1
|
Wang M, Zheng L, Meng Y, Ma S, Zhao D, Xu Y. Broadening horizons: intestinal microbiota as a novel biomarker and potential treatment for hypertensive disorders of pregnancy. Front Cell Infect Microbiol 2024; 14:1446580. [PMID: 39239636 PMCID: PMC11374776 DOI: 10.3389/fcimb.2024.1446580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/24/2024] [Indexed: 09/07/2024] Open
Abstract
Hypertensive disorders of pregnancy (HDP) are severe complications of pregnancy with high morbidity and are a major cause of increased maternal and infant morbidity and mortality. Currently, there is a lack of effective early diagnostic indicators and safe and effective preventive strategies for HDP in clinical practice, except for monitoring maternal blood pressure levels, the degree of proteinuria, organ involvement and fetal conditions. The intestinal microbiota consists of the gut flora and intestinal environment, which is the largest microecosystem of the human body and participates in material and energy metabolism, gene expression regulation, immunity regulation, and other functions. During pregnancy, due to changes in hormone levels and altered immune function, the intestinal microecological balance is affected, triggering HDP. A dysregulated intestinal microenvironment influences the composition and distribution of the gut flora and changes the intestinal barrier, driving beneficial or harmful bacterial metabolites and inflammatory responses to participate in the development of HDP and promote its malignant development. When the gut flora is dysbiotic and affects blood pressure, supplementation with probiotics and dietary fiber can be used to intervene. In this review, the interaction between the intestinal microbiota and HDP was investigated to explore the feasibility of the gut flora as a novel biomarker of HDP and to provide a new strategy and basis for the prevention and treatment of clinical HDP.
Collapse
Affiliation(s)
- Min Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Yang Meng
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Shuai Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Donghai Zhao
- Department of Pathology, Jilin Medical College, Jilin, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Li X, Zhao Z, Na L, Cui W, Che X, Chang J, Xue X. Effect of Yogurt Intake Frequency on Blood Pressure: A Cross-Sectional Study. Int J Hypertens 2024; 2024:8040917. [PMID: 38737523 PMCID: PMC11087149 DOI: 10.1155/2024/8040917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
Yogurt consumption is a significant factor in reducing the risk of hypertension and preventing cardiovascular diseases. Although increasing evidence has emerged regarding the potential benefits of probiotics in hypertension, there is a lack of large, cross-sectional studies assessing the association between yogurt intake and blood pressure parameters. We aimed to evaluate the association between yogurt intake frequency and blood pressure. A cross-sectional study was designed using data from the National Health and Nutrition Examination Survey from 2003 to 2004 and 2005 to 2006. We included 3, 068 adults with blood pressure data and yogurt intake data. Multivariate regression analyses revealed significant inverse associations between yogurt and systolic blood pressure (P < 0.05), diastolic blood pressure (P < 0.05), and mean arterial pressure (P < 0.05) in nonhypertensive participants (n = 1 822) but not in hypertensive participants (n = 1 246). Furthermore, a high frequency of yogurt intake prevented hypertension; however, no additional antihypertensive effects were observed in patients already diagnosed with hypertension.
Collapse
Affiliation(s)
- Xinqi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun City 130000, China
| | - Zhuo Zhao
- Department of Cardiology, The Second Hospital of Jilin University, Changchun City 130000, China
| | - Lin Na
- Department of Cardiology, The Second Hospital of Jilin University, Changchun City 130000, China
| | - Wenjing Cui
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an 710000, China
| | - Xiaona Che
- Department of Cardiology, The Second Hospital of Jilin University, Changchun City 130000, China
| | - Jing Chang
- Clinical Laboratory, The Second Hospital of Jilin University, Changchun City 130000, China
| | - Xin Xue
- Department of Cardiology, The Second Hospital of Jilin University, Changchun City 130000, China
| |
Collapse
|
3
|
Sica P, Domingues MA, Mota LA, Pinto AU, Baptista AAS, Horii J, Abdalla AL, Baptista AS. How does active yeast supplementation reduce the deleterious effects of aflatoxins in Wistar rats? A radiolabeled assay and histopathological study. World J Microbiol Biotechnol 2024; 40:164. [PMID: 38630373 PMCID: PMC11023971 DOI: 10.1007/s11274-024-03981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
The aim of this study was to investigate the mechanisms by which yeasts (Saccharomyces cerevisiae) control the toxic effects of aflatoxins, which are not yet fully understood. Radiolabeled aflatoxin B1 (AFB13H) was administered by gavage to Wistar rats fed with aflatoxin (AflDiet) and aflatoxin supplemented with active dehydrated yeast Y904 (AflDiet + Yeast). The distribution of AFB13H and its metabolites were analyzed at 24, 48 and 72 h by tracking back of the radioactivity. No significant differences were observed between the AflDiet and AflDiet + Yeast groups in terms of the distribution of labeled aflatoxin. At 72 h, for the AflDiet group the radiolabeled aflatoxin was distributed as following: feces (79.5%), carcass (10.5%), urine (1.7%), and intestine (7.4%); in the AflDiet + Yeast the following distribution was observed: feces (76%), carcass (15%), urine (2.9%), and intestine (4.9%). These values were below 1% in other organs. These findings indicate that even after 72 h considerable amounts of aflatoxins remains in the intestines, which may play a significant role in the distribution and metabolism of aflatoxins and its metabolites over time. The presence of yeast may not significantly affect this process. Furthermore, histopathological examination of hepatic tissues showed that the presence of active yeast reduced the severity of liver damage caused by aflatoxins, indicating that yeasts control aflatoxin damage through biochemical mechanisms. These findings contribute to a better understanding of the mechanisms underlying the protective effects of yeasts against aflatoxin toxicity.
Collapse
Affiliation(s)
- Pietro Sica
- Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsenvej, Frederiksberg, 1870, Denmark.
| | - Maria Antonia Domingues
- Department of Agri-food Industry, Food and Nutrition, College of Agriculture "Luiz de Queiroz", University of Sao Paulo", Padua Dias Avenue, Piracicaba, Sao Paulo, 13418-900, Brazil
| | - Layna Amorim Mota
- Department of Agri-food Industry, Food and Nutrition, College of Agriculture "Luiz de Queiroz", University of Sao Paulo", Padua Dias Avenue, Piracicaba, Sao Paulo, 13418-900, Brazil
| | - Alana Uchôa Pinto
- Department of Agri-food Industry, Food and Nutrition, College of Agriculture "Luiz de Queiroz", University of Sao Paulo", Padua Dias Avenue, Piracicaba, Sao Paulo, 13418-900, Brazil
| | | | - Jorge Horii
- Department of Agri-food Industry, Food and Nutrition, College of Agriculture "Luiz de Queiroz", University of Sao Paulo", Padua Dias Avenue, Piracicaba, Sao Paulo, 13418-900, Brazil
| | - Adibe Luiz Abdalla
- Center for Nuclear Energy in Agriculture (CENA), University of Sao Paulo, 303, Centenario Avenue, Piracicaba, Sao Paulo, 13400-970, Brazil
| | - Antonio Sampaio Baptista
- Department of Agri-food Industry, Food and Nutrition, College of Agriculture "Luiz de Queiroz", University of Sao Paulo", Padua Dias Avenue, Piracicaba, Sao Paulo, 13418-900, Brazil
| |
Collapse
|
4
|
Santos I, Silva M, Grácio M, Pedroso L, Lima A. Milk Antiviral Proteins and Derived Peptides against Zoonoses. Int J Mol Sci 2024; 25:1842. [PMID: 38339120 PMCID: PMC10855762 DOI: 10.3390/ijms25031842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Milk is renowned for its nutritional richness but also serves as a remarkable reservoir of bioactive compounds, particularly milk proteins and their derived peptides. Recent studies have showcased several robust antiviral activities of these proteins, evidencing promising potential within zoonotic viral diseases. While several publications focus on milk's bioactivities, antiviral peptides remain largely neglected in reviews. This knowledge is critical for identifying novel research directions and analyzing potential nutraceuticals within the One Health context. Our review aims to gather the existing scientific information on milk-derived antiviral proteins and peptides against several zoonotic viral diseases, and their possible mechanisms. Overall, in-depth research has increasingly revealed them as a promising and novel strategy against viruses, principally for those constituting a plausible pandemic threat. The underlying mechanisms of the bioactivity of milk's proteins include inhibiting viral entry and attachment to the host cells, blocking replication, or even viral inactivation via peptide-membrane interactions. Their marked versatility and effectiveness stand out compared to other antiviral peptides and can support future research and development in the post-COVID-19 era. Overall, our review helps to emphasize the importance of potentially effective milk-derived peptides, and their significance for veterinary and human medicines, along with the pharmaceutical, nutraceutical, and dairy industry.
Collapse
Affiliation(s)
- Isabel Santos
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Mariana Silva
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
| | - Madalena Grácio
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal;
| | - Laurentina Pedroso
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Ana Lima
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| |
Collapse
|
5
|
Sianoya AC, Nicodemus NA, Dalmacio LMM. Targeting the Filipino gut microbiota in the management of hypertension. Egypt Heart J 2024; 76:7. [PMID: 38270758 PMCID: PMC10811302 DOI: 10.1186/s43044-024-00440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Hypertension is a major health problem in the Philippines, being the second leading disease and the second leading factor driving the most death and disability in the country. Despite efforts made toward increasing awareness, improving availability of medications, and strengthening patient adherence, more than 7 in every 10 hypertensive Filipinos still have uncontrolled hypertension. MAIN BODY In the recent years, the role of gut microbiota in hypertension has been highlighted, with studies showing alterations in the gut microbiota of hypertensive individuals and its positive effect on the pharmacokinetics of some antihypertensive drugs. CONCLUSIONS These findings show how gut microbiota can be an important but possibly overlooked consideration in the management of hypertension in the Philippines. Clinicians might benefit from maximizing the relationship between gut microbiota and hypertension to achieve good BP control and ultimately address the burden of uncontrolled hypertension in the country.
