1
|
Sahranavard M, Hosseinjani H, Emadzadeh M, Jamialahmadi T, Sahebkar A. Effect of trehalose on mortality and disease severity in ICU-admitted patients: Protocol for a triple-blind, randomized, placebo-controlled clinical trial. Contemp Clin Trials Commun 2024; 40:101324. [PMID: 39021672 PMCID: PMC11252791 DOI: 10.1016/j.conctc.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/04/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Background Improvement in organ failure in intensive care unit (ICU) patients is accompanied by lower mortality rate. A disaccharide, trehalose is a candidate to improve organ failure and survival by autophagy induction and enhancing oxidative stress defense. The aim of this study is to assess the effectiveness of trehalose in improving clinical outcome and reducing mortality in ICU patients. Methods a triple-blind, randomized, placebo-controlled, two arm, parallel-group, superiority clinical trial will enroll 200 ICU-admitted patients at Imam Reza hospital, Mashhad, Iran. The patients will be randomly allocated to receive either a 100 ml solution of 15 % trehalose or normal saline intravenously. Primary outcomes include ICU mortality and 60-day mortality, while secondary outcomes focus on blood parameters on day 5 and length of hospital/ICU stay. Conclusion Trehalose has demonstrated beneficial effects in diverse patients; however, no study has evaluated its effect in all ICU-admitted patients. Consequently, this study provides an opportunity to investigate whether trehalose's anti-inflammatory effects, mediated by inducing autophagy and enhancing oxidative stress defense, can play a role in reducing mortality and improving clinical outcomes in the critically ill patients. If successful, trehalose could offer a potential therapeutic approach in the ICU setting.
Collapse
Affiliation(s)
- Mehrdad Sahranavard
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hesamoddin Hosseinjani
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Emadzadeh
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Vessey KA, Jobling AI, Greferath U, Fletcher EL. Pharmaceutical therapies targeting autophagy for the treatment of age-related macular degeneration. Curr Opin Pharmacol 2024; 76:102463. [PMID: 38788268 DOI: 10.1016/j.coph.2024.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Age-related macular degeneration (AMD) is a major cause of irreversible vision loss in the elderly. Although new therapies have recently emerged, there are currently no ways of preventing the development of the disease. Changes in intracellular recycling processes. Changes in intracellular recycling processes, called autophagy, lead to debris accumulation and cellular dysfunction in AMD models and AMD patients. Drugs that enhance autophagy hold promise as therapies for slowing AMD progression in preclinical models; however, more studies in humans are required. While a definitive cure for AMD will likely hinge on a personalized medicine approach, treatments that enhance autophagy hold promise for slowing vision loss.
Collapse
Affiliation(s)
- Kirstan A Vessey
- Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia; School of Science and Technology, The University of New England, NSW 2350, Australia
| | - Andrew I Jobling
- Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia
| | - Ursula Greferath
- Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
3
|
Jing W, Hou F, Wu X, Zheng M, Zheng Y, Lu F, Liu F. A Critical Review on Immobilized Sucrose Isomerase and Cells for Producing Isomaltulose. Foods 2024; 13:1228. [PMID: 38672899 PMCID: PMC11048954 DOI: 10.3390/foods13081228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Isomaltulose is a novel sweetener and is considered healthier than the common sugars, such as sucrose or glucose. It has been internationally recognized as a safe food product and holds vast potential in pharmaceutical and food industries. Sucrose isomerase is commonly used to produce isomaltulose from the substrate sucrose in vitro and in vivo. However, free cells/enzymes were often mixed with the product, making recycling difficult and leading to a significant increase in production costs. Immobilized cells/enzymes have the following advantages including easy separation from products, high stability, and reusability, which can significantly reduce production costs. They are more suitable than free ones for industrial production. Recently, immobilized cells/enzymes have been encapsulated using composite materials to enhance their mechanical strength and reusability and reduce leakage. This review summarizes the advancements made in immobilized cells/enzymes for isomaltulose production in terms of refining traditional approaches and innovating in materials and methods. Moreover, innovations in immobilized enzyme methods include cross-linked enzyme aggregates, nanoflowers, inclusion bodies, and directed affinity immobilization. Material innovations involve nanomaterials, graphene oxide, and so on. These innovations circumvent challenges like the utilization of toxic cross-linking agents and enzyme leakage encountered in traditional methods, thus contributing to enhanced enzyme stability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; (W.J.); (F.H.); (X.W.); (M.Z.); (Y.Z.); (F.L.)
