1
|
Ng HM, Maggo J, Wall CL, Bayer SB, McNabb WC, Mullaney JA, Foster M, Cabrera DL, Fraser K, Cooney J, Trower T, Günther CS, Frampton C, Gearry RB, Roy NC. Effects of Defatted Rice Bran-Fortified Bread on the Gut Microbiota Composition of Healthy Adults With Low Dietary Fiber Intake: Protocol for a Crossover Randomized Controlled Trial. JMIR Res Protoc 2024; 13:e59227. [PMID: 39207833 PMCID: PMC11393501 DOI: 10.2196/59227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Inadequate dietary fiber (DF) intake is associated with several human diseases. Bread is commonly consumed, and its DF content can be increased by incorporating defatted rice bran (DRB). OBJECTIVE This first human study on DRB-fortified bread primarily aims to assess the effect of DRB-fortified bread on the relative abundance of a composite of key microbial genera and species in fecal samples. Secondary outcomes include clinical (cardiovascular risk profile), patient-reported (daily bread consumption and bowel movement, gut comfort, general well-being, and total DF intake), biological (fecal microbiota gene abundances, and fecal and plasma metabolites), and physiome (whole-gut and regional transit time and gas fermentation profiles) outcomes in healthy adults with low DF intake. METHODS This is a 2-armed, placebo-controlled, double-blinded, crossover randomized controlled trial. The study duration is 14 weeks: 2 weeks of lead-in, 4 weeks of intervention per phase, 2 weeks of washout, and 2 weeks of follow-up. Overall, 60 healthy adults with low DF intake (<18 g [female individuals] or <22 g [male individuals] per day) were recruited in Christchurch, New Zealand, between June and December 2022. Randomly assigned participants consumed 3 (female individuals) or 4 (male individuals) slices of DRB-fortified bread per day and then placebo bread, and vice versa. The DRB-fortified bread provided 8 g (female individuals) or 10.6 g (male individuals) of total DF, whereas the placebo (a matched commercial white toast bread) provided 2.7 g (female individuals) or 3.6 g (male individuals) of total DF. Before and after each intervention phase, participants provided fecal and blood samples to assess biological responses; completed a 3-day food diary to assess usual intakes and web-based questionnaires to assess gut comfort, general and mental well-being, daily bread intake, and bowel movement via an app; underwent anthropometry and blood pressure measurements; and drank blue food dye to assess whole-gut transit time. Additionally, 25% (15/60) of the participants ingested Atmo gas-sensing capsules to assess colonic gas fermentation profile and whole-gut and regional transit time. Mean differences from baseline will be compared between the DRB and placebo groups, as well as within groups (after the intervention vs baseline). For metabolome analyses, comparisons will be made within and between groups using postintervention values. RESULTS Preliminary analysis included 56 participants (n=33, 59% female; n=23, 41% male). Due to the large dataset, data analysis was planned to be fully completed by the last quarter of 2024, with full results expected to be published in peer-reviewed journals by the end of 2024. CONCLUSIONS This first human study offers insights into the prospect of consuming DRB-fortified bread to effectively modulate health-promoting gut microbes, their metabolism, and DF intake in healthy adults with low DF intake. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry ACTRN12622000884707; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=383814. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/59227.
Collapse
Affiliation(s)
- Hwei Min Ng
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Jasjot Maggo
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Catherine Louisa Wall
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Simone Brigit Bayer
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Warren C McNabb
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Jane Adair Mullaney
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- AgResearch Grasslands, Palmerston North, New Zealand
| | - Meika Foster
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Edible Research, Christchurch, New Zealand
| | - Diana L Cabrera
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Plant and Food Research, Palmerston North, New Zealand
| | - Karl Fraser
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- AgResearch Grasslands, Palmerston North, New Zealand
| | - Janine Cooney
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Plant and Food Research, Ruakura Research Centre, Hamilton, New Zealand
| | - Tania Trower
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Plant and Food Research, Ruakura Research Centre, Hamilton, New Zealand
| | - Catrin S Günther
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Plant and Food Research, Ruakura Research Centre, Hamilton, New Zealand
| | - Chris Frampton
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch, Christchurch, New Zealand
| | - Richard Blair Gearry
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole Clemence Roy
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Mahdavi-Roshan M, Shoaibinobarian N, Evazalipour M, Salari A, Ghorbani Z, Savarrakhsh A, Ahmadnia Z. An open label randomized controlled trial of the effects of rice bran oil on cardiometabolic risk factors, lipid peroxidation and antioxidant status in overweight/obese adults with metabolic syndrome. Lipids Health Dis 2024; 23:273. [PMID: 39198792 PMCID: PMC11350959 DOI: 10.1186/s12944-024-02260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
INTRODUCTION We previously documented the beneficial effects of rice bran oil (RBO) on cardiac function and atherogenic cardiometabolic factors in men with coronary artery disease. Therefore, the existing evidence in this area aims to be expanded by investigating the impact of adding RBO to a daily standard diet on emerging insulin resistance surrogate markers, lipid peroxidation, antioxidant status, and metabolic disturbances in individuals with metabolic syndrome (MetSyn) through an open-label controlled trial. METHODS A total of 50 overweight/obese adults (mean body mass index (BMI) = 31.08 kg/m2) with at least 3 MetSyn components were randomly allocated to either the control group, which received a standard diet plan, or the intervention group, which was supplemented with 30 g/d RBO for 8 weeks. BMI, MetSyn components, metabolic score for insulin resistance (METS-IR), triglyceride‒glucose‒BMI (TyG‒BMI), malondialdehyde (MDA), total antioxidant capacity (TAC), and plasma polyphenol levels were measured before and after this open-label trial. RESULTS Analysis of covariance (ANCOVA) adjusted for baseline values revealed that, compared with patients who received only a standard diet, those who were supplemented with 30 g/d RBO presented significantly lower total cholesterol (P value = 0.005; effect size (ES):-0.92), LDL-cholesterol (P value = 0.048; ES:-0.62), fasting blood glucose (P value = 0.014; ES:-0.77), MDA (P value = 0.002; ES: -1.01), METS-IR (P value < 0.001; ES: -1.24), and TyG-BMI (P value = 0.007; ES:-0.85) after 8 weeks. Additionally, RBO consumption resulted in significantly higher levels of HDL-C (P value = 0.004; ES:0.94) and TAC (P value < 0.0001; ES:2.05). However, no significant changes were noted in BMI, waist circumference, serum triglycerides, plasma polyphenols, or blood pressure. CONCLUSION Although the current findings suggest that the hypocholesterolemic, antihyperglycemic, and antioxidative effects of 30 g/d RBO seem to be promising for MetSyn patients, they should be considered preliminary. Therefore, further well-designed clinical trials with larger sample sizes and longer durations are needed to confirm these findings.
