1
|
Tsimihodimos V, Psoma O. Extra Virgin Olive Oil and Metabolic Diseases. Int J Mol Sci 2024; 25:8117. [PMID: 39125686 PMCID: PMC11312192 DOI: 10.3390/ijms25158117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Over the last few decades, metabolic syndrome coexisting with cardiovascular disease has evolved into a pandemic, making the need for more food-oriented therapeutic approaches and a redefinition of lifestyle imperative, with the Mediterranean diet being the linchpin of this effort. Extra virgin olive oil (EVOO), the key pillar of the Mediterranean diet and one of the most notorious edible oils worldwide, owes its popularity not only to its characteristic aromas and taste but mainly to a series of beneficial health attributes including anti-diabetic, hypolipidemic, anti-hypertensive and anti-obesity actions. In this narrative review, we aimed to illustrate and enlighten EVOO's metabolic properties through a pathogenetic approach, investigating its potential role in metabolic and cardiovascular health.
Collapse
|
2
|
Loeffler DA. Enhancing of cerebral Abeta clearance by modulation of ABC transporter expression: a review of experimental approaches. Front Aging Neurosci 2024; 16:1368200. [PMID: 38872626 PMCID: PMC11170721 DOI: 10.3389/fnagi.2024.1368200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Clearance of amyloid-beta (Aβ) from the brain is impaired in both early-onset and late-onset Alzheimer's disease (AD). Mechanisms for clearing cerebral Aβ include proteolytic degradation, antibody-mediated clearance, blood brain barrier and blood cerebrospinal fluid barrier efflux, glymphatic drainage, and perivascular drainage. ATP-binding cassette (ABC) transporters are membrane efflux pumps driven by ATP hydrolysis. Their functions include maintenance of brain homeostasis by removing toxic peptides and compounds, and transport of bioactive molecules including cholesterol. Some ABC transporters contribute to lowering of cerebral Aβ. Mechanisms suggested for ABC transporter-mediated lowering of brain Aβ, in addition to exporting of Aβ across the blood brain and blood cerebrospinal fluid barriers, include apolipoprotein E lipidation, microglial activation, decreased amyloidogenic processing of amyloid precursor protein, and restricting the entrance of Aβ into the brain. The ABC transporter superfamily in humans includes 49 proteins, eight of which have been suggested to reduce cerebral Aβ levels. This review discusses experimental approaches for increasing the expression of these ABC transporters, clinical applications of these approaches, changes in the expression and/or activity of these transporters in AD and transgenic mouse models of AD, and findings in the few clinical trials which have examined the effects of these approaches in patients with AD or mild cognitive impairment. The possibility that therapeutic upregulation of ABC transporters which promote clearance of cerebral Aβ may slow the clinical progression of AD merits further consideration.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, United States
| |
Collapse
|
3
|
Arrout A, El Ghallab Y, El Otmani IS, Said AAH. Ethnopharmacological survey of plants prescribed by herbalists for traditional treatment of hypercholesterolemia in Casablanca, Morocco. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Monitoring the Anisotropy and Fluidity of the HDL Monolayer as Surrogates of HDL Functionality. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:275-282. [PMID: 35237970 DOI: 10.1007/978-1-0716-1924-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The fluidity of the biological lipid layers modulates processes involved in cardiovascular disease. High-density lipoprotein (HDL) monolayer fluidity is considered as a surrogate of HDL functionality. In particular, the more fluid the HDL monolayer is, the greater the cholesterol efflux (ChE) is observed. Fluidity depends on cholesterol and on the saturation and length of the fatty acids present in lipid layers. Specifically, low cholesterol and short-chain and/or low-saturated fatty acids content in the lipid layers increases fluidity. Lipid peroxidation is also involved in regulating the monolayers' fluidity. HDL oxidation decreases its fluidity and ChE capacity. Accordingly, the presence of antioxidants in biological membranes and in HDL increases fluidity. The fluidity is assessed in polarization studies that measures the steady-state anisotropy (r) using fluorescent probes (such as 1,6-diphenyl-1,3,5-hexatriene; DPH) that mimic the molecular movements of the sample analyzed. Since r refers to the rigidity and fluidity refers to the viscosity of lipid layers, the fluidity index is the inverse value of r (i.e., 1/r). This chapter describes a method for measuring HDL monolayer fluidity and r. The reproducibility of this method was excellent as the intra-assay coefficients of variation (CV) were <2.5 (20 replicates on the same day) and the interassay CV were <5% (60 replicates measured on 3 different days; 20 replicates/day). The method therefore represents a reproducible and useful tool to evaluate HDL functionality as an emerging cardiovascular risk factor.
Collapse
|
5
|
Kosmas CE, Sourlas A, Guzman E, Kostara CE. Environmental Factors Modifying HDL Functionality. Curr Med Chem 2021; 29:1687-1701. [PMID: 34269662 DOI: 10.2174/0929867328666210714155422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Currently, it has been recognized that High-Density Lipoproteins (HDL) functionality plays a much more essential role in protection from atherosclerosis than circulating HDL-cholesterol (HDL-C) levels per se. Cholesterol efflux from macrophages to HDL, cholesterol efflux capacity (CEC) has been shown to be a key metric of HDL functionality. Thus, quantitative assessment of CEC may be an important tool for the evaluation of HDL functionality, as improvement of HDL function may lead to a reduction of the risk for Cardiovascular disease (CVD). INTRODUCTION Although the cardioprotective action of HDLs is exerted mainly through their involvement in the reverse cholesterol transport (RCT) pathway, HDLs also have important anti-inflammatory, antioxidant, antiaggregatory and anticoagulant properties that contribute to their favorable cardiovascular effects. Certain genetic, pathophysiologic, disease states and environmental conditions may influence the cardioprotective effects of HDL either by inducing modifications in lipidome and/or protein composition or in the enzymes responsible for HDL metabolism. On the other hand, certain healthy habits or pharmacologic interventions may actually favorably affect HDL functionality. METHOD The present review discusses the effects of environmental factors, including obesity, smoking, alcohol consumption, dietary habits, various pharmacologic interventions, as well as aerobic exercise, on HDL functionality. RESULT Experimental and clinical studies or pharmacological interventions support the impact of these environmental factors in the modification of HDL functionality, although the mechanisms that are mediated are poorly understood. CONCLUSION Further research should be conducted to unreal the underlying mechanisms of these environmental factors and to identify new pharmacologic interventions, capable of enhancing CEC, improving HDL functionality and potentially improving cardiovascular risk.
Collapse
Affiliation(s)
- Constantine E Kosmas
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | | | - Eliscer Guzman
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Christina E Kostara
- Laboratory of Clinical Chemistry, Medical Department, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45500 Ioannina, Greece
| |
Collapse
|
6
|
Otrante A, Trigui A, Walha R, Berrougui H, Fulop T, Khalil A. Extra Virgin Olive Oil Prevents the Age-Related Shifts of the Distribution of HDL Subclasses and Improves Their Functionality. Nutrients 2021; 13:2235. [PMID: 34209930 PMCID: PMC8308442 DOI: 10.3390/nu13072235] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022] Open
Abstract
High-density lipoproteins (HDL) maintain cholesterol homeostasis through the role they play in regulating reverse cholesterol transport (RCT), a process by which excess cholesterol is transported back to the liver for elimination. However, RCT can be altered in the presence of cardiovascular risk factors, such as aging, which contributes to the increase in the incidence of cardiovascular diseases (CVD). The present study was aimed at investigating the effect of extra virgin olive oil (EVOO) intake on the cholesterol efflux capacity (CEC) of HDL, and to elucidate on the mechanisms by which EVOO intake improves the anti-atherogenic activity of HDL. A total of 84 healthy women and men were enrolled and were distributed, according to age, into two groups: 27 young (31.81 ± 6.79 years) and 57 elderly (70.72 ± 5.6 years) subjects. The subjects in both groups were given 25 mL/d of extra virgin olive oil (EVOO) for 12 weeks. CEC was measured using J774 macrophages radiolabeled with tritiated cholesterol ((3H) cholesterol). HDL subclass distributions were analyzed using the Quantimetrix Lipoprint® system. The HDL from the elderly subjects exhibited a lower level of CEC, at 11.12% (p < 0.0001), than the HDL from the young subjects. The CEC of the elderly subjects returned to normal levels following 12 weeks of EVOO intake. An analysis of the distribution of HDL subclasses showed that HDL from the elderly subjects were composed of lower levels of large HDL (L-HDL) (p < 0.03) and higher levels of small HDL (S-HDL) (p < 0.002) compared to HDL from the young subjects. A multiple linear regression analysis revealed a positive correlation between CEC and L-HDL levels (r = 0.35 and p < 0.001) as well as an inverse correlation between CEC and S-HDL levels (r = -0.27 and p < 0.01). This correlation remained significant even when several variables, including age, sex, and BMI as well as low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and glucose levels (β = 0.28, p < 0.002, and β = 0.24, p = 0.01) were accounted for. Consuming EVOO for 12 weeks modulated the age-related difference in the distribution of HDL subclasses by reducing the level of S-HDL and increasing the level of intermediate-HDL/large-HDL (I-HDL/L-HDL) in the elderly subjects. The age-related alteration of the CEC of HDL was due, in part, to an alteration in the distribution of HDL subclasses. A diet enriched in EVOO improved the functionality of HDL through an increase in I-HDL/L-HDL and a decrease in S-HDL.
Collapse
Affiliation(s)
- Alyann Otrante
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.O.); (A.T.); (R.W.); (H.B.); (T.F.)
| | - Amal Trigui
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.O.); (A.T.); (R.W.); (H.B.); (T.F.)
| | - Roua Walha
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.O.); (A.T.); (R.W.); (H.B.); (T.F.)
| | - Hicham Berrougui
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.O.); (A.T.); (R.W.); (H.B.); (T.F.)
