1
|
Lipovšek S, Dolenšek J, Dariš B, Valladolid-Acebes I, Vajs T, Leitinger G, Stožer A, Skelin Klemen M. Western diet-induced ultrastructural changes in mouse pancreatic acinar cells. Front Cell Dev Biol 2024; 12:1380564. [PMID: 38550379 PMCID: PMC10972872 DOI: 10.3389/fcell.2024.1380564] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 12/18/2024] Open
Abstract
Mouse models of diet-induced type 2 diabetes mellitus provide powerful tools for studying the structural and physiological changes that are related to the disease progression. In this study, diabetic-like glucose dysregulation was induced in mice by feeding them a western diet, and light and transmission electron microscopy were used to study the ultrastructural changes in the pancreatic acinar cells. Acinar necrosis and vacuolization of the cytoplasm were the most prominent features. Furthermore, we observed intracellular and extracellular accumulation of lipid compounds in the form of lipid droplets, structural enlargement of the cisternae of the rough endoplasmic reticulum (RER), and altered mitochondrial morphology, with mitochondria lacking the typical organization of the inner membrane. Last, autophagic structures, i.e., autophagosomes, autolysosomes, and residual bodies, were abundant within the acinar cells of western diet-fed mice, and the autolysosomes contained lipids and material of varying electron density. While diets inducing obesity and type 2 diabetes are clearly associated with structural changes and dysfunction of the endocrine pancreas, we here demonstrate the strong effect of dietary intervention on the structure of acinar cells in the exocrine part of the organ before detectable changes in plasma amylase activity, which may help us better understand the development of non-alcoholic fatty pancreas disease and its association with endo- and exocrine dysfunction.
Collapse
Affiliation(s)
- Saška Lipovšek
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Barbara Dariš
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Ismael Valladolid-Acebes
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tanja Vajs
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Gerd Leitinger
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | |
Collapse
|
2
|
Kim D, Kim SW, Charchoghlyan H, Jeong H, Han GD. Combinatorial Herbal Extracts Alleviate Alcohol-Induced Hepatic Disorders. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:432-438. [PMID: 37326941 DOI: 10.1007/s11130-023-01057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 06/17/2023]
Abstract
Plant-derived compounds can be useful for the management of liver disease. Traditionally, hepatic disorders have been treated with herbal extracts. Although many herbal extracts in Eastern medicine have been shown to possess hepatoprotective activities, single-origin herbal extracts primarily demonstrate either antioxidant or anti-inflammatory activities. The current study investigated the effects of combinatorial herbal extracts on alcohol-induced hepatic disorders in an ethanol-fed mouse model. Sixteen herbal combinations were evaluated as hepatoprotective formulations; the active constituents in these herbal extracts were daidzin, peonidin-3-glucoside, hesperidin, glycyrrhizin, and phosphatidylcholine. RNA sequencing analysis showed that exposure to ethanol altered hepatic gene expression profiles (compared to those of the non-alcohol-fed group), resulting in 79 differentially expressed genes. A majority of the differentially expressed genes in alcohol-induced hepatic disorders were associated with dysfunction of the normal cellular homeostasis in the liver; however, these genes were repressed by treatment with herbal extracts. Moreover, following treatment with herbal extracts, there were neither acute inflammatory responses in the liver tissue nor abnormalities in the cholesterol profile. These results suggest that combinatorial herbal extracts may alleviate alcohol-induced hepatic disorders by modulating the inflammatory response and lipid metabolism in the liver.
Collapse
Affiliation(s)
- Dongyeop Kim
- Department of Preventive Dentistry, School of Dentistry, Institute of Medical Information Convergence Research, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sang Wook Kim
- Department of Food Science and Technology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 58541, Gyeongbuk, Republic of Korea
| | - Haykuhi Charchoghlyan
- Department of Food Science and Technology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 58541, Gyeongbuk, Republic of Korea
| | - Hojeong Jeong
- Department of Food Science and Technology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 58541, Gyeongbuk, Republic of Korea
| | - Gi Dong Han
- Department of Food Science and Technology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 58541, Gyeongbuk, Republic of Korea.
