1
|
Conboy-Stephenson R, Ross RP, Kelly AL, Stanton C. Donor human milk: the influence of processing technologies on its nutritional and microbial composition. Front Nutr 2024; 11:1468886. [PMID: 39555198 PMCID: PMC11563987 DOI: 10.3389/fnut.2024.1468886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/03/2024] [Indexed: 11/19/2024] Open
Abstract
Human milk is regarded as the gold standard nutrition for newborn infants, providing all nutrients required for adequate growth and development from birth to 6 months. In addition, human milk is host to an array of bioactive factors that confer immune protection to the newborn infant. For this reason, the supply of human milk is crucial for premature, seriously ill, or low birth weight infants (<1,500 g). When a mother's own milk is unavailable, donor human milk is the recommended alternative by the World Health Organization. Prior to consumption, donor human milk undergoes pasteurization to ensure the eradication of bacterial agents and prevent the transfer of potentially pathogenic organisms. Currently, Holder Pasteurization, a heat-based treatment, is the widely adopted pasteurization technique used by milk banks. Holder pasteurization has demonstrated degradative effects on some of milk's biologically active factors, thus depleting critical bioactive agents with known functional, protective, and beneficial properties, ultimately reducing the immunoprotective value of donor human milk. As a result, alternative strategies for the processing of donor human milk have garnered much interest. These include thermal and non-thermal techniques. In the current review, we describe the effects of Holder pasteurization and alternative milk processing technologies on the nutritional and bioactive properties of milk. In addition, the capacity of each technique to ensure microbial inactivation of milk is summarized. These include the most extensively studied, high-temperature short-time and high-pressure processing, the emerging yet promising techniques, microwave heating and UV-C irradiation, and the lesser studied technologies, thermoultrasonication, retort processing, pulsed electric field, and gamma irradiation. Herein, we collate the findings of studies, to date, to allow for greater insight into the existing gaps in scientific knowledge. It is apparent that the lack of a cohesive standardized approach to human milk processing has resulted in contrasting findings, preventing a direct comparative analysis of the research. We conclude that donor human milk is a unique and valuable resource to the health sector, and although substantial research has been completed, persistent data disparities must be overcome to ensure optimal nutrition for the vulnerable newborn preterm infant group, in particular.
Collapse
Affiliation(s)
- Ruth Conboy-Stephenson
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - R. Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Alan L. Kelly
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Moro GE, Girard M, Peila C, Garcia N, Escuder-Vieco D, Keller K, Cassidy T, Bertino E, Boquien CY, Buffin R, Calvo J, Gaya A, Gebauer C, Lamireau D, Lembo D, Picaud JC, Wesolowska A, Arslanoglu S, Cavallarin L, Giribaldi M. New alternatives to holder pasteurization in processing donor milk in human milk banks. Front Nutr 2024; 11:1409381. [PMID: 38988859 PMCID: PMC11234892 DOI: 10.3389/fnut.2024.1409381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/13/2024] [Indexed: 07/12/2024] Open
Abstract
Infectious and toxicological risks are the main potential hazards that operators of Human Milk Banks (HMBs) encounter and must eliminate. HMBs are trying to implement procedures that allow to manage and sanitize human milk without altering significantly its nutritional and biologically protective components, obtaining a product characterized by a valid balance between safety and biological quality. The history of human milk processing is linked to the origins of HMBs themselves. And although other forms of sterilization were used originally, pasteurization soon became the recognized most effective means for sanitizing milk: all the milk that arrives at the HMB must be pasteurized. Holder pasteurization (HoP) is the most used methodology, and it is performed using low temperature and long time (+62.5°C for 30 min). With HoP some bioactive milk components are lost to varying degrees, but many other precious bioactive compounds are completely or partially preserved. To improve the quality of human milk processed by HMBs, maintaining in the meantime the same microbiological safety offered by HoP, new technologies are under evaluation. At present, High-Temperature Short-Time pasteurization (HTST) and High-Pressure Processing are the most studied methodologies. HTST is already utilized in some HMBs for daily practical activity and for research purposes. They seem to be superior to HoP for a better preservation of some nutritional and biologically protective components. Freeze-drying or lyophilization may have advantages for room temperature storage and transportation. The aim of this study is to evaluate the advancement regarding the processing of DHM with a literature search from 2019 to 2022. The effects of the new technologies on safety and quality of human milk are presented and discussed. The new technologies should assure microbiological safety of the final product at least at the same level as optimized HoP, with an improved preservation of the nutritional and bioactive components of raw human milk.