Collapse
Affiliation(s)
- Abraham C Sianoya
- College of Medicine, University of the Philippines Manila, Manila, Philippines.
| | - Nemencio A Nicodemus
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Leslie Michelle M Dalmacio
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
6
|
Kim KH, Hwang Y, Kang SS. Regulatory Effect of Spray-Dried Lactiplantibacillus plantarum K79 on the Activation of Vasodilatory Factors and Inflammatory Responses. Food Sci Anim Resour 2024; 44:216-224. [PMID: 38229862 PMCID: PMC10789557 DOI: 10.5851/kosfa.2023.e78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024] Open
Abstract
The reduction of nitric oxide (NO) bioavailability in the endothelium induces endothelial dysfunction, contributing to the development of hypertension. Although Lactobacillus consumption decreases blood pressure, intracellular signaling pathways related to hypertension have not been well elucidated. Thus, this study examined the effect of spray-dried Lactiplantibacillus plantarum K79 (LpK79) on NO production, intracellular signaling pathways, and inflammatory responses related to vascular function and hypertension. NO production was assessed in human umbilical vein endothelial cells (HUVECs) treated with LpK79. Endothelial NO synthase (eNOS) and intracellular signaling molecules were determined using Western blot analysis. LpK79 dose-dependently increased NO production and activated eNOS via the phosphoinositide 3-kinase/Akt signaling pathway HUVECs. Moreover, LpK79 mitigated the activation of crucial factors pivotal for vascular contraction in smooth muscle cells, such as phospholipase Cγ, myosin phosphatase target subunit 1, and Rho-associated kinase 2. When HUVECs were treated with LpL79 in the presence of Escherichia coli lipopolysaccharide (LPS), LpK79 effectively suppressed mRNA and protein expression of pro-inflammatory mediators induced by E. coli LPS. These results suggest that LpK79 provided a beneficial effect on the regulation of vascular endothelial function.
Collapse
Affiliation(s)
- Ki Hwan Kim
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| | | | - Seok-Seong Kang
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| |
Collapse
|
7
|
Torres-Gonzalez M, Rice Bradley BH. Whole-Milk Dairy Foods: Biological Mechanisms Underlying Beneficial Effects on Risk Markers for Cardiometabolic Health. Adv Nutr 2023; 14:1523-1537. [PMID: 37684008 PMCID: PMC10721525 DOI: 10.1016/j.advnut.2023.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/20/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Lifestyle modifications that include adherence to healthy dietary patterns that are low in saturated fat have been associated with reduced risk for cardiovascular disease, the leading cause of death globally. Whole-milk dairy foods, including milk, cheese, and yogurt, are leading sources of saturated fat in the diet. Dietary guidelines around the world recommend the consumption of low-fat and fat-free dairy foods to obtain overall healthy dietary patterns that help meet nutrient recommendations while keeping within recommended calorie and saturated fat limitations. A body of observational and clinical evidence indicates, however, that whole-milk dairy food consumption, despite saturated fat content, does not increase the risk for cardiovascular disease. This review describes the proposed biological mechanisms underlying inverse associations between whole-milk dairy food consumption and risk markers for cardiometabolic health, such as altered lipid digestion, absorption, and metabolism; influence on the gut microflora; and regulation of oxidative stress and inflammatory responses. The dairy food matrix, a term used to describe how the macronutrients and micronutrients and other bioactive components of dairy foods are differentially packaged and compartmentalized among fluid milk, cheese, and yogurt, may dictate how each affects cardiovascular risk. Current evidence indicates consideration of dairy foods as complex food matrices, rather than delivery systems for isolated nutrients, such as saturated fatty acids, is warranted.
Collapse
Affiliation(s)
| | - Beth H Rice Bradley
- Department of Nutrition and Food Sciences, University of Vermont, Burlington, VT, United States.
| |
Collapse
|
8
|
Zong Y, Wang X, Wang J. Research progress on the correlation between gut microbiota and preeclampsia: microbiome changes, mechanisms and treatments. Front Cell Infect Microbiol 2023; 13:1256940. [PMID: 38029244 PMCID: PMC10644267 DOI: 10.3389/fcimb.2023.1256940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Preeclampsia is a specific disease during pregnancy and is a significant factor in the increased mortality in perinatal women. Gut microbiota, an intricate and abundant microbial community in the digestive tract, is crucial for host metabolism, immunity, and nutrient absorption. The onset and progression of preeclampsia are closely correlated with the changes in maternal gut microbiota. Research purpose was to compile the existing bits of present scientific data and to close the gap in the knowledge of changes in gut microbiota in preeclampsia and their association with preeclampsia. We searched studies from two electronic databases (PubMed and Web of Science) included from 2014 to 2023. This review is divided into three parts. In the first part, the author elaborates longitudinal differences of maternal gut microbiota during different gestation periods. In the second part, we discuss that gut microbiota can lead to the occurrence of preeclampsia by systemic immune response, influencing the release of active peptides, short-chain fatty acids, trimethylamine-N-oxide (TMAO) and other metabolites, vascular factors and Microorganism-immune axis. In the third part, we proposed that a high-fiber diet combined with drugs and microecological regulators may be therapeutic in enhancing or preventing the emergence and evolution of preeclampsia, which needs further exploration. Although the pathogenesis of preeclampsia is still nebulous and there is no clear and valid clinical treatment, our study provides new ideas for the pathogenesis, prevention and treatment of preeclampsia.
Collapse
Affiliation(s)
- Yichi Zong
- Department of Obstetrics and Gynecology, Shengjing Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuguang Wang
- Sun Yatsen University Cancer Center, Guangzhou, Guangdong, China
| | - Jun Wang
- Department of Obstetrics and Gynecology, Shengjing Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Colletti A, Pellizzato M, Cicero AF. The Possible Role of Probiotic Supplementation in Inflammation: A Narrative Review. Microorganisms 2023; 11:2160. [PMID: 37764004 PMCID: PMC10535592 DOI: 10.3390/microorganisms11092160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
The fine balance between symbiotic and potentially opportunistic and/or pathogenic microorganisms can undergo quantitative alterations, which, when associated with low intestinal biodiversity, could be responsible for the development of gut inflammation and the so-called "intestinal dysbiosis". This condition is characterized by the disbalance of a fine synergistic mechanism involving the mucosal barrier, the intestinal neuroendocrine system, and the immune system that results in an acute inflammatory response induced by different causes, including viral or bacterial infections of the digestive tract. More frequently, however, dysbiosis is induced slowly and subtly by subliminal causal factors, resulting in a chronic condition related to different diseases affecting the digestive tract and other organs and apparatuses. Studies on animal models, together with studies on humans, highlight the significant role of the gut microbiota and microbiome in the occurrence of inflammatory conditions such as metabolic syndrome and cardiovascular diseases (CVDs); neurodegenerative, urologic, skin, liver, and kidney pathologies; and premature aging. The blood translocation of bacterial fragments has been found to be one of the processes linked to gut dysbiosis and responsible for the possible occurrence of "metabolic endotoxemia" and systemic inflammation, associated with an increased risk of oxidative stress and related diseases. In this context, supplementation with different probiotic strains has been shown to restore gut eubiosis, especially if administered in long-term treatments. The aim of this review is to describe the anti-inflammatory effects of specific probiotic strains observed in clinical trials and the respective indications, highlighting the differences in efficacy depending on strain, formulation, time and duration of treatment, and dosage used.
Collapse
Affiliation(s)
- Alessandro Colletti
- Department of Science and Drug Technology, University of Turin, 10124 Turin, Italy
- Italian Society of Nutraceutical Formulators (SIFNut), 31033 Treviso, Italy
| | - Marzia Pellizzato
- Italian Society of Nutraceutical Formulators (SIFNut), 31033 Treviso, Italy
| | - Arrigo Francesco Cicero
- Medical and Surgical Sciences Department, University of Bologna, 40126 Bologna, Italy;
- IRCCS AOUBO, 40138 Bologna, Italy
| |
Collapse
|
10
|
Yang Z, Lin S, Liu Y, Song Z, Ge Z, Fan Y, Chen L, Bi Y, Zhao Z, Wang X, Wang Y, Mao J. Targeting intestinal microecology: potential intervention strategies of traditional Chinese medicine for managing hypertension. Front Pharmacol 2023; 14:1171119. [PMID: 37324472 PMCID: PMC10264781 DOI: 10.3389/fphar.2023.1171119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Hypertension has become one of the major public health problems in the world. At present, the pathogenesis of hypertension has still not been completely elucidated. In recent years, an increasing evidence shows that intestinal microecology is closely related to hypertension, which provides a new thinking for the prevention and treatment of hypertension. Traditional Chinese medicine (TCM) has unique advantages in the treatment of hypertension. Taking intestinal microecology as the target, it is possible to interpreting the scientific connotation of TCM prevention and treatment of hypertension by updating the treatment concept of hypertension, so as to improve the therapeutic effect. In our study, the clinical evidence for TCM treatment of hypertension was systematicly summarized. And the relationship among TCM, intestinal microecology and hypertension was analyzed. In addition, the methods by which TCM regulates intestinal microecology to prevent and treat hypertension were presented, to provide new research ideas for prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanshan Lin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yangxi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhihui Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhao Ge
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yujian Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lu Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingfei Bi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhiqiang Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
11
|
Pinjari OF, Jones GH, Vecera CM, Smith K, Barrera A, Machado-Vieira R. The Role of the Gut Microbiome in Bipolar Disorder and its Common Comorbidities. Front Neuroendocrinol 2023:101078. [PMID: 37220806 DOI: 10.1016/j.yfrne.2023.101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
Bipolar disorder is a decidedly heterogeneous and multifactorial disease, with significant psychosocial and medical disease burden. Much difficulty has been encountered in developing novel therapeutics and objective biomarkers for clinical use in this population. In that regard, gut-microbial homeostasis appears to modulate several key pathways relevant to a variety of psychiatric, metabolic, and inflammatory disorders. Microbial impact on immune, endocrine, endocannabinoid, kynurenine, and other pathways are discussed throughout this review. Emphasis is placed on this system's relevance to current pharmacology, diet, and comorbid illness in bipolar disorder. Despite the high level of optimism promoted in many reviews on this topic, substantial obstacles exist before any microbiome-related findings can provide meaningful clinical utility. Beyond a comprehensive overview of pathophysiology, this review hopes to highlight several key areas where progress is needed. As well, novel microbiome-associated suggestions are presented for future research.
