1
|
Anjom-Shoae J, Fitzgerald PC, Horowitz M, Mohammadpour Z, Hall GV, Holst JJ, Rehfeld JF, Veedfald S, Feinle-Bisset C. Intraduodenal calcium enhances the effects of L-tryptophan to stimulate gut hormone secretion and suppress energy intake in healthy males: a randomized, crossover, clinical trial. Am J Clin Nutr 2024; 120:528-539. [PMID: 38996913 DOI: 10.1016/j.ajcnut.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND In humans, intraduodenal infusion of L-tryptophan (Trp) increases plasma concentrations of gastrointestinal hormones and stimulates pyloric pressures, both key determinants of gastric emptying and associated with potent suppression of energy intake. The stimulation of gastrointestinal hormones by Trp has been shown, in preclinical studies, to be enhanced by extracellular calcium and mediated in part by the calcium-sensing receptor. OBJECTIVES This study aim was to determine whether intraduodenal calcium can enhance the effects of Trp to stimulate gastrointestinal hormones and pyloric pressures and, if so, whether it is associated with greater suppression of energy intake, in healthy males. METHODS Fifteen males with normal weight (mean ± standard deviation; age: 26 ± 7 years; body mass index: 22 ± 2 kg/m2), received on 3 separate occasions, 150-min intraduodenal infusions of 0, 500, or 1000 mg calcium (Ca), each combined with Trp (load: 0.1 kcal/min, with submaximal energy intake-suppressant effects) from t = 75-150 min, in a randomized, double-blind, crossover study. Plasma concentrations of GI hormones [gastrin, cholecystokinin, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide (GLP)-1, and peptide tyrosine-tyrosine (PYY)], and Trp and antropyloroduodenal pressures were measured throughout. Immediately postinfusions (t = 150-180 min), energy intake at a standardized buffet-style meal was quantified. RESULTS In response to calcium alone, both 500- and 1000-mg doses stimulated PYY, while only the 1000-mg dose stimulated GLP-1 and pyloric pressures (all P < 0.05). The 1000-mg dose also enhanced the effects of Trp to stimulate cholecystokinin and GLP-1, and both doses stimulated PYY but, surprisingly, reduced the stimulation of GIP (all P < 0.05). Both doses substantially and dose dependently enhanced the effects of Trp to suppress energy intake (Ca-0+Trp: 1108 ± 70 kcal; Ca-500+Trp: 961 ± 90 kcal; and Ca-1000+Trp: 922 ± 96 kcal; P < 0.05). CONCLUSIONS Intraduodenal administration of calcium enhances the effect of Trp to stimulate plasma cholecystokinin, GLP-1, and PYY and suppress energy intake in healthy males. These findings have potential implications for novel nutrient-based approaches to energy intake regulation in obesity. The trial was registered at the Australian New Zealand Clinical Trial Registry (www.anzctr.org.au) as ACTRN12620001294943).
Collapse
Affiliation(s)
- Javad Anjom-Shoae
- Adelaide Medical School and Center of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Penelope Ce Fitzgerald
- Adelaide Medical School and Center of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Michael Horowitz
- Adelaide Medical School and Center of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Zinat Mohammadpour
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Gerrit van Hall
- Department of Biomedical Sciences and the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Simon Veedfald
- Department of Biomedical Sciences and the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Christine Feinle-Bisset
- Adelaide Medical School and Center of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
2
|
Fekete EE, Wang A, Creskey M, Cummings SE, Lavoie JR, Ning Z, Li J, Figeys D, Chen R, Zhang X. Multilevel Proteomic Profiling of Colorectal Adenocarcinoma Caco-2 Cell Differentiation to Characterize an Intestinal Epithelial Model. J Proteome Res 2024; 23:2561-2575. [PMID: 38810023 PMCID: PMC11232098 DOI: 10.1021/acs.jproteome.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Emergent advancements on the role of the intestinal microbiome for human health and disease necessitate well-defined intestinal cellular models to study and rapidly assess host, microbiome, and drug interactions. Differentiated Caco-2 cell line is commonly utilized as an epithelial model for drug permeability studies and has more recently been utilized for investigating host-microbiome interactions. However, its suitability to study such interactions remains to be characterized. Here, we employed multilevel proteomics to demonstrate that both spontaneous and butyrate-induced Caco-2 differentiations displayed similar protein and pathway changes, including the downregulation of proteins related to translation and proliferation and upregulation of functions implicated in host-microbiome interactions, such as cell adhesion, tight junction, extracellular vesicles, and responses to stimuli. Lysine acetylomics revealed that histone protein acetylation levels were decreased along with cell differentiation, while the acetylation in proteins associated with mitochondrial functions was increased. This study also demonstrates that, compared to spontaneous differentiation methods, butyrate-containing medium accelerates Caco-2 differentiation, with earlier upregulation of proteins related to host-microbiome interactions, suggesting its superiority for assay development using this intestinal model. Altogether, this multiomics study emphasizes the controlled progression of Caco-2 differentiation toward a specialized intestinal epithelial-like cell and establishes its suitability for investigating the host-microbiome interactions.