Collapse
Affiliation(s)
- Guido E Moro
- Associazione Italiana delle Banche del Latte Umano Donato (AIBLUD), Milan, Italy
| | - Melissa Girard
- Medical Affairs and Innovation, Héma-Québec, Québec, QC, Canada
| | - Chiara Peila
- Neonatal Unit, Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Nadia Garcia
- Banco Regional de Leche Materna Aladina-MGU, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Diana Escuder-Vieco
- Banco Regional de Leche Materna Aladina-MGU, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Kristin Keller
- Banco Regional de Leche Materna Aladina-MGU, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Tanya Cassidy
- Kathleen Lonsdale Health Research Institute, Maynooth University, Maynooth, Ireland
| | - Enrico Bertino
- Neonatal Unit, Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | | | - Rachel Buffin
- Neonatology UnitCroix-Rousse University Hospital, Hospices Civils de Lyon, Lyon, France
- Rhône-Alpes-Auvergne Regional Human Milk Bank, Croix-Rousse University Hospital, Hospices Civils de Lyon, Lyon, France
| | - Javier Calvo
- Group of Cell Therapy and Tissue Engineering (TERCIT), Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Research Institute on Health Sciences (IUNICS) and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Antoni Gaya
- Group of Cell Therapy and Tissue Engineering (TERCIT), Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Research Institute on Health Sciences (IUNICS) and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Corinna Gebauer
- Abteilung Neonatologie Klinik und Poliklinik für Kinder und Jugendliche, Leipzig, Germany
| | - Delphine Lamireau
- Human Milk Bank of University Hospital of Bordeaux, Lamireau, France
| | - David Lembo
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Jean-Charles Picaud
- Department of Neonatology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- CarMen Laboratory, INSERM, INRA, Université Claude Bernard Lyon1, Lyon, France
| | - Aleksandra Wesolowska
- Laboratory of Human Milk and Lactation Research at Milk Bank in Holy Family Hospital, Department of Medical Biology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Sertac Arslanoglu
- Division of Neonatology, Department of Pediatrics, Istanbul Medeniyet University, Istanbul, Türkiye
| | - Laura Cavallarin
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Turin, Italy
| | - Marzia Giribaldi
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Turin, Italy
| |
Collapse
|
3
|
Davis A, Perrin MT. Impact of Holder Pasteurization and Preanalytical Handling Techniques on Fat Concentration in Donor Human Milk: A Scoping Review. Adv Nutr 2024; 15:100229. [PMID: 38908896 PMCID: PMC11251407 DOI: 10.1016/j.advnut.2024.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Donor human milk (DHM) is an essential source of nutrition among high-risk infants (e.g., premature and low-birth weight). Holder pasteurization, a common step in DHM processing, is known to partially alter the composition of DHM; however, the impact on fat composition is historically inconsistent. OBJECTIVES This scoping review aimed to broadly review the literature on the impact of Holder pasteurization on the fat content in DHM, with a focus on preanalytical sample mixing. METHODS A systematic search of original, peer-reviewed research articles was conducted on 11 July, 2022. Articles were included if they compared matched raw (control) and Holder-pasteurized human milk samples and measured total lipids, cholesterol, and individual classes of fatty acids. Article review and selection was conducted by 2 independent reviewers. RESULTS The search yielded 26 original, peer-reviewed research articles published between 1978 and 2022. Overall methodology varied considerably between studies. When study methods described any mixing for collecting raw milk, 1 (17%) of the 6 of studies reported a small change in total fat concentration following pasteurization (<5%). Alternatively, among studies that did not describe methods for mixing raw milk to ensure a representative sample, 10 (56%) of the 18 reported a significant change (≥± 5%) in total fat concentration, with changes ranging from -28.6% to +19.4%. CONCLUSIONS This review suggests that inconsistent findings regarding the impact of Holder pasteurization on fat may be related to study methodologies, particularly preanalytical sample mixing. More research considering the role of preanalytical handling procedures and methodologies is necessary to help clarify the impact of Holder pasteurization on human milk composition.