Collapse
Affiliation(s)
- Omar F Pinjari
- Wayne Scott (J-IV) Unit of Correctional Managed Care, University of Texas Medical Branch.
| | - Gregory H Jones
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Courtney M Vecera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Kacy Smith
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Anita Barrera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Rodrigo Machado-Vieira
- Wayne Scott (J-IV) Unit of Correctional Managed Care, University of Texas Medical Branch.
| |
Collapse
|
12
|
Zarezadeh M, Musazadeh V, Ghalichi F, Kavyani Z, Nasernia R, Parang M, Jamilian P, Jamilian P, Fakhr L, Ostadrahimi A, Mekary RA. Effects of probiotics supplementation on blood pressure: An umbrella meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 2023; 33:275-286. [PMID: 36599781 DOI: 10.1016/j.numecd.2022.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022]
Abstract
AIMS Several meta-analyses have revealed that probiotics could lower blood pressure (BP), but the findings were inconsistent. In this regard, an umbrella meta-analysis was carried out to provide a more accurate estimate of the overall impacts of probiotics supplementation on BP. DATA SYNTHESIS We searched the following international databases till November 2021: PubMed, Scopus, EMBASE, Web of Science, and Google Scholar. A random-effects model was applied to evaluate the effects of probiotics on BP. Sensitivity analysis was performed by using the leave-one-out method. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) was used to evaluate the certainty of evidence. Pooled effect size of 14 meta-analyses with 15,494 participants indicated significant decreases in both systolic (Weighted mean difference (WMD) = -1.96 mmHg; 95% confidence interval (CI): -2.78, -1.14, p < 0.001, and standardized mean difference (SMD) = -2.62; 95% CI: -4.96, -0.28, p < 0.001) and diastolic BP (WMD = -1.28 mmHg; 95% CI: -1.76, -0.79, p < 0.001, and SMD = -0.60 mmHg; 95% CI: -1.08, -0.12, p = 0.014) following probiotics supplementation. Greater effects on SBP were revealed in trials with a mean age of >50 years and the duration of intervention ≤10 weeks. DBP was also more reduced in studies with a dosage of ≥1010 colony forming unit (CFU), and SBP was decreased in patients with hypertension or diabetes analyzing WMD. CONCLUSION The present umbrella meta-analysis suggests probiotics supplementation to improve BP and claims that probiotics could be used as a complementary therapy for controlling high BP. PROSPERO ID CRD42022306560.
Collapse
Affiliation(s)
- Meysam Zarezadeh
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vali Musazadeh
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Ghalichi
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeynab Kavyani
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Romina Nasernia
- Science and Engineering of Food Industry, Islamic Azad University of Qazvin, Qazvin, Iran
| | - Maryam Parang
- Department of Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Parmida Jamilian
- School of Pharmacy and Bio Engineering, Keele University, Staffordshire, UK
| | - Parsa Jamilian
- Keele University School of Medicine, Keele University, Staffordshire, UK
| | - Laleh Fakhr
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Rania A Mekary
- School of Pharmacy, MCPHS University, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Zhao T, Zhang L, Zhou N, Sun D, Xie J, Xu S. Long-term use of probiotics for the management of office and ambulatory blood pressure: A systematic review and meta-analysis of randomized, controlled trials. Food Sci Nutr 2023; 11:101-113. [PMID: 36655084 PMCID: PMC9834877 DOI: 10.1002/fsn3.3069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 01/21/2023] Open
Abstract
Previous studies showed a controversial result on the relationship between probiotics treatment duration and blood pressure (BP). The present meta-analysis is performed to summarize the effects of long-term (≥8 weeks) use of probiotics on office and ambulatory BP using combined evidence from randomized, controlled trials. We searched PubMed, Embase, Cochrane library, and the ClinicalTrials.gov till January, 2021 to identify eligible articles. Primary outcomes were changes in office BP. In the presence of heterogeneity, a random-effects model was used to calculate the combined treatment effect. Begg's funnel plots and Egger's regression test were used to assess the publication bias. Meta-analysis of 26 trials in 1624 participants demonstrated that probiotic consumption significantly decreased office systolic BP by 2.18 mmHg (95% confidence interval [CI], -3.41 to -0.94 mmHg) and diastolic BP by 1.07 mmHg (95% CI, -1.72 to -0.41 mmHg). The analysis on ambulatory BP from three trials showed a similar reduction by -2.35/-1.61 mmHg (p ≤ .052). Subgroup analysis in hypertensive and diabetic patients showed a significant reduction in systolic and diastolic BP (p ≤ .02). The reductions in diabetic and hypertensive patients were comparatively larger than nondiabetic and normotensive patients (p ≥ .052). With the increase of age, baseline body mass index (BMI), treatment duration, and systolic BP, the effects of probiotics on BP did not increase significantly (p trend ≥ .18). The present meta-analysis suggests a beneficial effect of probiotics on BP by a modest degree, especially in the diabetes mellitus and hypertension. Prolonging the treatment duration could not improve the antihypertensive effect.
Collapse
Affiliation(s)
- Tian‐Xue Zhao
- Department of EndocrinologyAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Li Zhang
- Geriatric Medicine CenterDepartment of Geriatric MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina
| | - Ning Zhou
- Geriatric Medicine CenterDepartment of Geriatric MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina
| | - Dong‐Sheng Sun
- Geriatric Medicine CenterDepartment of Geriatric MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina
| | - Jian‐Hong Xie
- Geriatric Medicine CenterDepartment of Geriatric MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina
| | - Shao‐Kun Xu
- Geriatric Medicine CenterDepartment of Geriatric MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)HangzhouZhejiangChina
| |
Collapse
|
14
|
Liu XY, Li J, Zhang Y, Fan L, Xia Y, Wu Y, Chen J, Zhao X, Gao Q, Xu B, Nie C, Li Z, Tong A, Wang W, Cai J. Kidney microbiota dysbiosis contributes to the development of hypertension. Gut Microbes 2022; 14:2143220. [PMID: 36369946 PMCID: PMC9662196 DOI: 10.1080/19490976.2022.2143220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Gut microbiota dysbiosis promotes metabolic syndromes (e.g., hypertension); however, the patterns that drive hypertensive pathology and could be targeted for therapeutic intervention are unclear. We hypothesized that gut microbes might translocate to the kidney to trigger hypertension. We aimed to uncover their method of colonization, and thereby how to maintain blood pressure homeostasis. Using combined approaches based on fluorescence in situ hybridization (FISH) and immunofluorescence staining, electron microscopy analysis, bacterial cultures, species identification, and RNA-sequencing-based meta-transcriptomics, we first demonstrated the presence of bacteria within the kidney of spontaneously hypertensive rats (SHRs) and its normotensive counterpart, Wistar-Kyoto rats (WKYs), and patients with hypertension. Translocated renal bacteria were coated with secretory IgA (sIgA) or remained dormant in the L-form. Klebsiella pneumoniae (K.pn) was identified in the kidneys of germ-free (GF) mice following intestinal transplantation, which suggested an influx of gut bacteria into the kidneys. Renal bacterial taxa and their function are associated with hypertension. Hypertensive hosts showed increased richness in the pathobionts of their kidneys, which were partly derived from the gastrointestinal tract. We also demonstrated the indispensable role of bacterial IgA proteases in the translocation of live microbes. Furthermore, Tartary buckwheat dietary intervention reduced blood pressure and modulated the core renal flora-host ecosystem to near-normal states. Taken together, the unique patterns of viable and dormant bacteria in the kidney provide insight into the pathogenesis of non-communicable chronic diseases and cardiometabolic diseases (e.g., hypertension), and may lead to potential novel microbiota-targeted dietary therapies.
Collapse
Affiliation(s)
- Xin-Yu Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,CONTACT Xin-Yu Liu State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Li
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yamei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital &Clinical Medical College of Chengdu University, Chengdu, P.R. China,School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Luyun Fan
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanli Xia
- Clinical Genetics Laboratory, Affiliated Hospital &Clinical Medical College of Chengdu University, Chengdu, P.R. China,School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yongyang Wu
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, China
| | - Junru Chen
- Reproductive and Genetic Hospital of CITIC‐Xiangya, Changsha, China
| | - Xinyu Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiannan Gao
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing Xu
- Department of Proctology, University of Chinese Academy of Sciences-Shenzhen Hospital (Guang Ming), Shenzhen, China
| | - Chunlai Nie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjie Wang
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Cai
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Jun Cai Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| |
Collapse
|
15
|
Cohen SS, Bylsma LC, Movva N, Alexander DD. Theoretical attributable risk analysis and Disability Adjusted Life Years (DALYs) based on increased dairy consumption. BMC Public Health 2022; 22:1625. [PMID: 36030208 PMCID: PMC9420283 DOI: 10.1186/s12889-022-14042-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Identification of modifiable risk factors that may impact chronic disease risk is critical to public health. Our study objective was to conduct a theoretical population attributable risk analysis to estimate the burden of disease from low dairy intake and to estimate the impact of increased dairy intake on United States (US)-based disability adjusted life years (DALYs). METHODS We conducted a comprehensive literature review to identify statistically significant summary relative risk estimates (SRREs) from recent meta-analyses of dairy consumption and key chronic disease outcomes. The SRREs were applied to preventive fractions using a range of categories (low to high) for population consumption of dairy products. The preventive fraction estimates were then applied to the number of DALYs for each health outcome in the US based on 2019 WHO estimates. The population attributable risk proportion estimates were calculated using the inverse of the SRRE from each meta-analysis using the same range of categories of consumption. These values were subsequently applied to the DALYs estimates to estimate the theoretical burden of disease attributable to low dairy intake. RESULTS Statistically significant SRREs were identified in recent meta-analyses of total dairy consumption in relation to breast cancer, colorectal cancer, cardiovascular disease (CVD), type 2 diabetes (T2D), stroke, and hypertension. In this theoretical analysis, nearly 850,000 DALYs (or 5.0% of estimated years of healthy life lost) due to CVD and 200,000 DALYs (4.5%) due to T2D may be prevented by increased dairy consumption. Approximately 100,000 DALYs due to breast cancer (7.5%) and approximately 120,000 DALYs (8.5%) due to colorectal cancer may be prevented by high dairy intake. The numbers of DALYs for stroke and hypertension that may be prevented by increased dairy consumption were approximately 210,000 (6.0%) and 74,000 (5.5%), respectively. CONCLUSIONS Consumption of dairy products has been associated with decreased risk of multiple chronic diseases of significant public health importance. The burden of disease that may potentially be prevented by increasing dairy consumption is substantial, and population-wide improvement in meeting recommended daily dairy intake goals could have a notable public health impact. However, this analysis is theoretical, and thus additional studies providing empirical evidence are needed to further clarify potential relationships between dairy intake and various health outcomes.