Collapse
Affiliation(s)
- Marjan Mahdavi-Roshan
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Nargeskhatoon Shoaibinobarian
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Nutrition, School of Medical Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehdi Evazalipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Arsalan Salari
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zeinab Ghorbani
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Amir Savarrakhsh
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Ahmadnia
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
3
|
Hariri Z, Afzalzade F, Sohrab G, Saadati S, Yari Z. The effects of rice bran supplementation for management of blood lipids: A GRADE-assessed systematic review, dose-response meta-analysis, and meta-regression of randomized controlled trials. Syst Rev 2023; 12:65. [PMID: 37046340 PMCID: PMC10091523 DOI: 10.1186/s13643-023-02228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND We aimed to conduct a systematic review and meta-analysis of randomized controlled trials (RCTs) to investigate the effects of rice bran supplementation on serum lipid profile levels. METHODS We searched PubMed/Medline, Scopus, ISI Web of Science, and Google Scholar using related keywords. Published RCTs exploring the effects of rice bran consumption on lipid profile were searched up to June 2022. Evidence certainty was assessed on the basis of the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach. The data were pooled using a random-effects model and reported as weighted mean difference (WMD) and 95% confidence interval (CI) for each outcome. RESULTS Meta-analysis of eight RCTs (with 11 effect sizes) showed no significant effect of rice bran supplementation on serum levels of triglyceride (WMD: -11.38 mg/dl; 95% CI: -27.73, 4.96; P = 0.17), total cholesterol (WMD: -0.68 mg/dl; 95% CI: -7.25, 5.88; P = 0.834), low-density lipoprotein cholesterol (WMD: -1.68 mg/dl; 95% CI: -8.46, 5.09; P = 0.627) and high-density lipoprotein cholesterol (WMD: 0.16 mg/dl; 95% CI: -1.52, 1.85; P = 0.848) compared to control group. CONCLUSION Our meta-analysis suggests that rice bran supplementation has no significant effects on serum levels of lipid profile components. However, larger studies with longer durations and improved methodological quality are needed before firm conclusions can be reached.
Collapse
Affiliation(s)
- Zahra Hariri
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Afzalzade
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Golbon Sohrab
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Zahra Yari
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Sharake Qods, West Arghavan St. Farahzadi Blvd, Tehran, Iran.
| |
Collapse
|
4
|
Mahdavi-Roshan M, Salari A, Vakilpour A, Savar Rakhsh A, Ghorbani Z. Rice bran oil could favorably ameliorate atherogenicity and insulin resistance indices among men with coronary artery disease: post hoc analysis of a randomized controlled trial. Lipids Health Dis 2021; 20:153. [PMID: 34742318 PMCID: PMC8571839 DOI: 10.1186/s12944-021-01584-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/20/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Despite recent advances in recognizing more reliable indicators to estimate the coronary artery disease (CAD) patients' response to treatment and prognosis, less attention has been paid to evaluating them in clinical trials. Hence, the present research was conducted to study the impact of rice bran oil (RBO) versus sunflower oil (SFO) on various atherogenicity and insulin resistance markers. METHODS In the present 8-week randomized controlled trial, 40 CAD men with an average age of 56 years were allocated randomly into the intervention or control group to use RBO or SFO (30 g/day) plus a standardized dietary plan. As a further analysis, eight atherosclerosis-related indices were calculated before and after the study. RESULTS Analysis of covariance test in which potential confounders and baseline levels were considered, indicated that using RBO compared to SFO reduced Castelli's risk index I and II (adjusted means:3.29, 1.52 vs. 4.61, 2.20, respectively), atherogenic coefficient (2.29 vs. 3.61), lipoprotein combine index (6.54 vs. 17.53), and cholesterol index (0.46 vs. 1.20) after the trial (P-value ≤ 0.002). Also, the RBO group yielded significantly lower triglyceride glucose index (8.73 vs. 9.13) (P-value = 0.010). Further, marginally significant amelioration in triglyceride/HDL ratio and atherogenic index of plasma (1.48 and 0.13 vs. 1.86 and 0.24 respectively) were noted (P-value = 0.07). Spearman correlation analysis detected significant positive correlations between alterations in TNF-α serum levels (ng/L) and the majority of evaluated indices (P-value < 0.05). CONCLUSION Taken together, incorporating 30 g of RBO into the patient's usual diet appeared effective in ameliorating atherogenicity and insulin resistance indicators among men with CAD, probably in relation to its anti-inflammatory properties. TRIAL REGISTRATION The protocol of the current trial was retrospectively recorded in the Iranian clinical trial registration system (IRCT) with the registration number of IRCT20190313043045N1 (URL: https://en.irct.ir/trial/38346 ; Registration date: 2019-04-27).
