle characteristics throughout the life cycle of animals to better manage the final quality of poultry meat.
Collapse
Affiliation(s)
- Donghao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Feng Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
3
|
Reda GK, Ndunguru SF, Csernus B, Knop R, Lugata JK, Szabó C, Czeglédi L, Lendvai ÁZ. Dietary restriction reveals sex-specific expression of the mTOR pathway genes in Japanese quails. Sci Rep 2024; 14:8314. [PMID: 38594358 PMCID: PMC11004124 DOI: 10.1038/s41598-024-58487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024] Open
Abstract
Limited resources affect an organism's physiology through the conserved metabolic pathway, the mechanistic target of rapamycin (mTOR). Males and females often react differently to nutritional limitation, but whether it leads to differential mTOR pathway expression remains unknown. Recently, we found that dietary restriction (DR) induced significant changes in the expression of mTOR pathway genes in female Japanese quails (Coturnix japonica). We simultaneously exposed 32 male and female Japanese quails to either 20%, 30%, 40% restriction or ad libitum feeding for 14 days and determined the expression of six key genes of the mTOR pathway in the liver to investigate sex differences in the expression patterns. We found that DR significantly reduced body mass, albeit the effect was milder in males compared to females. We observed sex-specific liver gene expression. DR downregulated mTOR expression more in females than in males. Under moderate DR, ATG9A and RPS6K1 expressions were increased more in males than in females. Like females, body mass in males was correlated positively with mTOR and IGF1, but negatively with ATG9A and RS6K1 expressions. Our findings highlight that sexes may cope with nutritional deficits differently and emphasise the importance of considering sexual differences in studies of dietary restriction.
Collapse
Affiliation(s)
- Gebrehaweria K Reda
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 4032, Debrecen, Hungary.
- Doctoral School of Animal Science, University of Debrecen, 4032, Debrecen, Hungary.
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032, Debrecen, Hungary.
| | - Sawadi F Ndunguru
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 4032, Debrecen, Hungary
- Doctoral School of Animal Science, University of Debrecen, 4032, Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032, Debrecen, Hungary
| | - Brigitta Csernus
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032, Debrecen, Hungary
| | - Renáta Knop
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 4032, Debrecen, Hungary
| | - James K Lugata
- Doctoral School of Animal Science, University of Debrecen, 4032, Debrecen, Hungary
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, 4032, Debrecen, Hungary
| | - Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, 4032, Debrecen, Hungary
| | - Levente Czeglédi
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 4032, Debrecen, Hungary
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032, Debrecen, Hungary
| |
Collapse
|
4
|
Li K, Wang M, Wang R, Wang X, Jiao H, Zhao J, Zhou Y, Li H, Lin H. Hydrogen Sulfide Regulates Glucose Uptake in Skeletal Muscles via S-Sulfhydration of AMPK in Muscle Fiber Type-Dependent Way. J Nutr 2023; 153:2878-2892. [PMID: 37611831 DOI: 10.1016/j.tjnut.2023.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND The effect of hydrogen sulfide (H2S) on glucose homeostasis remains to be elucidated, especially in the state of insulin resistance. OBJECTIVES In the present study, we aimed to investigate H2S-regulated glucose uptake in the M. pectoralis major (PM) muscle (which mainly consists of fast-twitch glycolytic fibers) and M. biceps femoris (BF) muscle (which mainly consists of slow-twitch oxidative fibers) of the chicken, a potential model of insulin resistance. METHODS Chicks were subjected to intraperitoneal injection of sodium hydrosulfide (NaHS, 50 μmol/kg body mass/day) twice a day to explore glucose homeostasis. In vitro, myoblasts from PM and BF muscles were used to detect glucose uptake and utilization. Effects of AMP-activated protein kinase (AMPK) phosphorylation, AMPK S-sulfhydration, and mitogen-activated protein kinase (MAPK) pathway induction by NaHS were detected. RESULTS NaHS enhanced glucose uptake and utilization in chicks (P < 0.05). In myoblasts from PM muscle, NaHS (100 μM) increased glucose uptake by activating AMPK S-sulfhydration, AMPK phosphorylation, and the AMPK/p38 MAPK pathway (P < 0.05). However, NaHS decreased glucose uptake in myoblasts from BF muscle by suppressing the p38 MAPK pathway (P < 0.05). Moreover, NaHS increased S-sulfhydration and, in turn, the phosphorylation of AMPK (P < 0.05). CONCLUSIONS This study reveals the role of H2S in enhancing glucose uptake and utilization in chicks. The results suggest that NaHS is involved in glucose uptake in skeletal muscle in a fiber type-dependent way. The AMPK/p38 pathway and protein S-sulfhydration promote glucose uptake in fast-twitch glycolytic muscle fibers, which provides a muscle fiber-specific potential therapeutic target to ameliorate glucose metabolism.