Collapse
Affiliation(s)
- Autumn Davis
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Maryanne T Perrin
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, United States.
| |
Collapse
|
4
|
Zhong H, Xie Q, Li F, Yang Z, Li K, Luo Q. Determination of oxylipins and their precursors in breast milk by solid phase extraction-ultra high performance liquid chromatography-triple quadrupole tandem mass spectrometry. J Chromatogr A 2023; 1709:464400. [PMID: 37769518 DOI: 10.1016/j.chroma.2023.464400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Oxylipins and their precursors (long-chain polyunsaturated fatty acids, LCPUFAs) are key intercellular signaling molecules influencing the inflammatory response. Each oxylipin has pro- and/or anti-inflammatory effects, and the relative abundance of different oxylipins can alter the inflammatory balance, making it important to clarify the oxylipin profile of breast milk for optimal infant health. The extraction, identification, and simultaneous quantification of oxylipins in breast milk are challenging due to the structural similarity, limited stability, and the low endogenous concentration of oxylipins and the complex matrix of breast milk. This study aimed to develop a solid phase extraction-ultra high performance liquid chromatography-triple quadrupole tandem mass spectrometry (SPE-UPLC-MS/MS) method for the comprehensive and specific quantification of oxylipins and their precursors in breast milk. The LC conditions (including column, mobile phase, and gradient conditions) and SPE procedure (including SPE cartridges, elution solvent, and elution volume) were optimized to achieve accurate quantification and better analyte recovery. A single 18-minute chromatographic run allows for the quantification of 20 oxylipins and 5 PUFAs. The results showed good linearity (R2 > 0.99) over the concentration range of 2 to 100 ng/mL, with the instrument detection limits ranging from 0.01 to 0.90 ng/mL for oxylipins and 0.02 to 0.59 ng/mL for PUFAs. The method is rapid, sensitive, and reproducible (RSD ≤ 10%) and is suitable for the quantitative analysis of oxylipins and their precursors in infant formula samples.
Collapse
Affiliation(s)
- Huifang Zhong
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Co., Ltd., Qiqihaer 164800, China
| | - Fang Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiyi Yang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kaifeng Li
- Heilongjiang Feihe Dairy Co., Ltd., Qiqihaer 164800, China
| | - Qian Luo
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
5
|
Marousez L, Ichou F, Lesnik P, Tran LC, De Lamballerie M, Gottrand F, Ley D, Lesage J. Short-chain fatty acids levels in human milk are not affected by holder pasteurization and high hydrostatic pressure processing. Front Pediatr 2023; 11:1120008. [PMID: 37842027 PMCID: PMC10570738 DOI: 10.3389/fped.2023.1120008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Sterilized donor milk (DM) is frequently used for feeding preterm infants. To date, the effect of different modes of DM sterilization on short-chain fatty acids (SCFAs) remains unknown. We aimed to quantify SCFAs in DM samples after two types of milk sterilization: the Holder pasteurization (HoP) and a high hydrostatic pressure (HP) processing. Eight pooled DM samples were sterilized by HoP (62.5°C for 30 min) or processed by HP (350 MPa at 38°C). Raw DM was used as control. Six SCFAs were quantified by gas chromatography/mass spectrometry. Compared to raw milk, both HoP and HP treatment did not significantly modulate the concentration of acetate, butyrate, propionate and isovalerate in DM. Valerate and isobutyrate were undetectable in DM samples. In conclusion, both HoP and HP processing preserved milk SCFAs at their initial levels in raw human milk.
Collapse
Affiliation(s)
- Lucie Marousez
- Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, University of Lille, Lille, France
| | - Farid Ichou
- ICAN Omics, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
- INSERM, UMR-S1166, Sorbonne Université, Paris, France
| | - Philippe Lesnik
- ICAN Omics, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
- INSERM, UMR-S1166, Sorbonne Université, Paris, France
| | - Léa Chantal Tran
- Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, University of Lille, Lille, France
| | | | - Frédéric Gottrand
- Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, University of Lille, Lille, France
- Division of Gastroenterology Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children’s Hospital, CHU Lille, Lille, France
| | - Delphine Ley
- Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, University of Lille, Lille, France
- Division of Gastroenterology Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children’s Hospital, CHU Lille, Lille, France
| | - Jean Lesage
- Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, University of Lille, Lille, France
| |
Collapse
|
6
|
Markers and Mechanisms of Deterioration Reactions in Dairy Products. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-023-09331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Badewy R, Azarpazhooh A, Tenenbaum H, Connor KL, Lai JY, Sgro M, Bazinet RP, Fine N, Watson E, Sun C, Saha S, Glogauer M. The Association between Maternal Oral Inflammation and Neutrophil Phenotypes and Poly-Unsaturated Fatty Acids Composition in Human Milk: A Prospective Cohort Study. Cells 2022; 11:4110. [PMID: 36552874 PMCID: PMC9777263 DOI: 10.3390/cells11244110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
This prospective cohort study aimed to investigate the impact of maternal oral inflammation on human milk composition including neutrophil counts, activation state (based on cluster of differentiation (CD) markers expression), and fatty acid levels. Fifty mothers were recruited from St. Michael's hospital, Toronto, and followed up from 2-4 weeks until 4 months postpartum. Oral rinse and human milk samples were collected at both timepoints. Oral polymorphonuclear neutrophils (oPMNs) within the rinses were quantified using flow cytometry and the participants' oral health state was categorized into three groups (i.e., healthy, moderate, and severe) based on the oPMNs counts. Fatty acids were identified and quantified using a gas chromatography-flame ionization detector (GC-FID). Compared to mothers with a healthy oral health state, mothers with moderate to severe oral inflammation had a statistically significant decrease in the expression of CD64 biomarker, an increase in the expression of CD14 biomarker on human milk neutrophils and a decrease in the levels of eicosapentaenoic acid (C20:5n-3) in their human milk at follow-up compared to baseline. This study demonstrates for the first time that maternal oral inflammation can affect human milk composition. The mechanism by which these alterations can affect infant health outcomes in the long term critically needs to be considered.