Collapse
Affiliation(s)
- Emily Ef Fekete
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Angela Wang
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Marybeth Creskey
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Sarah E Cummings
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Jessie R Lavoie
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H8M5, Canada
| | - Zhibin Ning
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H8M5, Canada
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa K1H8M5, Canada
| | - Jianjun Li
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A0R6, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H8M5, Canada
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa K1H8M5, Canada
| | - Rui Chen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A0R6, Canada
| | - Xu Zhang
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Canada
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa K1H8M5, Canada
| |
Collapse
|
3
|
Lu X, Luo C, Wu J, Deng Y, Mu X, Zhang T, Yang X, Liu Q, Li Z, Tang S, Hu Y, Du Q, Xu J, Xie R. Ion channels and transporters regulate nutrient absorption in health and disease. J Cell Mol Med 2023; 27:2631-2642. [PMID: 37638698 PMCID: PMC10494301 DOI: 10.1111/jcmm.17853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023] Open
Abstract
Ion channels and transporters are ubiquitously expressed on cell membrane, which involve in a plethora of physiological process such as contraction, neurotransmission, secretion and so on. Ion channels and transporters is of great importance to maintaining membrane potential homeostasis, which is essential to absorption of nutrients in gastrointestinal tract. Most of nutrients are electrogenic and require ion channels and transporters to absorb. This review summarizes the latest research on the role of ion channels and transporters in regulating nutrient uptake such as K+ channels, Ca2+ channels and ion exchangers. Revealing the mechanism of ion channels and transporters associated with nutrient uptake will be helpful to provide new methods to diagnosis and find potential targets for diseases like diabetes, inflammatory bowel diseases, etc. Even though some of study still remain ambiguous and in early stage, we believe that ion channels and transporters will be novel therapeutic targets in the future.
Collapse
Affiliation(s)
- Xianmin Lu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Chen Luo
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Jiangbo Wu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Ya Deng
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Xingyi Mu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Ting Zhang
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Xiaoxu Yang
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Qi Liu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Zhuo Li
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Siqi Tang
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Yanxia Hu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Qian Du
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Jingyu Xu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Rui Xie
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
4
|
Sami AS, Frazer LC, Miller CM, Singh DK, Clodfelter LG, Orgel KA, Good M. The role of human milk nutrients in preventing necrotizing enterocolitis. Front Pediatr 2023; 11:1188050. [PMID: 37334221 PMCID: PMC10272619 DOI: 10.3389/fped.2023.1188050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is an intestinal disease that primarily impacts preterm infants. The pathophysiology of NEC involves a complex interplay of factors that result in a deleterious immune response, injury to the intestinal mucosa, and in its most severe form, irreversible intestinal necrosis. Treatments for NEC remain limited, but one of the most effective preventative strategies for NEC is the provision of breast milk feeds. In this review, we discuss mechanisms by which bioactive nutrients in breast milk impact neonatal intestinal physiology and the development of NEC. We also review experimental models of NEC that have been used to study the role of breast milk components in disease pathophysiology. These models are necessary to accelerate mechanistic research and improve outcomes for neonates with NEC.
Collapse
Affiliation(s)
- Ahmad S. Sami
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lauren C. Frazer
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Claire M. Miller
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dhirendra K. Singh
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lynda G. Clodfelter
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kelly A. Orgel
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Werner LE, Wagner U. Calcium-sensing receptor-mediated NLRP3 inflammasome activation in rheumatoid arthritis and autoinflammation. Front Physiol 2023; 13:1078569. [PMID: 36685206 PMCID: PMC9854345 DOI: 10.3389/fphys.2022.1078569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 01/09/2023] Open
Abstract
The calcium-sensing receptor (CaSR) is expressed in many cell types - including immune cells and in particular circulating monocytes. Here, the receptor plays an important physiological role as a regulator of constitutive macropinocytosis. This review article provides an overview of the literature on the role of the calcium sensing receptor in the context of inflammatory processes. Special emphasis is laid upon the importance for monocytes in the context of rheumatoid arthritis. We have shown previously, that stimulation of the receptor by increased extracellular Ca2+ ([Ca2+]ex) triggers a pro-inflammatory response due to NLRP3 inflammasome assembly and interleukin (IL)-1β release. The underlying mechanism includes macropinocytosis of calciprotein particles (CPPs), which are taken up in a [Ca2+]ex-induced, CaSR dependent manner, and leads to strong IL-1β release. In rheumatoid arthritis (RA), this uptake and the resulting IL-1β release is significantly increased due to increased expression of the receptor. Moreover, increased [Ca2+]ex-induced CPP uptake and IL-1β release is associated with more active disease, while CaSR overexpression has been reported to be associated with cardiovascular complications of RA. Most importantly, however, in animal experiments with arthritic mice, increased local calcium concentrations are present, which in combination with release of fetuin-A from eroded bone could contribute to formation of CPPs. We propose, that increased [Ca2+]ex, CPPs and pro-inflammatory cytokines drive a vicious cycle of inflammation and bone destruction which in turn offers new potential therapeutic approaches.