| |
Collapse
|
3
|
Li R, Xue Z, Jia Y, Wang Y, Li S, Zhou J, Liu J, Zhang M, He C, Chen H. Polysaccharides from mulberry (Morus alba L.) leaf prevents obesity by inhibiting pancreatic lipase in high-fat diet induced mice. Int J Biol Macromol 2021; 192:452-460. [PMID: 34634334 DOI: 10.1016/j.ijbiomac.2021.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/02/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic lipase (PL) is a key enzyme related to the prevention and treatment of obesity. The aim of the study was to evaluate the inhibitory effects of mulberry leaf polysaccharides (MLP) on PL and possible interaction mechanism, inhibition on lipid accumulation in vitro and in vivo. The results revealed that MLP had obvious inhibitory effects on PL (P < 0.05). The interaction of MLP-PL complexes was in a spontaneous way driven by enthalpy, and hydrogen bonds were the main factors in the binding. MLP could significantly inhibit the development of lipid accumulation in HepG2 cells (P < 0.05). Furthermore, consumption of high-fat diet containing MLP showed protective effects on liver and adipose tissue damages in mice, and inhibited the lipid absorption in digestive tract. MLP also significantly reduced the increased expression level of pancreatic digestive enzymes (P < 0.05). The study indicated that the anti-obesity effect of MLP might be caused by inhibition of lipid absorption via reducing PL activity.
Collapse
Affiliation(s)
- Ruilin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zihan Xue
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yanan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jingna Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
4
|
Zhu G, Fang Q, Zhu F, Huang D, Yang C. Structure and Function of Pancreatic Lipase-Related Protein 2 and Its Relationship With Pathological States. Front Genet 2021; 12:693538. [PMID: 34290745 PMCID: PMC8287333 DOI: 10.3389/fgene.2021.693538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022] Open
Abstract
Pancreatic lipase is critical for the digestion and absorption of dietary fats. The most abundant lipolytic enzymes secreted by the pancreas are pancreatic triglyceride lipase (PTL or PNLIP) and its family members, pancreatic lipase-related protein 1 (PNLIPRP1or PLRP1) and pancreatic lipase-related protein 2 (PNLIPRP2 or PLRP2). Unlike the family’s other members, PNLIPRP2 plays an elemental role in lipid digestion, especially for newborns. Therefore, if genetic factors cause gene mutation, or other factors lead to non-expression, it may have an effect on fat digestion and absorption, on the susceptibility to pancreas and intestinal pathogens. In this review, we will summarize what is known about the structure and function of PNLIPRP2 and the levels of PNLIPRP2 and associated various pathological states.
Collapse
Affiliation(s)
- Guoying Zhu
- Department of Clinical Nutrition, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Pediatrics Gastroenterology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Qing Fang
- Department of Clinical Nutrition, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fengshang Zhu
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dongping Huang
- Department of Clinical Nutrition, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Changqing Yang
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Chatelaine H, Dey P, Mo X, Mah E, Bruno RS, Kopec RE. Vitamin A and D Absorption in Adults with Metabolic Syndrome versus Healthy Controls: A Pilot Study Utilizing Targeted and Untargeted LC-MS Lipidomics. Mol Nutr Food Res 2021; 65:e2000413. [PMID: 33167078 PMCID: PMC7902427 DOI: 10.1002/mnfr.202000413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SCOPE Persons with metabolic syndrome (MetS) absorb less vitamin E than healthy controls. It is hypothesized that absorption of fat-soluble vitamins (FSV) A and D2 would also decrease with MetS status and that trends would be reflected in lipidomic responses between groups. METHODS AND RESULTS Following soymilk consumption (501 IU vitamin A, 119 IU vitamin D2 ), the triglyceride-rich lipoprotein fractions (TRL) from MetS and healthy subjects (n = 10 age- and gender-matched subjects/group) are assessed using LC-MS/MS. Absorption is calculated using area under the time-concentration curves (AUC) from samples collected at 0, 3, and 6 h post-ingestion. MetS subjects have ≈6.4-fold higher median vitamin A AUC (retinyl palmitate) versus healthy controls (P = 0.07). Vitamin D2 AUC is unaffected by MetS status (P = 0.48). Untargeted LC-MS lipidomics reveals six phospholipids and one cholesterol ester with concentrations correlating (r = 0.53-0.68; P < 0.001) with vitamin A concentration. CONCLUSIONS The vitamin A-phospholipid association suggests increased hydrolysis by PLB, PLRP2, and/or PLA2 IB may be involved in the trend in higher vitamin A bioavailability in MetS subjects. Previously observed differences in circulating levels of these vitamins are likely not due to absorption. Alternate strategies should be investigated to improve FSV status in MetS.