Collapse
Affiliation(s)
- Marjan Mahdavi-Roshan
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, 15 Khordad Street, District 2, Rasht, Guilan Province, Iran.,Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arsalan Salari
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, 15 Khordad Street, District 2, Rasht, Guilan Province, Iran
| | - Azin Vakilpour
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, 15 Khordad Street, District 2, Rasht, Guilan Province, Iran
| | - Amir Savar Rakhsh
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, 15 Khordad Street, District 2, Rasht, Guilan Province, Iran
| | - Zeinab Ghorbani
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, 15 Khordad Street, District 2, Rasht, Guilan Province, Iran. .,Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
5
|
Mahdavi-Roshan M, Salari A, Ghorbani Z, Nikpey Z, Haghighatkhah M, Fakhr Mousavi A, Gholipour M, Pourfarzad A. The effects of rice bran oil on left ventricular systolic function, cardiometabolic risk factors and inflammatory mediators in men with coronary artery disease: a randomized clinical trial. Food Funct 2021; 12:4446-4457. [PMID: 33881115 DOI: 10.1039/d1fo00094b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVE In the current study, we aimed to explore the effects of rice bran oil (RBO) in adjunct to conventional medical therapy on left ventricular ejection fraction (LVEF), cardiometabolic risk factors, and inflammatory mediators in male patients with coronary artery disease (CAD). SUBJECTS/METHODS The present randomized controlled trial included 40 men diagnosed with CAD (mean age = 55.76 years) who were randomly allocated into two groups to receive either 30 grams per day of RBO (intervention group) or sunflower oil (control group) plus a standard diet for eight weeks. At the initial visit, demographic and anthropometric data and blood samples were collected. LVEF levels and serum concentrations of lipid profile, glucose, uric acid, hs-CRP, and TNF-α were investigated. RESULTS A total of 37 participants completed the study (n = 18 in the intervention group, n = 19 in the control group). Analysis of covariance (ANCOVA) adjusted for baseline values, age and body mass index revealed that RBO significantly improved LVEF (51.34%) and reduced triglyceride (125.01 mg dl-1), blood sugar (110.4 mg dl-1), total cholesterol (123.01 mg dl-1) and low density lipoprotein (56.88 mg dl-1) levels compared to sunflower oil ((45.56%), (155.93 mg dl-1), (128.94 mg dl-1), (163.93 mg dl-1) and (83.79 mg dl-1), respectively) following a 8-week trial (P-values < 0.05). Additionally, the test demonstrated that RBO consuming patients had significantly lower levels of serum uric acid (4.60 mg dl-1), TNF-α (6.99 ng L-1) and hs-CRP (2.11 mg L-1) compared to the control group ((5.92 mg dl-1), (15.23 ng L-1), (4.47 mg L-1), respectively) (P-value < 0.05). However, no significant changes were found regarding weight, blood pressure or serum HDL levels throughout the trial. CONCLUSION Consumption of 30 grams per day RBO within a standard diet could be considered an effective non-pharmacological approach in improving LVEF, cardiometabolic risk factors, and inflammatory state in CAD. However, future trials are recommended for more clarification.
Collapse
Affiliation(s)
- Marjan Mahdavi-Roshan
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Bhunia RK, Sinha K, Kaur R, Kaur S, Chawla K. A Holistic View of the Genetic Factors Involved in Triggering Hydrolytic and Oxidative Rancidity of Rice Bran Lipids. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1915328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Rupam Kumar Bhunia
- National Agri-Food Biotechnology Institute (NABI), Plant Tissue Culture and Genetic Engineering, Mohali, Punjab, India
| | - Kshitija Sinha
- National Agri-Food Biotechnology Institute (NABI), Plant Tissue Culture and Genetic Engineering, Mohali, Punjab, India
- Department of Biotechnology, Sector-25, Panjab University, Chandigarh, India
| | - Ranjeet Kaur
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Sumandeep Kaur
- Department of Biotechnology, Sector-25, Panjab University, Chandigarh, India
| | - Kirti Chawla
- National Agri-Food Biotechnology Institute (NABI), Plant Tissue Culture and Genetic Engineering, Mohali, Punjab, India
| |
Collapse
|
7
|
Pourrajab B, Sohouli MH, Amirinejad A, Fatahi S, Găman MA, Shidfar F. The impact of rice bran oil consumption on the serum lipid profile in adults: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2021; 62:6005-6015. [PMID: 33715544 DOI: 10.1080/10408398.2021.1895062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dyslipidemia/hyperlipidemia is recognized among the risk factors for lifestyle related diseases. A healthy diet, rich in vegetable oils such as rice bran oil (RBO), may aid to improve serum lipid levels. Thus, the aim of this study was to assess the effects of rice bran oil (RBO) consumption on serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c) and triglyceride (TG) levels in adults. The following online databases were searched for manuscripts published until October 7th 2020: PubMed/Medline, Scopus, Clarivate Analytics' Web of Science, Cochrane Central Register of Controlled Trials, and Google Scholar. The effect sizes were expressed as weighted mean difference (WMD) with 95% confidence intervals (CI). A total of 8 eligible trials with 14 effect sizes were included in this meta-analysis. Our analysis revealed that the consumption of RBO significantly decreased serum TC (WMD: -7.29 mg/dL, 95% CI: -11.32, -3.25, P = 0.000), LDL-c (WMD: -7.62 mg/dL, 95% CI: -11.10, -4.14, P = 0.000) and TG (WMD: -9.19 mg/dL, 95% CI: -17.99, -0.38, P = 0.041) levels. So, available evidence suggests that RBO consumption can significantly decrease serum TC, LDL-c and TG levels. Hence, it may play a role in reducing dyslipidemia/hyperlipidemia risk.