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Tamas Fulop
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.O.); (A.T.); (R.W.); (H.B.); (T.F.)
| | - Abdelouahed Khalil
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.O.); (A.T.); (R.W.); (H.B.); (T.F.)
| |
Collapse
|
7
|
Alesci A, Miller A, Tardugno R, Pergolizzi S. Chemical analysis, biological and therapeutic activities of Olea europaea L. extracts. Nat Prod Res 2021; 36:2932-2945. [PMID: 34160309 DOI: 10.1080/14786419.2021.1922404] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Olea europaea L. is a very well-known and widely used plant, especially for its nutritional qualities. Its extracts from leaves and fruits are widely used in contrasting and preventing various pathologies. In this review, the collected data highlight important chemical analyses and biological effects of this plant extracts. It exhibits cholesterol-lowering, hypoglycemic, cytotoxic, antibacterial, neuroprotective, antioxidant, anti-inflammatory and hypotensive activities. The results show that extracts from O. europaea could be used as a food additive in the supplementary treatment of many diseases.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Roberta Tardugno
- Science4life s.r.l., Spin-off of the University of Messina, Messina, Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
8
|
Precision Nutrition for Alzheimer's Prevention in ApoE4 Carriers. Nutrients 2021; 13:nu13041362. [PMID: 33921683 PMCID: PMC8073598 DOI: 10.3390/nu13041362] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
The ApoE4 allele is the most well-studied genetic risk factor for Alzheimer’s disease, a condition that is increasing in prevalence and remains without a cure. Precision nutrition targeting metabolic pathways altered by ApoE4 provides a tool for the potential prevention of disease. However, no long-term human studies have been conducted to determine effective nutritional protocols for the prevention of Alzheimer’s disease in ApoE4 carriers. This may be because relatively little is yet known about the precise mechanisms by which the genetic variant confers an increased risk of dementia. Fortunately, recent research is beginning to shine a spotlight on these mechanisms. These new data open up the opportunity for speculation as to how carriers might ameliorate risk through lifestyle and nutrition. Herein, we review recent discoveries about how ApoE4 differentially impacts microglia and inflammatory pathways, astrocytes and lipid metabolism, pericytes and blood–brain barrier integrity, and insulin resistance and glucose metabolism. We use these data as a basis to speculate a precision nutrition approach for ApoE4 carriers, including a low-glycemic index diet with a ketogenic option, specific Mediterranean-style food choices, and a panel of seven nutritional supplements. Where possible, we integrate basic scientific mechanisms with human observational studies to create a more complete and convincing rationale for this precision nutrition approach. Until recent research discoveries can be translated into long-term human studies, a mechanism-informed practical clinical approach may be useful for clinicians and patients with ApoE4 to adopt a lifestyle and nutrition plan geared towards Alzheimer’s risk reduction.
Collapse
|
9
|
Tereshkina YA, Kostryukova LV, Torkhovskaya TI, Khudoklinova YY, Tikhonova EG. [Plasma high density lipoproteins phospholipds as an indirect indicator of their cholesterol efflux capacity - new suspected atherosclerosis risk factor]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:119-129. [PMID: 33860768 DOI: 10.18097/pbmc20216702119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
High density lipoproteins (HDL) are a unique natural structure, protecting the body from the development of atherosclerotic vascular lesions and cardiovascular diseases due to this ability to remove cholesterol from cells. Plasma HDL level estimated by their cholesterol content, is a common lipid parameter, and its decrease is considered as an established atherosclerosis risk factor. However, a number of studies have shown the absence of positive clinical effects after drug-induced increase in HDL cholesterol. There is increasing evidence that not only HDL concentration, but also HDL properties, considered in this review are important. Many studies showed the decrease of HDL cholesterol efflux capacity in patients with coronary heart diseases and its association with disease severity. Some authors consider a decrease of this HDL capacity as a new additional risk factor of atherosclerosis. The review summarizes existing information on various protein and lipid components of HDL with a primary emphasis on the HDL. Special attention is paid to correlation between the HDL cholesterol efflux capacity and HDL phospholipids and the ratio "phospholipids/free cholesterol". The accumulated information indicates importance of evaluation in the HDL fraction not only in terms of their cholesterol, but also phospholipids. In addition to the traditionally used lipid criteria, this would provide more comprehensive information about the activity of the reverse cholesterol transport process in the body and could contribute to the targeted correction of the detected disorders.
Collapse
|
10
|
Luna-Castillo KP, Lin S, Muñoz-Valle JF, Vizmanos B, López-Quintero A, Márquez-Sandoval F. Functional Food and Bioactive Compounds on the Modulation of the Functionality of HDL-C: A Narrative Review. Nutrients 2021; 13:1165. [PMID: 33916032 PMCID: PMC8066338 DOI: 10.3390/nu13041165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases (CVD) remain a serious public health problem and are the primary cause of death worldwide. High-density lipoprotein cholesterol (HDL-C) has been identified as one of the most important molecules in the prevention of CVD due to its multiple anti-inflammatories, anti-atherogenic, and antioxidant properties. Currently, it has been observed that maintaining healthy levels of HDL-C does not seem to be sufficient if the functionality of this particle is not adequate. Modifications in the structure and composition of HDL-C lead to a pro-inflammatory, pro-oxidant, and dysfunctional version of the molecule. Various assays have evaluated some HDL-C functions on risk populations, but they were not the main objective in some of these. Functional foods and dietary compounds such as extra virgin olive oil, nuts, whole grains, legumes, fresh fish, quercetin, curcumin, ginger, resveratrol, and other polyphenols could increase HDL functionality by improving the cholesterol efflux capacity (CEC), paraoxonase 1 (PON1), and cholesteryl ester transfer protein (CETP) activity. Nevertheless, additional rigorous research basic and applied is required in order to better understand the association between diet and HDL functionality. This will enable the development of nutritional precision management guidelines for healthy HDL to reduce cardiovascular risk in adults. The aim of the study was to increase the understanding of dietary compounds (functional foods and bioactive components) on the functionality of HDL.
Collapse
Affiliation(s)
- Karla Paulina Luna-Castillo
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (K.P.L.-C.); (J.F.M.-V.); (B.V.)
| | - Sophia Lin
- School of Population Health, University of New South Wales, Sydney, NSW 2052, Australia;
| | - José Francisco Muñoz-Valle
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (K.P.L.-C.); (J.F.M.-V.); (B.V.)
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Barbara Vizmanos
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (K.P.L.-C.); (J.F.M.-V.); (B.V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Andres López-Quintero
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (K.P.L.-C.); (J.F.M.-V.); (B.V.)
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Fabiola Márquez-Sandoval
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (K.P.L.-C.); (J.F.M.-V.); (B.V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
11
|
High-Density Lipoproteins and Mediterranean Diet: A Systematic Review. Nutrients 2021; 13:nu13030955. [PMID: 33809504 PMCID: PMC7999874 DOI: 10.3390/nu13030955] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of global mortality and the study of high-density lipoproteins (HDL) particle composition and functionality has become a matter of high interest, particularly in light to the disappointing clinical data for HDL-cholesterol (HDL-C) raising therapies in CVD secondary prevention and the lack of association between HDL-C and the risk of CVD. Recent evidences suggest that HDL composition and functionality could be modulated by diet. The purpose of this systematic review was to investigate the effect of Mediterranean diet (MD) on changes in HDL structure and functionality in humans. A comprehensive search was conducted in four databases (PubMed, Scopus, Cochrane library and Web of Science) and 13 records were chosen. MD showed favorable effects on HDL functionality, particularly by improving HDL cholesterol efflux capacity and decreasing HDL oxidation. In addition, HDL composition and size were influenced by MD. Thus, MD is a protective factor against CVD associated with the improvement of HDL quality and the prevention of HDL dysfunctionality.
Collapse
|
12
|
Oleacein may intensify the efflux of oxLDL from human macrophages by increasing the expression of the SRB1 receptor, as well as ABCA1 and ABCG1 transporters. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
13
|
Millman JF, Okamoto S, Teruya T, Uema T, Ikematsu S, Shimabukuro M, Masuzaki H. Extra-virgin olive oil and the gut-brain axis: influence on gut microbiota, mucosal immunity, and cardiometabolic and cognitive health. Nutr Rev 2021; 79:1362-1374. [PMID: 33576418 PMCID: PMC8581649 DOI: 10.1093/nutrit/nuaa148] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extra-virgin olive oil (EVOO), a popular functional food and major source of fat in the Mediterranean diet, possesses a variety of healthful components, including monounsaturated fatty acids and bioactive phenolic compounds that, individually and collectively, exert beneficial effects on cardiometabolic markers of health and act as neuroprotective agents through their anti-inflammatory and antioxidant activities. The gut microbiota and health of the intestinal environment are now considered important factors in the development of obesity, metabolic disease, and even certain neurodegenerative conditions via the gut-brain axis. Recently, data are emerging which demonstrate that the health-promoting benefits of EVOO may also extend to the gut microbiota. In this review, we aimed to examine findings from recent studies regarding the impact of EVOO on gut microbiota and intestinal health and explore how modulations in composition of gut microbiota, production of microbially produced products, and activity and functioning of the mucosal immune system may lead to favorable outcomes in cardiovascular, metabolic, and cognitive health.
Collapse
Affiliation(s)
- Jasmine F Millman
- J.F. Millman, S. Okamoto, T. Taiki, T. Uema, and H. Masuzaki are with the Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. S. Ikematsu is with the Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa, Japan. M. Shimabukuro is with the Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| | - Shiki Okamoto
- J.F. Millman, S. Okamoto, T. Taiki, T. Uema, and H. Masuzaki are with the Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. S. Ikematsu is with the Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa, Japan. M. Shimabukuro is with the Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| | - Taiki Teruya
- J.F. Millman, S. Okamoto, T. Taiki, T. Uema, and H. Masuzaki are with the Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. S. Ikematsu is with the Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa, Japan. M. Shimabukuro is with the Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| | - Tsugumi Uema
- J.F. Millman, S. Okamoto, T. Taiki, T. Uema, and H. Masuzaki are with the Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. S. Ikematsu is with the Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa, Japan. M. Shimabukuro is with the Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| | - Shinya Ikematsu
- J.F. Millman, S. Okamoto, T. Taiki, T. Uema, and H. Masuzaki are with the Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. S. Ikematsu is with the Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa, Japan. M. Shimabukuro is with the Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| | - Michio Shimabukuro
- J.F. Millman, S. Okamoto, T. Taiki, T. Uema, and H. Masuzaki are with the Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. S. Ikematsu is with the Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa, Japan. M. Shimabukuro is with the Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| | - Hiroaki Masuzaki
- J.F. Millman, S. Okamoto, T. Taiki, T. Uema, and H. Masuzaki are with the Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan. S. Ikematsu is with the Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa, Japan. M. Shimabukuro is with the Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
14
|
Njike VY, Ayettey R, Treu JA, Doughty KN, Katz DL. Post-prandial effects of high-polyphenolic extra virgin olive oil on endothelial function in adults at risk for type 2 diabetes: A randomized controlled crossover trial. Int J Cardiol 2021; 330:171-176. [PMID: 33548380 DOI: 10.1016/j.ijcard.2021.01.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Effects of olive oil on cardiovascular risk have been controversial. We compared the effects of high-polyphenolic extra virgin olive oil (EVOO) and refined olive oil without polyphenols on endothelial function (EF) in adults at risk for Type 2 diabetes mellitus (T2DM). METHODS Randomized, controlled, double-blind, crossover trial of 20 adults (mean age 56.1 years; 10 women, 10 men) at risk for T2DM (i.e., as defined by either prediabetes or metabolic syndrome) assigned to one of two possible sequence permutations of two different single dose treatments (50 mL of high-polyphenolic EVOO or 50 mL of refined olive oil without polyphenols), with 1-week washout. Participants received their olive oils in a smoothie consisting of ½ cup frozen blueberries and 1 cup (8 oz) low-fat vanilla yogurt blended together. Primary outcome measure was EF measured as flow-mediated dilatation. Participants were evaluated before and 2 h after ingestion of their assigned olive oil treatment. RESULTS EVOO acutely improved EF as compared to refined olive oil (1.2 ± 6.5% versus -3.6 ± 3.8%; p = 0.0086). No significant effects on systolic or diastolic blood pressure were observed. CONCLUSIONS High-polyphenolic EVOO acutely enhanced EF in the study cohort, whereas refined olive oil did not. Blood pressure effects were not observed. Reports on the vascular effects of olive oil ingestion should specify the characteristics of the oil. CLINICAL TRIAL REGISTRATION NUMBER NCT04025281.