| |
Collapse
|
4
|
L-arabinose co-ingestion delays glucose absorption derived from sucrose in healthy men and women: a double-blind, randomised crossover trial. Br J Nutr 2022; 128:1072-1081. [PMID: 34657640 PMCID: PMC9381304 DOI: 10.1017/s0007114521004153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dietary interventions to delay carbohydrate digestion or absorption can effectively prevent hyperglycaemia in the early postprandial phase. L-arabinose can specifically inhibit sucrase. It remains to be assessed whether co-ingestion of L-arabinose with sucrose delays sucrose digestion, attenuates subsequent glucose absorption and impacts hepatic glucose output. In this double-blind, randomised crossover study, we assessed blood glucose kinetics following ingestion of a 200-ml drink containing 50 g of sucrose with 7·5 g of L-arabinose (L-ARA) or without L-arabinose (CONT) in twelve young, healthy participants (24 ± 1 years; BMI: 22·2 ± 0·5 kg/m2). Plasma glucose kinetics were determined by a dual stable isotope methodology involving ingestion of (U-13C6)-glucose-enriched sucrose, and continuous intravenous infusion of (6,6-2H2)-glucose. Peak glucose concentrations reached 8·18 ± 0·29 mmol/l for CONT 30 min after ingestion. In contrast, the postprandial rise in plasma glucose was attenuated for L-ARA, because peak glucose concentrations reached 6·62 ± 0·18 mmol/l only 60 min after ingestion. The rate of exogenous glucose appearance for L-ARA was 67 and 57 % lower compared with CONT at t = 15 min and 30 min, respectively, whereas it was 214 % higher at t = 150 min, indicating a more stable absorption of exogenous glucose for L-ARA compared with CONT. Total glucose disappearance during the first hour was lower for L-ARA compared with CONT (11 ± 1 v. 17 ± 1 g, P < 0·0001). Endogenous glucose production was not differentially affected at any time point (P = 0·27). Co-ingestion of L-arabinose with sucrose delays sucrose digestion, resulting in a slower absorption of sucrose-derived glucose without causing adverse effects in young, healthy adults.
Collapse
|
5
|
Pasmans K, Meex RCR, van Loon LJC, Blaak EE. Nutritional strategies to attenuate postprandial glycemic response. Obes Rev 2022; 23:e13486. [PMID: 35686720 PMCID: PMC9541715 DOI: 10.1111/obr.13486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Abstract
Maintaining good glycemic control to prevent complications is crucial in people with type 2 diabetes and in people with prediabetes and in the general population. Different strategies to improve glycemic control involve the prescription of blood glucose-lowering drugs and the modulation of physical activity and diet. Interestingly, lifestyle intervention may be more effective in lowering hyperglycemia than pharmaceutical intervention. Regulation of postprandial glycemia is complex, but specific nutritional strategies can be applied to attenuate postprandial hyperglycemia. These strategies include reducing total carbohydrate intake, consuming carbohydrates with a lower glycemic index, the addition of or substitution by sweeteners and fibers, using food compounds which delay or inhibit gastric emptying or carbohydrate digestion, and using food compounds which inhibit intestinal glucose absorption. Nevertheless, it must be noted that every individual may respond differently to certain nutritional interventions. Therefore, a personalized approach is of importance to choose the optimal nutritional strategy to improve postprandial glycemia for each individual, but this requires a better understanding of the mechanisms explaining the differential responses between individuals.