Collapse
Affiliation(s)
- Sarah S Cohen
- EpidStrategies, a division of ToxStrategies, Inc., 1249 Kildaire Farm Road #134, Cary, NC, 27511, USA.
| | - Lauren C Bylsma
- EpidStrategies, a division of ToxStrategies, Inc., 1249 Kildaire Farm Road #134, Cary, NC, 27511, USA
| | - Naimisha Movva
- EpidStrategies, a division of ToxStrategies, Inc., 1249 Kildaire Farm Road #134, Cary, NC, 27511, USA
| | | |
Collapse
|
16
|
Liang T, Xie X, Wu L, Li L, Yang L, Gao H, Deng Z, Zhang X, Chen X, Zhang J, Ding Y, Wu Q. Comparative analysis of the efficacies of probiotic supplementation and glucose-lowering drugs for the treatment of type 2 diabetes: A systematic review and meta-analysis. Front Nutr 2022; 9:825897. [PMID: 35923194 PMCID: PMC9339904 DOI: 10.3389/fnut.2022.825897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this systematic review and meta-analysis was to evaluate the effects of probiotics and glucose-lowering drugs (thiazolidinedione [TZD], glucagon-like pep-tide-1 receptor agonists [GLP-1 RA], dipeptidyl peptidase IV inhibitors, and sodium glucose co-transporter 2 inhibitors [SGLT-2i]) in patients with type 2 diabetes from randomized con-trolled trials (RCTs). The PubMed, Web of science, Embase, and Cochrane Library databases were searched on the treatment effects of probiotics and glucose-lowering drugs on glycemia, lipids, and blood pressure metabolism published between Jan 2015 and April 2021. We performed meta-analyses using the random-effects model. We included 25 RCTs (2,843 participants). Overall, GLP-1RA, SGLT-2i, and TZD significantly reduce fasting blood sugar (FBS) and glycated hemoglobin (HbA1c), whereas GLP-1 RA increased the risk of hypoglycaemia. Multispecies probiotics decrease FBS, total cholesterol (TC), and systolic and diastolic blood pressure (SBP, DBP). Moreover, subgroup analyses indicated that participants aged >55 years, BMI ≥30 kg/m2, longer duration of intervention, and subjects from Eastern countries, showed significantly higher reduction in FBS and HbA1c, TC, TG and SBP. This meta-analysis revealed that including multiple probiotic rather than glucose-lowering drugs might be more beneficial regarding T2D prevention who suffering from simultaneously hyperglycemia, hypercholesterolemia, and hypertension.
Collapse
Affiliation(s)
- Tingting Liang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lei Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Longyan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lingshuang Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - He Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhenshan Deng
- College of Life Sciences, Yan'an University, Yan'an, China
| | | | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
17
|
Kumar M, Karthika S, Anjitha N, Varalakshmi P, Ashokkumar B. Screening for probiotic attributes of lactic acid bacteria isolated from human milk and evaluation of their anti-diabetic potentials. FOOD BIOTECHNOL 2022. [DOI: 10.1080/08905436.2022.2092494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Manoj Kumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Sukumaran Karthika
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | | | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | | |
Collapse
|
18
|
Gaundal L, Myhrstad MCW, Rud I, Gjøvaag T, Byfuglien MG, Retterstøl K, Holven KB, Ulven SM, Telle-Hansen VH. Gut microbiota is associated with dietary intake and metabolic markers in healthy individuals. Food Nutr Res 2022; 66:8580. [PMID: 35844956 PMCID: PMC9250133 DOI: 10.29219/fnr.v66.8580] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/18/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022] Open
Abstract
Background Metabolic diseases have been related to gut microbiota, and new knowledge indicates that diet impacts host metabolism through the gut microbiota. Identifying specific gut bacteria associated with both diet and metabolic risk markers may be a potential strategy for future dietary disease prevention. However, studies investigating the association between the gut microbiota, diet, and metabolic markers in healthy individuals are scarce. Objective We explored the relationship between a panel of gut bacteria, dietary intake, and metabolic and anthropometric markers in healthy adults. Design Forty-nine volunteers were included in this cross-sectional study. Measures of glucose, serum triglyceride, total cholesterol, hemoglobin A1c (HbA1c), blood pressure (BP), and body mass index (BMI) were collected after an overnight fast, in addition to fecal samples for gut microbiota analyzes using a targeted approach with a panel of 48 bacterial DNA probes and assessment of dietary intake by a Food Frequency Questionnaire (FFQ). Correlations between gut bacteria, dietary intake, and metabolic and anthropometric markers were assessed by Pearson’s correlation. Gut bacteria varying according to dietary intake and metabolic markers were assessed by a linear regression model and adjusted for age, sex, and BMI. Results Of the 48 gut bacteria measured, 24 and 16 bacteria correlated significantly with dietary intake and metabolic and/or anthropometric markers, respectively. Gut bacteria including Alistipes, Lactobacillus spp., and Bacteroides stercoris differed according to the intake of the food components, fiber, sodium, saturated fatty acids, and dietary indices, and metabolic markers (BP and total cholesterol) after adjustments. Notably, Bacteroides stercoris correlated positively with the intake of fiber, grain products, and vegetables, and higher Bacteroides stercoris abundance was associated with higher adherence to Healthy Nordic Food Index (HNFI) and lower diastolic BP after adjustment. Conclusion Our findings highlight the relationship between the gut microbiota, diet, and metabolic markers in healthy individuals. Further investigations are needed to address whether these findings are causally linked and whether targeting these gut bacteria can prevent metabolic diseases.
Collapse
Affiliation(s)
- Line Gaundal
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Mari C. W. Myhrstad
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Ida Rud
- Nofima AS (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| | - Terje Gjøvaag
- Department of Occupational Therapy, Prosthetics and Orthotics, Oslo Metropolitan University, Oslo, Norway
| | | | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, Oslo, Norway
- The Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Kirsten B. Holven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, Oslo, Norway
- The Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Stine M. Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, Oslo, Norway
| | - Vibeke H. Telle-Hansen
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
- Vibeke H. Telle-Hansen, Faculty of Health Sciences, Oslo Metropolitan University, Post box 4, St. Olavsplass, 0130 Oslo, Norway.
| |
Collapse
|
19
|
Rul F, Béra-Maillet C, Champomier-Vergès MC, El-Mecherfi KE, Foligné B, Michalski MC, Milenkovic D, Savary-Auzeloux I. Underlying evidence for the health benefits of fermented foods in humans. Food Funct 2022; 13:4804-4824. [PMID: 35384948 DOI: 10.1039/d1fo03989j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fermented foods (FFs) have been a part of our diets for millennia and comprise highly diverse products obtained from plants and animals all over the world. Historically, fermentation has been used to preserve food and render certain raw materials edible. As our food systems evolve towards more sustainability, the health benefits of FFs have been increasingly touted. Fermentation generates new/transformed bioactive compounds that may occur in association with probiotic bacteria. The result can be specific, advantageous functional properties. Yet, when considering the body of human studies on the topic, whether observational or experimental, it is rare to come across findings supporting the above assertion. Certainly, results are lacking to confirm the widespread idea that FFs have general health benefits. There are some exceptions, such as in the case of lactose degradation via fermentation in individuals who are lactose intolerant; the impact of select fermented dairy products on insulin sensitivity; or the benefits of alcohol consumption. However, in other situations, the results fail to categorically indicate whether FFs have neutral, beneficial, or detrimental effects on human health. This review tackles this apparent incongruity by showing why it is complex to test the health effects of FFs and what can be done to improve knowledge in this field.
Collapse
Affiliation(s)
- F Rul
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - C Béra-Maillet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - M C Champomier-Vergès
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - K E El-Mecherfi
- INRAE, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France
| | - B Foligné
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - M C Michalski
- Univ-Lyon, CarMeN Laboratory, Inserm, U1060, INRAE, UMR1397, Université Claude Bernard Lyon 1, 69310 Pierre Bénite, France
| | - D Milenkovic
- Université Clermont Auvergne, INRAE, UMR1019, Unité Nutrition Humaine, Clermont-Ferrand, France. .,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - I Savary-Auzeloux
- Université Clermont Auvergne, INRAE, UMR1019, Unité Nutrition Humaine, Clermont-Ferrand, France.
| |
Collapse
|
20
|
Michels N, Zouiouich S, Vanderbauwhede B, Vanacker J, Indave Ruiz BI, Huybrechts I. Human microbiome and metabolic health: An overview of systematic reviews. Obes Rev 2022; 23:e13409. [PMID: 34978141 DOI: 10.1111/obr.13409] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/05/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
To summarize the microbiome's role in metabolic disorders (insulin resistance, hyperglycemia, type 2 diabetes, obesity, hyperlipidemia, hypertension, nonalcoholic fatty liver disease [NAFLD], and metabolic syndrome), systematic reviews on observational or interventional studies (prebiotics/probiotics/synbiotics/transplant) were searched in MEDLINE and Embase until September 2020. The 87 selected systematic reviews included 57 meta-analyses. Methodological quality (AMSTAR2) was moderate in 62%, 12% low, and 26% critically low. Observational studies on obesity (10 reviews) reported less gut bacterial diversity with higher Fusobacterium, Lactobacillus reuteri, Bacteroides fragilis, and Staphylococcus aureus, whereas lower Methanobrevibacter, Lactobacillus plantarum, Akkermansia muciniphila, and Bifidobacterium animalis compared with nonobese. For diabetes (n = 1), the same was found for Fusobacterium and A. muciniphila, whereas higher Ruminococcus and lower Faecalibacterium, Roseburia, Bacteroides vulgatus, and several Bifidobacterium spp. For NAFLD (n = 2), lower Firmicutes, Rikenellaceae, Ruminococcaceae, whereas higher Escherichia and Lactobacillus were detected. Discriminating bacteria overlapped between metabolic disorders, those with high abundance being often involved in inflammation, whereas those with low abundance being used as probiotics. Meta-analyses (n = 54) on interventional studies reported 522 associations: 54% was statistically significant with intermediate effect size and moderate between-study heterogeneity. Meta-evidence was highest for probiotics and lowest for fecal transplant. Future avenues include better methodological quality/comparability, testing functional differences, new intervention strategies, and considerating other body habitats and kingdoms.