Collapse
|
6
|
Murashita K, Takakuwa F, Matsunari H, Yoshinaga H, Yamamoto T, Oku H, Furuita H. Effect of oral administration of a single bolus of six different protein sources on digestive physiology of red seabream Pagrus major juveniles. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:939-954. [PMID: 35768739 DOI: 10.1007/s10695-022-01096-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
To reveal direct effects of various protein sources on digestive physiology of red seabream, Pagrus major (38.5 ± 0.4 g), six different protein sources of fishmeal (FM), soybean meal (SBM), corn gluten meal (CGM), soy protein concentrate (SPC), poultry by-product meal (PBM), and poultry-feather meal (PFM) were orally administered to fish (2 mg protein/g body weight) and sampled at 1.5 h and 3 h after administration. Gallbladder weight of fish administered FM, PBM, and PFM decreased after administration (p < 0.0001), while no difference was observed in the other ingredients compared to a non-protein sham control group, indicating that animal protein sources could more strongly stimulate bile secretion than plant protein sources in red seabream. Trypsin and chymotrypsin activity in the intestinal content markedly increased by the FM, SBM, and PFM administration (p < 0.0001). Lipase and amylase activity was also increased by FM and SBM but also by CGM for lipase and by PBM and PFM for amylase (p < 0.0001). These indicate that stimulation effect of the secretion of digestive enzymes is largely different among the protein sources. This might be due to the absorptive capacity of the protein source since intestinal absorption parameter genes (anpep, cpa, ggt1, and atp1a2) also increased by the FM, SBM, PBM or PFM (p < 0.05). In addition to the secretion levels of bile and digestive enzymes, gene expression levels of bile related genes (cyp7a1, cyp8b1, and shp) and digestion-regulating genes (casr and cck) were increased by the FM, SBM, PFM, and/or PBM administration, suggesting that animal proteins and SBM could be potent digestive stimulants compared to CGM and SPC. This study first revealed that single protein sources directly influence digestive enzyme secretion and bile secretion in fish. Information about the direct effect of each single source on digestive physiology could help to design feed formulation with less fishmeal.
Collapse
Affiliation(s)
- Koji Murashita
- Physiological Function Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Mie, 519-0423, Japan.
| | - Fumiaki Takakuwa
- Uragami Station, Aquaculture Research Institute, Kindai University, 468-3, Uragami, Nachi-Katsuura, Higashimuro, Wakayama, 649-5145, Japan
| | - Hiroyuki Matsunari
- Physiological Function Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Mie, 519-0423, Japan
| | - Hazuki Yoshinaga
- Physiological Function Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Mie, 519-0423, Japan
| | - Takeshi Yamamoto
- Physiological Function Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Mie, 519-0423, Japan
| | - Hiromi Oku
- Physiological Function Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Mie, 519-0423, Japan
| | - Hirofumi Furuita
- Physiological Function Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Mie, 519-0423, Japan
| |
Collapse
|
7
|
Wells JM, Gao Y, de Groot N, Vonk MM, Ulfman L, van Neerven RJJ. Babies, Bugs, and Barriers: Dietary Modulation of Intestinal Barrier Function in Early Life. Annu Rev Nutr 2022; 42:165-200. [PMID: 35697048 DOI: 10.1146/annurev-nutr-122221-103916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The intestinal barrier is essential in early life to prevent infection, inflammation, and food allergies. It consists of microbiota, a mucus layer, an epithelial layer, and the immune system. Microbial metabolites, the mucus, antimicrobial peptides, and secretory immunoglobulin A (sIgA) protect the intestinal mucosa against infection. The complex interplay between these functionalities of the intestinal barrier is crucial in early life by supporting homeostasis, development of the intestinal immune system, and long-term gut health. Exclusive breastfeeding is highly recommended during the first 6 months. When breastfeeding is not possible, milk-based infant formulas are the only safe alternative. Breast milk contains many bioactive components that help to establish the intestinal microbiota and influence the development of the intestinal epithelium and the immune system. Importantly, breastfeeding lowers the risk for intestinal and respiratory tract infections. Here we review all aspects of intestinal barrier function and the nutritional components that impact its functionality in early life, such as micronutrients, bioactive milk proteins, milk lipids, and human milk oligosaccharides. These components are present in breast milk and can be added to milk-based infant formulas to support gut health and immunity. Expected final online publication date for the Annual Review of Nutrition, Volume 42 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jerry M Wells
- Host Microbe Interactomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Yifan Gao
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands
| | | | | | | | - R J Joost van Neerven
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands.,FrieslandCampina, Amersfoort, The Netherlands;
| |
Collapse
|
8
|
Zhao X, Hui Q, Azevedo P, Nyachoti CM, O K, Yang C. Calcium-sensing receptor is not expressed in the absorptive enterocytes of weaned piglets. J Anim Sci 2022; 100:6549683. [PMID: 35294536 PMCID: PMC9030235 DOI: 10.1093/jas/skac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/12/2022] [Indexed: 11/14/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a kokumi receptor that plays an essential role in nutrient sensing and animal physiology, growth, and development. Pig CaSR (pCaSR) was identified and characterized in the intestine. However, further research is still needed to confirm the expression of CaSR in the epithelial cells isolated from weaned piglets. In this study, primary enterocytes were isolated and characterized from the ileum of weaned piglets by the Weiser distended intestinal sac technique and fluorescence-activated cell sorting (FACS) based on sucrase-isomaltase (SI) as an enterocyte-specific marker. The expression of CaSR was investigated in both primary enterocytes and the intestinal porcine enterocyte cell line-j2 (IPEC-J2) by droplet digital polymerase chain reaction (ddPCR), immunofluorescence staining, and Western blotting. Results demonstrated that porcine enterocytes could be obtained using FACS with the SI as the enterocyte-specific marker and that pCaSR is not expressed in both porcine ileal enterocytes and IPEC-J2 cells, which specifically identified the expression of pCaSR in ileal enterocytes with sensitive and specific approaches.