Collapse
Affiliation(s)
- Kenneth Pasmans
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Ruth C R Meex
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
6
|
Dhaene S, Van Laar A, De Doncker M, De Beul E, Beerens K, Grootaert C, Caroen J, Van der Eycken J, Van Camp J, Desmet T. Sweet Biotechnology: Enzymatic Production and Digestibility Screening of Novel Kojibiose and Nigerose Analogues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3502-3511. [PMID: 35266393 DOI: 10.1021/acs.jafc.1c07709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In view of the global pandemic of obesity and related metabolic diseases, there is an increased interest in alternative carbohydrates with promising physiochemical and health-related properties as a potential replacement for traditional sugars. However, our current knowledge is limited to only a small selection of carbohydrates, whereas the majority of alternative rare carbohydrates and especially their properties remain to be investigated. Unraveling their potential properties, like digestibility and glycemic content, could unlock their use in industrial applications. Here, we describe the enzymatic production and in vitro digestibility of three novel glycosides, namely, two kojibiose analogues (i.e., d-Glcp-α-1,2-d-Gal and d-Glcp-α-1,2-d-Rib) and one nigerose analogue (i.e., d-Glcp-α-1,3-l-Ara). These novel sugars were discovered after an intensive acceptor screening with a sucrose phosphorylase originating from Bifidobacterium adolescentis (BaSP). Optimization and upscaling of this process led to roughly 100 g of these disaccharides. Digestibility, absorption, and caloric potential were assessed using brush border enzymes of rat origin and human intestinal Caco-2 cells. The rare disaccharides showed a reduced digestibility and a limited impact on energy metabolism, which was structure-dependent and even more pronounced for the three novel disaccharides in comparison to their respective glucobioses, translating to a low-caloric potential for these novel rare disaccharides.
Collapse
Affiliation(s)
- Shari Dhaene
- Department of Biotechnology, Centre for Synthetic Biology (CSB), Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Amar Van Laar
- Department of Food technology, Safety and Health, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Marc De Doncker
- Department of Biotechnology, Centre for Synthetic Biology (CSB), Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Emma De Beul
- Department of Biotechnology, Centre for Synthetic Biology (CSB), Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Koen Beerens
- Department of Biotechnology, Centre for Synthetic Biology (CSB), Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Charlotte Grootaert
- Department of Food technology, Safety and Health, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jurgen Caroen
- Department of Organic and Macromolecular Chemistry, Laboratory for Organic and Bio-Organic Synthesis (LOBOS), Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Johan Van der Eycken
- Department of Organic and Macromolecular Chemistry, Laboratory for Organic and Bio-Organic Synthesis (LOBOS), Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - John Van Camp
- Department of Food technology, Safety and Health, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Tom Desmet
- Department of Biotechnology, Centre for Synthetic Biology (CSB), Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
7
|
Brouns F, Blaak E. Can one teaspoon of trehalose a day mitigate metabolic syndrome and diabetes risks? Nutr J 2021; 20:28. [PMID: 33722234 PMCID: PMC7962266 DOI: 10.1186/s12937-021-00685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/02/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Fred Brouns
- Department of Human Biology, Faculty of Health, Medicine and Life Sciences, NUTRIM- School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands, Post Box 616, MD, 6200, Maastricht, Netherlands.