Collapse
Affiliation(s)
- Behnaz Pourrajab
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran Iran
| | - Mohammad Hassan Sohouli
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran Iran
| | - Ali Amirinejad
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Somaye Fatahi
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran Iran
| | - Mihnea-Alexandru Găman
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Sen S, Chakraborty R, Kalita P. Rice - not just a staple food: A comprehensive review on its phytochemicals and therapeutic potential. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Park HY, Lee KW, Choi HD. Rice bran constituents: immunomodulatory and therapeutic activities. Food Funct 2017; 8:935-943. [PMID: 28224159 DOI: 10.1039/c6fo01763k] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rice bran, one of the most abundant and valuable byproducts produced during the rice milling process, is of steadily growing interest in recent years due to its potential health benefits. Evidence is rapidly accumulating for the beneficial effects of nutraceuticals. However, the potential benefits of rice bran are found in several of its bioactive ingredients including oils, polysaccharides, proteins, and micronutrients. In addition, a significant advantage of rice bran is that it contains more than 100 antioxidants and several categories of bioactive phytonutrients, such as polyphenols, phytosterols, tocotrienols, γ-oryzanol, B vitamins, minerals, and trace minerals. As an immunomodulator, rice bran has beneficial constituents such as polysaccharides, proteins, and oils. Numerous studies also reported that potent antioxidants in rice bran included immune system enhancing compounds, such as phytosterols, polysaccharides, minerals and trace minerals including magnesium, selenium, zinc, vitamin E, omega-3 fatty acids and several other phytonutrients. We believe that this review will be a valuable resource for more studies on rice barn as a dietary source.
Collapse
Affiliation(s)
- Ho-Young Park
- Division of Functional Food Research, Korea Food Research Institute, Gyeonggi 463-746, South Korea and Department of Food Bioscience & Technology, Korea University, Seoul 136-713, South Korea
| | - Kwang-Won Lee
- Department of Food Bioscience & Technology, Korea University, Seoul 136-713, South Korea
| | - Hee-Don Choi
- Division of Strategic Food Research, Korea Food Research Institute, Gyeonggi 463-746, South Korea.
| |
Collapse
|
10
|
Shaik R, Kuna A, Azam M, Tilathoo R, Kanuri M, Samala G. Effect of rice bran oil spread on the physical, sensory and fatty acid profile of cake. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:2126-2134. [PMID: 28720970 PMCID: PMC5495741 DOI: 10.1007/s13197-017-2652-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/06/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
Abstract
Studies were carried out to replace hydrogenated fat (HF) with rice bran oil (RBO) and two varieties of rice bran oil spread RBOS1 and RBOS2 in the preparation of cake. Physico-chemical properties, sensory properties, scanning electronic microscopic (SEM) study and fatty acid estimation with reference to trans fatty acids of cake made with control and experimental samples were studied. The best acceptable cake among the four i.e., RBOS2 cake was selected for consumer evaluation along with control (HF) cake. Results revealed that there was no significant difference in overall acceptability of cake made with HF and RBOS2. The internal structure and pore structure of RBOS2 cake was finer and smoother than the control cake as per SEM imaging. The pores within the core varied in diameter between 13.9 and 29.6 µm in control cake and between 16.9 and 58.6 µm in RBOS2 cake at 500 × magnification indicating good textural properties compared to HF cake. The fatty acids analysis results showed that the amount of total trans fatty acids (TFA) was 15.46% in HF cake, 3.56% in RBO cake, 4.54% in RBOS1 cake, and 3.78% in RBOS2 cake. The major trans fatty acids observed in all samples were elaidic acid (C18:1 trans-9) and Linolelidic acid (C18:2, trans-6). Elaidic acid was the highest in HF cake (6.64%) and the least in RBO cake (2.62%). Linolelidic acid was the highest in HF cake (8.48%) and the least in RBOS2 cake (0.91%). Trans Vaccenic acid was detected only in HF cake (0.34%). TFA content assumes significance in terms of its ill effects on the health of consumers, only if fat content is also high. Hence, consumption of the HF products might prove to be harmful, if consumed in large amounts and at higher frequencies. Therefore RBOS can be promoted as healthy fat for production of baked products.