Collapse
Affiliation(s)
- Rana Badewy
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
| | - Amir Azarpazhooh
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
- Department of Dentistry, Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Howard Tenenbaum
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
- Department of Dentistry, Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Kristin L. Connor
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jim Yuan Lai
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
| | - Michael Sgro
- Department of Pediatrics, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON M5G 1X3, Canada
| | - Richard P. Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Noah Fine
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
| | - Erin Watson
- Department of Dental Oncology, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada
| | - Chunxiang Sun
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
| | - Sourav Saha
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
- Department of Dental Oncology, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
8
|
Akhgar CK, Ramos-Garcia V, Nürnberger V, Moreno-Giménez A, Kuligowski J, Rosenberg E, Schwaighofer A, Lendl B. Solvent-Free Lipid Separation and Attenuated Total Reflectance Infrared Spectroscopy for Fast and Green Fatty Acid Profiling of Human Milk. Foods 2022; 11:foods11233906. [PMID: 36496714 PMCID: PMC9741076 DOI: 10.3390/foods11233906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
This study presents the first mid-infrared (IR)-based method capable of simultaneously predicting concentrations of individual fatty acids (FAs) and relevant sum parameters in human milk (HM). Representative fat fractions of 50 HM samples were obtained by rapid, two-step centrifugation and subsequently measured with attenuated total reflection IR spectroscopy. Partial least squares models were compiled for the acquired IR spectra with gas chromatography-mass spectrometry (GC-MS) reference data. External validation showed good results particularly for the most important FA sum parameters and the following individual FAs: C12:0 (R2P = 0.96), C16:0 (R2P = 0.88), C18:1cis (R2P = 0.92), and C18:2cis (R2P = 0.92). Based on the obtained results, the effect of different clinical parameters on the HM FA profile was investigated, indicating a change of certain sum parameters over the course of lactation. Finally, assessment of the method's greenness revealed clear superiority compared to GC-MS methods. The reported method thus represents a high-throughput, green alternative to resource-intensive established techniques.
Collapse
Affiliation(s)
- Christopher Karim Akhgar
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Victoria Ramos-Garcia
- Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Vanessa Nürnberger
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
- Competence Center CHASE GmbH, Altenberger Straße 69, 4040 Linz, Austria
| | - Alba Moreno-Giménez
- Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Julia Kuligowski
- Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Andreas Schwaighofer
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
- Correspondence: ; Tel.: +43-1-58801-15140
| |
Collapse
|
9
|
Oxylipins as Potential Regulators of Inflammatory Conditions of Human Lactation. Metabolites 2022; 12:metabo12100994. [PMID: 36295896 PMCID: PMC9610648 DOI: 10.3390/metabo12100994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic low-grade inflammation can be associated with obesity or subclinical mastitis (SCM), which is associated with poor infant growth in low- to middle-income country settings. It is unknown what physiological mechanisms are involved in low milk supply, but our research group has shown that mothers with low milk supply have higher inflammatory markers. Studies investigating oxylipin signaling have the potential to help explain mechanisms that mediate the impacts of inflammation on milk production. Animal studies have reported various elevated oxylipins during postpartum inflammation, mastitis, and mammary involution in ruminant models. Several investigations have quantified oxylipins in human milk, but very few studies have reported circulating oxylipin concentrations during lactation. In addition, there are technical considerations that must be addressed when reporting oxylipin concentrations in human milk. First, the majority of milk oxylipins are esterified in the triglyceride pool, which is not routinely measured. Second, total milk fat should be considered as a covariate when using milk oxylipins to predict outcomes. Finally, storage and handling conditions of milk samples must be carefully controlled to ensure accurate milk oxylipin quantitation, which may be affected by highly active lipases in human milk.