| | - Ellen Blaak
- Department of Human Biology, Faculty of Health, Medicine and Life Sciences, NUTRIM- School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands, Post Box 616, MD, 6200, Maastricht, Netherlands
| |
Collapse
|
8
|
Lightowler H, Schweitzer L, Theis S, Henry CJ. Changes in Weight and Substrate Oxidation in Overweight Adults Following Isomaltulose Intake During a 12-Week Weight Loss Intervention: A Randomized, Double-Blind, Controlled Trial. Nutrients 2019; 11:E2367. [PMID: 31590285 PMCID: PMC6836138 DOI: 10.3390/nu11102367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 12/31/2022] Open
Abstract
Low-glycemic compared to high-glycemic diets have been shown to improve metabolic status and enhance fat oxidation. The randomized, double-blind, controlled intervention study aimed to evaluate the effects of an energy-reduced diet containing isomaltulose (ISO, Palatinose™) versus sucrose (SUC) on body weight loss. Sixty-four healthy overweight/obese adults were allocated to consume either 40g/d ISO or SUC added to an energy-reduced diet for 12 weeks. Anthropometric measurements, body composition, and energy metabolism were assessed at baseline and after 4, 8, and 12 weeks. Fifty participants (age: 40.7 ± 11.7 y; BMI: 29.4 ± 2.7 kg/m²) completed the study. During the 12 weeks, both groups significantly lost weight (p < 0.001), which was more pronounced following ISO (-3.2 ± 2.9 vs. -2.1 ± 2.6 kg; p = 0.258). Moreover, for participants in the ISO group, this was accompanied by a significant reduction in fat mass (ISO: -1.9 ± 2.5, p = 0.005; SUC: -0.9 ± 2.6%, p = 0.224). The overall decrease in energy intake was significantly higher in the ISO compared to that in the SUC group (p = 0.022). In addition, breakfast containing ISO induced a significantly lower increase in postprandial respiratory quotient (RQ) (mean incremental area under the curve (iAUC)2h for ISO vs. SUC: 4.8 ± 4.1 vs. 6.9 ± 3.1, p = 0.047). The results suggest that ISO in exchange for SUC may help to facilitate body weight reduction, lower postprandial RQ associated with higher fat oxidation, and reduce energy intake.
Collapse
Affiliation(s)
- Helen Lightowler
- Oxford Brookes Centre for Nutrition and Health, Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, UK.
| | - Lisa Schweitzer
- BENEO-Institute, BENEO GmbH, Wormser Straße 11, 67283 Obrigheim/Pfalz, Germany.
| | - Stephan Theis
- BENEO-Institute, BENEO GmbH, Wormser Straße 11, 67283 Obrigheim/Pfalz, Germany.
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Centre for Translational Medicine, 14 Medical Drive #07-02, MD 6 Building, Yong Loo Lin School of Medicine, Singapore 117599, Singapore.
| |
Collapse
|
9
|
Muller YL, Hanson RL, Knowler WC, Fleming J, Goswami J, Huang K, Traurig M, Sutherland J, Wiedrich C, Wiedrich K, Mahkee D, Ossowski V, Kobes S, Bogardus C, Baier LJ. Identification of genetic variation that determines human trehalase activity and its association with type 2 diabetes. Hum Genet 2013; 132:697-707. [PMID: 23468175 PMCID: PMC3654185 DOI: 10.1007/s00439-013-1278-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/16/2013] [Indexed: 11/28/2022]
Abstract
A prior linkage scan in Pima Indians identified a putative locus for type two diabetes (T2D) and body mass index (BMI) on chromosome 11q23-25. Association mapping across this region identified single nucleotide polymorphisms (SNPs) in the trehalase gene (TREH) that were associated with T2D. To assess the putative connection between trehalase activity and T2D, we performed a linkage study for trehalase activity in 570 Pima Indians who had measures of trehalase activity. Strong evidence of linkage of plasma trehalase activity (LOD = 7.0) was observed in the TREH locus. Four tag SNPs in TREH were genotyped in these subjects and plasma trehalase activity was highly associated with three SNPs: rs2276064, rs117619140 and rs558907 (p = 2.2 × 10−11–1.4 × 10−23), and the fourth SNP, rs10790256, was associated conditionally on these three (p = 2.9 × 10−7). Together, the four tag SNPs explained 51 % of the variance in plasma trehalase activity and 79 % of the variance attributed to the linked locus. These four tag SNPs were further genotyped in 828 subjects used for association mapping of T2D, and rs558907 was associated with T2D (odds ratio (OR) 1.94, p = 0.002). To assess replication of the T2D association, all four tag SNPs were additionally genotyped in two non-overlapping samples of Native Americans. Rs558907 was reproducibly associated with T2D in 2,942 full-heritage Pima Indians (OR 1.27 p = 0.03) and 3,897 “mixed” heritage Native Americans (OR 1.21, p = 0.03), and the strongest evidence for association came from combining all samples (OR 1.27 p = 1.6 × 10−4, n = 7,667). However, among 320 longitudinally studied subjects, measures of trehalase activity from a non-diabetic exam did not predict those who would eventually develop diabetes versus those who would remain non-diabetic (hazard ratio 0.94 per SD of trehalase activity, p = 0.29). We conclude that variants in TREH control trehalase activity, and although one of these variants is also reproducibly associated with T2D, it is likely that the effect of the SNP on risk of T2D occurs by a mechanism different than affecting trehalase activity. Alternatively, TREH variants may be tagging a nearby T2D locus.