Collapse
Affiliation(s)
- Xiaoya Zhao
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Qianru Hui
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Paula Azevedo
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Karmin O
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,CCARM, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
9
|
Yi G, Zhang S, Ma Y, Yang X, Huo F, Chen Y, Yang B, Tian W. Matrix vesicles from dental follicle cells improve alveolar bone regeneration via activation of the PLC/PKC/MAPK pathway. Stem Cell Res Ther 2022; 13:41. [PMID: 35093186 PMCID: PMC8800263 DOI: 10.1186/s13287-022-02721-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/13/2022] [Indexed: 02/08/2023] Open
Abstract
Background The regeneration of bone loss that occurs after periodontal diseases is a significant challenge in clinical dentistry. Extracellular vesicles (EVs)-based cell-free regenerative therapies represent a promising alternative for traditional treatments. Developmental biology suggests matrix vesicles (MVs), a subtype of EVs, contain mineralizing-related biomolecules and play an important role in osteogenesis. Thus, we explore the therapeutic benefits and expect to find an optimized strategy for MV application. Methods Healthy human dental follicle cells (DFCs) were cultured with the osteogenic medium to generate MVs. Media MVs (MMVs) were isolated from culture supernatant, and collagenase-released MVs (CRMVs) were acquired from collagenase-digested cell suspension. We compared the biological features of the two MVs and investigated their induction of cell proliferation, migration, mineralization, and the modulation of osteogenic genes expression. Furthermore, we investigated the long-term regenerative capacity of MMVs and CRMVs in an alveolar bone defect rat model. Results We found that both DFC-derived MMVs and CRMVs effectively improved the proliferation, migration, and osteogenic differentiation of DFCs. Notably, CRMVs showed better bone regeneration capabilities. Compared to MMVs, CRMVs-induced DFCs exhibited increased synthesis of osteogenic marker proteins including ALP, OCN, OPN, and MMP-2. In the treatment of murine alveolar bone defects, CRMV-loaded collagen scaffold brought more significant therapeutic outcomes with less unhealing areas and more mature bone tissues in comparison with MMVs and acquired the effects resembling DFCs-based treatment. Furthermore, the western blotting results demonstrated the activation of the PLC/PKC/MAPK pathway in CRMVs-induced DFCs, while this cascade was inhibited by MMVs. Conclusions In summary, our findings revealed a novel cell-free regenerative therapy for repairing alveolar bone defects by specific MV subtypes and suggest that PLC/PKC/MAPK pathways contribute to MVs-mediated alveolar bone regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02721-6.
Collapse
Affiliation(s)
- Genzheng Yi
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Siyuan Zhang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yue Ma
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xueting Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fangjun Huo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yan Chen
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Bo Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
10
|
Liu G, Zheng J, Gu K, Wu C, Jia G, Zhao H, Chen X, Wang J. Calcium-sensing receptor protects intestinal integrity and alleviates the inflammatory response via the Rac1/PLCγ1 signaling pathway. Anim Biotechnol 2021:1-14. [PMID: 34762003 DOI: 10.1080/10495398.2021.1998090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study aimed to test the hypothesis that the calcium-sensing receptor (CaSR) can protect intestinal epithelial barrier integrity and decrease inflammatory response mediated by the Ras-related C3 botulinum toxin substrate 1 (Rac1)/phospholipase Cγ1 (PLC-γ1) signaling pathway. IPEC-J2 monolayers were treated without or with TNF-α in the absence or presence of CaSR antagonist (NPS 2143), CaSR overexpression, and Rac1 silencing, PLCγ1 silencing or spermine. Results showed that spermine increased transepithelial electrical resistance (TER), tight junction protein levels, the protein concentration of Rac1/PLC-γ1 signaling pathway, and decreased paracellular permeability in the presence of TNF-α. NPS2143 inhibited spermine-induced change in above-mentioned parameters. CaSR overexpression increased TER, the levels of tight junction proteins and the protein concentration of CaSR, phosphorylated PLCγ1, Rac1, and IP3, and decreased paracellular permeability and contents of interleukin-8 (IL-8) and TNF-α after TNF-α challenge. Rac1 and PLCγ1 silencing inhibited CaSR-induced increase in barrier function and the protein concentration of phosphorylated PLCγ1, Rac1, and IP3, and decrease in contents of IL-8 and TNF-α after TNF-α challenge. These results suggest that CaSR activation protects intestinal integrity and alleviates the inflammatory response by activating Rac1 and PLCγ1 signaling after TNF-α challenge, and spermine can maintain barrier function via CaSR/Rac1/PLC-γ1 pathway.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Jie Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Ke Gu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Zheng J, Liu G, Wu C, Jia G, Zhao H, Chen X, Wang J. Effect of calcium-sensing receptor on the migration and proliferation of porcine intestinal epithelial cells. Anim Biotechnol 2021; 34:365-374. [PMID: 34459707 DOI: 10.1080/10495398.2021.1968885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The rapid healing of impaired intestinal surface plays a role in maintaining intestinal homeostasis. This study investigated the effect of calcium-sensing receptor (CaSR) on the migration and proliferation of intestinal porcine epithelial cells (IPEC-J2). Results showed that cell migration area and width were increased by R568 (CaSR activator) and decreased by NPS2143 (CaSR inhibitor). The protein level of GTP-rac1 and the phosphorylation of phospholipase C gamma 1 (PLCγ1) were increased by 2 µM R568. Furthermore, R568 + 120 µM NSC23766 (Rac1 inhibitor) and R568 + 1 µM U73122 (PLCγ1 inhibitor) decreased the protein level of GTP-rac1 and the phosphorylated PLCγ1, respectively, and both inhibited cell migration compared with R568. In addition, spermine increased the protein expression levels of CaSR and the levels of GTP-rac1 and the phosphorylated PLCγ1 and thereby promoted the migration of IPEC-J2 cells. Moreover, R568 improved the proliferation of the IPEC-J2 cells. Spermine increased cell proliferation, but NPS2143 incubated with spermine decreased cell proliferation compared with the spermine group. This study suggests that CaSR activation increased cell migration by activating Rac1 and PLCγ1 signaling and improved cell proliferation, and both effects were regulated by spermine by activating CaSR.