Collapse
Affiliation(s)
- Haley Chatelaine
- Human Nutrition Program, The Ohio State University, Columbus, OH
| | - Priyankar Dey
- Human Nutrition Program, The Ohio State University, Columbus, OH
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Xiaokui Mo
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Eunice Mah
- Biofortis, Merieux NutriSciences, Addison, IL
| | - Richard S. Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH
| | - Rachel E. Kopec
- Human Nutrition Program, The Ohio State University, Columbus, OH
- Foods for Health Discovery Theme, The Ohio State University, Columbus, OH
| |
Collapse
|
6
|
Excitability and Synaptic Transmission in the Enteric Nervous System: Does Diet Play a Role? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 891:201-11. [PMID: 27379647 DOI: 10.1007/978-3-319-27592-5_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Changes in diet are a challenge to the gastrointestinal tract which needs to alter its processing mechanisms to continue to process nutrients and maintain health. In particular, the enteric nervous system (ENS) needs to adapt its motor and secretory programs to deal with changes in nutrient type and load in order to optimise nutrient absorption.The nerve circuits in the gut are complex, and the numbers and types of neurons make recordings of specific cell types difficult, time-consuming, and prone to sampling errors. Nonetheless, traditional research methods like intracellular electrophysiological approaches have provided the basis for our understanding of the ENS circuitry. In particular, animal models of intestinal inflammation have shown us that we can document changes to neuronal excitability and synaptic transmission.Recent studies examining diet-induced changes to ENS programming have opted to use fast imaging techniques to reveal changes in neuron function. Advances in imaging techniques using voltage- or calcium-sensitive dyes to record neuronal activity promise to overcome many limitations inherent to electrophysiological approaches. Imaging techniques allow access to a wide range of ENS phenotypes and to the changes they undergo during dietary challenges. These sorts of studies have shown that dietary variation or obesity can change how the ENS processes information-in effect reprogramming the ENS. In this review, the data gathered from intracellular recordings will be compared with measurements made using imaging techniques in an effort to determine if the lessons learnt from inflammatory changes are relevant to the understanding of diet-induced reprogramming.
Collapse
|
7
|
Zlotnikov N, Javid A, Ahmed M, Eshghi A, Tang TT, Arya A, Bansal A, Matar F, Parikh M, Ebady R, Koh A, Gupta N, Song P, Zhang Y, Newbigging S, Wormser GP, Schwartz I, Inman R, Glogauer M, Moriarty TJ. Infection with the Lyme disease pathogen suppresses innate immunity in mice with diet-induced obesity. Cell Microbiol 2016; 19. [PMID: 27794208 PMCID: PMC5383418 DOI: 10.1111/cmi.12689] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/17/2016] [Accepted: 10/24/2016] [Indexed: 12/15/2022]
Abstract
Obesity is a major global public health concern. Immune responses implicated in obesity also control certain infections. We investigated the effects of high‐fat diet‐induced obesity (DIO) on infection with the Lyme disease bacterium Borrelia burgdorferi in mice. DIO was associated with systemic suppression of neutrophil‐ and macrophage‐based innate immune responses. These included bacterial uptake and cytokine production, and systemic, progressive impairment of bacterial clearance, and increased carditis severity. B. burgdorferi‐infected mice fed normal diet also gained weight at the same rate as uninfected mice fed high‐fat diet, toll‐like receptor 4 deficiency rescued bacterial clearance defects, which greater in female than male mice, and killing of an unrelated bacterium (Escherichia coli) by bone marrow‐derived macrophages from obese, B. burgdorferi‐infected mice was also affected. Importantly, innate immune suppression increased with infection duration and depended on cooperative and synergistic interactions between DIO and B. burgdorferi infection. Thus, obesity and B. burgdorferi infection cooperatively and progressively suppressed innate immunity in mice.