Collapse
|
10
|
Liu Y, Hettinga K, Liu D, Zhang L, Zhou P. Current progress of emerging technologies in human and animals' milk processing: Retention of immune-active components and microbial safety. Compr Rev Food Sci Food Saf 2022; 21:4327-4353. [PMID: 36036722 DOI: 10.1111/1541-4337.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/28/2023]
Abstract
Human milk and commercial dairy products play a vital role in humans, as they can provide almost all essential nutrients and immune-active components for the development of children. However, how to retain more native immune-active components of milk during processing remains a big question for the dairy industry. Nonthermal technologies for milk processing are gaining increasing interest in both academic and industrial fields, as it is known that thermal processing may negatively affect the quality of milk products. Thermosensitive components, such as lactoferrin, immunoglobulins (Igs), growth factors, and hormones, are highly important for the healthy development of newborns. In addition to product quality, thermal processing also causes environmental problems, such as high energy consumption and greenhouse gas (GHG) emissions. This review summarizes the recent advances of UV-C, ultrasonication (US), high-pressure processing (HPP), and other emerging technologies for milk processing from the perspective of immune-active components retention and microbial safety, focusing on human, bovine, goat, camel, sheep, and donkey milk. Also, the detailed application, including the instrumental design, technical parameters, and obtained results, are discussed. Finally, future prospects and current limitations of nonthermal techniques as applied in milk processing are discussed. This review thereby describes the current state-of-the-art in nonthermal milk processing techniques and will inspire the development of such techniques for in-practice applications in milk processing.
Collapse
Affiliation(s)
- Yaowei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Kasper Hettinga
- Dairy Science and Technology, Food Quality and Design Group, Wageningen, University and Research, Wageningen, The Netherlands
| | - Dasong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Lina Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|
11
|
Ten-Doménech I, Ramos-Garcia V, Moreno-Torres M, Parra-Llorca A, Gormaz M, Vento M, Kuligowski J, Quintás G. The effect of Holder pasteurization on the lipid and metabolite composition of human milk. Food Chem 2022; 384:132581. [DOI: 10.1016/j.foodchem.2022.132581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/04/2022] [Accepted: 02/25/2022] [Indexed: 11/04/2022]
|
12
|
Zhang H, Xu Y, Zhao C, Xue Y, Tan D, Wang S, Jia M, Wu H, Ma A, Chen G. Milk lipids characterization in relation to different heat treatments using lipidomics. Food Res Int 2022; 157:111345. [DOI: 10.1016/j.foodres.2022.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022]
|
13
|
Kothari A, Pitino MA, Unger S, Perreault V, Doyen A, Pouliot Y, McGeer AJ, Stone D, O’Connor DL. Preservation of Anti-cytomegalovirus Activity in Human Milk Following High-Pressure Processing Compared to Holder Pasteurization. Front Nutr 2022; 9:918814. [PMID: 35662924 PMCID: PMC9160983 DOI: 10.3389/fnut.2022.918814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Pasteurized donor human milk is recommended for hospitalized preterm infants when mother’s own milk is unavailable. Our aim was to compare the antiviral activity of human milk processed by Holder pasteurization (HoP) or high-pressure processing (HPP) against representative enveloped and non-enveloped viruses including cytomegalovirus and hepatitis A virus. Expressed milk from 20 donors collected from the Ontario Milk Bank was combined into 10 pools, each from two unique donors. Each pool was processed by HoP (62.5°C, 30 min) or HPP (500 MPa, 8 min, 4°C) and subsequently inoculated with cytomegalovirus or hepatitis A virus to achieve a final concentration of 5-log plaque-forming units/mL. Plaque reduction assays were used to quantify detectable virus after 30 min incubation (room temperature). Post hoc experiments using a 4 h incubation time were conducted if reductions were detected at 30 min. Irrespective of processing, cytomegalovirus concentrations declined in all pools after 30 min incubation (P < 0.0001). Milk processed by HoP exhibited significantly less reduction compared to raw milk (P = 0.0069). In post hoc experiments, anti-cytomegalovirus activity was maintained at 4 h, with high inter-pool variability. Hepatitis A virus concentration remained unchanged after 30 min incubation in raw and processed milk. Anti-cytomegalovirus activity in human milk is preserved following HoP and HPP, persisting up to 4 h post-inoculation; anti-hepatitis A virus activity was not observed in raw or processed milk. Further research is needed to understand how HoP or promising alternative processing methods affect the antiviral activity of donated milk, given its potential importance to recipient infants.