Collapse
Affiliation(s)
- Valentine Y Njike
- Yale-Griffin Prevention Research Center, United States of America; Griffin Hospital, Derby, CT (VN, RA, JT, KD, DK), United States of America.
| | - Rockiy Ayettey
- Yale-Griffin Prevention Research Center, United States of America; Griffin Hospital, Derby, CT (VN, RA, JT, KD, DK), United States of America.
| | - Judith A Treu
- Yale-Griffin Prevention Research Center, United States of America; Griffin Hospital, Derby, CT (VN, RA, JT, KD, DK), United States of America
| | - Kimberly N Doughty
- Yale-Griffin Prevention Research Center, United States of America; Griffin Hospital, Derby, CT (VN, RA, JT, KD, DK), United States of America
| | - David L Katz
- Yale-Griffin Prevention Research Center, United States of America
| |
Collapse
|
15
|
Soltani S, Boozari M, Cicero AFG, Jamialahmadi T, Sahebkar A. Effects of phytochemicals on macrophage cholesterol efflux capacity: Impact on atherosclerosis. Phytother Res 2021; 35:2854-2878. [PMID: 33464676 DOI: 10.1002/ptr.6991] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/19/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022]
Abstract
High-density lipoprotein cholesterol (HDL) is the major promoter of reverse cholesterol transport and efflux of excess cellular cholesterol. The functions of HDL, such as cholesterol efflux, are associated with cardiovascular disease rather than HDL levels. We have reviewed the evidence base on the major classes of phytochemicals, including polyphenols, alkaloids, carotenoids, phytosterols, and fatty acids, and their effects on macrophage cholesterol efflux and its major pathways. Phytochemicals show the potential to improve the efficiency of each of these pathways. The findings are mainly in preclinical studies, and more clinical research is warranted in this area to develop novel clinical applications.
Collapse
Affiliation(s)
- Saba Soltani
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arrigo F G Cicero
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Halal Research Center of IRI, FDA, Tehran, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
16
|
Cedó L, Fernández-Castillejo S, Rubió L, Metso J, Santos D, Muñoz-Aguayo D, Rivas-Urbina A, Tondo M, Méndez-Lara KA, Farràs M, Jauhiainen M, Motilva MJ, Fitó M, Blanco-Vaca F, Solà R, Escolà-Gil JC. Phenol-Enriched Virgin Olive Oil Promotes Macrophage-Specific Reverse Cholesterol Transport In Vivo. Biomedicines 2020; 8:E266. [PMID: 32756328 PMCID: PMC7460104 DOI: 10.3390/biomedicines8080266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
The intake of olive oil (OO) enriched with phenolic compounds (PCs) promotes ex vivo HDL-mediated macrophage cholesterol efflux in humans. We aimed to determine the effects of PC-enriched virgin OO on reverse cholesterol transport (RevCT) from macrophages to feces in vivo. Female C57BL/6 mice were given intragastric doses of refined OO (ROO) and a functional unrefined virgin OO enriched with its own PC (FVOO) for 14 days. Our experiments included two independent groups of mice that received intragastric doses of the phenolic extract (PE) used to prepare the FVOO and the vehicle solution (saline), as control, for 14 days. FVOO intake led to a significant increase in serum HDL cholesterol and its ability to induce macrophage cholesterol efflux in vitro when compared with ROO group. This was concomitant with the enhanced macrophage-derived [3H]cholesterol transport to feces in vivo. PE intake per se also increased HDL cholesterol levels and significantly promoted in vivo macrophage-to-feces RevCT rate when compared with saline group. PE upregulated the expression of the main macrophage transporter involved in macrophage cholesterol efflux, the ATP binding cassettea1. Our data provide direct evidence of the crucial role of OO PCs in the induction of macrophage-specific RevCT in vivo.
Collapse
Affiliation(s)
- Lídia Cedó
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Sara Fernández-Castillejo
- Surgery Department-Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Faculty of Medicine and Health Sciences-Medicine, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.F.-C.); (L.R.); (R.S.)
- Fundació EURECAT—Centre Tecnològic de Nutrició i Salut, 43204 Reus, Spain
| | - Laura Rubió
- Surgery Department-Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Faculty of Medicine and Health Sciences-Medicine, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.F.-C.); (L.R.); (R.S.)
- Food Technology Department, Universitat de Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Jari Metso
- Minerva Foundation Institute for Medical Research and National Institute for Health and Welfare, Genomics and Biomarkers Unit, 00290 Helsinki, Finland; (J.M.); (M.J.)
| | - David Santos
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Daniel Muñoz-Aguayo
- IMIM Hospital del Mar Medical Research Institute, Grup de Risc Cardiovascular i Nutrició, 08003 Barcelona, Spain; (D.M.-A.); (M.F.)
- CIBER of Physiopathology of Obesity and Nutrition CIBEROBN, Grup de Risc Cardiovascular i Nutrició, 28029 Madrid, Spain
| | - Andrea Rivas-Urbina
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Mireia Tondo
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
| | - Karen Alejandra Méndez-Lara
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Marta Farràs
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research and National Institute for Health and Welfare, Genomics and Biomarkers Unit, 00290 Helsinki, Finland; (J.M.); (M.J.)
| | - Maria-José Motilva
- Instituto de Ciencias de la Vid y del Vino-ICVV (CSIC-Universidad de La Rioja-Gobierno de La Rioja), Finca “La Grajera”, 26007 Logroño, La Rioja, Spain;
| | - Montserrat Fitó
- IMIM Hospital del Mar Medical Research Institute, Grup de Risc Cardiovascular i Nutrició, 08003 Barcelona, Spain; (D.M.-A.); (M.F.)
- CIBER of Physiopathology of Obesity and Nutrition CIBEROBN, Grup de Risc Cardiovascular i Nutrició, 28029 Madrid, Spain
| | - Francisco Blanco-Vaca
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Rosa Solà
- Surgery Department-Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Faculty of Medicine and Health Sciences-Medicine, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.F.-C.); (L.R.); (R.S.)
- Fundació EURECAT—Centre Tecnològic de Nutrició i Salut, 43204 Reus, Spain
- Hospital Universitari Sant Joan de Reus HUSJR, NFOC-Salut, 43204 Reus, Spain
| | - Joan Carles Escolà-Gil
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| |
Collapse
|
17
|
Farràs M, Canyelles M, Fitó M, Escolà-Gil JC. Effects of Virgin Olive Oil and Phenol-Enriched Virgin Olive Oils on Lipoprotein Atherogenicity. Nutrients 2020; 12:nu12030601. [PMID: 32110861 PMCID: PMC7146215 DOI: 10.3390/nu12030601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023] Open
Abstract
The atherogenicity of low-density lipoprotein (LDL) and triglyceride-rich lipoproteins (TRLs) may be more significant than LDL cholesterol levels. Clinical trials which have led to increased high-density lipoprotein (HDL) cholesterol have not always seen reductions in cardiovascular disease (CVD). Furthermore, genetic variants predisposing individuals to high HDL cholesterol are not associated with a lower risk of suffering a coronary event, and therefore HDL functionality is considered to be the most relevant aspect. Virgin olive oil (VOO) is thought to play a protective role against CVD. This review describes the effects of VOO and phenol-enriched VOOs on lipoprotein atherogenicity and HDL atheroprotective properties. The studies have demonstrated a decrease in LDL atherogenicity and an increase in the HDL-mediated macrophage cholesterol efflux capacity, HDL antioxidant activity, and HDL anti-inflammatory characteristics after various VOO interventions. Moreover, the expression of cholesterol efflux-related genes was enhanced after exposure to phenol-enriched VOOs in both post-prandial and sustained trials. Improvements in HDL antioxidant properties were also observed after VOO and phenol-enriched VOO interventions. Furthermore, some studies have demonstrated improved characteristics of TRL atherogenicity under postprandial conditions after VOO intake. Large-scale, long-term randomized clinical trials, and Mendelian analyses which assess the lipoprotein state and properties, are required to confirm these results.
Collapse
Affiliation(s)
- Marta Farràs
- Molecular Bases of Cardiovascular Risk Group Institut de Recerca de l’Hospital Santa Creu i Sant Pau-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain; (M.C.); (J.C.E.-G.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-935537595
| | - Marina Canyelles
- Molecular Bases of Cardiovascular Risk Group Institut de Recerca de l’Hospital Santa Creu i Sant Pau-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain; (M.C.); (J.C.E.-G.)
- Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Montserrat Fitó
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain;
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Madrid, Spain
| | - Joan Carles Escolà-Gil
- Molecular Bases of Cardiovascular Risk Group Institut de Recerca de l’Hospital Santa Creu i Sant Pau-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain; (M.C.); (J.C.E.-G.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
18
|
Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Gonzalez-Granado JM. Immunobiology of Atherosclerosis: A Complex Net of Interactions. Int J Mol Sci 2019; 20:E5293. [PMID: 31653058 PMCID: PMC6862594 DOI: 10.3390/ijms20215293] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide, and atherosclerosis the principal factor underlying cardiovascular events. Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction, intimal lipid deposition, smooth muscle cell proliferation, cell apoptosis and necrosis, and local and systemic inflammation, involving key contributions to from innate and adaptive immunity. The balance between proatherogenic inflammatory and atheroprotective anti-inflammatory responses is modulated by a complex network of interactions among vascular components and immune cells, including monocytes, macrophages, dendritic cells, and T, B, and foam cells; these interactions modulate the further progression and stability of the atherosclerotic lesion. In this review, we take a global perspective on existing knowledge about the pathogenesis of immune responses in the atherosclerotic microenvironment and the interplay between the major innate and adaptive immune factors in atherosclerosis. Studies such as this are the basis for the development of new therapies against atherosclerosis.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernandez
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
| | - Raquel Gomez-Bris
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | | | - Jose Maria Gonzalez-Granado
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain.
| |
Collapse
|
19
|
Zhang H, Cao X, Yin M, Wang J. Soluble dietary fiber from Qing Ke (highland barley) brewers spent grain could alter the intestinal cholesterol efflux in Caco-2 cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
20
|
Liu X, Garban J, Jones PJ, Vanden Heuvel J, Lamarche B, Jenkins DJ, Connelly PW, Couture P, Pu S, Fleming JA, West SG, Kris-Etherton PM. Diets Low in Saturated Fat with Different Unsaturated Fatty Acid Profiles Similarly Increase Serum-Mediated Cholesterol Efflux from THP-1 Macrophages in a Population with or at Risk for Metabolic Syndrome: The Canola Oil Multicenter Intervention Trial. J Nutr 2018; 148:721-728. [PMID: 30053283 PMCID: PMC6669947 DOI: 10.1093/jn/nxy040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/12/2018] [Indexed: 01/02/2023] Open
Abstract
Background Cholesterol efflux plays an important role in preventing atherosclerosis progression. Vegetable oils with varying unsaturated fatty acid profiles favorably affect multiple cardiovascular disease risk factors; however, their effects on cholesterol efflux remain unclear. Objective The objectives of this study were to examine the effects of diets low in saturated fatty acids (SFAs) with varying unsaturated fatty acid profiles on serum-mediated cholesterol efflux and its association with the plasma lipophilic index and central obesity. Methods The present study is a randomized, crossover, controlled-feeding study. Participants [men: n = 50; women: n = 51; mean ± SE age: 49.5 ± 1.2 y; body mass index (in kg/m2): 29.4 ± 0.4] at risk for or with metabolic syndrome (MetS) were randomly assigned to 5 isocaloric diets containing the treatment oils: canola oil, high oleic acid-canola oil, DHA-enriched high oleic acid-canola oil, corn oil and safflower oil blend, and flax oil and safflower oil blend. These treatment oils were incorporated into smoothies that participants consumed 2 times/d. For a 3000-kcal diet, 60 g of treatment oil was required to provide 18% of total energy per day. Each diet period was 4 wk followed by a 2- to 4-wk washout period. We quantified cholesterol efflux capacity with a validated ex vivo high-throughput cholesterol efflux assay. Statistical analyses were performed with the use of the SAS mixed-model procedure. Results The 5 diets increased serum-mediated cholesterol efflux capacity from THP-1 macrophages similarly by 39%, 34%, 55%, 49% and 51%, respectively, compared with baseline (P < 0.05 for all). Waist circumference and abdominal adiposity were negatively correlated with serum-mediated cholesterol efflux capacity (r = -0.25, P = 0.01, r = -0.33, P = 0.02, respectively). Conclusion Diets low in SFAs with different monounsaturated fatty acid and polyunsaturated fatty acid profiles improved serum-mediated cholesterol efflux capacity in individuals with or at risk for MetS. This mechanism may account, in part, for the cardiovascular disease benefits of diets low in SFAs and high in unsaturated fatty acids. Importantly, central obesity is inversely associated with cholesterol efflux capacity. This trial was registered at www.clinicaltrials.gov as NCT01351012.
Collapse
Affiliation(s)
- Xiaoran Liu
- Departments of Nutritional Sciences, Veterinary and Biomedical Sciences, and Biobehavioral Health, The Pennsylvania State University, University Park, PA
| | - Josephine Garban
- Departments of Veterinary and Biomedical Sciences, and Biobehavioral Health, The Pennsylvania State University, University Park, PA
| | - Peter J Jones
- Richardson Center for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Canada
| | - Jack Vanden Heuvel
- Departments of Veterinary and Biomedical Sciences, and Biobehavioral Health, The Pennsylvania State University, University Park, PA
| | - Benoît Lamarche
- Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
| | - David J Jenkins
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Philip W Connelly
- Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, Canada
| | - Patrick Couture
- Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Shuaihua Pu
- Departments of Veterinary and Biomedical Sciences, and Biobehavioral Health, The Pennsylvania State University, University Park, PA
| | - Jennifer A Fleming
- Departments of Nutritional Sciences, Veterinary and Biomedical Sciences, and Biobehavioral Health, The Pennsylvania State University, University Park, PA
| | - Sheila G West
- Departments of Nutritional Sciences, Veterinary and Biomedical Sciences, and Biobehavioral Health, The Pennsylvania State University, University Park, PA
| | - Penny M Kris-Etherton
- Departments of Nutritional Sciences, Veterinary and Biomedical Sciences, and Biobehavioral Health, The Pennsylvania State University, University Park, PA,Address correspondence to PMK-E (e-mail: )
| |
Collapse
|
21
|
Talbot CP, Plat J, Ritsch A, Mensink RP. Determinants of cholesterol efflux capacity in humans. Prog Lipid Res 2018; 69:21-32. [PMID: 29269048 DOI: 10.1016/j.plipres.2017.12.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022]
|
22
|
Ge Z, Zhang M, Deng X, Zhu W, Li K, Li C. Persimmon tannin promoted macrophage reverse cholesterol transport through inhibiting ERK1/2 and activating PPARγ both in vitro and in vivo. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
Fernández-Castillejo S, Rubió L, Hernáez Á, Catalán Ú, Pedret A, Valls RM, Mosele JI, Covas MI, Remaley AT, Castañer O, Motilva MJ, Solá R. Determinants of HDL Cholesterol Efflux Capacity after Virgin Olive Oil Ingestion: Interrelationships with Fluidity of HDL Monolayer. Mol Nutr Food Res 2017; 61. [PMID: 28887843 DOI: 10.1002/mnfr.201700445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/27/2017] [Indexed: 12/26/2022]
Abstract
SCOPE Cholesterol efflux capacity of HDL (CEC) is inversely associated with cardiovascular risk. HDL composition, fluidity, oxidation, and size are related with CEC. We aimed to assess which HDL parameters were CEC determinants after virgin olive oil (VOO) ingestion. METHODS AND RESULTS Post-hoc analyses from the VOHF study, a crossover intervention with three types of VOO. We assessed the relationship of 3-week changes in HDL-related variables after intervention periods with independence of the type of VOO. After univariate analyses, mixed linear models were fitted with variables related with CEC and fluidity. Fluidity and Apolipoprotein (Apo)A-I content in HDL was directly associated, and HDL oxidative status inversely, with CEC. A reduction in free cholesterol, an increase in triglycerides in HDL, and a decrease in small HDL particle number or an increase in HDL mean size, were associated to HDL fluidity. CONCLUSIONS HDL fluidity, ApoA-I concentration, and oxidative status are major determinants for CEC after VOO. The impact on CEC of changes in free cholesterol and triglycerides in HDL, and those of small HDL or HDL mean size, could be mechanistically linked through HDL fluidity. Our work points out novel therapeutic targets to improve HDL functionality in humans through nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Sara Fernández-Castillejo
- Research Unit on Lipids and Atherosclerosis, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Functional Nutrition, Oxidation, and Cardiovascular Disease (NFOC-SALUT) group, Universitat Rovira i Virgili, Reus, Spain
| | - Laura Rubió
- Research Unit on Lipids and Atherosclerosis, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Functional Nutrition, Oxidation, and Cardiovascular Disease (NFOC-SALUT) group, Universitat Rovira i Virgili, Reus, Spain
- Food Technology Department, Agrotecnio Center, University of Lleida, Lleida, Spain
| | - Álvaro Hernáez
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
| | - Úrsula Catalán
- Research Unit on Lipids and Atherosclerosis, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Functional Nutrition, Oxidation, and Cardiovascular Disease (NFOC-SALUT) group, Universitat Rovira i Virgili, Reus, Spain
| | - Anna Pedret
- Research Unit on Lipids and Atherosclerosis, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Functional Nutrition, Oxidation, and Cardiovascular Disease (NFOC-SALUT) group, Universitat Rovira i Virgili, Reus, Spain
- Eurecat-Centre Tecnològic de Nutrició i Salut (Eurecat-CTNS), Reus, Spain
| | - Rosa-M Valls
- Research Unit on Lipids and Atherosclerosis, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Functional Nutrition, Oxidation, and Cardiovascular Disease (NFOC-SALUT) group, Universitat Rovira i Virgili, Reus, Spain
| | - Juana I Mosele
- Food Technology Department, Agrotecnio Center, University of Lleida, Lleida, Spain
| | - Maria-Isabel Covas
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
- NUPROAS Handelsbolag, Nackă, Sweden
| | - Alan T Remaley
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Olga Castañer
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
| | - Maria-José Motilva
- Food Technology Department, Agrotecnio Center, University of Lleida, Lleida, Spain
| | - Rosa Solá
- Research Unit on Lipids and Atherosclerosis, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Functional Nutrition, Oxidation, and Cardiovascular Disease (NFOC-SALUT) group, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
24
|
Khalil A, Kamtchueng Simo O, Ikhlef S, Berrougui H. The role of paraoxonase 1 in regulating high-density lipoprotein functionality during aging. Can J Physiol Pharmacol 2017; 95:1254-1262. [DOI: 10.1139/cjpp-2017-0117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pharmacological interventions to increase the concentration of high-density lipoprotein (HDL) have led to disappointing results and have contributed to the emergence of the concept of HDL functionality. The anti-atherogenic activity of HDLs can be explained by their functionality or quality. The capacity of HDLs to maintain cellular cholesterol homeostasis and to transport cholesterol from peripheral cells to the liver for elimination is one of their principal anti-atherogenic activities. However, HDLs possess several other attributes that contribute to their protective effect against cardiovascular diseases. HDL functionality is regulated by various proteins and lipids making up HDL particles. However, several studies investigated the role of paraoxonase 1 (PON1) and suggest a significant role of this protein in the regulation of the functionality of HDLs. Moreover, research on PON1 attracted much interest following several studies indicating that it is involved in cardiovascular protection. However, the mechanisms by which PON1 exerts these effects remain to be elucidated.