Collapse
Affiliation(s)
- Kelin Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Minghui Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Ruxia Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Hongchao Jiao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Jingpeng Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, China
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
5
|
Ebeid TA, Tůmová E, Ketta M, Chodová D. Recent advances in the role of feed restriction in poultry productivity: part II- carcass characteristics, meat quality, muscle fibre properties, and breast meat myopathies. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2121674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Tarek A. Ebeid
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Eva Tůmová
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Mohamed Ketta
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Darina Chodová
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
6
|
Englmaierová M, Skřivan M, Taubner T, Skřivanová V, Čermák L. Effect of housing system and feed restriction on meat quality of medium-growing chickens. Poult Sci 2021; 100:101223. [PMID: 34157561 PMCID: PMC8237347 DOI: 10.1016/j.psj.2021.101223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/02/2022] Open
Abstract
The aim of the study was to evaluate the differences in meat quality of 420 Hubbard JA757 cockerels in relation to the housing system (litter and mobile box) and level of mixed feed (ad libitum [AL], reducing the level by 20% [R20] and 30% [R30]). Three groups of chickens were housed in litter boxes for the entire fattening period (stocking density: 0.094 m2/bird). The other 3 groups were housed in litter boxes until 28 d of age and then relocated into mobile boxes (stocking density: 0.154 m2/bird) on pasture until the end of the experiment at 57 d of age. Restricted groups received a reduced diet level from 29th to 57th d of age. Feed mixture restriction increased the pasture vegetation intake of chickens from 2.63 to 3.50 (R20) and 3.94 g of dry matter/bird/d (R30). Restriction adversely affected the dressing percentage (P < 0.001) and breast yield (P < 0.001), while the leg yield (P < 0.001) was increased with increasing restriction levels. Meat of chickens housed in mobile boxes on a pasture showed lower cooking loss (P < 0.001) and higher redness and yellowness values in the skin (P = 0.030 and P = 0.026; respectively) and meat (P = 0.008 and P < 0.001; respectively). The fragile meat after cooking was observed in chickens reared on litter (P = 0.001). As the level of restriction increased, the number of muscle fibres (P = 0.001) increased, and their cross-sectional area (P = 0.001) and diameter (P = 0.002) decreased. The highest contents of lutein (P = 0.002) and zeaxanthin (P = 0.006) in breast muscle were found in chickens housed in mobile boxes and fed 80% and 70% AL. However, the concentrations of α- and γ-tocopherol (P = 0.006 and P = 0.003) were negatively affected by feed restriction. A 30% reduction in feed level in outdoor housed chickens led to a decrease in oxidative stability (P = 0.024). Feed restriction (R20) in chickens housed in mobile boxes significantly increased the n3 fatty acids content (P = 0.002) and h/H index (P = 0.005) and reduced the n6/n3 ratio (P < 0.001) and atherogenic (P < 0.001) and thrombogenic index (P = 0.003), which possess a health benefits for human. In addition, restriction of mixed feed decreased cholesterol content in breast meat (P = 0.042). It might be concluded that, in terms of meat quality, cereal diet restriction of 20% in medium-growing cockerels housed in mobile boxes on a pasture is beneficial. The higher level of restriction does not lead to further improvement in meat quality indicators.
Collapse
Affiliation(s)
- M Englmaierová
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, Czech Republic.
| | - M Skřivan
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, Czech Republic
| | - T Taubner
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, Czech Republic
| | - V Skřivanová
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, Czech Republic
| | - L Čermák
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, Czech Republic
| |
Collapse
|
7
|
Identification of Differentially Expressed Genes in Different Types of Broiler Skeletal Muscle Fibers Using the RNA-seq Technique. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9478949. [PMID: 32695825 PMCID: PMC7362283 DOI: 10.1155/2020/9478949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/10/2020] [Accepted: 06/27/2020] [Indexed: 11/17/2022]
Abstract
The difference in muscle fiber types is very important to the muscle development and meat quality of broilers. At present, the molecular regulation mechanisms of skeletal muscle fiber-type transformation in broilers are still unclear. In this study, differentially expressed genes between breast and leg muscles in broilers were analyzed using RNA-seq. A total of 767 DEGs were identified. Compared with leg muscle, there were 429 upregulated genes and 338 downregulated genes in breast muscle. Gene Ontology (GO) enrichment indicated that these DEGs were mainly involved in cellular processes, single organism processes, cells, and cellular components, as well as binding and catalytic activity. KEGG analysis shows that a total of 230 DEGs were mapped to 126 KEGG pathways and significantly enriched in the four pathways of glycolysis/gluconeogenesis, starch and sucrose metabolism, insulin signalling pathways, and the biosynthesis of amino acids. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) was used to verify the differential expression of 7 selected DEGs, and the results were consistent with RNA-seq data. In addition, the expression profile of MyHC isoforms in chicken skeletal muscle cells showed that with the extension of differentiation time, the expression of fast fiber subunits (types IIA and IIB) gradually increased, while slow muscle fiber subunits (type I) showed a downward trend after 4 days of differentiation. The differential genes screened in this study will provide some new ideas for further understanding the molecular mechanism of skeletal muscle fiber transformation in broilers.