Collapse
Affiliation(s)
- Akash Kothari
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael A. Pitino
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sharon Unger
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Paediatrics, Sinai Health, Toronto, ON, Canada
- Rogers Hixon Ontario Human Milk Bank, Sinai Health, Toronto, ON, Canada
| | - Véronique Perreault
- Centre de Recherche en Sciences et Technologie du Lait (STELA), Département des Sciences des Aliments et de Nutrition, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Quebec City, QC, Canada
| | - Alain Doyen
- Centre de Recherche en Sciences et Technologie du Lait (STELA), Département des Sciences des Aliments et de Nutrition, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Quebec City, QC, Canada
| | - Yves Pouliot
- Centre de Recherche en Sciences et Technologie du Lait (STELA), Département des Sciences des Aliments et de Nutrition, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Quebec City, QC, Canada
| | - Allison J. McGeer
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Microbiology, Sinai Health, Toronto, ON, Canada
| | - Debbie Stone
- Rogers Hixon Ontario Human Milk Bank, Sinai Health, Toronto, ON, Canada
| | - Deborah L. O’Connor
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Paediatrics, Sinai Health, Toronto, ON, Canada
- Rogers Hixon Ontario Human Milk Bank, Sinai Health, Toronto, ON, Canada
- *Correspondence: Deborah L. O’Connor,
| |
Collapse
|
14
|
Johnson CM, Rosario R, Brito A, Agrawal K, Fanter R, Lietz G, Haskell M, Engle-Stone R, Newman JW, La Frano MR. Multi-assay nutritional metabolomics profiling of low vitamin A status versus adequacy is characterized by reduced plasma lipid mediators among lactating women in the Philippines: A pilot study. Nutr Res 2022; 104:118-127. [DOI: 10.1016/j.nutres.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 01/08/2023]
|
15
|
|
16
|
Hopperton KE, Pitino MA, Walton K, Kiss A, Unger SL, O'Connor DL, Bazinet RP. Docosahexaenoic acid and arachidonic acid levels are correlated in human milk: Implications for new European infant formula regulations. Lipids 2022; 57:197-202. [PMID: 35170053 DOI: 10.1002/lipd.12338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/03/2023]
Abstract
From February 2022, all infant formula sold in the European Union must contain docosahexaenoic acid (DHA) at ~0.33%-1.14% of total fat with no minimum requirement for arachidonic acid (ARA). This work examines the association between DHA and ARA levels in human milk, the gold standard for infant feeding. Human milk (n = 470) was collected over 12-weeks postpartum from lactating mothers (n = 100) of infants born weighing <1250 g (NCT02137473). Fatty acids were analyzed by gas chromatography. ARA and DHA concentrations were associated in human milk (β = 0.47 [95% confidence interval 0.38-0.56] mol%), including transitional and mature milk, but not colostrum. This remained significant upon adjustment for percentages of other saturated, monounsaturated, n-3, or n-6 fatty acids, day of sample collection, or maternal characteristics (body mass index, ethnicity, education, and income). Infant formulas containing relatively high concentrations of DHA without ARA, as permitted by the new regulations, would not reflect the balance of these fatty acids in human milk.