Collapse
Affiliation(s)
- Abdelouahed Khalil
- Research Centre on Aging, Sherbrooke, QC J1H 4C4, Canada
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | | | - Souade Ikhlef
- Research Centre on Aging, Sherbrooke, QC J1H 4C4, Canada
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, BP 592, 23000 Beni Mellal, Morocco
| |
Collapse
|
25
|
Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Mechanisms of foam cell formation in atherosclerosis. J Mol Med (Berl) 2017; 95:1153-1165. [DOI: 10.1007/s00109-017-1575-8] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/04/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022]
|
26
|
Camponova P, Le Page A, Berrougui H, Lamoureux J, Pawelec G, Witkowski MJ, Fulop T, Khalil A. Alteration of high-density lipoprotein functionality in Alzheimer’s disease patients. Can J Physiol Pharmacol 2017; 95:894-903. [DOI: 10.1139/cjpp-2016-0710] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aims of the present study were to determine whether high-density lipoprotein (HDL) functionality-mediated cholesterol efflux is altered in Alzheimer’s disease and to investigate the role and effect of amyloid-beta (Aβ) in the regulation of the anti-atherogenic activity of HDL. Eighty-seven elderly subjects were recruited, of whom 27 were healthy, 27 had mild cognitive impairment (MCI), and 33 had mild Alzheimer’s disease (mAD). Our results showed that total cholesterol levels are negatively correlated with the Mini-Mental State Examination (MMSE) score (r = –0.2602, p = 0.0182). HDL from the mAD patients was less efficient at mediating cholesterol efflux from J774 macrophages (p < 0.05) than HDL from the healthy subjects and MCI patients. While HDL from the MCI patients was also less efficient at mediating cholesterol efflux than HDL from the healthy subjects, the difference was not significant. Interestingly, the difference between the healthy subjects and the MCI and mAD patients with respect to the capacity of HDL to mediate cholesterol efflux disappeared when ATP-binding cassette transporter A1 (ABCA1)-enriched J774 macrophages were used. HDL fluidity was significantly inversely correlated with the MMSE scores (r = –0.4137, p < 0.009). In vitro measurements of cholesterol efflux using J774 macrophages showed that neither Aβ1-40nor Aβ1-42stimulate cholesterol efflux from unenriched J774 macrophages in basal or ABCA1-enriched J774 macrophages.
Collapse
Affiliation(s)
- Paméla Camponova
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Aurélie Le Page
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Hicham Berrougui
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
- Department of Biology, University Sultan Moulay Slimane, Beni Mellal, Morocco
| | - Julie Lamoureux
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Graham Pawelec
- Department of Internal Medicine II, Center for Medical Research, University of Tübingen, Tübingen, Germany
| | - M. Jacek Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Tamas Fulop
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Abdelouahed Khalil
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| |
Collapse
|
27
|
Effects of isoflavone-containing soya protein on ex vivo cholesterol efflux, vascular function and blood markers of CVD risk in adults with moderately elevated blood pressure: a dose-response randomised controlled trial. Br J Nutr 2017; 117:1403-1413. [PMID: 28661316 DOI: 10.1017/s000711451700143x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Emerging CVD risk factors (e.g. HDL function and central haemodynamics) may account for residual CVD risk experienced by individuals who meet LDL-cholesterol and blood pressure (BP) targets. Recent evidence suggests that these emerging risk factors can be modified by polyphenol-rich interventions such as soya, but additional research is needed. This study was designed to investigate the effects of an isoflavone-containing soya protein isolate (delivering 25 and 50 g/d soya protein) on HDL function (i.e. ex vivo cholesterol efflux), macrovascular function and blood markers of CVD risk. Middle-aged adults (n 20; mean age=51·6 (sem 6·6) years) with moderately elevated brachial BP (mean systolic BP=129 (sem 9) mmHg; mean diastolic BP=82·5 (sem 8·4) mmHg) consumed 0 (control), 25 and 50 g/d soya protein in a randomised cross-over design. Soya and control powders were consumed for 6 weeks each with a 2-week compliance break between treatment periods. Blood samples and vascular function measures were obtained at baseline and following each supplementation period. Supplementation with 50 g/d soya protein significantly reduced brachial diastolic BP (-2·3 mmHg) compared with 25 g/d soya protein (Tukey-adjusted P=0·03) but not the control. Soya supplementation did not improve ex vivo cholesterol efflux, macrovascular function or other blood markers of CVD risk compared with the carbohydrate-matched control. Additional research is needed to clarify whether effects on these CVD risk factors depend on the relative health of participants and/or equol producing capacity.
Collapse
|
28
|
Wang L, Wesemann S, Krenn L, Ladurner A, Heiss EH, Dirsch VM, Atanasov AG. Erythrodiol, an Olive Oil Constituent, Increases the Half-Life of ABCA1 and Enhances Cholesterol Efflux from THP-1-Derived Macrophages. Front Pharmacol 2017; 8:375. [PMID: 28659806 PMCID: PMC5468437 DOI: 10.3389/fphar.2017.00375] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/30/2017] [Indexed: 11/13/2022] Open
Abstract
Cholesterol efflux (ChE) from macrophages is an initial step of reverse cholesterol transport (RCT). The ATP-binding cassette transporter A1 (ABCA1) is a key transporter for ChE and its increased expression is regarded to attenuate atherosclerosis. Thus, the identification and characterization of molecules raising ABCA1 and thereby stimulating ChE is of pharmacological relevance. In this study, we tested dietary compounds from olive oil for their capacity of enhancing cellular ABCA1 protein level. We identified erythrodiol (Olean-12-ene-3β,28-diol) as an ABCA1 stabilizer and revealed its positive influence on ChE in THP-1-derived human macrophages. Among the nine tested compounds from olive oil, erythrodiol was the sole compound raising ABCA1 protein level (at 10 μM). None of the tested compounds impaired viability of THP-1 macrophages from 5 to 20 μM as determined by resazurin conversion. Western blot analyses of key membrane transporters contributing to ChE showed that the protein level of ABCG1 and scavenger receptor class B member 1 (SR-B1) remain unaffected by erythrodiol. Besides, erythrodiol (10 μM) did not influence the mRNA level of ABCA1, ABCG1, and SR-B1, as determined by quantitative reverse transcription PCR, but significantly inhibited the degradation of ABCA1 as evident by an increased half-life of the protein in the presence of cycloheximide, an inhibitor of de novo protein synthesis. Therefore, erythrodiol promotes ChE from THP-1-derived human macrophages by stabilizing the ABCA1 protein. This bioactivity makes erythrodiol a good candidate to be further explored for therapeutic or preventive application in the context of atherosclerosis.
Collapse
Affiliation(s)
- Limei Wang
- Department of Pharmacognosy, University of ViennaVienna, Austria.,Department of Pharmacology, Qingdao University School of PharmacyQingdao, China
| | - Sarah Wesemann
- Department of Pharmacognosy, University of ViennaVienna, Austria
| | - Liselotte Krenn
- Department of Pharmacognosy, University of ViennaVienna, Austria
| | - Angela Ladurner
- Department of Pharmacognosy, University of ViennaVienna, Austria
| | - Elke H Heiss
- Department of Pharmacognosy, University of ViennaVienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of ViennaVienna, Austria
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of ViennaVienna, Austria.,Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of SciencesJastrzebiec, Poland
| |
Collapse
|
29
|
Han XB, Li HX, Jiang YQ, Wang H, Li XS, Kou JY, Zheng YH, Liu ZN, Li H, Li J, Dou D, Wang Y, Tian Y, Yang LM. Upconversion nanoparticle-mediated photodynamic therapy induces autophagy and cholesterol efflux of macrophage-derived foam cells via ROS generation. Cell Death Dis 2017; 8:e2864. [PMID: 28594401 PMCID: PMC5520901 DOI: 10.1038/cddis.2017.242] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/15/2017] [Accepted: 04/28/2017] [Indexed: 02/05/2023]
Abstract
Macrophage-derived foam cells are a major component of atherosclerotic plaques and have an important role in the progression of atherosclerotic plaques, thus posing a great threat to human health. Photodynamic therapy (PDT) has emerged as a therapeutic strategy for atherosclerosis. Here, we investigated the effect of PDT mediated by upconversion fluorescent nanoparticles encapsulating chlorin e6 (UCNPs-Ce6) on the cholesterol efflux of THP-1 macrophage-derived foam cells and explored the possible mechanism of this effect. First, we found that PDT notably enhanced the cholesterol efflux and the induction of autophagy in both THP-1 and peritoneal macrophage-derived foam cells. The autophagy inhibitor 3-methyladenine and an ATG5 siRNA significantly attenuated PDT-induced autophagy, which subsequently suppressed the ABCA1-mediated cholesterol efflux. Furthermore, the reactive oxygen species (ROS) produced by PDT were responsible for the induction of autophagy, which could be blocked by the ROS inhibitor N-acetyl cysteine (NAC). NAC also reversed the PDT-induced suppression of p-mTOR and p-Akt. Therefore, our findings demonstrate that PDT promotes cholesterol efflux by inducing autophagy, and the autophagy was mediated in part through the ROS/PI3K/Akt/mTOR signaling pathway in THP-1 and peritoneal macrophage-derived foam cells.
Collapse
Affiliation(s)
- Xiaobo B Han
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Hongxia X Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Yueqing Q Jiang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Hao Wang
- Department of Food Science and Engineering, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xuesong S Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Jiayuan Y Kou
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Yinghong H Zheng
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Zhongni N Liu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Hong Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Jing Li
- Department of Electron Microscopic Center, Harbin Medical University, Harbin, China
| | - Dou Dou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - You Wang
- Materials Physics and Chemistry Department, Harbin Institute of Technology, Harbin, China
| | - Ye Tian
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China.,Division of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Liming M Yang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| |
Collapse
|
30
|
Human paraoxonase 1 overexpression in mice stimulates HDL cholesterol efflux and reverse cholesterol transport. PLoS One 2017; 12:e0173385. [PMID: 28278274 PMCID: PMC5344486 DOI: 10.1371/journal.pone.0173385] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/20/2017] [Indexed: 11/19/2022] Open
Abstract
This study was aimed to investigate the effect of human PON1 overexpression in mice on cholesterol efflux and reverse cholesterol transport. PON1 overexpression in PON1-Tg mice induced a significant 3-fold (p<0.0001) increase in plasma paraoxonase activity and a significant ~30% (p<0.0001) increase in the capacity of HDL to mediate cholesterol efflux from J774 macrophages compared to wild-type mice. It also caused a significant 4-fold increase (p<0.0001) in the capacity of macrophages to transfer cholesterol to apoA-1, a significant 2-fold (p<0.0003) increase in ABCA1 mRNA and protein expression, and a significant increase in the expression of PPARγ (p<0.0003 and p<0.04, respectively) and LXRα (p<0.0001 and p<0.01, respectively) mRNA and protein compared to macrophages from wild-type mice. Moreover, transfection of J774 macrophages with human PON1 also increased ABCA1, PPARγ and LXRα protein expression and stimulates macrophages cholesterol efflux to apo A1. In vivo measurements showed that the overexpression of PON1 significantly increases the fecal elimination of macrophage-derived cholesterol in PON1-Tg mice. Overall, our results suggested that the overexpression of PON1 in mice may contribute to the regulation of the cholesterol homeostasis by improving the capacity of HDL to mediate cholesterol efflux and by stimulating reverse cholesterol transport.
