1
|
Harasym J, Dziendzikowska K, Kopiasz Ł, Wilczak J, Sapierzyński R, Gromadzka-Ostrowska J. Consumption of Feed Supplemented with Oat Beta-Glucan as a Chemopreventive Agent against Colon Cancerogenesis in Rats. Nutrients 2024; 16:1125. [PMID: 38674816 PMCID: PMC11054053 DOI: 10.3390/nu16081125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer (CRC) accounts for 30% of all cancer cases worldwide and is the second leading cause of cancer-related deaths. CRC develops over a long period of time, and in the early stages, pathological changes can be mitigated through nutritional interventions using bioactive plant compounds. Our study aims to determine the effect of highly purified oat beta-glucan on an animal CRC model. The study was performed on forty-five male Sprague-Dawley rats with azoxymethane-induced early-stage CRC, which consumed feed containing 1% or 3% low molar mass oat beta-glucan (OBG) for 8 weeks. In the large intestine, morphological changes, CRC signaling pathway genes (RT-PCR), and proteins (Western blot, immunohistochemistry) expression were analyzed. Whole blood hematology and blood redox status were also performed. Results indicated that the histologically confirmed CRC condition led to a downregulation of the WNT/β-catenin pathway, along with alterations in oncogenic and tumor suppressor gene expression. However, OBG significantly modulated these effects, with the 3% OBG showing a more pronounced impact. Furthermore, CRC rats exhibited elevated levels of oxidative stress and antioxidant enzyme activity in the blood, along with decreased white blood cell and lymphocyte counts. Consumption of OBG at any dose normalized these parameters. The minimal effect of OBG in the physiological intestine and the high activity in the pathological condition suggest that OBG is both safe and effective in early-stage CRC.
Collapse
Affiliation(s)
- Joanna Harasym
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland
| | - Katarzyna Dziendzikowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (K.D.); (J.G.-O.)
| | - Łukasz Kopiasz
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (K.D.); (J.G.-O.)
| | - Jacek Wilczak
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Rafał Sapierzyński
- Department of Pathology and Veterinary Diagnostic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (K.D.); (J.G.-O.)
| |
Collapse
|
2
|
Böswald LF, Matzek D, Popper B. Digestibility of crude nutrients and minerals in C57Bl/6J and CD1 mice fed a pelleted lab rodent diet. Sci Rep 2024; 14:1791. [PMID: 38245611 PMCID: PMC10799863 DOI: 10.1038/s41598-024-52271-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024] Open
Abstract
In laboratory animals, there is a scarcity of digestibility data under non-experimental conditions. Such data is important as basis to generate nutrient requirements, which contributes to the refinement of husbandry conditions. Digestibility trials can also help to identify patterns of absorption and potential factors that influence the digestibility. Thus, a digestibility trial with a pelleted diet used as standard feed in laboratory mice was conducted. To identify potential differences between genetic lines, inbred C57Bl/6 J and outbred CD1 mice (n = 18 each, male, 8 weeks-old, housed in groups of three) were used. For seven days, the feed intake was recorded and the total faeces per cage collected. Energy, crude nutrient and mineral content of diet and faecal samples were analyzed to calculate the apparent digestibility (aD). Apparent dry matter and energy digestibility did not differ between both lines investigated. The C57Bl/6 J mice had significantly higher aD of magnesium and potassium and a trend towards a lower aD of sodium than the mice of the CD1 outbred stock. Lucas-tests were performed to calculate the mean true digestibility of the nutrients and revealed a uniformity of the linear regression over data from both common laboratory mouse lines. The mean true digestibility of crude nutrients was > 90%, except for fibre, that of the minerals ranged between 66 and 97%.