Collapse
Affiliation(s)
- Kathryn E Hopperton
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael A Pitino
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Kathryn Walton
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alex Kiss
- Management and Evaluation, University of Toronto, Toronto, Ontario, Canada.,Evaluative and Clinical Sciences, Sunnybrook Research Institute and the Institute of Health Policy, Toronto, Ontario, Canada
| | - Sharon L Unger
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.,Division of Neonatology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Department of Paediatrics, Sinai Health, Toronto, Ontario, Canada
| | - Deborah L O'Connor
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Pitino MA, Unger S, Gill A, McGeer AJ, Doyen A, Pouliot Y, Bazinet RP, Kothari A, Mazzulli T, Stone D, O'Connor DL. High pressure processing inactivates human cytomegalovirus and hepatitis A virus while preserving macronutrients and native lactoferrin in human milk. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Hopperton KE, Pitino MA, Chouinard-Watkins R, Shama S, Sammut N, Bando N, Williams BA, Walton K, Kiss A, Unger SL, Bazinet RP, O'Connor DL. Determinants of fatty acid content and composition of human milk fed to infants born weighing <1250 g. Am J Clin Nutr 2021; 114:1523-1534. [PMID: 34254983 PMCID: PMC8488876 DOI: 10.1093/ajcn/nqab222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/10/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Infants born at very low birth weight (VLBW) are vulnerable to deficits in fatty acids (FAs) but little is known of factors that influence the intakes or composition of their human milk feeds. OBJECTIVES We aimed to identify sources of variability in the fat composition of human milk fed to VLBW infants and examine the impact of milk source (mother's own or donor) on fat and FA intakes. METHODS Serial samples of mother's milk (n = 476) and donor milk (n = 53) fed to infants born weighing <1250 g (n = 114 infants from 100 mothers) were collected [Optimizing Mothers' Milk for Preterm Infants (OptiMoM) randomized clinical trial]. Fat and FA were analyzed using a mid-infrared human milk analyzer and GC with flame ionization detection. RESULTS At full enteral feeding, donor milk is estimated to provide 1.3 g · kg-1 · d-1 less total fat than mature mother's milk (recommended intake: 4.8 g · kg-1 · d-1), and 5-9 mg · kg-1 · d-1 less DHA (22:6n-3) and arachidonic acid (20:4n-6) (estimated average requirement: 55-60 and 35-45 mg · kg-1 · d-1, respectively) than colostrum or transitional milk. Similar deficits were observed in measured intakes of a subset of OptiMoM infants. In multivariable-adjusted models, maternal ethnicity had medium to large [≥0.5 SD score (SDS)] effects on DHA, SFAs, and MUFAs. Mothers with prepregnancy BMI in overweight and obese categories had higher milk total fat (β: 0.35; 95% CI: 0.10, 0.61 and β: 0.46; 95% CI: 0.16, 0.77 SDS, respectively). Those with BMI ≥30 in addition had higher proportions of SFAs (β: 0.61; 95% CI: 0.33, 0.89 SDS) and lower DHA (β: -0.54; 95% CI: -0.89, -0.20 SDS). Other factors, such as gestational age and income, were also associated with FA composition. CONCLUSIONS The fat and FA content of human milk fed to VLBW infants is variable. Care must be taken to ensure fat and FA intakes meet recommendations, particularly when feeding a high proportion of donor milk.This trial was registered at clinicaltrials.gov as NCT02137473.
Collapse
Affiliation(s)
- Kathryn E Hopperton
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael A Pitino
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada,Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | - Sara Shama
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Natasha Sammut
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Bando
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brock A Williams
- Department of Food, Nutrition and Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathryn Walton
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alex Kiss
- Management and Evaluation, University of Toronto, Toronto, Ontario, Canada,Evaluative and Clinical Sciences, Sunnybrook Research Institute and the Institute of Health Policy, Toronto, Ontario, Canada
| | - Sharon L Unger
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada,Division of Neonatology, The Hospital for Sick Children, Toronto, Ontario, Canada,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada,Department of Paediatrics, Sinai Health System, Toronto, Ontario, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
19
|
Specialized Pro-Resolving Lipid Mediators in Neonatal Cardiovascular Physiology and Diseases. Antioxidants (Basel) 2021; 10:antiox10060933. [PMID: 34201378 PMCID: PMC8229722 DOI: 10.3390/antiox10060933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease remains a leading cause of mortality worldwide. Unresolved inflammation plays a critical role in cardiovascular diseases development. Specialized Pro-Resolving Mediators (SPMs), derived from long chain polyunsaturated fatty acids (LCPUFAs), enhances the host defense, by resolving the inflammation and tissue repair. In addition, SPMs also have anti-inflammatory properties. These physiological effects depend on the availability of LCPUFAs precursors and cellular metabolic balance. Most of the studies have focused on the impact of SPMs in adult cardiovascular health and diseases. In this review, we discuss LCPUFAs metabolism, SPMs, and their potential effect on cardiovascular health and diseases primarily focusing in neonates. A better understanding of the role of these SPMs in cardiovascular health and diseases in neonates could lead to the development of novel therapeutic approaches in cardiovascular dysfunction.