Collapse
|
31
|
Rondanelli M, Giacosa A, Morazzoni P, Guido D, Grassi M, Morandi G, Bologna C, Riva A, Allegrini P, Perna S. MediterrAsian Diet Products That Could Raise HDL-Cholesterol: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2025687. [PMID: 27882320 PMCID: PMC5108844 DOI: 10.1155/2016/2025687] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/16/2016] [Indexed: 01/10/2023]
Abstract
Background. High HDL-cholesterol (HDL-C) values are negatively correlated with cardiovascular diseases. This review analyses the effect of the supplementation with various Mediterranean diet products (artichoke, bergamot, and olive oil) and Asian diet products (red yeast rice) on the HDL-C value in dyslipidemic subjects. Methods. A systematic review has been done involving all the English written studies published from the 1st of January 1958 to the 31st of March 2016. Results. The results of this systematic review indicate that the dietary supplementation with red yeast rice, bergamot, artichoke, and virgin olive oil has promising effects on the increase of HDL-C serum levels. The artichoke leaf extract and virgin olive oil appear to be particularly interesting, while bergamot extract needs further research and the effect of red yeast rice seems to be limited to patients with previous myocardial infarction. Conclusions. Various MediterrAsian diet products or natural extracts may represent a potential intervention treatment to raise HDL-C in dyslipidemic subjects.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, School of Medicine, Endocrinology and Nutrition Unit, University of Pavia, Azienda di Servizi alla Persona di Pavia, Pavia, Italy
| | - Attilio Giacosa
- Department of Gastroenterology, Policlinico di Monza, 20900 Milan, Italy
| | - Paolo Morazzoni
- Research and Development Department, Indena SpA, 20139 Milan, Italy
| | - Davide Guido
- Department of Public Health Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Mario Grassi
- Department of Brain and Behavioral Sciences, Section of Biostatistics, Neurophysiology and Psychiatry, University of Pavia, Pavia, Italy
| | - Gabriella Morandi
- Department of Brain and Behavioral Sciences, Section of Biostatistics, Neurophysiology and Psychiatry, University of Pavia, Pavia, Italy
| | - Chiara Bologna
- Department of Public Health, Experimental and Forensic Medicine, School of Medicine, Endocrinology and Nutrition Unit, University of Pavia, Azienda di Servizi alla Persona di Pavia, Pavia, Italy
| | - Antonella Riva
- Research and Development Department, Indena SpA, 20139 Milan, Italy
| | - Pietro Allegrini
- Research and Development Department, Indena SpA, 20139 Milan, Italy
| | - Simone Perna
- Department of Public Health, Experimental and Forensic Medicine, School of Medicine, Endocrinology and Nutrition Unit, University of Pavia, Azienda di Servizi alla Persona di Pavia, Pavia, Italy
| |
Collapse
|
32
|
Lee YY, Crauste C, Wang H, Leung HH, Vercauteren J, Galano JM, Oger C, Durand T, Wan JMF, Lee JCY. Extra Virgin Olive Oil Reduced Polyunsaturated Fatty Acid and Cholesterol Oxidation in Rodent Liver: Is This Accounted for Hydroxytyrosol-Fatty Acid Conjugation? Chem Res Toxicol 2016; 29:1689-1698. [DOI: 10.1021/acs.chemrestox.6b00214] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yiu Yiu Lee
- School
of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR
| | - Céline Crauste
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier & ENSCM (School of Chemistry), Faculté de Pharmacie, 15 Av. Charles Flahault, 34093 Montpellier cedex 05, France
| | - Hualin Wang
- School
of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR
| | - Ho Hang Leung
- School
of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier & ENSCM (School of Chemistry), Faculté de Pharmacie, 15 Av. Charles Flahault, 34093 Montpellier cedex 05, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier & ENSCM (School of Chemistry), Faculté de Pharmacie, 15 Av. Charles Flahault, 34093 Montpellier cedex 05, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier & ENSCM (School of Chemistry), Faculté de Pharmacie, 15 Av. Charles Flahault, 34093 Montpellier cedex 05, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier & ENSCM (School of Chemistry), Faculté de Pharmacie, 15 Av. Charles Flahault, 34093 Montpellier cedex 05, France
| | - Jennifer Man-Fan Wan
- School
of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR
| | - Jetty Chung-Yung Lee
- School
of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR
| |
Collapse
|
33
|
Ge Z, Zhu W, Peng J, Deng X, Li C. Persimmon tannin regulates the expression of genes critical for cholesterol absorption and cholesterol efflux by LXRα independent pathway. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
34
|
Abstract
PURPOSE OF REVIEW The functional capacities of high-density lipoproteins (HDLs) reflect the physiological role of the particle better than the quantity of HDL cholesterol. Owing to its phenolic compounds, the consumption of virgin olive oil has emerged as a promising therapy to promote these capacities. This review highlights the human studies that explain these benefits and explores some possible mechanisms. RECENT FINDINGS The consumption of olive oil phenolic compounds increased the ability of HDLs to pick up cholesterol excess in peripheral cells (the cholesterol efflux capacity). Olive oil phenolic compounds have also been shown to improve HDL antioxidant capacities and some anti-inflammatory traits. These changes respond to an improvement of HDL oxidative status and composition. SUMMARY Novel strategies to increase HDL functional capacities are in demand from clinicians. The attainment of a fully-functional HDL through dietary or lifestyle changes is a priority in cardiovascular research. Within this context, the consumption of virgin olive oil, because of its phenolic compounds, may be a relevant protective approach. Further studies in large-scale, randomized controlled trials are, however, required to confirm these effects in HDL functionality.
Collapse
Affiliation(s)
- Alvaro Hernáez
- aCardiovascular Risk and Nutrition Research Group, REGICOR Study Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona bCIBER de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN), Instituto de Salud Carlos III, Madrid cPh.D Program of Food Science and Nutrition, Universitat de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
35
|
Chistiakov DA, Bobryshev YV, Orekhov AN. Macrophage-mediated cholesterol handling in atherosclerosis. J Cell Mol Med 2015; 20:17-28. [PMID: 26493158 PMCID: PMC4717859 DOI: 10.1111/jcmm.12689] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/19/2015] [Indexed: 02/06/2023] Open
Abstract
Formation of foam cells is a hallmark at the initial stages of atherosclerosis. Monocytes attracted by pro-inflammatory stimuli attach to the inflamed vascular endothelium and penetrate to the arterial intima where they differentiate to macrophages. Intimal macrophages phagocytize oxidized low-density lipoproteins (oxLDL). Several scavenger receptors (SR), including CD36, SR-A1 and lectin-like oxLDL receptor-1 (LOX-1), mediate oxLDL uptake. In late endosomes/lysosomes of macrophages, oxLDL are catabolysed. Lysosomal acid lipase (LAL) hydrolyses cholesterol esters that are enriched in LDL to free cholesterol and free fatty acids. In the endoplasmic reticulum (ER), acyl coenzyme A: cholesterol acyltransferase-1 (ACAT1) in turn catalyses esterification of cholesterol to store cholesterol esters as lipid droplets in the ER of macrophages. Neutral cholesteryl ester hydrolases nCEH and NCEH1 are involved in a secondary hydrolysis of cholesterol esters to liberate free cholesterol that could be then out-flowed from macrophages by cholesterol ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 and SR-BI. In atherosclerosis, disruption of lipid homoeostasis in macrophages leads to cholesterol accumulation and formation of foam cells.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Division of Laboratory Medicine, Department of Molecular Genetic Diagnostics and Cell Biology, Institute of Pediatrics, Research Center for Children's Health, Moscow, Russia
| | - Yuri V Bobryshev
- Faculty of Medicine and St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, NSW, Australia.,School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia.,Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Alexander N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia.,Department of Biophysics, Biological Faculty, Moscow State University, Moscow, Russia
| |
Collapse
|
36
|
Koo SH, Lo YL, Yee JY, Lee EJD. Genetic and/or non-genetic causes for inter-individual and inter-cellular variability in transporter protein expression: implications for understanding drug efficacy and toxicity. Expert Opin Drug Metab Toxicol 2015; 11:1821-37. [DOI: 10.1517/17425255.2015.1104298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Extra Virgin Olive Oil Polyphenols Promote Cholesterol Efflux and Improve HDL Functionality. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:208062. [PMID: 26495005 PMCID: PMC4606102 DOI: 10.1155/2015/208062] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/27/2015] [Accepted: 07/02/2015] [Indexed: 01/07/2023]
Abstract
Results of the present work give evidence from the beneficial role of extra virgin olive of oil (EVOO) consumption towards oxidative stress and cardiovascular diseases. Polyphenols contained in EVOO are responsible for inhibiting lipoproteins oxidative damages and promoting reverse cholesterol transport process via ABCA1 pathway.
Collapse
|
38
|
Abstract
Olive oil is considered to be one of the most healthy dietary fats. However, several types of olive oils are present in the market. A key question for the consumer is: What of the olive oils is the best when concerning nutritional purposes? With the data available at present, the answer is: the Virgin Olive Oil (VOO), rich in phenolic compounds. On November 2011, the European Food Safety Authority released a claim concerning the benefits of daily ingestion of olive oil rich in phenolic compounds, such as VOO. In this review, we summarised the key work that has provided the evidence of the benefits of VOO consumption on other types of edible oils, even olive oils. We focused on data from randomised, controlled human studies, which are capable of providing the evidence of Level I that is required for performing nutritional recommendations at population level.