Collapse
Affiliation(s)
- Jie Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Igarashi A, Ogasawara S, Takagi R, Okada K, Ito YM, Hara H, Hira T. Acute Oral Calcium Suppresses Food Intake Through Enhanced Peptide-YY Secretion Mediated by the Calcium-Sensing Receptor in Rats. J Nutr 2021; 151:1320-1328. [PMID: 33693689 DOI: 10.1093/jn/nxab013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/14/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Dietary calcium has been proposed to reduce appetite in human studies. Postprandial satiety is mainly controlled by gut hormones. However, the effect of calcium on appetite and the role of gut hormones remain unclear. OBJECTIVES We examined whether oral administration of calcium reduces food intake in rats and investigated the underlying mechanism. METHODS Male Sprague Dawley rats (8-12 wk old) were used after an overnight fastifffng. In a series of 2 trials with 1-wk interval between challenges, food intake was measured 0.5-24 h after oral gavage of a vehicle (saline containing 1.5% carboxymethyl cellulose) as the control treatment, or the vehicle containing various calcium compounds [calcium chloride (CaCl2), calcium carbonate, calcium lactate, in a random order] at 150 mg calcium/kg dose. A conditional taste aversion test was conducted. In separate experiments, plasma calcium and gut hormone concentrations were measured 15 or 30 min after oral administration of the calcium compounds. In anesthetized rats, portal peptide-YY (PYY) concentrations were measured after intraluminal administration of a liquid meal with or without additional calcium. RESULTS Oral CaCl2 reduced food intake acutely (30 min, ∼20%, P < 0.05) compared with control rats, without taste aversion. Plasma PYY concentration was higher (100%, P < 0.05) in CaCl2-preloaded rats than in control rats, 15 min after administration. In anesthetized rats, luminal meal + CaCl2 induced a 4-fold higher increase in plasma PYY than the control treatment did. Oral administration of a calcium-sensing receptor (CaSR) agonist suppressed food intake (∼30%, P < 0.05), but CaCl2 and CaSR agonist did not suppress food intake under treatment with a PYY receptor antagonist. Furthermore, the CaSR antagonist attenuated the effect of CaCl2 on food intake. CONCLUSIONS CaCl2 suppresses food intake partly by increasing CaSR-mediated PYY secretion in rats. Our findings could at least partially explain the satiating effect of calcium.
Collapse
Affiliation(s)
- Akiho Igarashi
- School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shono Ogasawara
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ryo Takagi
- Biostatistics Division, Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Kazufumi Okada
- Biostatistics Division, Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Yoichi M Ito
- Biostatistics Division, Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Hiroshi Hara
- Faculty of Human Life Science, Fuji Women's University, Ishikari, Japan
| | - Tohru Hira
- School of Agriculture, Hokkaido University, Sapporo, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Vötterl JC, Klinsoda J, Hennig-Pauka I, Verhovsek D, Metzler-Zebeli BU. Evaluation of serum parameters to predict the dietary intake of calcium and available phosphorus in growing pigs. Transl Anim Sci 2021; 5:txab059. [PMID: 34222820 PMCID: PMC8244991 DOI: 10.1093/tas/txab059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Adequate provision of calcium (Ca) and phosphorus (P) is essential for bone formation and high growth performance in pigs. Nevertheless, reliable serum biomarkers for pig's Ca and P intake are still missing. Here, we used phytase supplementation to alter the dietary available P (aP) level in order to investigate the effect of differences in dietary aP levels on serum parameters related to the Ca and P homeostasis in pigs. Moreover, we assessed whether serum parameters can be used to predict the Ca, total P (tP), and aP intake in barrows and gilts throughout the fattening period. In total, 216 pigs (115 gilts and 101 barrows) were randomly allotted to one of the two diets in three replicate batches, each lasting 56 d (n = 108/diet). Pigs had free access to the diets without (Con) or with phytase (Phy; 650 phytase units/kg) via a transponder-based feeding system. Blood samples were collected on days 2, 23, and 52, and serum parameters were correlated with the daily Ca, tP, and aP intake. The intake of tP, aP, and Ca was overall 14.2%, 13.8%, and 14.2% higher in barrows compared with gilts, respectively (P < 0.001). Concurrently, phytase decreased the intake of tP and Ca by 8.4% and 6.7%, respectively, whereas it raised the intake of aP by 16.3% compared with the Con diet (P < 0.001). Serum levels of fibroblast growth factor 23, alkaline phosphatase (ALP), vitamin D (VitD), and osteocalcin (OCN) decreased with age (P < 0.05). The higher aP intake of pigs fed the Phy diet increased serum P on days 2 and 23 but decreased it on day 52 compared with the Con diet (P = 0.004). Pigs fed the Phy diet had higher serum ALP compared with pigs fed the Con diet on days 23 and 52 (P < 0.05). Correlation analysis between serum parameters and Ca, tP, and aP intake showed age- and sex-related associations. With 12 wk of age, serum P in both sexes, serum VitD in barrows, and serum OCN and ALP in gilts correlated with aP intake (|r| > 0.38), whereas serum OCN correlated with Ca in both sexes' intake (r > 0.50). At 20 wk, serum Ca and ALP in gilts correlated with aP intake, whereas serum P, Ca, and VitD correlated with Ca intake in both sexes (|r| > 0.39). In conclusion, the present results showed that the daily Ca and aP intake could be most reliably estimated from serum parameters for an approximate age of 12 and 20 wk. Serum P and the Ca:P ratio at 12 wk of age and serum VitD at 20 wk of age may be used to predict pig's daily aP intake in both sexes.