Collapse
|
8
|
Zeng YT, Wang C, Zhang Y, Xu L, Zhou GB, Zeng CJ, Zuo ZC, Song TZ, Zhu Q, Yin HD, Zhang M. Improvac immunocastration affects the development of thigh muscles but not pectoral muscles in male chickens. Poult Sci 2020; 99:5149-5157. [PMID: 32988554 PMCID: PMC7598331 DOI: 10.1016/j.psj.2020.06.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 11/22/2022] Open
Abstract
Improvac has been tentatively used to immune-castrate roosters. The aim of this study was to investigate whether Improvac affected skeletal muscle development in chickens. The muscle fiber type and size and the expression levels of genes related to muscle development in pectoral and thigh muscles were examined at 5, 9, and 14 wk of age in the control, early, late, and early + late Improvac-treated groups. Immunocastration with Improvac affected the development of thigh muscles and the expression of MYH1B, MSTN, and SM. The cross-sectional area in the early group was significantly larger than in the control group at the 14th week (P < 0.01). At the fifth week, the expression levels of MYH1B, MYOD, and MSTN in the early group were significantly higher than those in the control group (P < 0.05), and at the ninth week, the expression level of SM1 in the control group was significantly lower than that in early and late groups (P < 0.05). Immunocastration did not affect pectoral muscle development or the expression of genes related to muscle development.
Collapse
Affiliation(s)
- Y T Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - C Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Y Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - L Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - G B Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - C J Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Z C Zuo
- College of Animal Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - T Z Song
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, P.R. China
| | - Q Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - H D Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - M Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, P.R. China.
| |
Collapse
|
9
|
Shikano K, Kato M, Iwakoshi-Ukena E, Furumitsu M, Matsuura D, Masuda K, Tachibana T, Bentley GE, Kriegsfeld LJ, Ukena K. Effects of chronic intracerebroventricular infusion of neurosecretory protein GL on body mass and food and water intake in chicks. Gen Comp Endocrinol 2018; 256:37-42. [PMID: 28554734 DOI: 10.1016/j.ygcen.2017.05.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 12/17/2022]
Abstract
Recently, we discovered a novel cDNA encoding the precursor of a small secretory protein, neurosecretory protein GL (NPGL), in the chicken mediobasal hypothalamus. In this study, immunohistochemical analysis revealed that NPGL was produced in the infundibular and medial mammillary nuclei of the mediobasal hypothalamus, with immunoreactive fibers also detected in the hypothalamus and the median eminence. As it is known that these regions are involved in feeding behavior in chicks, we surveyed the effects of chronic intracerebroventricular infusion of NPGL on feeding behavior and body mass for a period of two weeks. NPGL stimulated food and water intake, with a concomitant increase in body mass. However, NPGL did not influence mRNA expression of several hypothalamic ingestion-related neuropeptides. Our data suggest that NPGL may be a novel neuronal regulator involved in growth processes in chicks.
Collapse
Affiliation(s)
- Kenshiro Shikano
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Masaki Kato
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Eiko Iwakoshi-Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan; Department of Integrative Biology, The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720-3140, USA
| | - Megumi Furumitsu
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Daichi Matsuura
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Keiko Masuda
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - George E Bentley
- Department of Integrative Biology, The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720-3140, USA
| | - Lance J Kriegsfeld
- Department of Psychology, The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720-3140, USA
| | - Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan; Department of Psychology, The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720-3140, USA.
| |
Collapse
|
10
|
Ismail I, Joo ST. Poultry Meat Quality in Relation to Muscle Growth and Muscle Fiber Characteristics. Korean J Food Sci Anim Resour 2017; 37:873-883. [PMID: 29725209 PMCID: PMC5932941 DOI: 10.5851/kosfa.2017.37.6.87] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022] Open
Abstract
Variations in the definition of poultry meat quality exist because the quality traits are not solely based on intrinsic and extrinsic factors but also consumers’ preference. Appearance quality traits (AQT), eating quality traits (EQT), and reliance quality traits (RQT) are the major factors focused by the consumer before buying good quality of poultry meat. AQT and EQT of poultry meat are controlled by physical and biochemical characteristics of muscle fibers which can be categorized into a total number of fibers (TNF), cross-sectional area of fibers (CSAF), and fiber type composition (FTC). In poultry meat, it has been shown that muscle fiber properties play a key role in meat quality because numerous studies have reported the relationships between quality traits and fiber characteristics. Despite intensive research has been carried out to manipulate the muscle fiber to improve poultry meat quality, demand in a rapid growth of poultry muscle has correlated to the deterioration in the meat quality. The present paper reviews the definition of poultry meat quality, meat quality traits, and variations of meat quality. Also, this review presents recent knowledge underlying the relationship between poultry meat quality traits and muscle fiber characteristics.