Collapse
Affiliation(s)
- Linda F Böswald
- Core Facility Animal Models, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Dana Matzek
- Core Facility Animal Models, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bastian Popper
- Core Facility Animal Models, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
3
|
Matusiewicz M, Wróbel-Kwiatkowska M, Niemiec T, Świderek W, Kosieradzka I, Rosińska A, Niwińska A, Rakicka-Pustułka M, Kocki T, Rymowicz W, Turski WA. Effect of Yarrowia lipolytica yeast biomass with increased kynurenic acid content on selected metabolic indicators in mice. PeerJ 2023; 11:e15833. [PMID: 37780388 PMCID: PMC10540775 DOI: 10.7717/peerj.15833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/11/2023] [Indexed: 10/03/2023] Open
Abstract
Background The unconventional yeast species Yarrowia lipolytica is a valuable source of protein and many other nutrients. It can be used to produce hydrolytic enzymes and metabolites, including kynurenic acid (KYNA), an endogenous metabolite of tryptophan with a multidirectional effect on the body. The administration of Y. lipolytica with an increased content of KYNA in the diet may have a beneficial effect on metabolism, which was evaluated in a nutritional experiment on mice. Methods In the dry biomass of Y. lipolytica S12 enriched in KYNA (high-KYNA yeast) and low-KYNA (control) yeast, the content of KYNA was determined by high-performance liquid chromatography. Then, proximate and amino acid composition and selected indicators of antioxidant status were compared. The effect of 5% high-KYNA yeast content in the diet on the growth, hematological and biochemical indices of blood and the redox status of the liver was determined in a 7-week experiment on adult male mice from an outbred colony derived from A/St, BALB/c, BN/a and C57BL/6J inbred strains. Results High-KYNA yeast was characterized by a greater concentration of KYNA than low-KYNA yeast (0.80 ± 0.08 vs. 0.29 ± 0.01 g/kg dry matter), lower content of crude protein with a less favorable amino acid composition and minerals, higher level of crude fiber and fat and lower ferric-reducing antioxidant power, concentration of phenols and glutathione. Consumption of the high-KYNA yeast diet did not affect the cumulative body weight gain per cage, cumulative food intake per cage and protein efficiency ratio compared to the control diet. A trend towards lower mean corpuscular volume and hematocrit, higher mean corpuscular hemoglobin concentration and lower serum total protein and globulins was observed, increased serum total cholesterol and urea were noted. Its ingestion resulted in a trend towards greater ferric-reducing antioxidant power in the liver and did not affect the degree of liver lipid and protein oxidation. Conclusions The improvement of the quality of Y. lipolytica yeast biomass with increased content of KYNA, including its antioxidant potential, would be affected by the preserved level of protein and unchanged amino acid profile. It will be worth investigating the effect of such optimized yeast on model animals, including animals with metabolic diseases.
Collapse
Affiliation(s)
- Magdalena Matusiewicz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Wróbel-Kwiatkowska
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Tomasz Niemiec
- Department of Animal Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Wiesław Świderek
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Iwona Kosieradzka
- Department of Animal Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Aleksandra Rosińska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Anna Niwińska
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Rakicka-Pustułka
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Tomasz Kocki
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Waldemar Rymowicz
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
4
|
Valentine WJ, Mostafa SA, Tokuoka SM, Hamano F, Inagaki NF, Nordin JZ, Motohashi N, Kita Y, Aoki Y, Shimizu T, Shindou H. Lipidomic Analyses Reveal Specific Alterations of Phosphatidylcholine in Dystrophic Mdx Muscle. Front Physiol 2022; 12:698166. [PMID: 35095541 PMCID: PMC8791236 DOI: 10.3389/fphys.2021.698166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), lack of dystrophin increases the permeability of myofiber plasma membranes to ions and larger macromolecules, disrupting calcium signaling and leading to progressive muscle wasting. Although the biological origin and meaning are unclear, alterations of phosphatidylcholine (PC) are reported in affected skeletal muscles of patients with DMD that may include higher levels of fatty acid (FA) 18:1 chains and lower levels of FA 18:2 chains, possibly reflected in relatively high levels of PC 34:1 (with 16:0_18:1 chain sets) and low levels of PC 34:2 (with 16:0_18:2 chain sets). Similar PC alterations have been reported to occur in the mdx mouse model of DMD. However, altered ratios of PC 34:1 to PC 34:2 have been variably reported, and we also observed that PC 34:2 levels were nearly equally elevated as PC 34:1 in the affected mdx muscles. We hypothesized that experimental factors that often varied between studies; including muscle types sampled, mouse ages, and mouse diets; may strongly impact the PC alterations detected in dystrophic muscle of mdx mice, especially the PC 34:1 to PC 34:2 ratios. In order to test our hypothesis, we performed comprehensive lipidomic analyses of PC and phosphatidylethanolamine (PE) in several muscles (extensor digitorum longus, gastrocnemius, and soleus) and determined the mdx-specific alterations. The alterations in PC 34:1 and PC 34:2 were closely monitored from the neonate period to the adult, and also in mice raised on several diets that varied in their fats. PC 34:1 was naturally high in neonate’s muscle and decreased until age ∼3-weeks (disease onset age), and thereafter remained low in WT muscles but was higher in regenerated mdx muscles. Among the muscle types, soleus showed a distinctive phospholipid pattern with early and diminished mdx alterations. Diet was a major factor to impact PC 34:1/PC 34:2 ratios because mdx-specific alterations of PC 34:2 but not PC 34:1 were strictly dependent on diet. Our study identifies high PC 34:1 as a consistent biochemical feature of regenerated mdx-muscle and indicates nutritional approaches are also effective to modify the phospholipid compositions.