Collapse
|
39
|
Farràs M, Castañer O, Martín-Peláez S, Hernáez Á, Schröder H, Subirana I, Muñoz-Aguayo D, Gaixas S, Torre RDL, Farré M, Rubió L, Díaz Ó, Fernández-Castillejo S, Solà R, Motilva MJ, Fitó M. Complementary phenol-enriched olive oil improves HDL characteristics in hypercholesterolemic subjects. A randomized, double-blind, crossover, controlled trial. The VOHF study. Mol Nutr Food Res 2015; 59:1758-70. [DOI: 10.1002/mnfr.201500030] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/31/2015] [Accepted: 05/06/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Marta Farràs
- Cardiovascular Risk and Nutrition Research Group; Regicor Study Group, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
- Ph.D. Program in Biochemistry; Molecular Biology and Biomedicine; Department of Biochemistry and Molecular Biology; Universitat Autònoma de Barcelona (UAB); Barcelona Spain
| | - Olga Castañer
- Cardiovascular Risk and Nutrition Research Group; Regicor Study Group, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
| | - Sandra Martín-Peláez
- Cardiovascular Risk and Nutrition Research Group; Regicor Study Group, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| | - Álvaro Hernáez
- Cardiovascular Risk and Nutrition Research Group; Regicor Study Group, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| | - Helmut Schröder
- Cardiovascular Risk and Nutrition Research Group; Regicor Study Group, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP); Instituto de Salud Carlos III; Madrid Spain
| | - Isaac Subirana
- CIBER de Epidemiología y Salud Pública (CIBERESP); Instituto de Salud Carlos III; Madrid Spain
- Cardiovascular Epidemiology and Genetics Research Group; Regicor Study Group, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| | - Daniel Muñoz-Aguayo
- Cardiovascular Risk and Nutrition Research Group; Regicor Study Group, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| | - Sònia Gaixas
- Cardiovascular Epidemiology and Genetics Research Group; Regicor Study Group, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| | - Rafael de la Torre
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
- Human Pharmacology and Clinical Neurosciences Research Group; IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
- Universitat Pompeu Fabra (CEXS-UPF); Barcelona Spain
| | - Magí Farré
- Human Pharmacology and Clinical Neurosciences Research Group; IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
- Universitat Autònoma de Barcelona (UAB); Barcelona Spain
| | - Laura Rubió
- Food Technology Department; UTPV-XaRTA; Agrotecnio Center; University of Lleida; Lleida Spain
| | - Óscar Díaz
- Cardiovascular Risk and Nutrition Research Group; Regicor Study Group, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| | - Sara Fernández-Castillejo
- Unitat de Recerca en Lípids i Arteriosclerosis; CIBERDEM, St. Joan de Reus University Hospital; IISPV; Facultat de Medicina i Ciències de la Salut; Universitat Rovira i Virgili; Reus Spain
| | - Rosa Solà
- Unitat de Recerca en Lípids i Arteriosclerosis; CIBERDEM, St. Joan de Reus University Hospital; IISPV; Facultat de Medicina i Ciències de la Salut; Universitat Rovira i Virgili; Reus Spain
| | - Maria José Motilva
- Food Technology Department; UTPV-XaRTA; Agrotecnio Center; University of Lleida; Lleida Spain
| | - Montserrat Fitó
- Cardiovascular Risk and Nutrition Research Group; Regicor Study Group, IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
| |
Collapse
|
40
|
Kardassis D, Gafencu A, Zannis VI, Davalos A. Regulation of HDL genes: transcriptional, posttranscriptional, and posttranslational. Handb Exp Pharmacol 2015; 224:113-179. [PMID: 25522987 DOI: 10.1007/978-3-319-09665-0_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
HDL regulation is exerted at multiple levels including regulation at the level of transcription initiation by transcription factors and signal transduction cascades; regulation at the posttranscriptional level by microRNAs and other noncoding RNAs which bind to the coding or noncoding regions of HDL genes regulating mRNA stability and translation; as well as regulation at the posttranslational level by protein modifications, intracellular trafficking, and degradation. The above mechanisms have drastic effects on several HDL-mediated processes including HDL biogenesis, remodeling, cholesterol efflux and uptake, as well as atheroprotective functions on the cells of the arterial wall. The emphasis is on mechanisms that operate in physiologically relevant tissues such as the liver (which accounts for 80% of the total HDL-C levels in the plasma), the macrophages, the adrenals, and the endothelium. Transcription factors that have a significant impact on HDL regulation such as hormone nuclear receptors and hepatocyte nuclear factors are extensively discussed both in terms of gene promoter recognition and regulation but also in terms of their impact on plasma HDL levels as was revealed by knockout studies. Understanding the different modes of regulation of this complex lipoprotein may provide useful insights for the development of novel HDL-raising therapies that could be used to fight against atherosclerosis which is the underlying cause of coronary heart disease.
Collapse
Affiliation(s)
- Dimitris Kardassis
- Department of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology of Hellas, Heraklion, Crete, 71110, Greece,
| | | | | | | |
Collapse
|
41
|
Rosenblat M, Volkova N, Borochov-Neori H, Judeinstein S, Aviram M. Anti-atherogenic properties of date vs. pomegranate polyphenols: the benefits of the combination. Food Funct 2015; 6:1496-509. [DOI: 10.1039/c4fo00998c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
MPM cholesterol content was not significantly affected by consumption of PJ or date seed extract alone. In contrast, consumption of Hallawi date fruit extract or a combination of PJ together with date fruit and date seeds extract significantly decreased macrophage cholesterol content by 12% or 28%, respectively.
Collapse
Affiliation(s)
- Mira Rosenblat
- The Lipid Research Laboratory
- Rambam Health Care Campus
- The Rappaport Faculty of Medicine and Research Institute
- Technion – Israel Institute of Technology
- Haifa
| | - Nina Volkova
- The Lipid Research Laboratory
- Rambam Health Care Campus
- The Rappaport Faculty of Medicine and Research Institute
- Technion – Israel Institute of Technology
- Haifa
| | | | | | - Michael Aviram
- The Lipid Research Laboratory
- Rambam Health Care Campus
- The Rappaport Faculty of Medicine and Research Institute
- Technion – Israel Institute of Technology
- Haifa
| |
Collapse
|
42
|
Abstract
The main lifestyle interventions to modify serum HDL cholesterol include physical exercise, weight loss with either caloric restriction or specific dietary approaches, and smoking cessation. Moderate alcohol consumption can be permitted in some cases. However, as these interventions exert multiple effects, it is often difficult to discern which is responsible for improvement in HDL outcomes. It is particularly noteworthy that recent data questions the use of HDL cholesterol as a risk factor and therapeutic target since randomised interventions and Mendelian randomisation studies failed to provide evidence for such an approach. Therefore, these current data should be considered when reading and interpreting this review. Further studies are needed to document the effect of lifestyle changes on HDL structure-function and health.
Collapse
|
43
|
The intake of a high-fat diet and grape seed procyanidins induces gene expression changes in peripheral blood mononuclear cells of hamsters: capturing alterations in lipid and cholesterol metabolisms. GENES AND NUTRITION 2014; 10:438. [PMID: 25403094 DOI: 10.1007/s12263-014-0438-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/23/2014] [Indexed: 10/24/2022]
Abstract
We previously demonstrated that hamsters that were fed either a standard diet (STD) or a high-fat diet (HFD) and treated with a grape seed procyanidin extract (GSPE) showed decreased adiposity and circulating levels of free fatty acids compared with hamsters treated with a vehicle (Caimari et al. in Int J Obes 37:576-83, 2013, doi: 10.1038/ijo.2012.75 ). Here, we tested whether the gene expression changes in peripheral blood mononuclear cells (PBMCs) can reflect these metabolic effects and the dyslipidaemia produced by the HFD feeding in the same cohort of animals. The mRNA levels of a subset of genes were also studied in the liver in order to evaluate the capacity of PBMCs to reflect the metabolic adaptations that occur in this organ. In PBMCs, we reported a simultaneous up-regulation of the lipid-related genes involved in both the anabolic (pparγ, acc1 and gpat) and the catabolic (pparα, ucp2, atgl and hsl) pathways in response to the GSPE treatment, similar but no identical to previous observations in retroperitoneal white adipose tissues of these animals. Furthermore, the key cholesterol metabolism genes srebp2 and ldlr were significantly down-regulated in PBMCs of both HFD-fed groups compared with the STD groups. Although the expression of srebp2 in the liver followed a similar pattern to that obtained in PBMCs, no comparable changes were found between the liver and PBMCs in the expression of most of the studied genes. In conclusion, our results highlight the potential of PBMCs as a high accessible tissue for the indirect study of cholesterol and adipose tissue metabolism dynamics.
Collapse
|
44
|
Affiliation(s)
- Anna Aiello
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Italy
| | | | - Giulia Accardi
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Italy
| | - Calogero Caruso
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Italy.
| |
Collapse
|
45
|
Hernáez Á, Fernández-Castillejo S, Farràs M, Catalán Ú, Subirana I, Montes R, Solà R, Muñoz-Aguayo D, Gelabert-Gorgues A, Díaz-Gil Ó, Nyyssönen K, Zunft HJF, de la Torre R, Martín-Peláez S, Pedret A, Remaley AT, Covas MI, Fitó M. Olive Oil Polyphenols Enhance High-Density Lipoprotein Function in Humans. Arterioscler Thromb Vasc Biol 2014; 34:2115-9. [DOI: 10.1161/atvbaha.114.303374] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Objective—
Olive oil polyphenols have shown beneficial properties against cardiovascular risk factors. Their consumption has been associated with higher cholesterol content in high-density lipoproteins (HDL). However, data on polyphenol effects on HDL quality are scarce. We, therefore, assessed whether polyphenol-rich olive oil consumption could enhance the HDL main function, its cholesterol efflux capacity, and some of its quality-related properties, such HDL polyphenol content, size, and composition.
Approach and Results—
A randomized, crossover, controlled trial with 47 healthy European male volunteers was performed. Participants ingested 25 mL/d of polyphenol-poor (2.7 mg/kg) or polyphenol-rich (366 mg/kg) raw olive oil in 3-week intervention periods, preceded by 2-week washout periods. HDL cholesterol efflux capacity significantly improved after polyphenol-rich intervention versus the polyphenol-poor one (+3.05% and −2.34%, respectively;
P
=0.042). Incorporation of olive oil polyphenol biological metabolites to HDL, as well as large HDL (HDL
2
) levels, was higher after the polyphenol-rich olive oil intervention, compared with the polyphenol-poor one. Small HDL (HDL
3
) levels decreased, the HDL core became triglyceride-poor, and HDL fluidity increased after the polyphenol-rich intervention.