Collapse
Affiliation(s)
- Ishamri Ismail
- Division of Applied Life Science (BK21+), Gyeongsang National University, Jinju 52852, Korea.,Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200, Terengganu, Malaysia
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21+), Gyeongsang National University, Jinju 52852, Korea.,Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52852, Korea
| |
Collapse
|
11
|
Ivanovich FV, Karlovich OA, Mahdavi R, Afanasyevich EI. Nutrient density of prestarter diets from 1 to 10 days of age affects intestinal morphometry, enzyme activity, serum indices and performance of broiler chickens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2017; 3:258-265. [PMID: 29767109 PMCID: PMC5941239 DOI: 10.1016/j.aninu.2017.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/07/2017] [Accepted: 06/22/2017] [Indexed: 11/24/2022]
Abstract
A total of 480 day-old Cobb 500 broilers were used to investigate the effects of different levels of digestible amino acids (DAA; 100%, 107% and 114% of Cobb recommendations) and ME (3,000 or 2,900 kcal/kg) of prestarter diet on mixed sex broilers performance, enzyme activity, small intestine morphology, and serum metabolites. Broilers were randomly allotted to 6 treatments, where each treatment applied to 4 pens with 20 birds in each. The birds were subjected to their respective treatment diets from 1 to 10 days of age. This was followed by feeding common starter and finisher diets for the last 29 days. The enzyme activity of the pancreas was measured at 10 days of age. Morphometric indexes of jejunum were measured at 10 days of age and the end of the feeding period. Our results showed that the body weight (BW) increased as the DAA density of the prestarter diet increased from 100% to 114% over the first 10 days and the entire period of the study. Birds fed 114% DAA presented a better feed conversion ratio on day 10 (P < 0.05). At day 39, carcass weight and breast yield increased as the DAA levels increased from 100% to 114% (P < 0.05). The whole intestine length, small intestine length, and weights of the pancreas were lower in birds fed 100% DAA-diets at 10 days of age (P < 0.05). Increasing the dietary DAA and ME did not affect serum amylase, lipase, and protease concentrations and pancreatic amylase and lipase activity (P > 0.05); however, the activity of pancreatic protease increased as the DAA level increased from 100% to 114% (P < 0.05). The villus width and villus surface area (VSA) increased as the DAA level increased from 100% to 114% on day 10 (P < 0.05). At 10 days of age, crypt depth was the lowest in the birds fed plenty DAA prestarter diets (P < 0.05). It was found that dietary treatments at 39 days of age did not affect intestinal morphology. The results of the present work indicate that DAA level of 114% of Cobb recommendations and energy level of 2,900 kcal/kg diet may be recommended for starting broiler chicks.
Collapse
Affiliation(s)
- Ficinine V. Ivanovich
- All-Russian Research and Technological Institute of Poultry, Sergiev Posad, Moscow 141311, Russia
| | - Ocmanyan A. Karlovich
- Special Animal Husbandry Department, Faculty of Animal Science and Biology, Moscow Timiryazev Agricultural Academy, Moscow 127550, Russia
| | - Reza Mahdavi
- Special Animal Husbandry Department, Faculty of Animal Science and Biology, Moscow Timiryazev Agricultural Academy, Moscow 127550, Russia
| | - Egorov I. Afanasyevich
- All-Russian Research and Technological Institute of Poultry, Sergiev Posad, Moscow 141311, Russia
| |
Collapse
|
12
|
Li Y, Wang Y, Willems E, Willemsen H, Franssens L, Buyse J, Decuypere E, Everaert N. In ovo L-arginine supplementation stimulates myoblast differentiation but negatively affects muscle development of broiler chicken after hatching. J Anim Physiol Anim Nutr (Berl) 2015; 100:167-77. [PMID: 25846259 DOI: 10.1111/jpn.12299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 01/19/2015] [Indexed: 02/01/2023]
Abstract
In this study, we tested the hypothesis that in ovo feeding (IOF) of L-arginine (L-Arg) enhances nitric oxide (NO) production, stimulates the process of myogenesis, and regulates post-hatching muscle growth. Different doses of L-Arg were injected into the amnion of chicken embryos at embryonic day (ED) 16. After hatching, the body weight of individual male chickens was recorded weekly for 3 weeks. During in vitro experiments, myoblasts of the pectoralis major (PM) were extracted at ED16 and were incubated in medium containing 0.01 mm L-Arg, 0.05 mm L-Arg, and (or) 0.05 mm L-nitro-arginine-methyl-ester (L-NAME), an inhibitor of nitric oxide synthase (NOS). When 25 mg/kg L-Arg/initial egg weight was injected, no difference was observed in body weight at hatch, but a significant decrease was found during the following 3 weeks compared to that of the non-injected and saline-injected control, and this also affected the growth of muscle mass. L-NAME inhibited gene expression of myogenic differentiation antigen (MyoD), myogenin, NOS, and follistatin, decreased the cell viability, and increased myostatin (MSTN) gene expression. 0.05 mm L-Arg stimulated myogenin gene expression but also depressed muscle cell viability. L-NAME blocked the effect of 0.05 mm L-Arg on myogenin mRNA levels when co-incubated with 0.05 mm L-Arg. L-Arg treatments had no significant influence on NOS mRNA gene expression, but had inhibiting effect on follistatin gene expression, while L-NAME treatments had effects on both. These results suggested that L-Arg stimulated myoblast differentiation, but the limited number of myoblasts would form less myotubes and then less myofibers, while the latter limited the growth of muscle mass.