Collapse
Affiliation(s)
- William J. Valentine
- Department of Molecular Therapy, National Center for Neurology and Psychiatry (NCNP), National Institute of Neuroscience, Kodaira, Tokyo, Japan
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Japan
- *Correspondence: William J. Valentine,
| | - Sherif A. Mostafa
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Japan
- Weill Cornell Medicine—Qatar, Doha, Qatar
| | - Suzumi M. Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Fumie Hamano
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Japan
- Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Natsuko F. Inagaki
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Japan
| | - Joel Z. Nordin
- Department of Molecular Therapy, National Center for Neurology and Psychiatry (NCNP), National Institute of Neuroscience, Kodaira, Tokyo, Japan
- Department of Laboratory Medicine, Centre for Biomolecular and Cellular Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Norio Motohashi
- Department of Molecular Therapy, National Center for Neurology and Psychiatry (NCNP), National Institute of Neuroscience, Kodaira, Tokyo, Japan
| | - Yoshihiro Kita
- Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Center for Neurology and Psychiatry (NCNP), National Institute of Neuroscience, Kodaira, Tokyo, Japan
- Yoshitsugu Aoki,
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
- Hideo Shindou,
| |
Collapse
|
5
|
Coating beef tallow with calcium soap improves dietary pellet quality and promotes an effective diet-induced obese mouse model. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Hebart ML, Herd RM, Oddy VH, Geiser F, Pitchford WS. Selection for lower residual feed intake in mice is accompanied by increased body fatness and lower activity but not lower metabolic rate. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Mice bred to be genetically different in feed efficiency were used in this experiment designed to help improve our knowledge of the biological basis of variation in feed efficiency between individual animals.
Aims
This experiment used mice to explore the metabolic basis of genetic variation in feed efficiency in the growing animal.
Methods
Mice bred to differ in residual feed intake (RFI) recorded over a postweaning test were used. After 11 generations of divergent selection, mice in groups were tested for RFI from 6 to 8, 8 to 10, and 10 to 12 weeks of age, and measured for traits describing the ability to digest feed, body composition, protein turnover, basal and resting metabolic rate, and level of activity.
Key results
Compared with the low-RFI (high efficiency) line mice, high-RFI mice consumed 28% more feed per day over their RFI-test, were no heavier, were leaner (16% less total fat per unit of bodyweight), did not differ in the fractional synthesis rate of protein in skeletal muscle or in liver, and had similar basal metabolic rates at 33°C. On an energy basis, the selection lines did not differ in energy retained in body tissue gain, which represented only 1.8% of metabolisable energy intake. The remaining 98.2% was lost as heat. Of the processes measured contributing to the higher feed intake by the high-RFI mice, 47% of the extra feed consumed was lost in faeces and urine, activity was 84% higher and accounted for 24%, the cost of protein gain was 6% higher and accounted for 2%, and the energy cost of digesting and absorbing the extra feed consumed and basal heat production could have accounted for 11 and 15% each.
Conclusions
Selection for low RFI (high efficiency) in mice was accompanied by an increase in body fat, an improvement in the process of digestion, a lower rate of protein turnover and a much lower level of activity. Selection did not result in major change in basal metabolic rate.