Conclusions—
Olive oil polyphenols promote the main HDL antiatherogenic function, its cholesterol efflux capacity. These polyphenols increased HDL size, promoted a greater HDL stability reflected as a triglyceride-poor core, and enhanced the HDL oxidative status, through an increase in the olive oil polyphenol metabolites content in the lipoprotein. Our results provide for the first time a first-level evidence of an enhancement in HDL function by polyphenol-rich olive oil.
Collapse
Affiliation(s)
- Álvaro Hernáez
- From the Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, CIBER de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN) (A.H., M.F., D.M.-A., A.G.-G., O.D.-G., S.M.-P., M.-I.C., M.F.), Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, CIBER de Epidemiología y Salud Pública (CIBERESP) (I.S.), and Human Pharmacology and Clinical Neurosciences Research Group (R.d.l.T.), IMIM-Research Institute Hospital del Mar, Barcelona, Spain; Ph.D program of Food
| | - Sara Fernández-Castillejo
- From the Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, CIBER de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN) (A.H., M.F., D.M.-A., A.G.-G., O.D.-G., S.M.-P., M.-I.C., M.F.), Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, CIBER de Epidemiología y Salud Pública (CIBERESP) (I.S.), and Human Pharmacology and Clinical Neurosciences Research Group (R.d.l.T.), IMIM-Research Institute Hospital del Mar, Barcelona, Spain; Ph.D program of Food
| | - Marta Farràs
- From the Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, CIBER de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN) (A.H., M.F., D.M.-A., A.G.-G., O.D.-G., S.M.-P., M.-I.C., M.F.), Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, CIBER de Epidemiología y Salud Pública (CIBERESP) (I.S.), and Human Pharmacology and Clinical Neurosciences Research Group (R.d.l.T.), IMIM-Research Institute Hospital del Mar, Barcelona, Spain; Ph.D program of Food
| | - Úrsula Catalán
- From the Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, CIBER de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN) (A.H., M.F., D.M.-A., A.G.-G., O.D.-G., S.M.-P., M.-I.C., M.F.), Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, CIBER de Epidemiología y Salud Pública (CIBERESP) (I.S.), and Human Pharmacology and Clinical Neurosciences Research Group (R.d.l.T.), IMIM-Research Institute Hospital del Mar, Barcelona, Spain; Ph.D program of Food
| | - Isaac Subirana
- From the Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, CIBER de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN) (A.H., M.F., D.M.-A., A.G.-G., O.D.-G., S.M.-P., M.-I.C., M.F.), Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, CIBER de Epidemiología y Salud Pública (CIBERESP) (I.S.), and Human Pharmacology and Clinical Neurosciences Research Group (R.d.l.T.), IMIM-Research Institute Hospital del Mar, Barcelona, Spain; Ph.D program of Food
| | - Rosa Montes
- From the Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, CIBER de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN) (A.H., M.F., D.M.-A., A.G.-G., O.D.-G., S.M.-P., M.-I.C., M.F.), Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, CIBER de Epidemiología y Salud Pública (CIBERESP) (I.S.), and Human Pharmacology and Clinical Neurosciences Research Group (R.d.l.T.), IMIM-Research Institute Hospital del Mar, Barcelona, Spain; Ph.D program of Food
| | - Rosa Solà
- From the Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, CIBER de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN) (A.H., M.F., D.M.-A., A.G.-G., O.D.-G., S.M.-P., M.-I.C., M.F.), Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, CIBER de Epidemiología y Salud Pública (CIBERESP) (I.S.), and Human Pharmacology and Clinical Neurosciences Research Group (R.d.l.T.), IMIM-Research Institute Hospital del Mar, Barcelona, Spain; Ph.D program of Food
| | - Daniel Muñoz-Aguayo
- From the Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, CIBER de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN) (A.H., M.F., D.M.-A., A.G.-G., O.D.-G., S.M.-P., M.-I.C., M.F.), Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, CIBER de Epidemiología y Salud Pública (CIBERESP) (I.S.), and Human Pharmacology and Clinical Neurosciences Research Group (R.d.l.T.), IMIM-Research Institute Hospital del Mar, Barcelona, Spain; Ph.D program of Food
| | - Anna Gelabert-Gorgues
- From the Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, CIBER de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN) (A.H., M.F., D.M.-A., A.G.-G., O.D.-G., S.M.-P., M.-I.C., M.F.), Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, CIBER de Epidemiología y Salud Pública (CIBERESP) (I.S.), and Human Pharmacology and Clinical Neurosciences Research Group (R.d.l.T.), IMIM-Research Institute Hospital del Mar, Barcelona, Spain; Ph.D program of Food
| | - Óscar Díaz-Gil
- From the Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, CIBER de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN) (A.H., M.F., D.M.-A., A.G.-G., O.D.-G., S.M.-P., M.-I.C., M.F.), Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, CIBER de Epidemiología y Salud Pública (CIBERESP) (I.S.), and Human Pharmacology and Clinical Neurosciences Research Group (R.d.l.T.), IMIM-Research Institute Hospital del Mar, Barcelona, Spain; Ph.D program of Food
| | - Kristiina Nyyssönen
- From the Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, CIBER de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN) (A.H., M.F., D.M.-A., A.G.-G., O.D.-G., S.M.-P., M.-I.C., M.F.), Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, CIBER de Epidemiología y Salud Pública (CIBERESP) (I.S.), and Human Pharmacology and Clinical Neurosciences Research Group (R.d.l.T.), IMIM-Research Institute Hospital del Mar, Barcelona, Spain; Ph.D program of Food
| | - Hans-Joachim F. Zunft
- From the Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, CIBER de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN) (A.H., M.F., D.M.-A., A.G.-G., O.D.-G., S.M.-P., M.-I.C., M.F.), Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, CIBER de Epidemiología y Salud Pública (CIBERESP) (I.S.), and Human Pharmacology and Clinical Neurosciences Research Group (R.d.l.T.), IMIM-Research Institute Hospital del Mar, Barcelona, Spain; Ph.D program of Food
| | - Rafael de la Torre
- From the Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, CIBER de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN) (A.H., M.F., D.M.-A., A.G.-G., O.D.-G., S.M.-P., M.-I.C., M.F.), Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, CIBER de Epidemiología y Salud Pública (CIBERESP) (I.S.), and Human Pharmacology and Clinical Neurosciences Research Group (R.d.l.T.), IMIM-Research Institute Hospital del Mar, Barcelona, Spain; Ph.D program of Food
| | - Sandra Martín-Peláez
- From the Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, CIBER de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN) (A.H., M.F., D.M.-A., A.G.-G., O.D.-G., S.M.-P., M.-I.C., M.F.), Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, CIBER de Epidemiología y Salud Pública (CIBERESP) (I.S.), and Human Pharmacology and Clinical Neurosciences Research Group (R.d.l.T.), IMIM-Research Institute Hospital del Mar, Barcelona, Spain; Ph.D program of Food
| | - Anna Pedret
- From the Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, CIBER de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN) (A.H., M.F., D.M.-A., A.G.-G., O.D.-G., S.M.-P., M.-I.C., M.F.), Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, CIBER de Epidemiología y Salud Pública (CIBERESP) (I.S.), and Human Pharmacology and Clinical Neurosciences Research Group (R.d.l.T.), IMIM-Research Institute Hospital del Mar, Barcelona, Spain; Ph.D program of Food
| | - Alan T. Remaley
- From the Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, CIBER de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN) (A.H., M.F., D.M.-A., A.G.-G., O.D.-G., S.M.-P., M.-I.C., M.F.), Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, CIBER de Epidemiología y Salud Pública (CIBERESP) (I.S.), and Human Pharmacology and Clinical Neurosciences Research Group (R.d.l.T.), IMIM-Research Institute Hospital del Mar, Barcelona, Spain; Ph.D program of Food
| | - María-Isabel Covas
- From the Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, CIBER de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN) (A.H., M.F., D.M.-A., A.G.-G., O.D.-G., S.M.-P., M.-I.C., M.F.), Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, CIBER de Epidemiología y Salud Pública (CIBERESP) (I.S.), and Human Pharmacology and Clinical Neurosciences Research Group (R.d.l.T.), IMIM-Research Institute Hospital del Mar, Barcelona, Spain; Ph.D program of Food
| | - Montserrat Fitó
- From the Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, CIBER de Fisiopatología de la Nutrición y la Obesidad (CIBEROBN) (A.H., M.F., D.M.-A., A.G.-G., O.D.-G., S.M.-P., M.-I.C., M.F.), Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, CIBER de Epidemiología y Salud Pública (CIBERESP) (I.S.), and Human Pharmacology and Clinical Neurosciences Research Group (R.d.l.T.), IMIM-Research Institute Hospital del Mar, Barcelona, Spain; Ph.D program of Food
| |
Collapse
|
46
|
Servili M, Sordini B, Esposto S, Urbani S, Veneziani G, Di Maio I, Selvaggini R, Taticchi A. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil. Antioxidants (Basel) 2013; 3:1-23. [PMID: 26784660 PMCID: PMC4665453 DOI: 10.3390/antiox3010001] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/27/2013] [Accepted: 11/28/2013] [Indexed: 12/12/2022] Open
Abstract
Over the last few decades, multiple biological properties, providing antioxidant, anti-inflammatory, chemopreventive and anti-cancer benefits, as well as the characteristic pungent and bitter taste, have been attributed to Extra Virgin Olive Oil (EVOO) phenols. In particular, growing efforts have been devoted to the study of the antioxidants of EVOO, due to their importance from health, biological and sensory points of view. Hydrophilic and lipophilic phenols represent the main antioxidants of EVOO, and they include a large variety of compounds. Among them, the most concentrated phenols are lignans and secoiridoids, with the latter found exclusively in the Oleaceae family, of which the drupe is the only edible fruit. In recent years, therefore, we have tackled the study of the main properties of phenols, including the relationships between their biological activity and the related chemical structure. This review, in fact, focuses on the phenolic compounds of EVOO, and, in particular, on their biological properties, sensory aspects and antioxidant capacity, with a particular emphasis on the extension of the product shelf-life.
Collapse
Affiliation(s)
- Maurizio Servili
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| | - Beatrice Sordini
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| | - Sonia Esposto
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| | - Stefania Urbani
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| | - Gianluca Veneziani
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| | - Ilona Di Maio
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| | - Roberto Selvaggini
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| | - Agnese Taticchi
- Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Università degli Studi di Perugia, Via S. Costanzo, Perugia 06126, Italy.
| |
Collapse
|