Collapse
Affiliation(s)
- Nathalie Michels
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Semi Zouiouich
- International Agency for Research on Cancer, Lyon, France
| | - Bert Vanderbauwhede
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Judith Vanacker
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
21
|
Fan L, Ren J, Chen Y, Wang Y, Guo Z, Bu P, Yang J, Ma W, Zhu B, Zhao Y, Cai J. Effect of fecal microbiota transplantation on primary hypertension and the underlying mechanism of gut microbiome restoration: protocol of a randomized, blinded, placebo-controlled study. Trials 2022; 23:178. [PMID: 35209934 PMCID: PMC8867679 DOI: 10.1186/s13063-022-06086-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 02/05/2022] [Indexed: 12/15/2022] Open
Abstract
Background Hypertension is currently the leading modifiable cause of global morbidity and mortality, leading to substantial health and financial burdens. Although multiple studies of management models and innovative therapeutic strategies for hypertension have been conducted, there are still gaps in the field, with a poor control rate reflecting a lack of novel, effective, clinically translated medication or intervention options. Recent animal and human studies repeatedly confirmed a link between the microbiota and hypertension. Of note is our previous study establishing a cause-and-effect relationship between the gut microbiota and blood pressure elevation. A hypothesis of gut microbiota intervention for treating hypertension is thus postulated, and fecal microbiota transplantation (FMT) from healthy donors was performed. Methods A multicenter, randomized, placebo-controlled, blinded clinical trial will be performed in 120 grade 1 hypertensive patients for 3 months. All recruited patients will be randomly assigned in a 1:1 ratio to take oral FMT capsules or placebo capsules on day 1, day 7, and day 14 and will be followed up on day 30, day 60, and day 90. The primary outcome is the change in office systolic blood pressure from baseline to day 30. The main secondary outcomes are BP indicators, including changes in systolic and diastolic blood pressure from office and 24-h ambulatory blood pressure monitoring; assessments of ankle-branchial index and pulse wave velocity; profiling of fecal microbial composition and function; profiling of fecal and serum metabolome; changes in levels of blood glucose, blood lipids, and body mass index; and assessment of adverse events as a measure of safety. Discussion Expanding upon our previous research on the role of the gut microbiota in the pathogenesis of hypertension, this study serves as a clinical translation advancement and explores the potential of fecal microbiota transplantation for treating hypertension. The underlying mechanisms, particularly the roles of specific microorganisms or their postbiotics in blood pressure amelioration, will also be investigated via multiple approaches, such as metagenomic sequencing and metabolomic profiling. Trial registration ClinicalTrials.govNCT04406129. Registered on May 28, 2020
Collapse
Affiliation(s)
- Luyun Fan
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Ren
- Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| | - Youren Chen
- The Second Affiliated Hospital of Shantou University, Shantou, Guangdong, China
| | - Yang Wang
- Medical Research & Biometrics Center, National Center for Cardiovascular Diseases, Fuwai Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Zihong Guo
- Fuwai Yunnan Cardiovascular Hospital, Kunming, Yunnan, China
| | - Peili Bu
- Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jinfeng Yang
- The People's Hospital of Ji Xian District, Tianjin, China
| | - Wenjun Ma
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingpo Zhu
- Southern University of Science and Technology Hospital, Shenzhen, China
| | - Yanyan Zhao
- Medical Research & Biometrics Center, National Center for Cardiovascular Diseases, Fuwai Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Cai
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
22
|
Giosuè A, Calabrese I, Vitale M, Riccardi G, Vaccaro O. Consumption of Dairy Foods and Cardiovascular Disease: A Systematic Review. Nutrients 2022; 14:831. [PMID: 35215479 PMCID: PMC8875110 DOI: 10.3390/nu14040831] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/22/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Limited consumption of dairy foods and use of low-fat products is recommended for cardiovascular (CV) prevention; however, other features besides fat content modulate their metabolic effects. We analyze updated evidence on the relationship of different dairy products (low/full-fat dairy, milk, cheese, yogurt) with CVD by reviewing meta-analyses of cohort studies and individual prospective cohort studies with CV hard endpoints (CVD/CHD incidence/mortality), together with meta-analyses of randomized controlled trials exploring the effect of dairy on major CV risk factors. The analyses provide evidence that moderate dairy consumption (up to 200 g/day, globally) has no detrimental effects on CV health and that their effect depends more on the food type (cheese, yogurt, milk) than on the fat content. These data expand current knowledge and may inform revision of current guidelines for CVD prevention.
Collapse
Affiliation(s)
- Annalisa Giosuè
- Department of Clinical Medicine and Surgery, “Federico II” University of Naples, 80131 Naples, Italy; (A.G.); (I.C.); (M.V.); (G.R.)
| | - Ilaria Calabrese
- Department of Clinical Medicine and Surgery, “Federico II” University of Naples, 80131 Naples, Italy; (A.G.); (I.C.); (M.V.); (G.R.)
| | - Marilena Vitale
- Department of Clinical Medicine and Surgery, “Federico II” University of Naples, 80131 Naples, Italy; (A.G.); (I.C.); (M.V.); (G.R.)
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, “Federico II” University of Naples, 80131 Naples, Italy; (A.G.); (I.C.); (M.V.); (G.R.)
| | - Olga Vaccaro
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy
| |
Collapse
|
23
|
Sato K. Metabolic Fate and Bioavailability of Food-Derived Peptides: Are Normal Peptides Passed through the Intestinal Layer To Exert Biological Effects via Proposed Mechanisms? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1461-1466. [PMID: 35104135 DOI: 10.1021/acs.jafc.1c07438] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Previous studies have demonstrated that the oral administration of food-derived peptides exerts beneficial effects on human health beyond conventional nutritional functions. In vitro studies have suggested potential mechanisms and active peptides. However, the levels of most food-derived peptides in the body are far lower than the concentrations used in the in vitro assays, with some exceptions. These facts suggest that food-derived peptides might be metabolized into active compounds or function via different mechanisms than the proposed mechanisms. This work briefly discusses the perspectives related to the metabolites of the food-derived peptides in the body.
Collapse
Affiliation(s)
- Kenji Sato
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto 606 8502, Japan
| |
Collapse
|
24
|
Ramezani M, Sajadi Hezaveh Z. The effect of synbiotic supplementation on thyroid hormones, blood pressure, depression and quality of life in hypothyroid patients: A study protocol for a randomized double-blind placebo controlled clinical trial. Clin Nutr ESPEN 2022; 48:472-478. [DOI: 10.1016/j.clnesp.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 11/28/2022]
|
25
|
Abstract
Milk proteins are known for their high nutritional quality, based on their essential amino acid composition, and they exhibit a wide range of bioactivities, including satiety, antimicrobial, mineral-binding, and anti-lipidemic properties. Because of their unique water solubility, milk proteins are readily separated into casein and whey fractions, which can be further fractionated into many individual proteins, including alpha-S1- and alpha-S2-caseins, beta-casein, and kappa-casein, and the whey proteins alpha-lactalbumin, lactoferrin, beta-lactoglobulin, and glycomacropeptide. Many of these proteins have unique bioactivities. Further, over the past 30 years, peptides that are encrypted in the primary amino acid sequences of proteins and released along with amino acids during digestion are increasingly recognized as biologically active protein metabolites that may have beneficial effects on human health. This review examines the current state of the science on the contribution of dairy proteins and their unique peptides and amino acids to human health.
Collapse
Affiliation(s)
| | - Donald K Layman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
26
|
Sharma S, Singh A, Sharma S, Kant A, Sevda S, Taherzadeh MJ, Garlapati VK. Functional foods as a formulation ingredients in beverages: technological advancements and constraints. Bioengineered 2021; 12:11055-11075. [PMID: 34783642 PMCID: PMC8810194 DOI: 10.1080/21655979.2021.2005992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
As a consequence of expanded science and technical research, the market perception of consumers has shifted from standard traditional to valuable foods, which are furthermore nutritional as well as healthier in today's world. This food concept, precisely referred to as functional, focuses on including probiotics, which enhance immune system activity, cognitive response, and overall health. This review primarily focuses on functional foods as functional additives in beverages and other food items that can regulate the human immune system and avert any possibility of contracting the infection. Many safety concerns must be resolved during their administration. Functional foods must have an adequate amount of specific probiotic strain(s) during their use and storage, as good viability is needed for optimum functionality of the probiotic. Thus, when developing novel functional food-based formulations, choosing a strain with strong technological properties is crucial. The present review focused on probiotics as an active ingredient in different beverage formulations and the exerting mechanism of action and fate of probiotics in the human body. Moreover, a comprehensive overview of the regulative and safety issues of probiotics-based foods and beverages formulations.
Collapse
Affiliation(s)
- Shagun Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Astha Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Swati Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Anil Kant
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Surajbhan Sevda
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| | | | - Vijay Kumar Garlapati
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| |
Collapse
|
27
|
Wu Y, Xu H, Tu X, Gao Z. The Role of Short-Chain Fatty Acids of Gut Microbiota Origin in Hypertension. Front Microbiol 2021; 12:730809. [PMID: 34650536 PMCID: PMC8506212 DOI: 10.3389/fmicb.2021.730809] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Hypertension is a significant risk factor for cardiovascular and cerebrovascular diseases, and its development involves multiple mechanisms. Gut microbiota has been reported to be closely linked to hypertension. Short-chain fatty acids (SCFAs)-the metabolites of gut microbiota-participate in hypertension development through various pathways, including specific receptors, immune system, autonomic nervous system, metabolic regulation and gene transcription. This article reviews the possible mechanisms of SCFAs in regulating blood pressure and the prospects of SCFAs as a target to prevent and treat hypertension.
Collapse
Affiliation(s)
- Yeshun Wu
- Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Hongqing Xu
- Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xiaoming Tu
- Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Zhenyan Gao
- Department of Cardiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
28
|
Higher yogurt intake is associated with lower blood pressure in hypertensive individuals: Cross-sectional findings from the Maine-Syracuse Longitudinal study. Int Dairy J 2021; 122. [PMID: 34483499 DOI: 10.1016/j.idairyj.2021.105159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Associations between fermented dairy products and blood pressure are unclear. The current study therefore examined the association between yogurt and blood pressure in hypertensive and non-hypertensive individuals. Cross-sectional analyses were undertaken on 915 community-dwelling adults from the Maine-Syracuse Longitudinal Study. Habitual yogurt consumption was measured using a food frequency questionnaire. The primary outcomes were systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), and pulse pressure. Secondary outcomes included BMI (kg m-2), total cholesterol (mg dL-1), glucose (mg dL-1), HDL (mg dL-1), LDL (mg dL-1), triglycerides (mg dL-1), and plasma homocysteine (μmol L-1). Multivariable regression analyses revealed significant inverse associations between yogurt and both SBP (p < 0.05) and MAP (p < 0.05) in hypertensive (n = 564) but not non-hypertensive participants (n = 351). Future observational and intervention studies should continue to focus on at-risk individuals to examine the potential benefits of yogurt.
Collapse
|
29
|
|
30
|
Gao J, Li X, Zhang G, Sadiq FA, Simal-Gandara J, Xiao J, Sang Y. Probiotics in the dairy industry-Advances and opportunities. Compr Rev Food Sci Food Saf 2021; 20:3937-3982. [PMID: 33938124 DOI: 10.1111/1541-4337.12755] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
The past two decades have witnessed a global surge in the application of probiotics as functional ingredients in food, animal feed, and pharmaceutical products. Among food industries, the dairy industry is the largest sector where probiotics are employed in a number of dairy products including sour/fermented milk, yogurt, cheese, butter/cream, ice cream, and infant formula. These probiotics are either used as starter culture alone or in combination with traditional starters, or incorporated into dairy products following fermentation, where their presence imparts many functional characteristics to the product (for instance, improved aroma, taste, and textural characteristics), in addition to conferring many health-promoting properties. However, there are still many challenges related to the stability and functionality of probiotics in dairy products. This review highlights the advances, opportunities, and challenges of application of probiotics in dairy industries. Benefits imparted by probiotics to dairy products including their role in physicochemical characteristics and nutritional properties (clinical and functional perspective) are also discussed. We transcend the traditional concept of the application of probiotics in dairy products and discuss paraprobiotics and postbiotics as a newly emerged concept in the field of probiotics in a particular relation to the dairy industry. Some potential applications of paraprobiotics and postbiotics in dairy products as functional ingredients for the development of functional dairy products with health-promoting properties are briefly elucidated.