Collapse
Affiliation(s)
- Y Li
- Department of Biosystems, Division of Livestock-Nutrition-Quality, KU Leuven, Leuven, Belgium.,Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Y Wang
- Department of Biosystems, Division of Livestock-Nutrition-Quality, KU Leuven, Leuven, Belgium
| | - E Willems
- Department of Biosystems, Division of Livestock-Nutrition-Quality, KU Leuven, Leuven, Belgium
| | - H Willemsen
- Department of Biosystems, Division of Livestock-Nutrition-Quality, KU Leuven, Leuven, Belgium
| | - L Franssens
- Department of Biosystems, Division of Livestock-Nutrition-Quality, KU Leuven, Leuven, Belgium
| | - J Buyse
- Department of Biosystems, Division of Livestock-Nutrition-Quality, KU Leuven, Leuven, Belgium
| | - E Decuypere
- Department of Biosystems, Division of Livestock-Nutrition-Quality, KU Leuven, Leuven, Belgium
| | - N Everaert
- Department of Biosystems, Division of Livestock-Nutrition-Quality, KU Leuven, Leuven, Belgium.,Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
13
|
Spread of hatch and delayed feed access affect post hatch performance of female broiler chicks up to day 5. Animal 2014; 8:610-7. [DOI: 10.1017/s175173111400007x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
14
|
Methionine improves the performance and breast muscle growth of broilers with lower hatching weight by altering the expression of genes associated with the insulin-like growth factor-I signalling pathway. Br J Nutr 2013; 111:201-6. [PMID: 23919886 DOI: 10.1017/s0007114513002419] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present study aimed to investigate the responses of broilers with different hatching weights (HW) to dietary methionine (Met). A total of 192 1-d-old Arbor Acres broiler chicks with different HW (heavy: 48·3 (sem 0·1) g and light: 41·7 (sem 0·1) g) were allocated to a 2 (HW) × 2 (Met) factorial arrangement with six replicates of eight chicks. Control starter (1-21 d) and finisher (22-42 d) diets contained 0·50 and 0·43 % Met, respectively. Corresponding values for a high-Met treatment were 0·60 and 0·53 %. Light chicks had poorer (P< 0·05) growth performance and breast muscle weight and lower (P< 0·05) insulin-like growth factor-I (IGF-I) concentration and mRNA level in breast muscle than heavy chicks when both were fed the control diets. High-Met diets improved performance and promoted breast muscle growth and IGF-I concentration in light chicks (P< 0·05). Increased IGF-I and target of rapamycin (TOR) mRNA levels as well as decreased eIF4E-binding protein 1 (4EBP1), atrogin-1 and forkhead box O 4 (FOXO4) mRNA levels were induced by high-Met diets in light chicks (P< 0·05). In conclusion, the Met requirement of broilers might depend on their HW and Met levels used in the control diets in the present study were adequate for heavy chicks but inadequate for light chicks, resulting in poorer performance and breast muscle growth, which were improved by increasing dietary Met supply presumably through alterations in IGF-I synthesis and gene expression of the TOR/4EBP1 and FOXO4/atrogin-1 pathway.
Collapse
|
15
|
Li Y, Yang X, Ni Y, Decuypere E, Buyse J, Everaert N, Grossmann R, Zhao R. Early-age feed restriction affects viability and gene expression of satellite cells isolated from the gastrocnemius muscle of broiler chicks. J Anim Sci Biotechnol 2012; 3:33. [PMID: 23127173 PMCID: PMC3546929 DOI: 10.1186/2049-1891-3-33] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 11/01/2012] [Indexed: 11/10/2022] Open
Abstract
Background Muscle growth depends on the fusion of proliferate satellite cells to existing myofibers. We reported previously that 0–14 day intermittent feeding led to persistent retardation in myofiber hypertrophy. However, how satellite cells respond to such nutritional insult has not been adequately elucidated. Results One-day-old broiler chicks were allocated to control (Con, ad libitum feeding), intermittent feeding (IF, feed provided on alternate days) and re-feeding (RF, 2 days ad libitum feeding after 12 days of intermittent feeding) groups. Chickens were killed on Day 15 and satellite cells were isolated. When cultured, satellite cells from the IF group demonstrated significant retardation in proliferation and differentiation potential, while RF partly restored the proliferation rate and differentiation potential of the satellite cells. Significant up-regulation of insulin like growth factor I receptor (IGF-IR) (P<0.05) and thyroid hormone receptor α (TRα) (P<0.05), and down-regulation of growth hormone receptor (GHR) (P<0.01) and IGF-I (P<0.01) mRNA expression was observed in freshly isolated IF satellite cells when compared with Con cells. In RF cells, the mRNA expression of IGF-I was higher (P<0.05) and of TRα was lower (P<0.01) than in IF cells, suggesting that RF restored the mRNA expression of TRα and IGF-I, but not of GHR and IGF-IR. The Bax/Bcl-2 ratio tended to increase in the IF group, which was reversed in the RF group (P<0.05), indicating that RF reduced the pro-apoptotic influence of IF. Moreover, no significant effect of T3 was detected on cell survival in IF cells compared with Con (P<0.001) or RF (P<0.05) cells. Conclusions These data suggest that early-age feed restriction inhibits the proliferation and differentiation of satellite cells, induces changes in mRNA expression of the GH/IGF-I and thyroid hormone receptors in satellite cells, as well as blunted sensitivity of satellite cells to T3, and that RF partially reverses these effects. Thus, a moderate nutritional strategy for feed restriction should be chosen in early chick rearing systems.