Collapse
Affiliation(s)
- Julia C Vötterl
- Unit of Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Jutamat Klinsoda
- Institute of Food Research and Product Development, University of Kasetsart, 10900 Bangkok, Thailand
| | - Isabel Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, 49456 Bakum, Germany
| | - Doris Verhovsek
- University Clinic of Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Barbara U Metzler-Zebeli
- Unit of Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
14
|
Zhao M, Chen J, Jin H, Qi Z. Extracellular Ca 2+ induces desensitized cytosolic Ca 2+ rise sensitive to phospholipase C inhibitor which suppresses root growth with Ca 2+ dependence. JOURNAL OF PLANT PHYSIOLOGY 2020; 252:153190. [PMID: 32688165 DOI: 10.1016/j.jplph.2020.153190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Calcium (Ca) is an essential element for all organisms. In animal cells, the plasma membrane-localized Ca receptor CaSR coupled to a phospholipase C (PLC)-dependent signaling cascade monitors extracellular Ca2+ concentrations ([Ca2+]ext) and responds with increases in cytosolic calcium concentrations ([Ca2+]cyt). Plant roots encounter variable soil conditions, but how they sense changes in [Ca2+]ext is largely unknown. In this study, we demonstrate that increasing [Ca2+]ext evokes a transient increase in [Ca2+] in the cytosol, mitochondria, and nuclei of Arabidopsis thaliana root cells. These increases were strongly desensitized to repeat applications of [Ca2+]ext, a typical feature of receptor-mediated cellular signaling in animal and plant cells. Treatment with gadolinium (Gd3+), a CaSR activator in animal cells, induced concentration-dependent increases in [Ca2+]cyt in roots, which showed self-desensitization and cross-desensitization to [Ca2+]ext-induced increases in [Ca2+]cyt (EICC). EICC was sensitive to extracellular H+, K+, Na+, and Mg2+ levels. Treatment with the PLC inhibitor neomycin suppressed EICC and Ca accumulation in roots. The inhibitory effect of neomycin on root elongation was fully rescued by increasing [Ca2+]ext but not [Mg2+] or [K+] in the growth medium. These results suggest that [Ca2+]ext and the movement of Ca2+ into the cytosol of plant roots are regulated by a receptor-mediated signaling pathway involving PLC.
Collapse
Affiliation(s)
- Man Zhao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010071, PR China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010071, PR China
| | - Jianhua Chen
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010071, PR China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010071, PR China
| | - Huiqing Jin
- Research Centre for Horticultural Science and Technology of Hohhot, Hohhot, 010020, PR China
| | - Zhi Qi
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010071, PR China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010071, PR China.
| |
Collapse
|
15
|
Qi M, Wang J, Tan B, Liao S, Long C, Yin Y. Postnatal growth retardation is associated with intestinal mucosa mitochondrial dysfunction and aberrant energy status in piglets. J Cell Mol Med 2020; 24:10100-10111. [PMID: 32667125 PMCID: PMC7520312 DOI: 10.1111/jcmm.15621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
Individuals with postnatal growth retardation (PGR) are prone to developing chronic disease. Abnormal development in small intestine is casually implicated in impaired growth performance. However, the exact mechanism is still unknown. In this present study, PGR piglets (aged 42 days) were employed as a good model to analyse changes in nutrient absorption and energy metabolism in the intestinal mucosa. The results showed lower serum concentrations of free amino acids, and lipid metabolites in PGR piglets, which were in accordance with the down‐regulated mRNA expressions involved in fatty acid and amino acid transporters in the jejunal and ileal mucosa. The decreased activities of digestive enzymes and the marked swelling in mitochondria were also observed in the PGR piglets. In addition, it was found that lower ATP production, higher AMP/ATP ratio, deteriorated mitochondrial complex III and ATP synthase, and decreased manganese superoxide dismutase activity in the intestinal mucosa of PGR piglets. Furthermore, altered gene expression involved in energy metabolism, accompanied by decreases in the protein abundance of SIRT1, PGC‐1α and PPARγ, as well as phosphorylations of AMPKα, mTOR, P70S6K and 4E‐BP1 were observed in intestinal mucosa of PGR piglets. In conclusion, decreased capability of nutrient absorption, mitochondrial dysfunction, and aberrant energy status in the jejunal and ileal mucosa may contribute to PGR piglets.