Collapse
Affiliation(s)
- Jie Gao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiyu Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guohua Zhang
- School of Life Science, Shanxi University, Taiyuan, China
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
31
|
Zhang J, Tang Q, Zhu L. Could the Gut Microbiota Serve as a Therapeutic Target in Ischemic Stroke? EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:1391384. [PMID: 33959182 PMCID: PMC8075659 DOI: 10.1155/2021/1391384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/17/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023]
Abstract
The brain-gut axis is a relatively recent discovery of a two-way regulation system between the gut and brain, suggesting that the gut microbiota may be a promising targeted prevention and treatment strategy for patients with a high risk of acute cerebral ischemia/reperfusion injury. There are many risk factors for ischemic stroke, and many studies have shown that the gut microbiota affects the absorption and metabolism of the body, as well as the risk factors of stroke, such as blood pressure, blood glucose, blood lipids, and atherosclerosis, either directly or indirectly. Furthermore, the gut microbiota can affect the occurrence and prognosis of ischemic stroke by regulating risk factors or immune responses. Therefore, this study aimed to collect evidence of the interaction between gut microbiota and ischemic stroke, summarize the interaction mechanism between the two, and explore the gut microbiota as a new targeted prevention and treatment strategy for patients with high ischemic risk.
Collapse
Affiliation(s)
- Jiyao Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, Heilongjiang, China
| | - Qiang Tang
- Rehabilitation Center, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 411 Guogeli Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Luwen Zhu
- Rehabilitation Center, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 411 Guogeli Street, Nangang District, Harbin 150001, Heilongjiang, China
- Brain Function and Neurorehabilitation Laboratory, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 411 Guogeli Street, Nangang District, Harbin 150001, Heilongjiang, China
| |
Collapse
|
32
|
Fesseha H, Demlie T, Mathewos M, Eshetu E. Effect of Lactobacillus Species Probiotics on Growth Performance of Dual-Purpose Chicken. VETERINARY MEDICINE-RESEARCH AND REPORTS 2021; 12:75-83. [PMID: 33854957 PMCID: PMC8039195 DOI: 10.2147/vmrr.s300881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
Introduction In-feed probiotics are becoming attractive alternatives to antibiotics in the poultry industry due to the ever-growing strict prohibitions on antibiotic growth promoters (AGP) in animal production. Methods The study was conducted to investigate the effects of Lactobacillus paracaseis sparacasei and Lactobacillus rhamnosus on the growth performance of 120 day-olds randomly selected Sasso dual-purpose chicken. They were divided into four groups with two replicates per group and 15 chicks per replicate. The treatments were T1 (control), T2 (supplement diet with 4g probiotic), T3 (supplement diet with 2g probiotic), T4 (supplement diet with 1g probiotic). The experimental feeding trials were conducted after two weeks adaptation period. Results The present findings revealed that the chickens supplemented with Lactobacillus species probiotics during the first week of age have shown higher body weight than control (p < 0.05). The feed intake of week one of T2 and T3 were significantly higher (p< 0.05) than the T1 (control). However, there was no significant difference (p> 0.05) in feed intake in the 2nd, 3rd, 4th, and 5t h weeks of all treatment groups. The present result showed that there was a significant body weight gain (p< 0.05) in all probiotic fed groups than the control group. The highest body weight gain was observed in chickens found in the T4 treatment group. Whereas the body weight gains significantly higher and improved the feed conversion (p<0.05) in the T2 and T4 than the T1 (control). However, the feed conversion ratio was significantly influenced by probiotic inclusion in T3 as compared to the control group. Conclusion Overall, the results suggest that Lactobacillus paracaseis sparacasei and Lactobacillus rhamnosus have a positive effect on the growth performance of broilers.
Collapse
Affiliation(s)
- Haben Fesseha
- Department of Veterinary Surgery and Diagnostic Imaging, Wolaita Sodo University, School of Veterinary Medicine, Wolaita Sodo, Ethiopia
| | - Tigabu Demlie
- Department of Veterinary Clinical Laboratory Science, School of Veterinary Medicine, Wollo University, Dessie, Ethiopia
| | - Mesfin Mathewos
- Department of Veterinary Pathology, Wolaita Sodo University, School of Veterinary Medicine, Wolaita Sodo, Ethiopia
| | - Eyob Eshetu
- Department of Veterinary Parasitology, Wolaita Sodo University, School of Veterinary Medicine, Wolaita Sodo, Ethiopia
| |
Collapse
|
33
|
Nutraceuticals and blood pressure control: a European Society of Hypertension position document. J Hypertens 2021; 38:799-812. [PMID: 31977574 DOI: 10.1097/hjh.0000000000002353] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
: High-normal blood pressure (BP) is associated with an increased risk of cardiovascular disease, however the cost-benefit ratio of the use of antihypertensive treatment in these patients is not yet clear. Some dietary components and natural products seems to be able to significantly lower BP without significant side effects. The aim of this position document is to highlight which of these products have the most clinically significant antihypertensive action and wheter they could be suggested to patients with high-normal BP. Among foods, beetroot juice has the most covincing evidence of antihypertensive effect. Antioxidant-rich beverages (teas, coffee) could be considered. Among nutrients, magnesium, potassium and vitamin C supplements could improve BP. Among nonnutrient-nutraceuticals, soy isoflavones could be suggested in perimenopausal women, resveratrol in insulin-resistant patients, melatonin in study participants with night hypertension. In any case, the nutracutical approach has never to substitute the drug treatment, when needed.
Collapse
|
34
|
The effects of vitamin D3 supplementation on TGF-β and IL-17 serum levels in migraineurs: post hoc analysis of a randomized clinical trial. J Pharm Health Care Sci 2021; 7:9. [PMID: 33653409 PMCID: PMC7927391 DOI: 10.1186/s40780-021-00192-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Although the exact mechanism involved in migraine pathogenesis remained uncertain, and different researches have been developed to address the role of neuroinflammation and immune dysfunction. Therefore, considering the immune protective functions of vitamin D3, we aimed to investigate the effects of daily administration of 2000 IU D3 supplements on serum status of immune markers in migraine patients. METHODS AND MATERIALS Eighty episodic migraineurs who randomly assigned into two equal groups to receive either vitamin D3 2000 IU/d or placebo for 12-week were enrolled in this placebo-controlled double-blind trial included. Serum concentrations of transforming growth factor-beta (TGF-β) and interleukin (IL)-17 were evaluated at baseline and after the trial via the ELISA method. RESULTS Applying ANCOVA adjusted for baseline levels and confounding variables, it was found that the serum level of TGF-β was significantly higher in vitamin D group (adjusted mean:1665.50 ng/L) than the placebo group (1361.90 ng/L) after the experiment (P-value = 0.012); on the other hand, vitamin D prevented the increment in IL-17 serum level in the intervention group after the trial (adjusted mean:37.84 ng/L) comparing to the controls (adjusted mean:70.09 ng/L; P-value = 0.039). The Pearson correlation analysis revealed a significant positive correlation between changes in serum 25-hydroxy-vitamin D (25(OH)D) and TGF-β (r = - 0.306, P-value = 0.008). In contrast, no significant correlations were noted between serum 25(OH) D and IL-17 changes throughout the study. CONCLUSION Based on the results of this study, it was revealed that 12-week vitamin D3 supplementation (2000 IU/day) could enhance the Th17/Treg related cytokines balance in episodic migraineurs. Although these findings are promising, it is needed to be extended. TRIAL REGISTRATION The trial is registered in the Iranian registry of clinical trials (IRCT) at 11 July 2018, with IRCT code: IRCT20151128025267N6 ( https://www.irct.ir/trial/31246 ).
Collapse
|
35
|
Venkatakrishnan K, Chiu HF, Wang CK. Impact of functional foods and nutraceuticals on high blood pressure with a special focus on meta-analysis: review from a public health perspective. Food Funct 2021; 11:2792-2804. [PMID: 32248209 DOI: 10.1039/d0fo00357c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent times many researchers are expressing immense interest in nutraceuticals and functional foods for combating various diseases or abnormal conditions, especially against hypertension (HT). Persistent HT is medically referred to as chronic high blood pressure (BP) and considered to be one of the major risk factors for the deadliest diseases including cardiovascular disease (CVD) and cerebrovascular diseases. Hence HT poses a serious socio-economic burden worldwide, particularly to developing countries. The current treatment strategy for HT includes standard anti-hypertensive drugs, which are associated with many adverse effects and lower drug adherence rates. Therefore, an alternative or complementary natural therapy (functional foods or nutraceuticals or dietary supplements) would be the alternate choice along with a modified lifestyle pattern that might help to manage or combat HT and its related complications. During this review, the author would like to shed light on the basic science behind HT including pathophysiology and the impact of dietary salt on HT and the impact of various functional foods or nutraceuticals against HT in humans (meta-analysis and systemic review). This contribution gives a better idea (public health perspective) for choosing the best functional foods/nutraceuticals for the prevention, management or delaying the onset of HT and its associated conditions along with modified lifestyle patterns and standard anti-hypertensive drugs.
Collapse
Affiliation(s)
- Kamesh Venkatakrishnan
- School of Nutrition, Chung Shan Medical University, 110, Sec. 1, Jianguo North Road, Taichung City-40201, Taiwan, Republic of China.
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital Ministry of Health and Welfare, Taichung-40301, Taiwan, Republic of China
| | - Chin-Kun Wang
- School of Nutrition, Chung Shan Medical University, 110, Sec. 1, Jianguo North Road, Taichung City-40201, Taiwan, Republic of China.
| |
Collapse
|
36
|
Khor B, Snow M, Herrman E, Ray N, Mansukhani K, Patel KA, Said-Al-Naief N, Maier T, Machida CA. Interconnections Between the Oral and Gut Microbiomes: Reversal of Microbial Dysbiosis and the Balance Between Systemic Health and Disease. Microorganisms 2021; 9:496. [PMID: 33652903 PMCID: PMC7996936 DOI: 10.3390/microorganisms9030496] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The human microbiota represents a complex array of microbial species that influence the balance between the health and pathology of their surrounding environment. These microorganisms impart important biological benefits to their host, such as immune regulation and resistance to pathogen colonization. Dysbiosis of microbial communities in the gut and mouth precede many oral and systemic diseases such as cancer, autoimmune-related conditions, and inflammatory states, and can involve the breakdown of innate barriers, immune dysregulation, pro-inflammatory signaling, and molecular mimicry. Emerging evidence suggests that periodontitis-associated pathogens can translocate to distant sites to elicit severe local and systemic pathologies, which necessitates research into future therapies. Fecal microbiota transplantation, probiotics, prebiotics, and synbiotics represent current modes of treatment to reverse microbial dysbiosis through the introduction of health-related bacterial species and substrates. Furthermore, the emerging field of precision medicine has been shown to be an effective method in modulating host immune response through targeting molecular biomarkers and inflammatory mediators. Although connections between the human microbiome, immune system, and systemic disease are becoming more apparent, the complex interplay and future innovations in treatment modalities will become elucidated through continued research and cross-disciplinary collaboration.