Collapse
Affiliation(s)
- Rizwana Shaik
- Post Graduate and Research Centre, PJTS Agricultural University, Hyderabad, India
| | - Aparna Kuna
- MFPI - Quality Control Laboratory, PJTS Agricultural University, Hyderabad, India
| | - Mohibbe Azam
- Indian Institute of Rice Research, Hyderabad, India
| | - Ram Tilathoo
- Indian Institute of Rice Research, Hyderabad, India
| | - Manorama Kanuri
- MFPI - Quality Control Laboratory, PJTS Agricultural University, Hyderabad, India
| | - Geetha Samala
- Post Graduate and Research Centre, PJTS Agricultural University, Hyderabad, India
| |
Collapse
|
11
|
Perez-Ternero C, Alvarez de Sotomayor M, Herrera MD. Contribution of ferulic acid, γ-oryzanol and tocotrienols to the cardiometabolic protective effects of rice bran. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
12
|
Borresen EC, Jenkins-Puccetti N, Schmitz K, Brown DG, Pollack A, Fairbanks A, Wdowik M, Rao S, Nelson TL, Luckasen G, Ryan EP. A Pilot Randomized Controlled Clinical Trial to Assess Tolerance and Efficacy of Navy Bean and Rice Bran Supplementation for Lowering Cholesterol in Children. Glob Pediatr Health 2017; 4:2333794X17694231. [PMID: 28345013 PMCID: PMC5349558 DOI: 10.1177/2333794x17694231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 01/24/2023] Open
Abstract
Background: Navy beans and rice bran demonstrate efficacy to regulate serum cholesterol in hypercholesterolemic adults; however, the cardiovascular disease (CVD) protective properties of these foods in children are unknown and merit investigation. Objective: The objectives were to determine whether cooked navy bean powder (NBP) and/or heat-stabilized rice bran (RB) supplementation is tolerable, improves dietary fiber intake in children, and modulates lipid profiles. Methods: Children aged 8 to 13 years at risk for CVD due to abnormal lipids were recruited. Elevated cholesterol levels were defined as total cholesterol ≥180 mg/dL and high-density lipoprotein (HDL) <60 mg/dL; low-density lipoprotein (LDL) ≥100 mg/dL and HDL <60 mg/dL; or non-HDL >100 mg/dL and HDL <60 mg/dL. Participants completed a pilot 4-week, randomized controlled, 4-arm dietary intervention. They consumed study-provided muffins or a smoothie daily that included 0 g NBP or RB (control), 17.5 g NBP, 15 g RB, or a combination 9 g NBP + 8 g RB. Fasting blood was collected at baseline and week 4. Participants also completed 3-day food logs and gastrointestinal health questionnaires. Results: Thirty-eight children completed the trial (n = 9 control, n = 10 NBP, n = 9 RB, and n = 10 NBP + RB groups). Only 3 participants withdrew due to noncompliance of required food consumption. Participants in the intervention groups significantly increased intake of NBP and RB at week 4 (p≤.01). The NBP and NBP + RB groups increased total fiber intake from baseline to week 4 (p=.02 and p=<.01, respectively). HDL-cholesterol was higher in NBP-group participants compared to control at week 4 (P = .02). Conclusion: Increasing NBP and/or RB intake is tolerable for children, and our findings suggest higher daily intakes are needed for a longer duration to induce favorable changes across multiple serum lipid parameters.
Collapse
Affiliation(s)
| | - NaNet Jenkins-Puccetti
- University of Colorado Health Research-Northern Region, Medical Center of the Rockies, Loveland, CO, USA
| | | | | | - Austin Pollack
- University of Colorado Health Research-Northern Region, Medical Center of the Rockies, Loveland, CO, USA
| | | | | | - Sangeeta Rao
- Colorado State University, Fort Collins, CO, USA
| | | | - Gary Luckasen
- Colorado State University, Fort Collins, CO, USA; University of Colorado Health Research-Northern Region, Medical Center of the Rockies, Loveland, CO, USA
| | | |
Collapse
|
13
|
Devarajan S, Chatterjee B, Urata H, Zhang B, Ali A, Singh R, Ganapathy S. A Blend of Sesame and Rice Bran Oils Lowers Hyperglycemia and Improves the Lipids. Am J Med 2016; 129:731-9. [PMID: 27046245 DOI: 10.1016/j.amjmed.2016.02.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Considering the health benefits of sesame oil and rice bran oil, the study was conducted to determine the extent to which the daily use of this blend of oils controls hyperglycemia and improves the lipid profile. METHODS In this 8-week open-label randomized dietary intervention study, 300 type 2 diabetes mellitus patients and 100 normoglycemic subjects were grouped as 1) normoglycemic subjects (n = 100) treated with sesame oil blend Vivo (Adani Wilmar, Ahmedabad, Gujarat, India), 2) type 2 diabetes mellitus patients treated with sesame oil blend (n = 100), 3) type 2 diabetes mellitus patients treated with glibenclamide (n = 100; 5 mg/d), and 4) type 2 diabetes mellitus patients treated in combination of glibenclamide (5 mg/d) and sesame oil blend (n = 100). Twelve-hour fasting blood glucose, glycated hemoglobin (HbA1c), and lipid profile followed by postprandial blood glucose were measured at baseline. Sesame oil blend was supplied to the respective groups, who were instructed to use as cooking oil for 8 weeks. Fasting and postprandial blood glucose was measured at week 4 and week 8, while HbA1c and lipid profile were measured at week 8. RESULTS At week 4 and week 8, type 2 diabetes mellitus patients treated with sesame oil blend or glibenclamide or combination of glibenclamide and sesame oil blend showed significant reduction of fasting and postprandial blood glucose (P <.001). HbA1c, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and non-high-density lipoprotein cholesterol were significantly reduced (P <.001), while high-density lipoprotein cholesterol was significantly increased at week 8 (P <.001) in type 2 diabetes mellitus patients treated with the sesame oil blend or combination of glibenclamide and sesame oil blend; whereas glibenclamide-alone-treated type 2 diabetes mellitus patients showed a significant reduction of HbA1c (P <.001) only. CONCLUSIONS A novel blend of 20% cold-pressed unrefined sesame oil and 80% physically refined rice bran oil as cooking oil, lowered hyperglycemia and improved the lipid profile in type 2 diabetes mellitus patients.