Collapse
Affiliation(s)
- Yunhua L. Muller
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 455 North 5th Street, Phoenix, AZ 85004 USA
| | - Robert L. Hanson
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 455 North 5th Street, Phoenix, AZ 85004 USA
| | - William C. Knowler
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 455 North 5th Street, Phoenix, AZ 85004 USA
| | - Jamie Fleming
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 455 North 5th Street, Phoenix, AZ 85004 USA
| | - Jayita Goswami
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 455 North 5th Street, Phoenix, AZ 85004 USA
| | - Ke Huang
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 455 North 5th Street, Phoenix, AZ 85004 USA
| | - Michael Traurig
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 455 North 5th Street, Phoenix, AZ 85004 USA
| | - Jeff Sutherland
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 455 North 5th Street, Phoenix, AZ 85004 USA
| | - Chris Wiedrich
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 455 North 5th Street, Phoenix, AZ 85004 USA
| | - Kim Wiedrich
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 455 North 5th Street, Phoenix, AZ 85004 USA
| | - Darin Mahkee
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 455 North 5th Street, Phoenix, AZ 85004 USA
| | - Vicky Ossowski
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 455 North 5th Street, Phoenix, AZ 85004 USA
| | - Sayuko Kobes
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 455 North 5th Street, Phoenix, AZ 85004 USA
| | - Clifton Bogardus
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 455 North 5th Street, Phoenix, AZ 85004 USA
| | - Leslie J. Baier
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 455 North 5th Street, Phoenix, AZ 85004 USA
| |
Collapse
|
10
|
Reduced glycaemic and insulinaemic responses following trehalose and isomaltulose ingestion: implications for postprandial substrate use in impaired glucose-tolerant subjects. Br J Nutr 2011; 108:1210-7. [PMID: 22172468 DOI: 10.1017/s0007114511006714] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The impact of slowly digestible sugars in reducing the risk of developing obesity and related metabolic disorders remains unclear. We hypothesised that such carbohydrates (CHO), resulting in a lower glycaemic and insulinaemic response, may lead to greater postprandial fat oxidation rates in subjects with impaired glucose tolerance (IGT). The present study intends to compare the postprandial metabolic responses to the ingestion of glucose (GLUC) v. trehalose (TRE) and sucrose (SUC) v. isomaltulose (IMU). In a randomised, single-blind, cross-over design, ten overweight IGT subjects were studied four times, following ingestion of different CHO drinks either at breakfast or in combination with a mixed meal at lunch. Before and 3 h after CHO ingestion, energy expenditure, substrate utilisation and circulating metabolite concentrations were determined. Ingestion of CHO drinks with a meal resulted in an attenuated rise in GLUC (-33 %) and insulin (-14 %) concentrations following TRE when compared with GLUC and following IMU, an attenuation of 43 and 34 % when compared with SUC ingestion, respectively. Additionally, there was less inhibition of the rise in NEFA concentrations and less decline in postprandial fat oxidation (22 %) after IMU when compared with SUC, whereas TRE did not differ from GLUC. The attenuated rise in GLUC and insulin concentrations following IMU ingestion attenuated the postprandial inhibition of fat oxidation compared with SUC when co-ingested with a meal. This suggests that exchange of SUC in the diet for IMU may result in a more favourable metabolic response and may help to reduce the risks associated with obesity and type 2 diabetes.
Collapse
|