Collapse
Affiliation(s)
- Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Hunan International Joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Simeng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cimin Long
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Hunan International Joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
16
|
Leach K, Hannan FM, Josephs TM, Keller AN, Møller TC, Ward DT, Kallay E, Mason RS, Thakker RV, Riccardi D, Conigrave AD, Bräuner-Osborne H. International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Pharmacol Rev 2020; 72:558-604. [PMID: 32467152 PMCID: PMC7116503 DOI: 10.1124/pr.119.018531] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor that responds to multiple endogenous agonists and allosteric modulators, including divalent and trivalent cations, L-amino acids, γ-glutamyl peptides, polyamines, polycationic peptides, and protons. The CaSR plays a critical role in extracellular calcium (Ca2+ o) homeostasis, as demonstrated by the many naturally occurring mutations in the CaSR or its signaling partners that cause Ca2+ o homeostasis disorders. However, CaSR tissue expression in mammals is broad and includes tissues unrelated to Ca2+ o homeostasis, in which it, for example, regulates the secretion of digestive hormones, airway constriction, cardiovascular effects, cellular differentiation, and proliferation. Thus, although the CaSR is targeted clinically by the positive allosteric modulators (PAMs) cinacalcet, evocalcet, and etelcalcetide in hyperparathyroidism, it is also a putative therapeutic target in diabetes, asthma, cardiovascular disease, and cancer. The CaSR is somewhat unique in possessing multiple ligand binding sites, including at least five putative sites for the "orthosteric" agonist Ca2+ o, an allosteric site for endogenous L-amino acids, two further allosteric sites for small molecules and the peptide PAM, etelcalcetide, and additional sites for other cations and anions. The CaSR is promiscuous in its G protein-coupling preferences, and signals via Gq/11, Gi/o, potentially G12/13, and even Gs in some cell types. Not surprisingly, the CaSR is subject to biased agonism, in which distinct ligands preferentially stimulate a subset of the CaSR's possible signaling responses, to the exclusion of others. The CaSR thus serves as a model receptor to study natural bias and allostery. SIGNIFICANCE STATEMENT: The calcium-sensing receptor (CaSR) is a complex G protein-coupled receptor that possesses multiple orthosteric and allosteric binding sites, is subject to biased signaling via several different G proteins, and has numerous (patho)physiological roles. Understanding the complexities of CaSR structure, function, and biology will aid future drug discovery efforts seeking to target this receptor for a diversity of diseases. This review summarizes what is known to date regarding key structural, pharmacological, and physiological features of the CaSR.
Collapse
Affiliation(s)
- Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Fadil M Hannan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Thor C Møller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Donald T Ward
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Enikö Kallay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rebecca S Mason
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rajesh V Thakker
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Daniela Riccardi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Arthur D Conigrave
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Hans Bräuner-Osborne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| |
Collapse
|
17
|
Horst EA, Mayorga EJ, Al-Qaisi M, Abeyta MA, Portner SL, McCarthy CS, Goetz BM, Kvidera SK, Baumgard LH. Effects of maintaining eucalcemia following immunoactivation in lactating Holstein dairy cows. J Dairy Sci 2020; 103:7472-7486. [PMID: 32448571 DOI: 10.3168/jds.2020-18268] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022]
Abstract
Periparturient hypocalcemia is a common metabolic disorder and it is ostensibly associated with negative health and production outcomes. Acute infection also markedly decreases circulating Ca, but the reasons for and consequences of it on physiological and immunological parameters are unknown. Objectives were to evaluate the effects of maintaining eucalcemia on production, metabolic, and immune variables following an intravenous lipopolysaccharide (LPS) challenge. Twelve multiparous lactating Holstein cows (717 ± 20 kg of body weight; 176 ± 34 d in milk; parity 3 ± 0.2) were enrolled in a study containing 2 experimental periods (P); during P1 (3 d), cows consumed feed ad libitum and baseline values were obtained. At the initiation of P2 (4 d), cows were randomly assigned to 1 of 2 treatments: (1) LPS administered (LPS-Con; 0.5 μg/kg of body weight LPS; n = 6) or (2) LPS administered + eucalcemic clamp (LPS-Ca; 0.5 μg/kg of body weight LPS; Ca infusion; n = 6). Cows were fasted for the first 12 h during P2. After LPS administration, ionized Ca was determined every 15 min for 6 h and every 30 min for an additional 6 h and intravenous Ca infusion was adjusted in LPS-Ca cows to maintain eucalcemia. Blood ionized Ca was decreased 23% for the first 12 h postbolus in LPS-Con cows, and by design, Ca infusion prevented hypocalcemia. To maintain eucalcemia for the 12 h, 13.7 g of Ca was infused. The total Ca deficit (including Ca not secreted into milk) accumulated over the 12 h was 10.4 and 20.2 g for the LPS-Con and LPS-Ca treatments, respectively. Mild hyperthermia (0.8°C) occurred for ∼6 h post-LPS administration relative to P1. From 6 to 7 h postbolus rectal temperature from LPS-Ca cows was increased (0.6°C) relative to LPS-Con cows. On d 1 of P2, milk yield decreased (61%) in both treatments relative to P1. Relative to LPS-Con cows, milk yield decreased (15%) in LPS-Ca cows during P2. Overall, circulating LPS-binding protein continuously increased postbolus, and at 24 h LPS-binding protein levels in LPS-Ca cows were increased (80%) relative to LPS-Con cows. During P2, serum amyloid A increased (4-fold) in both treatments relative to P1. Administering LPS initially decreased circulating neutrophils, then cell counts progressively increased with time. Calcium infusion decreased neutrophil counts (40%) from 9 to 12 h postbolus relative to LPS-Con cows. Neutrophil function, as assessed by oxidative burst and myeloperoxidase production, did not differ due to treatment. In summary, maintaining eucalcemia (via intravenous Ca infusion) during an immune challenge appeared to intensify inflammation and adversely affect lactation performance.