Collapse
Affiliation(s)
- Sankar Devarajan
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Japan.
| | | | - Hidenori Urata
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Japan
| | - Bo Zhang
- Department of Biochemistry, School of Medicine, Fukuoka University, Japan
| | - Amanat Ali
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ravinder Singh
- Department of Non-Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | | |
Collapse
|
14
|
Moghadasian MH, Alsaif M, Le K, Gangadaran S, Masisi K, Beta T, Shen GX. Combination effects of wild rice and phytosterols on prevention of atherosclerosis in LDL receptor knockout mice. J Nutr Biochem 2016; 33:128-35. [DOI: 10.1016/j.jnutbio.2016.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/15/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
|
15
|
Devarajan S, Singh R, Chatterjee B, Zhang B, Ali A. A blend of sesame oil and rice bran oil lowers blood pressure and improves the lipid profile in mild-to-moderate hypertensive patients. J Clin Lipidol 2015; 10:339-49. [PMID: 27055965 DOI: 10.1016/j.jacl.2015.12.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 11/19/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Sesame oil and rice bran oil are known for their unsaturated fatty acids and antioxidants contents and have been reported to reduce the cardiovascular risk. OBJECTIVE To determine the effect of a blend of 20% unrefined cold-pressed lignans-rich sesame oil and 80% physically refined γ-oryzanol-rich rice bran oil (Vivo) as cooking oil in mild-to-moderate hypertensive patients. METHODS In this prospective, open-label dietary approach, 300 hypertensive patients and 100 normotensives were divided into groups as: (1) normotensives treated with sesame oil blend, (2) hypertensives treated with sesame oil blend, (3) hypertensives treated with nifedipine, a calcium channel blocker (20 mg/d), and (4) hypertensives receiving the combination of sesame oil blend and nifedipine (20 mg/d). Sesame oil blend was supplied to respective groups, and they were instructed to use it as the only cooking oil for 60 days. Resting blood pressure was measured at days 0, 15, 30, 45, and 60, whereas the fasting lipid profile was measured at days 0 and 60. RESULTS Significant reduction in blood pressure (systolic, diastolic, and mean arterial) from days 0 to 15, 30, 45, and 60 were observed in hypertensives treated with sesame oil blend alone (P < .001), nifedipine alone (P < .001), and combination of sesame oil blend and nifedipine (P < .001). Sesame oil blend with nifedipine-treated group showed greatest reduction in blood pressure. Total cholesterol, low-density lipoprotein cholesterol, triglycerides, and non-high-density lipoprotein cholesterol levels reduced, whereas high-density lipoprotein cholesterol levels increased significantly only in hypertensives treated with sesame oil blend alone and the combination of sesame oil blend and nifedipine (P < .001). CONCLUSION We demonstrate for the first time that using a blend of sesame oil and rice bran oil as cooking oil showed a significant antihypertensive and lipid-lowering action and had noteworthy additive effect with antihypertensive medication.
Collapse
Affiliation(s)
- Sankar Devarajan
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Fukuoka, Japan.
| | - Ravinder Singh
- Department of Non-communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | | | - Bo Zhang
- Department of Biochemistry, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Amanat Ali
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
16
|
Salar A, Faghih S, Pishdad GR. Rice bran oil and canola oil improve blood lipids compared to sunflower oil in women with type 2 diabetes: A randomized, single-blind, controlled trial. J Clin Lipidol 2015; 10:299-305. [PMID: 27055960 DOI: 10.1016/j.jacl.2015.11.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 10/28/2015] [Accepted: 11/26/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Hypolipidemic effects of vegetable oils have been demonstrated in a number of studies, but there is no study, which compares the effects of canola oil (CO) and rice bran oil (RBO) on diabetic patient. We aimed to compare the effects of CO and RBO consumption on blood lipids in women with type 2 diabetes. METHODS Seventy-five postmenopausal women with type 2 diabetes participated in this single-center, randomized, controlled, parallel-group trial in Shiraz, Iran. Participants were randomly allocated to three groups including a control group (balance diet + 30 g/d sunflower oil) and two intervention groups (balance diet + 30 g/day CO or RBO). At baseline and after 8 weeks, serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured. RESULTS At 8 weeks, mean of serum levels of TG (mg/dL), TC (mg/dL), and LDL-C (mg/dL) significantly decreased in the CO group (-23.66, P < .001; -11.92, P < .001; and -6.33, P = .013, respectively) and RBO group (-38.62, P < .001; -17.25, P < .001; and -8.90, P = .002, respectively) compared with the controls (7.01, 4.06, and 2.90, respectively). Also, in comparison with CO group, the changes of TG, LDL-C, and non-HDL-C levels were significantly more in the RBO group (P = .007, P = .012, and P = .011, respectively). Levels of serum HDL-C remained unchanged in all groups at the end of study. CONCLUSIONS Substitution of RBO or CO for sunflower oil could attenuate lipid disorders in type 2 diabetes women. Moreover, RBO could improve lipid profile more efficiently than CO.