Collapse
Affiliation(s)
- Brandon Khor
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Michael Snow
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Elisa Herrman
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Nicholas Ray
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Kunal Mansukhani
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Karan A. Patel
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Nasser Said-Al-Naief
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| | - Tom Maier
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| | - Curtis A. Machida
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| |
Collapse
|
37
|
Hadi A, Pourmasoumi M, Kazemi M, Najafgholizadeh A, Marx W. Efficacy of synbiotic interventions on blood pressure: a systematic review and meta-analysis of clinical trials. Crit Rev Food Sci Nutr 2021; 62:5582-5591. [PMID: 33612008 DOI: 10.1080/10408398.2021.1888278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE The present systematic review and meta-analysis aimed to evaluate the effect of synbiotic interventions on blood pressure levels in adults. METHODS A systematic literature search was conducted in the databases of MEDLINE, Scopus, Web of Science, and Cochrane through March 2020 to identify all randomized control trials (RCTs) investigating the effects of synbiotic interventions on blood pressure parameter, including systolic (SBP) and diastolic blood pressure (DBP). Grading of Recommendations Assessment, Development and Evaluation (GRADE) scale was used to assess the certainty of evaluated outcomes and determine the strength of recommendations. RESULTS Eleven RCTs were included in the meta-analysis. Synbiotic interventions significantly reduced SBP (-3.02 mmHg; 95% CI: -4.84, -1.21; I2 = 55%) without changing DBP levels (-0.57 mmHg; 95% CI: -1.78, 0.64; I2 = 50%). Subgroup analyses revealed that the SBP-lowering effects of synbiotic interventions were more pronounced wherein trials were longer (≥12 weeks), synbiotic interventions were administrated as a supplement, and participants were younger (<50 years old). Also, a significant improvement in both SBP and DBP levels was evident in subgroups with a lower (<30 kg/m2) body mass index. CONCLUSIONS Synbiotic interventions may significantly improve SBP levels in adults.
Collapse
Affiliation(s)
- Amir Hadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Makan Pourmasoumi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Maryam Kazemi
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, New York, USA
| | | | - Wolfgang Marx
- School of Medicine, Barwon Health, Deakin University, The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre (IMPACT), Geelong, Australia
| |
Collapse
|
38
|
Grylls A, Seidler K, Neil J. Link between microbiota and hypertension: Focus on LPS/TLR4 pathway in endothelial dysfunction and vascular inflammation, and therapeutic implication of probiotics. Biomed Pharmacother 2021; 137:111334. [PMID: 33556874 DOI: 10.1016/j.biopha.2021.111334] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
High blood pressure (BP) presents a significant public health challenge. Recent findings suggest that altered microbiota can exert a hypertensive effect on the host. One of the possible mechanisms involved is the chronic translocation of its components, mainly lipopolysaccharides (LPS) into systemic circulation leading to metabolic endotoxemia. In animal models, LPS has been commonly used to induce endothelial dysfunction and vascular inflammation. In human studies, plasma LPS concentration has been positively correlated with hypertension, however, the mechanistic link has not been fully elucidated. It is hypothesised here that the LPS-induced direct alterations to the vascular endothelium and resulting hypertension are possible targets for probiotic intervention. The methodology of this review involved a systematic search of the literature with critical appraisal of papers. Three tranches of search were performed: 1) existing review papers; 2) primary mechanistic animal, in vitro and human studies; and 3) primary intervention studies. A total of 70 peer-reviewed papers were included across the three tranches and critically appraised using SIGN50 for human studies and the ARRIVE guidelines for animal studies. The extracted information was coded into key themes and summarized in a narrative analysis. Results highlight the role of LPS in the activation of endothelial toll-like receptor 4 (TLR4) initiating a cascade of interrelated signalling pathways including: 1) Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase/ Reactive oxygen species (ROS)/ Endothelial nitric oxide synthase (eNOS) pathway leading to endothelial dysfunction; and 2) Mitogen-Activated Protein Kinase (MAPK) and Nuclear factor kappa B (NF-κB) pathways leading to vascular inflammation. Findings from animal intervention studies suggest an improvement in vasorelaxation, vascular inflammation and hypertension following probiotic supplementation, which was mediated by downregulation of LPS-induced pathways. Randomised controlled trials (RCTs) and systematic reviews provided some evidence for the anti-inflammatory effect of probiotics with statistically significant antihypertensive effect in clinical samples and may offer a viable intervention for the management of hypertension.
Collapse
Affiliation(s)
- Alina Grylls
- Centre for Nutrition Education and Lifestyle Management, Chapel Gardens, 14 Rectory Road, Wokingham RG40 1DH, England, United Kingdom.
| | - Karin Seidler
- Centre for Nutrition Education and Lifestyle Management, Chapel Gardens, 14 Rectory Road, Wokingham RG40 1DH, England, United Kingdom
| | - James Neil
- Centre for Nutrition Education and Lifestyle Management, Chapel Gardens, 14 Rectory Road, Wokingham RG40 1DH, England, United Kingdom
| |
Collapse
|
39
|
Systematic Network and Meta-analysis on the Antiviral Mechanisms of Probiotics: A Preventive and Treatment Strategy to Mitigate SARS-CoV-2 Infection. Probiotics Antimicrob Proteins 2021; 13:1138-1156. [PMID: 33537958 PMCID: PMC7857647 DOI: 10.1007/s12602-021-09748-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
With the alarming rise of infected cases and deaths, COVID-19 is a pandemic, affecting 220 countries worldwide. Until now, no specific treatment is available against SARS-CoV-2. The causal virus SARS-CoV-2 primarily infects lung cells, leading to respiratory illness ranging in severity from the common cold to deadly pneumonia. This, with comorbidities, worsens the clinical outcome, particularly for immunosuppressed individuals with COVID-19. Interestingly, the commensal gut microbiota has been shown to improve lung infections by modulating the immune system. Therefore, fine-tuning of the gut microbiome with probiotics could be an alternative strategy for boosting immunity and treating COVID-19. Here, we present a systematic biological network and meta-analysis to provide a rationale for the implementation of probiotics in preventing and/or treating COVID-19. We have identified 90 training genes from the literature analysis (according to PRISMA guidelines) and generated an association network concerning the candidate genes linked with COVID-19 and probiotic treatment. The functional modules and pathway enrichment analysis of the association network clearly show that the application of probiotics could have therapeutic effects on ACE2-mediated virus entry, activation of the systemic immune response, nlrp3-mediated immunomodulatory pathways, immune cell migration resulting in lung tissue damage and cardiovascular difficulties, and altered glucose/lipid metabolic pathways in the disease prognosis. We also demonstrate the potential mechanistic domains as molecular targets for probiotic applications to combat the viral infection. Our study, therefore, offers probiotics-mediated novel preventive and therapeutic strategies for COVID-19 warfare.
Collapse
|
40
|
Shivanna SK, Nataraj BH. Revisiting therapeutic and toxicological fingerprints of milk-derived bioactive peptides: An overview. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Yanni AE, Kartsioti K, Karathanos VT. The role of yoghurt consumption in the management of type II diabetes. Food Funct 2020; 11:10306-10316. [PMID: 33211046 DOI: 10.1039/d0fo02297g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enrichment of yoghurt with specific ingrdients beneficially affects the management of Type II Diabetes Mellitus (DMII). As far as the role of yoghurt in the management of DMII is concerned, the limited number of randomized clinical trials (RCTs) which have been conducted suggest that daily intake of yoghurt enriched with vitamin D and/or calcium as well as probiotics positively influences glycemic regulation and may contribute to more effective control of the disease. It is argued that the various ingredients which are already contained in the complex matrix of food, such as bioactive peptides, calcium, B-complex vitamins and beneficial microbes, as well as the fact that it can be used as a vehicle for the inclusion of other effective ingredients can have an impact on the metabolic control of diabetic patients. The aim of this review is to present the RCTs which have been conducted in the last decade in patients with DMII in an attempt to highlight the positive effects of yoghurt in the management of the disease.
Collapse
Affiliation(s)
- Amalia E Yanni
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece.
| | - Kleio Kartsioti
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece.
| | - Vaios T Karathanos
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece.
| |
Collapse
|
42
|
Liu J, Zhang D, Guo Y, Cai H, Liu K, He Y, Liu Y, Guo L. The Effect of Lactobacillus Consumption on Human Blood Pressure: a Systematic Review and Meta-Analysis of Randomized Controlled Trials. Complement Ther Med 2020; 54:102547. [PMID: 33183665 DOI: 10.1016/j.ctim.2020.102547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/19/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVES Previous clinical studies have shown controversial results regarding the effect of Lactobacillus supplementation on blood pressure (BP). The purpose of this systematic review and meta-analysis is to examine the effect of Lactobacillus consumption on BP. METHODS Eligible randomized controlled trials (RCTs) were searched from five electronic databases until May 2020. In total, 18 studies were included in our meta-analysis. Quality of the selected studies was assessed, and a random-effects model was used to calculate the overall effect sizes of weighted mean differences (WMD). This systematic review was registered in PROSPERO with the number: CRD42019139294. RESULTS Lactobacillus consumption significantly reduced systolic blood pressure (SBP) by -2.74 mmHg (95% confidence interval, -4.96 to -0.51) and diastolic blood pressure (DBP) by -1.50 mmHg (95% confidence interval, -2.44 to -0.56) when comparing with the control group. Subgroup analysis showed that type 2 diabetes mellitus (T2DM) patients, Asian individuals, or borderline hypertension participants were more sensitive to daily consumption of Lactobacillus. And the effect of Lactobacillus on BP-reduction was more significant in capsule form, with the dose was above 5 × 109 colony-forming unit (CFU)/day or lasted for more than 8 weeks. CONCLUSIONS Our present study suggests that Lactobacillus consumption in capsule form when the daily dose is above 5 × 109 CFU for more than 8 weeks can decrease SBP or DBP in T2DM patients, borderline hypertension participants or Asian individuals.