Collapse
Affiliation(s)
- E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | - M Al-Qaisi
- Department of Animal Science, Iowa State University, Ames 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames 50011
| | - S L Portner
- Department of Animal Science, Iowa State University, Ames 50011
| | - C S McCarthy
- Department of Animal Science, Iowa State University, Ames 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
18
|
Xu J, Zeug A, Riederer B, Yeruva S, Griesbeck O, Daniel H, Tuo B, Ponimaskin E, Dong H, Seidler U. Calcium-sensing receptor regulates intestinal dipeptide absorption via Ca 2+ signaling and IK Ca activation. Physiol Rep 2020; 8:e14337. [PMID: 31960592 PMCID: PMC6971415 DOI: 10.14814/phy2.14337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although absorption of di- and tripeptides into intestinal epithelial cells occurs via the peptide transporter 1 (PEPT1, also called solute carrier family 15 member 1 (SLC15A1)), the detailed regulatory mechanisms are not fully understood. We examined: (a) whether dipeptide absorption in villous enterocytes is associated with a rise in cytosolic Ca2+ ([Ca2+ ]cyt ), (b) whether the calcium sensing receptor (CaSR) is involved in dipeptide-elicited [Ca2+ ]cyt signaling, and (c) what potential consequences of [Ca2+ ]cyt signaling may enhance enterocyte dipeptide absorption. Dipeptide Gly-Sar and CaSR agonist spermine markedly raised [Ca2+ ]cyt in villous enterocytes, which was abolished by NPS-2143, a selective CaSR antagonist and U73122, an phospholipase C (PLC) inhibitor. Apical application of Gly-Sar induced a jejunal short-circuit current (Isc), which was reduced by NPS-2143. CaSR expression was identified in the lamina propria and on the basal enterocyte membrane of mouse jejunal mucosa in both WT and Slc15a1-/- animals, but Gly-Sar-induced [Ca2+ ]cyt signaling was significantly decreased in Slc15a1-/- villi. Clotrimazole and TRM-34, two selective blockers of the intermediate conductance Ca2+ -activated K+ channel (IKCa ), but not iberiotoxin, a selective blocker of the large-conductance K+ channel (BKCa ) and apamin, a selective blocker of the small-conductance K+ channel (SKCa ), significantly inhibited Gly-Sar-induced Isc in native tissues. We reveal a novel CaSR-PLC-Ca2+ -IKCa pathway in the regulation of small intestinal dipeptide absorption, which may be exploited as a target for future drug development in human nutritional disorders.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
- Research GastroenterologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Andre Zeug
- Cellular NeurophysiologyHannover Medical SchoolHannoverGermany
| | - Brigitte Riederer
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Sunil Yeruva
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
| | | | - Hannelore Daniel
- Nutritional PhysiologyTechnical University of MunichFreisingGermany
| | - Biguang Tuo
- Research GastroenterologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | | | - Hui Dong
- Department of MedicineUniversity of California, San DiegoLa JollaCAUSA
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
19
|
L-phenylalanine Increased Gut Hormone Secretion through Calcium-Sensing Receptor in the Porcine Duodenum. Animals (Basel) 2019; 9:ani9080476. [PMID: 31344840 PMCID: PMC6719913 DOI: 10.3390/ani9080476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/13/2019] [Accepted: 07/20/2019] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The proper modulation of feed intake not only meets the nutrient requirement for the maximum growth rate in pigs, but also avoids feed waste. A complete understanding of how dietary factors affect the appetite in pigs will provide a strategy to modulate the feed intake of pigs. L-phenylalanine (L-Phe) has been demonstrated to induce satiety through stimulating anorectic hormone secretion in rodents. However, whether L-Phe has similar effects in pigs is unknown. Here, we aimed to investigate how L-Phe affects gut hormone secretion, along with insight into the underlying mechanism in porcine duodenum by using an in vitro perfusion system. Results showed that 80 mM L-Phe triggered glucose-dependent insulinotropic peptide (GIP) and cholecystokinin (CCK) release, and also upregulated calcium-sensing receptor (CaSR) and its downstream molecules, such as protein kinase C (PKC) and inositol 1,4,5-triphosphate receptor (IP3R) expression. However, these effects were attenuated by treatment with a CaSR antagonist. Our findings show that CaSR participates in Phe-induced hormone secretion in pig duodenum, indicating that CaSR may be a potential target in the food intake regulation of pigs. Abstract Luminal amino acids have a pivotal role in gut hormone secretion, and thereby modulate food intake and energy metabolism. However, the mechanisms by which amino acids exert this effect remains unknown. The purpose of this research was to investigate the response of L-phenylalanine (L-Phe) to gut hormone secretion and its underlying mechanisms by perfusing the pig duodenum. Eighty mM L-Phe and extracellular Ca2+ stimulated cholecystokinin (CCK) and glucose-dependent insulinotropic peptide (GIP) release, and upregulated the mRNA expression of the calcium-sensing receptor (CaSR), CCK, and GIP. Western blotting results showed that L-Phe also elevated the protein levels of CaSR, the inositol 1,4,5-triphosphate receptor (IP3R), and protein kinase C (PKC). However, the CaSR inhibitor NPS 2143 reduced the mRNA expression of CaSR, CCK, and GIP, and the secretion of CCK and GIP, as well as the protein level of CaSR, IP3R, and PKC. These results indicated that Phe stimulated gut secretion through a CaSR-mediated pathway and its downstream signaling molecules, PKC and IP3R.
Collapse
|
20
|
Chen Y, Gao Y, Tao Y, Lin D, An S. Identification of a Calcium-sensing Receptor in Human Dental Pulp Cells That Regulates Mineral Trioxide Aggregate–induced Mineralization. J Endod 2019; 45:907-916. [DOI: 10.1016/j.joen.2019.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/28/2019] [Accepted: 03/28/2019] [Indexed: 12/23/2022]
|