Collapse
Affiliation(s)
- Azadeh Salar
- Nutrition and Food Sciences Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Faghih
- Nutrition and Food Sciences Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Gholam Reza Pishdad
- Endocrine and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Kordsmeier M, Howard LR, Brownmiller C, Proctor A, Hauer-Jensen M. Isolation of Gamma and Delta Tocotrienols from Rice Bran Oil Deodorizer Distillate Using Flash Chromatography. J AM OIL CHEM SOC 2015. [DOI: 10.1007/s11746-015-2696-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Patel S. Cereal bran fortified-functional foods for obesity and diabetes management: Triumphs, hurdles and possibilities. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Muraki I, Wu H, Imamura F, Laden F, Rimm EB, Hu FB, Willett WC, Sun Q. Rice consumption and risk of cardiovascular disease: results from a pooled analysis of 3 U.S. cohorts. Am J Clin Nutr 2015; 101:164-72. [PMID: 25527760 PMCID: PMC4266886 DOI: 10.3945/ajcn.114.087551] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 10/16/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Health concerns have been raised about rice consumption, which may significantly contribute to arsenic exposure. However, little is known regarding whether habitual rice consumption is associated with cardiovascular disease (CVD) risk. OBJECTIVE We examined prospectively the association of white rice and brown rice consumption with CVD risk. DESIGN We followed a total of 207,556 women and men [73,228 women from the Nurses' Health Study (1984-2010), 92,158 women from the Nurses' Health Study II (1991-2011), and 42,170 men from the Health Professionals Follow-Up Study (1986-2010)] who were free of CVD and cancer at baseline. Validated semiquantitative food-frequency questionnaires were used to assess consumption of white rice, brown rice, and other food items. Fatal and nonfatal CVD (coronary artery disease and stroke) was confirmed by medical records or self-reports. RESULTS During 4,393,130 person-years of follow-up, 12,391 cases of CVD were identified. After adjustment for major CVD risk factors, including demographics, lifestyle, and other dietary intakes, rice consumption was not associated with CVD risk. The multivariable-adjuted HR of developing CVD comparing ≥5 servings/wk with <1 serving/wk was 0.98 (95% CI: 0.84, 1.14) for white rice, 1.01 (0.79, 1.28) for brown rice, and 0.99 (0.90, 1.08) for total rice. To minimize the potential impact of racial difference in rice consumption, we restricted the analyses to whites only and obtained similar results: the HRs of CVD for ≥5 servings/wk compared with <1 serving/wk were 1.04 (95% CI: 0.88, 1.22) for white rice and 1.01 (0.78, 1.31) for brown rice. CONCLUSIONS Greater habitual consumption of white rice or brown rice is not associated with CVD risk. These findings suggest that rice consumption may not pose a significant CVD risk among the U.S. population when consumed at current amounts. More prospective studies are needed to explore these associations in other populations.
Collapse
Affiliation(s)
- Isao Muraki
- From the Departments of Nutrition (IM, HW, EBR, FBH, WCW, and QS), Epidemiology (FL, EBR, FBH, and WCW), and Environmental Health (FL), Harvard School of Public Health and Channing Division of Network Medicine (FL, EBR, FBH, WCW, and QS), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, and the Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom (FI)
| | - Hongyu Wu
- From the Departments of Nutrition (IM, HW, EBR, FBH, WCW, and QS), Epidemiology (FL, EBR, FBH, and WCW), and Environmental Health (FL), Harvard School of Public Health and Channing Division of Network Medicine (FL, EBR, FBH, WCW, and QS), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, and the Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom (FI)
| | - Fumiaki Imamura
- From the Departments of Nutrition (IM, HW, EBR, FBH, WCW, and QS), Epidemiology (FL, EBR, FBH, and WCW), and Environmental Health (FL), Harvard School of Public Health and Channing Division of Network Medicine (FL, EBR, FBH, WCW, and QS), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, and the Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom (FI)
| | - Francine Laden
- From the Departments of Nutrition (IM, HW, EBR, FBH, WCW, and QS), Epidemiology (FL, EBR, FBH, and WCW), and Environmental Health (FL), Harvard School of Public Health and Channing Division of Network Medicine (FL, EBR, FBH, WCW, and QS), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, and the Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom (FI)
| | - Eric B Rimm
- From the Departments of Nutrition (IM, HW, EBR, FBH, WCW, and QS), Epidemiology (FL, EBR, FBH, and WCW), and Environmental Health (FL), Harvard School of Public Health and Channing Division of Network Medicine (FL, EBR, FBH, WCW, and QS), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, and the Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom (FI)
| | - Frank B Hu
- From the Departments of Nutrition (IM, HW, EBR, FBH, WCW, and QS), Epidemiology (FL, EBR, FBH, and WCW), and Environmental Health (FL), Harvard School of Public Health and Channing Division of Network Medicine (FL, EBR, FBH, WCW, and QS), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, and the Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom (FI)
| | - Walter C Willett
- From the Departments of Nutrition (IM, HW, EBR, FBH, WCW, and QS), Epidemiology (FL, EBR, FBH, and WCW), and Environmental Health (FL), Harvard School of Public Health and Channing Division of Network Medicine (FL, EBR, FBH, WCW, and QS), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, and the Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom (FI)
| | - Qi Sun
- From the Departments of Nutrition (IM, HW, EBR, FBH, WCW, and QS), Epidemiology (FL, EBR, FBH, and WCW), and Environmental Health (FL), Harvard School of Public Health and Channing Division of Network Medicine (FL, EBR, FBH, WCW, and QS), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, and the Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom (FI)
| |
Collapse
|
20
|