Implications
This experiment with mice provided new information on the biological basis of genetic differences in feed efficiency. The experiment investigated the relative importance of major energy-consuming metabolic processes and was able to quantify the responses in protein turnover and level of activity, being responses in energy-consuming processes that have proven difficult to quantitatively demonstrate in large farm animals.
Collapse
|
7
|
Cheng HS, Phang SCW, Ton SH, Abdul Kadir K, Tan JBL. Purified ingredient-based high-fat diet is superior to chow-based equivalent in the induction of metabolic syndrome. J Food Biochem 2018; 43:e12717. [PMID: 31353646 DOI: 10.1111/jfbc.12717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/13/2018] [Accepted: 10/06/2018] [Indexed: 12/27/2022]
Abstract
The present study aimed to outline the physiological and metabolic disparity between chow- and purified ingredient-based high-fat diets and their efficacy in the induction of metabolic syndrome (MetS). Male, 3-week-old Sprague Dawley rats were randomly assigned to chow-based control diet, chow-based high-fat diet, purified control diet, and purified high-fat diet for 12 weeks. Physical and biochemical changes were documented. Chow-based diets, irrespective of the lipid content, resulted in significantly lower weight gain and organ weight compared to purified ingredient-based diets. Circulating insulin, total proteins, albumin, and certain lipid components like the triglycerides, total cholesterol, and high-density lipoprotein-cholesterol were also lower in the chow-based diet groups. Both chow- and purified high-fat diets induced central obesity, hypertension, and hyperglycaemia, but the latter was associated with earlier onset of the metabolic aberrations and additionally, dyslipidaemia. In conclusion, purified high-fat diet is a better diet for MetS induction in rats. PRACTICAL APPLICATIONS: Modeling metabolic syndrome is commonly accomplished with the use of chow- or purified ingredient diets enriched with carbohydrates and/or lipids, but the differences and associated drawbacks are unclear. This study highlights that chow- or modified chow-based diets have a tendency to introduce unwanted metabolic changes which are inconsistent with the progression of metabolic syndrome. Thus, the use of these diets in metabolic disease study should be avoided. On the other hand, purified high-fat diet which can effectively induce the features of metabolic syndrome is highly recommended.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Sonia Chew Wen Phang
- School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - So Ha Ton
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Khalid Abdul Kadir
- School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Joash Ban Lee Tan
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
8
|
Ritze Y, Bárdos G, D’Haese JG, Ernst B, Thurnheer M, Schultes B, Bischoff SC. Effect of high sugar intake on glucose transporter and weight regulating hormones in mice and humans. PLoS One 2014; 9:e101702. [PMID: 25010715 PMCID: PMC4092057 DOI: 10.1371/journal.pone.0101702] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 06/10/2014] [Indexed: 01/30/2023] Open
Abstract
Objective Sugar consumption has increased dramatically over the last decades in Western societies. Especially the intake of sugar-sweetened beverages seems to be a major risk for the development of obesity. Thus, we compared liquid versus solid high-sugar diets with regard to dietary intake, intestinal uptake and metabolic parameters in mice and partly in humans. Methods Five iso-caloric diets, enriched with liquid (in water 30% vol/vol) or solid (in diet 65% g/g) fructose or sucrose or a control diet were fed for eight weeks to C57bl/6 mice. Sugar, liquid and caloric intake, small intestinal sugar transporters (GLUT2/5) and weight regulating hormone mRNA expression, as well as hepatic fat accumulation were measured. In obese versus lean humans that underwent either bariatric surgery or small bowel resection, we analyzed small intestinal GLUT2, GLUT5, and cholecystokinin expression. Results In mice, the liquid high-sucrose diet caused an enhancement of total caloric intake compared to the solid high-sucrose diet and the control diet. In addition, the liquid high-sucrose diet increased expression of GLUT2, GLUT5, and cholecystokinin expression in the ileum (P<0.001). Enhanced liver triglyceride accumulation was observed in mice being fed the liquid high-sucrose or -fructose, and the solid high-sucrose diet compared to controls. In obese, GLUT2 and GLUT5 mRNA expression was enhanced in comparison to lean individuals. Conclusions We show that the form of sugar intake (liquid versus solid) is presumably more important than the type of sugar, with regard to feeding behavior, intestinal sugar uptake and liver fat accumulation in mice. Interestingly, in obese individuals, an intestinal sugar transporter modulation also occurred when compared to lean individuals.