Collapse
Affiliation(s)
- Yue Li
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu P, Hu Y, Grossmann R, Zhao R. In ovo leptin administration accelerates post-hatch muscle growth and changes myofibre characteristics, gene expression and enzymes activity in broiler chickens. J Anim Physiol Anim Nutr (Berl) 2012; 97:887-95. [PMID: 22853698 DOI: 10.1111/j.1439-0396.2012.01334.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To evaluate the effect of maternal leptin on muscle growth, we injected 0 μg (control, CON), 0.5 μg (low leptin dose, LL) or 5.0 μg (high leptin dose, HL) of recombinant murine leptin dissolved in 100 μl of PBS into the albumen of broiler eggs prior to incubation. The newly hatched chicks were all raised under the same conditions until 21 days of age (D21), when body weight was measured and samples of gastrocnemius muscle were collected and weighed. Myosin ATPase staining was applied to identify myofibre types and measure the cross-sectional area (CSA) of myofibres. Real-time PCR was performed to quantify leptin receptor (LEPR), insulin-like growth factor 1 (IGF-1), IGF-1 receptor (IGF-1R), growth hormone receptor (GHR) and myostatin (MSTN) mRNA expression in the gastrocnemius muscle. The activity of calpains (CAPNs) in the gastrocnemius muscle was measured using a quantitative fluorescence detection kit. Male chickens treated with both high and low doses of leptin had significantly higher (p < 0.05) body weight on D21. The high leptin significantly increased the CSA (p < 0.05) of gastrocnemius muscle in male chickens, which coincided with a 93% increase (p < 0.05) in IGF-1 mRNA expression. Likewise, the LL dose increased the weight of gastrocnemius muscle in male chickens (p < 0.05), which was accompanied by a 41% down-regulation (p < 0.05) of MSTN mRNA expression and a decreased activity of CAPNs. However, all these changes were not observed in female chickens. The proportion of myofibre types did not altered. No significant change was detected for LEPR and GHR mRNA expression. These results indicate that in ovo leptin treatment affects skeletal muscle growth in chickens in a dose-dependent and sex-specific manner. The altered expression of IGF-1, MSTN mRNA and activity of CAPNs in skeletal muscle may be responsible for such effects.
Collapse
Affiliation(s)
- P Liu
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China Key Laboratory of Poultry Heredity and Breeding, Institute of Poultry Science of Jiangsu Province, Yangzhou, Jiangsu, China Department of Functional Genomics and Bioregulation, Institute of Animal Genetics, FLI, Mariensee, Neustadt, Germany
| | - Y Hu
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China Key Laboratory of Poultry Heredity and Breeding, Institute of Poultry Science of Jiangsu Province, Yangzhou, Jiangsu, China Department of Functional Genomics and Bioregulation, Institute of Animal Genetics, FLI, Mariensee, Neustadt, Germany
| | - R Grossmann
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China Key Laboratory of Poultry Heredity and Breeding, Institute of Poultry Science of Jiangsu Province, Yangzhou, Jiangsu, China Department of Functional Genomics and Bioregulation, Institute of Animal Genetics, FLI, Mariensee, Neustadt, Germany
| | - R Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China Key Laboratory of Poultry Heredity and Breeding, Institute of Poultry Science of Jiangsu Province, Yangzhou, Jiangsu, China Department of Functional Genomics and Bioregulation, Institute of Animal Genetics, FLI, Mariensee, Neustadt, Germany
| |
Collapse
|
17
|
Hu Y, Zhang R, Zhang Y, Li J, Grossmann R, Zhao R. In ovo leptin administration affects hepatic lipid metabolism and microRNA expression in newly hatched broiler chickens. J Anim Sci Biotechnol 2012; 3:16. [PMID: 22958551 PMCID: PMC3436634 DOI: 10.1186/2049-1891-3-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 05/11/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A leptin-like immunoreactive substance has been found in chicken eggs and has been implicated in serving as a maternal signal to program offspring growth and metabolism. In the present study, we investigated the effects of in ovo leptin administration on hatch weight, serum and hepatic concentrations of metabolites and hormones, as well as on the expression of genes involved in hepatic lipid metabolism and the predicted microRNAs (miRNAs) targeting the affected genes. To this end we injected fertile eggs with either 0.5 μg of recombinant murine leptin or vehicle (PBS) before incubation. RESULTS Prenatally leptin-exposed chicks showed lower hatch weight, but higher liver weight relative to the body weight, compared to the control group. In ovo leptin treatment increased the hepatic content and serum concentration of leptin in newly hatched chickens. The hepatic contents of triglycerides (TG) and total cholesterol (Tch) were decreased, whereas the serum levels of TG, Tch and apolipoprotein B (ApoB) were increased. The hepatic mRNA expression of sterol regulator element binding protein 1 (SREBP-1c), SREBP-2, hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and cholesterol 7α-hydroxylase 1 (CYP7A1) was significantly up-regulated, as was the protein content of both SREBP-1c and SREBP-2 in hepatic nuclear extracts of leptin-treated chickens. Moreover, out of 12 miRNAs targeting SREBP-1c and/or HMGCR, five were significantly up-regulated in liver of leptin-treated chicks, including gga-miR-200b and gga-miR-429, which target both SREBP-1c and HMGCR. CONCLUSIONS These results suggest that leptin in ovo decreases hatch weight, and modifies hepatic leptin secretion and lipid metabolism in newly hatched broiler chickens, possibly via microRNA-mediated gene regulation.