Shakib MC, Gabrial S, Gabrial G. Rice Bran Oil Compared to Atorvastatin for Treatment of Dyslipidemia in Patients with Type 2 Diabetes. Open Access Maced J Med Sci 2014. [DOI: 10.3889/oamjms.2014.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objective: To compare the effect of rice bran oil versus statins (atorvastatin drug) on blood glucose, glycosylated hemoglobin (HbA1C) and serum lipid profiles in patients with type 2 diabetes. The safety of the tested rice bran oil and atorvastatin were investigated. Fatty acids contents of RBO, olive and sesame oil were also assessed.Materials and Methods: Forty four eligible patients with type 2 diabetes and moderately hyperlipidemic were randomly and equally allocated into two groups, rice bran oil (RBO) group and atorvastatin group. The RBO group received a low-calorie diet and consumed 30Â g / day RBO oil as salad dressing and for use as main cooking oil for 6 months. The Atorvastatin group received a low-calorie diet and 40 mg/day of atorvastatin drug for 6 months. At baseline and after 6 months of study intervention, blood glucose, glycosylated hemoglobin (HbA1c), serum lipid profiles; hepatic, renal and inflammatory biomarkers were estimated.Results: Results showed significant increase in fasting and postprandial blood glucose, HbA1C and liver transaminases (alanine transaminase ALT and aspartate transaminase AST) in the atorvastatin group while a significant reduction was shown in RBO group. Moreover, significant reductions in lipid profile levels, blood urea, serum uric acid and erythrocyte sedimentation rate (ESR) were observed in both RBO and atorvastatin groups after 6 months of the study intervention.Conclusion: The use of rice bran oil together with dietary modifications may have implications in lowering fasting and postprandial blood glucose, suppressing serum lipid levels, reduce the TC/HDL-C ratio and therefore reducing the risk of cardiovascular disease. Moreover, RBO exerts a hypouricemic action and anti-inflammatory effects. The findings obtained from the current study reinforce the use of RBO as an alternative natural potent hypolipidemic agent safer than atorvastatin drug that may induce side effects in some cases in patients intolerant to statins.
Collapse
|
21
|
Friedman M. Rice brans, rice bran oils, and rice hulls: composition, food and industrial uses, and bioactivities in humans, animals, and cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10626-10641. [PMID: 24175575 DOI: 10.1021/jf403635v] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Rice plants produce bioactive rice brans and hulls that have been reported to have numerous health-promoting effects in cells, animals, and humans. The main objective of this review is to consolidate and integrate the widely scattered information on the composition and the antioxidative, anti-inflammatory, and immunostimulating effects of rice brans from different rice cultivars, rice bran oils derived from rice brans, rice hulls, liquid rice hull smoke derived from rice hulls, and some of their bioactive compounds. As part of this effort, this paper also presents brief summaries on the preparation of health-promoting foods including bread, corn flakes, frankfurters, ice cream, noodles, pasta, tortillas, and zero-trans-fat shortening as well as industrial products such bioethanol and biodiesel fuels. Also covered are antibiotic, antiallergic, anticarcinogenic, antidiabetic, cardiovascular, allelochemical, and other beneficial effects and the mechanisms of the bioactivities. The results show that food-compatible and safe formulations with desirable nutritional and biological properties can be used to develop new multifunctional foods as well as bioethanol and biodiesel fuel. The overlapping aspects are expected to contribute to a better understanding of the potential impact of the described health-promoting potential of the rice-derived brans, oils, and hulls in food and medicine. Such an understanding will enhance nutrition and health and benefit the agricultural and industrial economies.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture , 800 Buchanan Street, Albany, California 94710, United States
| |
Collapse
|
22
|
Current world literature. Curr Opin Cardiol 2012; 27:441-54. [PMID: 22678411 DOI: 10.1097/hco.0b013e3283558773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Xu J, Zhou H, Yan X, Zhou C, Zhu P, Ma B. Effect of unialgal diets on the composition of fatty acids and sterols in juvenile ark shell Tegillarca granosa Linnaeus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3973-3980. [PMID: 22443233 DOI: 10.1021/jf300620e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study has investigated the effects of six different unialgal diets ( Chaetoceros calcitrans , Platymonas helgolandica , Chlorella sp., Isochrysis galbana , Nannochloropsis oculata , and Pavlova viridis ) on the composition of fatty acids and sterols in juvenile ark shell Tegillarca granosa Linnaeus. The best feeding effects on the growth of shellfish were found in C. calcitrans, followed by I. galbana and P. viridis, whereas Chlorella sp. and N. oculata exhibited relatively poor effects. The fatty acid and sterol compositions in the six microalgae and the juvenile ark shell after feeding were analyzed, and 39 fatty acids and 18 sterols were identified. Although the results demonstrate a close correlation between the sterol compositions in algal species and juvenile ark shell, a similar correlation was not observed between fatty acids. In the juvenile ark shell fed microalgae, the ratio of total saturated fatty acids (SFA) rapidly decreases, whereas the proportion of total polyunsaturated fatty acids (PUFAs) increases considerably. The abundances of AA, EPA, and DHA increase most significantly in shellfish with better growth (fed C. calcitrans, I. galbana, and P. viridis). The number of sterol species is reduced, but the total sterol content in groups fed corresponding microalgae increases, and abundant plant sterols, instead of cholesterol, are accumulated in juvenile ark shell fed appropriate microalgae I. galbana and P. viridis. Therefore, to be more conducive to human health, I. galbana and P. viridis, of the six experimental microalgae, are recommended for artificial ark shell culture.
Collapse
Affiliation(s)
- Jilin Xu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University , Chinese Ministry of Education, Ningbo, China
| | | | | | | | | | | |
Collapse
|