Collapse
Affiliation(s)
- Yvonne Ritze
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
- * E-mail:
| | - Gyöngyi Bárdos
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Jan G. D’Haese
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Barbara Ernst
- Interdisciplinary Obesity Center, Rorschach, Switzerland
| | | | - Bernd Schultes
- Interdisciplinary Obesity Center, Rorschach, Switzerland
| | - Stephan C. Bischoff
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
9
|
Frommelt L, Bielohuby M, Menhofer D, Stoehr BJM, Bidlingmaier M, Kienzle E. Effects of low carbohydrate diets on energy and nitrogen balance and body composition in rats depend on dietary protein-to-energy ratio. Nutrition 2013; 30:863-8. [PMID: 24726387 DOI: 10.1016/j.nut.2013.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/05/2013] [Accepted: 11/27/2013] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Truly ketogenic rodent diets are low in carbohydrates but also low in protein. The aim of this study was to differentiate effects of ketosis, low carbohydrate (LC) and/or low-protein intake on energy and nitrogen metabolism. METHODS We studied the nitrogen balance of rats fed LC diets with varying protein contents: LC diets consisted of 75/10, 65/20 and 55/30 percent of fat to protein (dry matter), respectively, and were iso-energetically pair-fed to a control (chow) diet to 12-wk-old male Wistar rats (n = 6 per diet). Previous studies demonstrated only LC75/10 was truly ketogenic. Food, fecal, and urine samples, as well as carcasses were collected and analyzed for heat of combustion and nitrogen (Kjeldahl method). Blood samples were analyzed for plasma protein, albumin, and triacylglycerol. RESULTS All LC groups displayed less body weight gain, and the degree of reduction was inversely related to digestible crude protein intake (daily weight gain compared with chow: LC75/10: -50%; LC55/30: -20%). Nitrogen excretion by urine was related to digestible protein intake (chow: 0.23 ± 0.02 g nitrogen/d; LC75/10: 0.05 ± 0.01 g nitrogen/d). Renal energy excretion was closely associated with intake of digestible crude protein (r = 0.697) and renal nitrogen excretion (r = 0.769). Energy-to-nitrogen ratio in urine was nearly doubled with LC75/10 compared with all other groups. Total body protein was highest with chow and lowest with LC75/10. Rats fed with LC75/10 displayed features of protein deficiency (reduced growth and nitrogen balance, hypoproteinemia, depletion of body protein, and increased body and liver fat), whereas the effects with the non-ketogenic diets LC65/20 and LC55/30 were less pronounced. CONCLUSION These results suggest that truly ketogenic LC diets in growing rats are LC diets that are also deficient in protein for growth.
Collapse
Affiliation(s)
- Lena Frommelt
- Animal Nutrition, Ludwig-Maximilians University, Munich, Germany
| | - Maximilian Bielohuby
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians University, Munich, Germany
| | - Dominik Menhofer
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians University, Munich, Germany
| | - Barbara J M Stoehr
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians University, Munich, Germany
| | - Martin Bidlingmaier
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians University, Munich, Germany
| | - Ellen Kienzle
- Animal Nutrition, Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
10
|
Frommelt L, Bielohuby M, Stoehr BJM, Menhofer D, Bidlingmaier M, Kienzle E. Effects of low-carbohydrate, high-fat diets on apparent digestibility of minerals and trace elements in rats. Nutrition 2013; 30:869-75. [PMID: 24985005 DOI: 10.1016/j.nut.2013.11.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/23/2013] [Accepted: 11/12/2013] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Ketogenic low-carbohydrate, high-fat (LCHF) diets reduce growth and bone mineral density in children with epilepsy and in rats. Part of this effect might be due to a reduced availability of calcium in high-fat diets. The aim of this study was to determine mineral digestibility by total collection method in LCHF diets compared with a chow diet and a standard high-fat diet (HFD, high in fat and carbohydrates). METHODS Twelve-wk-old male Wistar rats were pair-fed isoenergetic amounts of either six different LCHF diets based on tallow and casein (crude fat 75%-50%, crude protein 10%-35%), with chow or with a HFD diet. Mineral-to-energy ratio was matched in all diets. Circulating parathyroid hormone was measured by immunoassay. RESULTS The apparent digestibility of calcium was reduced in all HFDs (high-fat diets, LCHF diets and the HFD diet) by at least 30% compared with the chow diet (P < 0.001). Fecal calcium excretion correlated positively with fecal fat excretion, presumably because of formation of calcium soaps. Apparent digestibility of phosphorous was higher in all HFDs. This resulted in a decrease of the ratio of apparently digested calcium to apparently digested phosphorous in all HFDs below a ratio of 1:1. Plasma parathyroid hormone was not affected by any diet. CONCLUSION The alteration of apparent calcium and phosphorus digestibility may affect the impact of HFDs on bone metabolism.