Collapse
Affiliation(s)
- Yan Hu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China.
| | | | | | | | | | | |
Collapse
|
18
|
Wang J, Li X, Yang X, Sun Q, Huang R, Xing J, Zhao R. Maternal dietary protein induces opposite myofiber type transition in Meishan pigs at weaning and finishing stages. Meat Sci 2011; 89:221-7. [DOI: 10.1016/j.meatsci.2011.04.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 01/21/2011] [Accepted: 04/20/2011] [Indexed: 01/21/2023]
|
19
|
Li R, Hu Y, Ni Y, Xia D, Grossmann R, Zhao R. Leptin stimulates hepatic activation of thyroid hormones and promotes early posthatch growth in the chicken. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:200-6. [PMID: 21679771 DOI: 10.1016/j.cbpa.2011.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/01/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
Hepatic iodothyronine deiodinases (Ds) are involved in the conversion of thyroid hormones (THs) which interacts with growth hormone (GH) to regulate posthatch growth in the chicken. Previous studies suggest that leptin-like immunoreactive substance deposited in the egg may serve as a maternal signal to program posthatch growth. To test the hypothesis that maternal leptin may affect early posthatch growth through modifying hepatic activation of THs, we injected 5.0μg of recombinant murine leptin into the albumen of breeder eggs before incubation. Furthermore, chicken embryo hepatocytes (CEHs) were treated with leptin in vitro to reveal the direct effect of leptin on expression and activity of Ds. In ovo leptin administration markedly accelerated early posthatch growth, elevated serum levels of total and free triiodothyronine (tT3 and fT3), while that of total thyroxin (tT4) remained unchanged. Hepatic mRNA expression and activity of D1 which converts T4 to T3 or rT3 to T2, were significantly increased in leptin-treated chickens, while those of D3 which converts T3 to T2 or T4 to rT3, were significantly decreased. Moreover, hepatic expression of GHR and IGF-I mRNA was all up-regulated in leptin-treated chickens. Males demonstrated more pronounced responses. A direct effect of leptin on Ds was shown in CEHs cultured in vitro. Expression and activity of D1 were increased, whereas those of D3 were decreased, in leptin-treated cells. These data suggest that in ovo leptin administration improves early posthatch growth, in a gender-specific fashion, probably through improving hepatic activation of THs and up-regulating hepatic expression of GHR and IGF-I.
Collapse
Affiliation(s)
- Rongjie Li
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
20
|
Yang X, Zhuang J, Rao K, Li X, Zhao R. Effect of early feed restriction on hepatic lipid metabolism and expression of lipogenic genes in broiler chickens. Res Vet Sci 2011; 89:438-44. [PMID: 20434185 DOI: 10.1016/j.rvsc.2010.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 03/23/2010] [Accepted: 04/05/2010] [Indexed: 11/30/2022]
Abstract
The study was conducted to investigate the effect of early feed restriction (ER) on lipid metabolism and mitochondrial function in the liver of broiler chickens. Newly hatched broiler chickens were randomly allocated into control and ER group which was subjected to feed restriction with feed provided on alternate days from hatch to 14 days of age (14 d), followed by ad libitum feeding until the end of the experiment on 63 d. ER group exhibited significantly lower body weight throughout the experiment. Serum concentrations of total cholesterol (TC) and high density lipoprotein cholesterol (HDLC) were significantly higher in ER group at 14 d (P<0.05), and the higher serum TC level in ER group was also observed at 63 d. In contrast, the contents of triglyceride (TG), TC and lipoprotein lipase (LPL) activity in liver were significantly lower in ER group at 14 d (P<0.05). At 14 d no significant difference was detected for the mRNA expression of the acetyl-CoA carboxylase-α (ACC-α), carnitine palmitoyltransferase I (CPT-I), sterol regulatory element binding protein-1c (SREBP-1c) or peroxisome proliferator-activated receptors α (PPAR-α) between control and ER group. At 63 d ACC-α mRNA expression was significantly down-regulated accompanied with a significantly up-regulated CPT-ImRNA and a decreased tendency of SREBP-1c mRNA expression in ER group (P=0.09). Swollen mitochondria with fragmented and reduced cristae were observed in liver of ER group at 14 d. Meanwhile the inner mitochondria membrane viscidity increased and hepatic mitochondrial superoxide dismutase (SOD) activity decreased at 14 d. The results suggest that feed restriction at early postnatal stage may produce long-term effect on lipid metabolism of broiler chicken, probably through, at least in part, alterations in mitochondria morphology and function.