Collapse
Affiliation(s)
- Jinshu Liu
- Nursing school of Jilin University, Changchun, Jilin, 130021, China.
| | - Dan Zhang
- Nursing school of Jilin University, Changchun, Jilin, 130021, China.
| | - Yingze Guo
- The first hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Hongwei Cai
- Nursing school of Jilin University, Changchun, Jilin, 130021, China.
| | - Keyuan Liu
- Basic College of Medical Sciences, Jilin University, Changchun, Jilin, 130021, China.
| | - Yayu He
- Nursing school of Jilin University, Changchun, Jilin, 130021, China.
| | - Yumo Liu
- Nursing school of Jilin University, Changchun, Jilin, 130021, China.
| | - Lirong Guo
- Nursing school of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
43
|
Ghavami A, Ziaei R, Moradi S, Sharifi S, Reza Moravejolahkami A, Ghaffari S, Irandoost P, Khorvash F, Mokari_yamchi A, Nattagh-Eshtivani E, Roshanravan N. Potential of favorable effects of probiotics fermented milk supplementation on blood pressure: a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1833030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Abed Ghavami
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Sajjad Moradi
- Halal Research Center of IRI, FDA, Tehran, Iran
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Sharifi
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Reza Moravejolahkami
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pardis Irandoost
- Student Research Committee, Department of Nutrition, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Fariborz Khorvash
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amin Mokari_yamchi
- Student Research Committee, Department of Community Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elyas Nattagh-Eshtivani
- Department of Nutrition, Faculty of Medicin, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
44
|
Muralitharan RR, Jama HA, Xie L, Peh A, Snelson M, Marques FZ. Microbial Peer Pressure: The Role of the Gut Microbiota in Hypertension and Its Complications. HYPERTENSION (DALLAS, TEX. : 1979) 2020; 76:1674-1687. [PMID: 33012206 DOI: 10.1161/hypertensionaha.120.14473] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is increasing evidence of the influence of the gut microbiota on hypertension and its complications, such as chronic kidney disease, stroke, heart failure, and myocardial infarction. This is not surprising considering that the most common risk factors for hypertension, such as age, sex, medication, and diet, can also impact the gut microbiota. For example, sodium and fermentable fiber have been studied in relation to both hypertension and the gut microbiota. By combining second- and, now, third-generation sequencing with metabolomics approaches, metabolites, such as short-chain fatty acids and trimethylamine N-oxide, and their producers, have been identified and are now known to affect host physiology and the cardiovascular system. The receptors that bind these metabolites have also been explored with positive findings-examples include known short-chain fatty acid receptors, such as G-protein coupled receptors GPR41, GPR43, GPR109a, and OLF78 in mice. GPR41 and OLF78 have been shown to have inverse roles in blood pressure regulation, whereas GPR43 and GPR109A have to date been demonstrated to impact cardiac function. New treatment options in the form of prebiotics (eg, dietary fiber), probiotics (eg, Lactobacillus spp.), and postbiotics (eg, the short-chain fatty acids acetate, propionate, and butyrate) have all been demonstrated to be beneficial in lowering blood pressure in animal models, but the underlying mechanisms remain poorly understood and translation to hypertensive patients is still lacking. Here, we review the evidence for the role of the gut microbiota in hypertension, its risk factors, and cardiorenal complications and identify future directions for this exciting and fast-evolving field.
Collapse
Affiliation(s)
- Rikeish R Muralitharan
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (R.R.M., H.A.J., L.X., A.P., F.Z.M.), Monash University, Melbourne, Australia
- Institute for Medical Research, Ministry of Health Malaysia, Kuala Lumpur, Malaysia (R.R.M.)
| | - Hamdi A Jama
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (R.R.M., H.A.J., L.X., A.P., F.Z.M.), Monash University, Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia (H.A.J., F.Z.M.)
| | - Liang Xie
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (R.R.M., H.A.J., L.X., A.P., F.Z.M.), Monash University, Melbourne, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia (L.X.)
| | - Alex Peh
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (R.R.M., H.A.J., L.X., A.P., F.Z.M.), Monash University, Melbourne, Australia
| | - Matthew Snelson
- Department of Diabetes, Central Clinical School (M.S.), Monash University, Melbourne, Australia
| | - Francine Z Marques
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (R.R.M., H.A.J., L.X., A.P., F.Z.M.), Monash University, Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia (H.A.J., F.Z.M.)
| |
Collapse
|
45
|
Clinical Trials of Probiotic Strains in Selected Disease Entities. Int J Microbiol 2020; 2020:8854119. [PMID: 32565816 PMCID: PMC7292209 DOI: 10.1155/2020/8854119] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Although their mechanism of action is not clearly explained, it is known that they positively modulate the immune system, which leads to immunity potentiation. A number of studies prove that probiotics strengthen cognitive functions, reduce anxiety, and regulate the lipid metabolism in the human body. Probiotics used in humans are most often of the Lactobacillus and Bifidobacterium species. However, as more research is conducted, new species with beneficial, probiotic properties are being discovered. This paper provides a review of available information about the influence of probiotics on human health. It summarizes the current knowledge on the mechanism of action of probiotics as well as clinical trial results proving their efficacy in allergic, neurodegenerative, and cardiac diseases. This review also discusses the data concerning the safety of probiotics in clinical treatment.
Collapse
|
46
|
Liang T, Wu L, Xi Y, Li Y, Xie X, Fan C, Yang L, Yang S, Chen X, Zhang J, Wu Q. Probiotics supplementation improves hyperglycemia, hypercholesterolemia, and hypertension in type 2 diabetes mellitus: An update of meta-analysis. Crit Rev Food Sci Nutr 2020; 61:1670-1688. [PMID: 32436397 DOI: 10.1080/10408398.2020.1764488] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Although many studies have shown that consumption of probiotics is relevant to diabetes, the effects of probiotics improves clinical outcomes in type 2 diabetes have yielded conflicting results. The aim of this meta-analysis was conducted to assess the effects of probiotics supplementation on glycemic, blood lipids, pressure and inflammatory control in type 2 diabetes.Methods: PubMed, Web of science, Embase and the Cochrane Library databases were searched for relevant studies from February 2015 up to Janurary 2020, with no language restrictions. The pooled results were calculated with the use of a random-effects model to assess the impact of supplemental probiotics on glycemic, blood lipids, pressure and inflammatory control in type 2 diabetes. Additionally, subgroup analysis was conducted based on patients age, body mass index (BMI), country and duration of the probiotics supplement, respectively.Results: 13 studies were included in this meta-analysis, involving a total of 818 participants in 8 countries. Overall, compared with control groups, the subjects who received multiple species of probiotics had a statistically significant reduction in fasting blood sugar (FBS), homeostasis model assessment of insulin resistance (HOMA-IR), total cholesterol (TC), triglycerides (TG), systolic blood pressure (SBP), diastolic blood pressure (DBP) and tumor necrosis factor (TNF) -α [standardized mean difference (SMD): -0.89 mg/Dl, 95% CI: -1.66, -0.12 mg/dL; SMD: -0.43, 95% CI: -0.63, -0.23; SMD: -0.19 mg/dL, 95% CI: -0.36, -0.01 mg/dL; SMD: -0.23 mg/dL, 95% CI: -0.40, -0.05 mg/dL; SMD: -5.61 mmHg, 95% CI: -9.78, -1.45 mmHg; SMD: -3.41 mmHg, 95% CI: -6.12, -0.69 mmHg; and SMD: 6.92 pg/ml, 95% CI: 5.95, 7.89 pg/ml, respectively]. However, the subjects who received single-species of probiotic or probiotic with co-supplements in food only changed FBS, HOMA-IR, DBP and TG levels. Moreover, subgroup analyses revealed that the effects of probiotics supplementation on FBS, HMOA-IR, SBP and DBP are significantly influenced by patients age, body mass index (BMI), country and duration of the probiotics supplement.Conclusion: Our analysis revealed that glycemic, lipids, blood pressure and inflammation indicators are significantly improved by probiotic supplementation, particularly the subjects who ages ≤ 55, baseline BMI< 30 kg/m2, duration of intervention more than 8 weeks, and received multiple species probiotic.
Collapse
Affiliation(s)
- Tingting Liang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi an, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lei Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi an, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Xi
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Congcong Fan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi an, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lingshuang Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuanghong Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi an, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi an, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
47
|
Effect of probiotic foods and supplements on blood pressure: a systematic review of meta-analyses studies of controlled trials. J Diabetes Metab Disord 2020; 19:617-623. [PMID: 32550214 DOI: 10.1007/s40200-020-00525-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Objective Recent evidences suggested that hypertension was associated with changes in gut microbiota composition. As intervention with probiotics might be considered as one of the approaches for modulating gut microbiota, the objective of the present study was to systematically review the meta-analyses of controlled trials (CTs) to elucidate the effects of probiotics on blood pressure. Methods We searched PubMed, Web of Science, and Cochrane Library databases until November 2019 to explore all the meta-analyses conducted on the CTs assessing the efficacy of probiotics in the management of blood pressure (BP). Meta-analyses performed on in vitro, animal or observational studies were excluded from the study. References of the included studies were also screened to obtain further eligible publications. Results From the 111 records which were identified during the literature search, 5 meta-analyses met the selection criteria. Total sample size was 2703 subjects (1009 subjects with type 2 diabetes mellitus (T2DM)), aged 12-75 years from both sexes. Results of meta-analyses have been shown a moderate effect of probiotics on BP in hypertensive adults with/without T2DM; from 3.10 to 5.04 mmHg for systolic blood pressure (SBP) and from 0.39 to 3.84 mmHg for diastolic blood pressure (DBP) after 3-24 weeks consumption. These effects were greater in adults with BP ≥ 130/85, by dairy products, by Asian fermented products with multiple species and higher dose of probiotics (≥ 1011 colony forming units (CFU)). Conclusion It seems probiotic foods and supplements which were contained high dose multiple species of probiotic bacteria could be more effective in BP control.
Collapse
|
48
|
Behera SS, Panda SK. Ethnic and industrial probiotic foods and beverages: efficacy and acceptance. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
de Almeida Silva M, Mowry FE, Peaden SC, Andrade TU, Biancardi VC. Kefir ameliorates hypertension via gut–brain mechanisms in spontaneously hypertensive rats. J Nutr Biochem 2020; 77:108318. [DOI: 10.1016/j.jnutbio.2019.108318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/06/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022]
|
50
|
Rezazadeh L, Alipour B, Jafarabadi MA, Gargari BP. Evaluation of the effects of probiotic yoghurt on inflammation and cardiometabolic risk factors in subjects with metabolic syndrome: A randomised controlled trial. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2019.104577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|