Collapse
Affiliation(s)
- Lena Frommelt
- Chair of Animal Nutrition and Dietetics, Ludwig-Maximilians University, Munich, Germany
| | - Maximilian Bielohuby
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians University, Munich, Germany
| | - Barbara J M Stoehr
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians University, Munich, Germany
| | - Dominik Menhofer
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians University, Munich, Germany
| | - Martin Bidlingmaier
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians University, Munich, Germany
| | - Ellen Kienzle
- Chair of Animal Nutrition and Dietetics, Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
11
|
Bielohuby M, Sisley S, Sandoval D, Herbach N, Zengin A, Fischereder M, Menhofer D, Stoehr BJM, Stemmer K, Wanke R, Tschöp MH, Seeley RJ, Bidlingmaier M. Impaired glucose tolerance in rats fed low-carbohydrate, high-fat diets. Am J Physiol Endocrinol Metab 2013; 305:E1059-70. [PMID: 23982154 DOI: 10.1152/ajpendo.00208.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Moderate low-carbohydrate/high-fat (LC-HF) diets are widely used to induce weight loss in overweight subjects, whereas extreme ketogenic LC-HF diets are used to treat neurological disorders like pediatric epilepsy. Usage of LC-HF diets for improvement of glucose metabolism is highly controversial; some studies suggest that LC-HF diets ameliorate glucose tolerance, whereas other investigations could not identify positive effects of these diets or reported impaired insulin sensitivity. Here, we investigate the effects of LC-HF diets on glucose and insulin metabolism in a well-characterized animal model. Male rats were fed isoenergetic or hypocaloric amounts of standard control diet, a high-protein "Atkins-style" LC-HF diet, or a low-protein, ketogenic, LC-HF diet. Both LC-HF diets induced lower fasting glucose and insulin levels associated with lower pancreatic β-cell volumes. However, dynamic challenge tests (oral and intraperitoneal glucose tolerance tests, insulin-tolerance tests, and hyperinsulinemic euglycemic clamps) revealed that LC-HF pair-fed rats exhibited impaired glucose tolerance and impaired hepatic and peripheral tissue insulin sensitivity, the latter potentially being mediated by elevated intramyocellular lipids. Adjusting visceral fat mass in LC-HF groups to that of controls by reducing the intake of LC-HF diets to 80% of the pair-fed groups did not prevent glucose intolerance. Taken together, these data show that lack of dietary carbohydrates leads to glucose intolerance and insulin resistance in rats despite causing a reduction in fasting glucose and insulin concentrations. Our results argue against a beneficial effect of LC-HF diets on glucose and insulin metabolism, at least under physiological conditions. Therefore, use of LC-HF diets for weight loss or other therapeutic purposes should be balanced against potentially harmful metabolic side effects.