Collapse
Affiliation(s)
- Xiaojing Yang
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | |
Collapse
|
21
|
Alami-Durante H, Wrutniak-Cabello C, Kaushik SJ, Médale F. Skeletal muscle cellularity and expression of myogenic regulatory factors and myosin heavy chains in rainbow trout (Oncorhynchus mykiss): effects of changes in dietary plant protein sources and amino acid profiles. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:561-8. [PMID: 20434580 DOI: 10.1016/j.cbpa.2010.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/19/2010] [Accepted: 04/22/2010] [Indexed: 11/27/2022]
Abstract
The nutritional regulation of skeletal muscle growth is very little documented in fish. The aim of the study presented here was to determine how changes in dietary plant protein sources and amino acid profiles affect the muscle growth processes of fish. Juvenile rainbow trout (Oncorhynchys mykiss) were fed two diets containing fish meal and a mixture of plant protein sources either low (control diet) or rich in soybean meal (diet S). Both diets were supplemented with crystalline indispensable amino acids (IAA) to match the rainbow trout muscle IAA profile. Diet S was also supplemented with glutamic acid, an AA present in high quantities in trout muscle. Rainbow trout fed diets C and S were not significantly different in terms of overall somatic growth or daily nitrogen gain, although their parameters of dietary protein utilisation differed. Distribution of skeletal white muscle fibre diameter and expression of certain selected muscle genes were also affected by dietary changes. In the white muscle, diet S led to a significant decrease (x0.9) in the mean and median diameters of muscle fibres, to a significant decrease (x0.6) in the expression of MyoD and to a significant increase (x1.7) in the expression of fast-MHC, with no significant changes in myogenin expression. There was no change in the expression of the genes analysed in lateral red muscle (MyoD, MyoD2, myogenin and slow-MHC). These results demonstrated that changes occurred in skeletal white muscle cellularity and expression of MyoD and fast-MHC, although overall growth and protein accretion were not modified, when a diet rich in soybean meal and glutamic acid was ingested. Present findings also indicated that the white and red muscles of rainbow trout are differently affected by nutritional changes.
Collapse
Affiliation(s)
- H Alami-Durante
- UMR 1067 Nutrition Aquaculture et Génomique, INRA, Pôle d'Hydrobiologie, 64310 Saint Pée-sur-Nivelle, France.
| | | | | | | |
Collapse
|
22
|
Maternal low-protein diet programmes offspring growth in association with alterations in yolk leptin deposition and gene expression in yolk-sac membrane, hypothalamus and muscle of developing Langshan chicken embryos. Br J Nutr 2009; 102:848-57. [PMID: 19267947 DOI: 10.1017/s0007114509276434] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study was aimed to investigate the mechanism underlying the influence of maternal low-protein (LP) diet on offspring growth in the chicken. One hundred and twenty Chinese inbred Langshan breeder hens were allocated randomly into two groups fed diets containing low (10%, LP) or normal (15%) crude protein levels. Low dietary protein did not affect the body weight of hens, but significantly decreased the laying rate and egg weight. The yolk leptin content was significantly lower in eggs laid by LP hens, while no differences were detected for yolk contents of corticosterone, tri-iodothyronine (T3) or thyroxine. Despite significantly lower hatch weight, the LP offspring demonstrated obviously higher serum T3 concentration, which is in accordance with the faster post-hatch growth rate achieving significantly heavier body weight and pectoralis major muscle weight 4 weeks post-hatching. Expression of 20-hydroxysteroid dehydrogenase (20-HSD) mRNA in the yolk-sac membrane was significantly down-regulated at embryonic day 14, whereas that of transthyretin and leptin receptor (LepR) was not altered. Moreover, hypothalamic expression of 20-HSD, glucocorticoid receptors, thyrotropin-releasing hormone and LepR mRNA was significantly up-regulated in the LP group compared with their control counterparts. In the pectoralis major muscle, significantly higher expression of insulin-like growth factor (IGF)-I and IGF-I receptor mRNA was observed in LP embryos. The present study provides evidence that maternal LP diet programmes post-hatch growth of the offspring. The associated alterations in yolk leptin deposition as well as in yolk-sac membrane, fetal hypothalamus and muscle gene expression may be involved in mediating such programming effect in the chicken.
Collapse
|
23
|
Hu Y, Ni Y, Ren L, Dai J, Zhao R. Leptin Is Involved in the Effects of Cysteamine on Egg Laying of Hens, Characteristics of Eggs, and Posthatch Growth of Broiler Offspring. Poult Sci 2008; 87:1810-7. [DOI: 10.3382/ps.2008-00040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|