Collapse
Affiliation(s)
- Nataliya Zlotnikov
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Ashkan Javid
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Mijhgan Ahmed
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Azad Eshghi
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Tian Tian Tang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Anoop Arya
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Anil Bansal
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Fatima Matar
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Maitry Parikh
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Rhodaba Ebady
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Adeline Koh
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Nupur Gupta
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Peng Song
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Yang Zhang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Susan Newbigging
- Mount Sinai Hospital Research Institute/Toronto Centre for Phenogenomics, Toronto, Ontario, Canada
| | - Gary P Wormser
- Division of Infectious Diseases, New York Medical College, New York, USA
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, New York, USA
| | - Robert Inman
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto Hospital-Western Division, Toronto, Ontario, Canada
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Tara J Moriarty
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Effect of keishibukuryogan on genetic and dietary obesity models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:801291. [PMID: 25793003 PMCID: PMC4352422 DOI: 10.1155/2015/801291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/29/2014] [Indexed: 12/02/2022]
Abstract
Obesity has been recognized as one of the most important risk factors for a variety of chronic diseases, such as diabetes, hypertension/cardiovascular diseases, steatosis/hepatitis, and cancer. Keishibukuryogan (KBG, Gui Zhi Fu Ling Wan in Chinese) is a traditional Chinese/Japanese (Kampo) medicine that has been known to improve blood circulation and is also known for its anti-inflammatory or scavenging effect. In this study, we evaluated the effect of KBG in two distinct rodent models of obesity driven by either a genetic (SHR/NDmcr-cp rat model) or dietary (high-fat diet-induced mouse obesity model) mechanism. Although there was no significant effect on the body composition in either the SHR rat or the DIO mouse models, KBG treatment significantly decreased the serum level of leptin and liver TG level in the DIO mouse, but not in the SHR rat model. Furthermore, a lower fat deposition in liver and a smaller size of adipocytes in white adipose tissue were observed in the DIO mice treated with KBG. Importantly, we further found downregulation of genes involved in lipid metabolism in the KBG-treated liver, along with decreased liver TG and cholesterol level. Our present data experimentally support in fact that KBG can be an attractive Kampo medicine to improve obese status through a regulation of systemic leptin level and/or lipid metabolism.
Collapse
|
9
|
Ramirez-Perez FI, Schenewerk AL, Coffman KL, Foote C, Ji T, Rivera RM, Martinez-Lemus LA. Effects of the use of assisted reproductive technologies and an obesogenic environment on resistance artery function and diabetes biomarkers in mice offspring. PLoS One 2014; 9:e112651. [PMID: 25386661 PMCID: PMC4227714 DOI: 10.1371/journal.pone.0112651] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/14/2014] [Indexed: 11/19/2022] Open
Abstract
Maternal obesity affects the incidence of cardiovascular disease and diabetes in offspring. Also the use of assisted reproductive technologies (ART) has been associated with cardiovascular deficiencies in offspring. Obese women often suffer from infertility and use ART to achieve a pregnancy, but the combined effects of maternal obesity and ART on cardiovascular health and incidence of diabetes in the offspring is not known. Here, we report the effects of the use of ART within an obesogenic environment, consisting of feeding a western diet (WD) to dams and offspring, on resistance artery function and presence of diabetes biomarkers in juvenile mice offspring. Our results indicate that WD and ART interacted to induce endothelial dysfunction in mesenteric resistance arteries isolated from 7-week-old mice offspring. This was determined by presence of a reduced acetylcholine-induced dilation compared to controls. The arteries from these WD-ART mice also had greater wall cross-sectional areas and wall to lumen ratios indicative of vascular hypertrophic remodeling. Of the diabetes biomarkers measured, only resistin was affected by a WD×ART interaction. Serum resistin was significantly greater in WD-ART offspring compared to controls. Diet and sex effects were observed in other diabetes biomarkers. Our conclusion is that in mice the use of ART within an obesogenic environment interacts to favor the development of endothelial dysfunction in the resistance arteries of juvenile offspring, while having marginal effects on diabetes biomarkers.
Collapse
Affiliation(s)
- Francisco I. Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211, United States of America
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Angela L. Schenewerk
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Katy L. Coffman
- Department of Statistics, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Christopher Foote
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Rocio M. Rivera
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, 65211, United States of America
- * E-mail: (LAM); (RMR)
| | - Luis A. Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211, United States of America
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, 65211, United States of America
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, 65211, United States of America
- * E-mail: (LAM); (RMR)
| |
Collapse
|