Collapse
Affiliation(s)
- Maximilian Bielohuby
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität (LMU Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Betz MJ, Bielohuby M, Mauracher B, Abplanalp W, Müller HH, Pieper K, Ramisch J, Tschöp MH, Beuschlein F, Bidlingmaier M, Slawik M. Isoenergetic feeding of low carbohydrate-high fat diets does not increase brown adipose tissue thermogenic capacity in rats. PLoS One 2012; 7:e38997. [PMID: 22720011 PMCID: PMC3374780 DOI: 10.1371/journal.pone.0038997] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/14/2012] [Indexed: 01/24/2023] Open
Abstract
Low-carbohydrate, high-fat (LC-HF) diets are popular for inducing weight loss in overweighed adults. Adaptive thermogenesis increased by specific effects of macronutrients on energy expenditure has been postulated to induce this weight loss. We studied brown adipose tissue (BAT) morphology and function following exposure to different LC-HF diets.
Collapse
Affiliation(s)
- Matthias J. Betz
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Munich, Germany
| | - Maximilian Bielohuby
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Munich, Germany
| | - Brigitte Mauracher
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Munich, Germany
| | - William Abplanalp
- Department of Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Hans-Helge Müller
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians University, Munich, Germany
| | - Korbinian Pieper
- Clinic of Small Animal Surgery and Reproduction, Centre of Clinical Veterinary Medicine, Ludwig-Maximilians University, Munich, Germany
| | - Juliane Ramisch
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Munich, Germany
| | - Matthias H. Tschöp
- Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technical University, Munich, Germany
| | - Felix Beuschlein
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Munich, Germany
| | - Martin Bidlingmaier
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Munich, Germany
| | - Marc Slawik
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Munich, Germany
- * E-mail:
| |
Collapse
|
13
|
Bielohuby M, Menhofer D, Kirchner H, Stoehr BJM, Müller TD, Stock P, Hempel M, Stemmer K, Pfluger PT, Kienzle E, Christ B, Tschöp MH, Bidlingmaier M. Induction of ketosis in rats fed low-carbohydrate, high-fat diets depends on the relative abundance of dietary fat and protein. Am J Physiol Endocrinol Metab 2011; 300:E65-76. [PMID: 20943751 DOI: 10.1152/ajpendo.00478.2010] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Low-carbohydrate/high-fat diets (LC-HFDs) in rodent models have been implicated with both weight loss and as a therapeutic approach to treat neurological diseases. LC-HFDs are known to induce ketosis; however, systematic studies analyzing the impact of the macronutrient composition on ketosis induction and weight loss success are lacking. Male Wistar rats were pair-fed for 4 wk either a standard chow diet or one of three different LC-HFDs, which only differed in the relative abundance of fat and protein (percentages of fat/protein in dry matter: LC-75/10; LC-65/20; LC-55/30). We subsequently measured body composition by nuclear magnetic resonance (NMR), analyzed blood chemistry and urine acetone content, evaluated gene expression changes of key ketogenic and gluconeogenic genes, and measured energy expenditure (EE) and locomotor activity (LA) during the first 4 days and after 3 wk on the respective diets. Compared with chow, rats fed with LC-75/10, LC-65/20, and LC-55/30 gained significantly less body weight. Reductions in body weight were mainly due to lower lean body mass and paralleled by significantly increased fat mass. Levels of β-hydroxybutyate were significantly elevated feeding LC-75/10 and LC-65/20 but decreased in parallel to reductions in dietary fat. Acetone was about 16-fold higher with LC-75/10 only (P < 0.001). In contrast, rats fed with LC-55/30 were not ketotic. Serum fibroblast growth factor-21, hepatic mRNA expression of hydroxymethylglutaryl-CoA-lyase, peroxisome proliferator-activated receptor-γ coactivator-1α, and peroxisome proliferator-activated receptor-γ coactivator-1β were increased with LC-75/10 only. Expression of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase was downregulated by 50-70% in LC-HF groups. Furthermore, EE and LA were significantly decreased in all groups fed with LC-HFDs after 3 wk on the diets. In rats, the absence of dietary carbohydrates per se does not induce ketosis. LC-HFDs must be high in fat, but also low in protein contents to be clearly ketogenic. Independent of the macronutrient composition, LC-HFD-induced weight loss is not due to increased EE and LA.
Collapse
Affiliation(s)
- Maximilian Bielohuby
- Ludwig-Maximilians-University, Endocrine Research Unit, Ziemssenstrasse 1 80336, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|