Collapse
|
20
|
Teixeira BF, Dias FFG, Vieira TMFDS, Leite Nobrega de Moura Bell JM, Taha AY. Method optimization of oxylipin hydrolysis in nonprocessed bovine milk indicates that the majority of oxylipins are esterified. J Food Sci 2021; 86:1791-1801. [PMID: 33864645 DOI: 10.1111/1750-3841.15697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022]
Abstract
The oxidation of polyunsaturated fatty acids produces bioactive primary oxidation products known as oxylipins. In many biological matrices, the majority of oxylipins are bound (i.e. esterified), and a relatively small proportion (<10%) exists in the free form. The present study tested whether this extends to bovine milk following method evaluation of various extraction and base hydrolysis protocols for measuring bound oxylipins. Free (unbound) oxylipins were also measured. Folch extraction followed by sodium carbonate hydrolysis in the presence of methanol containing 0.1% of acetic acid and 0.1% of butylated hydroxytoluene resulted in greater oxylipin concentrations and better surrogate standard recoveries compared to other methods that did not involve Folch extraction or the addition of methanol with hydrolysis base. Sodium hydroxide was better than sodium carbonate in hydrolyzing bound oxylipins under the same conditions. Milk analysis of oxylipins with mass-spectrometry following Folch extraction and sodium hydroxide hydrolysis revealed that 95% of oxylipins in bovine milk were esterified. Most of the detected oxylipins were derived from linoleic acid, which accounted for 92 and 88% of oxylipins in the free and esterified pools, respectively. These results demonstrate that the majority of bovine milk oxylipins are bound, and that linoleic-acid derived metabolites are the most abundant oxylipin species in free and bound lipid pools. Additional studies are needed to understand the role of different oxylipin pools in both calf and human nutrition. PRACTICAL APPLICATION: A method involving Folch lipid extraction and sodium hydroxide hydrolysis was validated for esterified oxylipin measurements in bovine milk. Application of the method revealed that the majority (∼95%) of oxylipins in bovine milk were bound. Linoleic-acid derived oxylipins were the most abundant species in both bound and free milk fractions (88-92%). The results highlight the presence of a new pool of oxidized lipids in milk, potentially involved in modifying its sensory and nutritional properties.
Collapse
Affiliation(s)
- Bianca Ferraz Teixeira
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, California, USA.,ESALQ Food, College of Agriculture "Luiz de Queiroz,", University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | | | - Juliana Maria Leite Nobrega de Moura Bell
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, California, USA.,Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Avenue, Davis, California, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, California, USA
| |
Collapse
|
21
|
Martinat M, Rossitto M, Di Miceli M, Layé S. Perinatal Dietary Polyunsaturated Fatty Acids in Brain Development, Role in Neurodevelopmental Disorders. Nutrients 2021; 13:1185. [PMID: 33918517 PMCID: PMC8065891 DOI: 10.3390/nu13041185] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
n-3 and n-6 polyunsaturated fatty acids (PUFAs) are essential fatty acids that are provided by dietary intake. Growing evidence suggests that n-3 and n-6 PUFAs are paramount for brain functions. They constitute crucial elements of cellular membranes, especially in the brain. They are the precursors of several metabolites with different effects on inflammation and neuron outgrowth. Overall, long-chain PUFAs accumulate in the offspring brain during the embryonic and post-natal periods. In this review, we discuss how they accumulate in the developing brain, considering the maternal dietary supply, the polymorphisms of genes involved in their metabolism, and the differences linked to gender. We also report the mechanisms linking their bioavailability in the developing brain, their transfer from the mother to the embryo through the placenta, and their role in brain development. In addition, data on the potential role of altered bioavailability of long-chain n-3 PUFAs in the etiologies of neurodevelopmental diseases, such as autism, attention deficit and hyperactivity disorder, and schizophrenia, are reviewed.
Collapse
|
22
|
Zhang Z, Emami S, Hennebelle M, Morgan RK, Lerno LA, Slupsky CM, Lein PJ, Taha AY. Linoleic acid-derived 13-hydroxyoctadecadienoic acid is absorbed and incorporated into rat tissues. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158870. [PMID: 33340768 DOI: 10.1016/j.bbalip.2020.158870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/22/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
Linoleic acid (LNA)-derived 13-hydroxyoctadecadienoic acid (13-HODE) is a bioactive lipid mediator that regulates multiple signaling processes in vivo. 13-HODE is also produced when LNA is oxidized during food processing. However, the absorption and incorporation kinetics of dietary 13-HODE into tissues is not known. The present study measured unesterified d4-13-HODE plasma bioavailability and incorporation into rat liver, adipose, heart and brain following gavage or intravenous (IV) injection (n = 3 per group). Mass spectrometry analysis revealed that d4-13-HODE was absorbed within 20 min of gavage, and continued to incorporate into plasma esterified lipid fractions throughout the 90 min monitoring period (incorporation half-life of 71 min). Following IV injection, unesterified d4-13-HODE was rapidly eliminated from plasma with a half-life of 1 min. Analysis of tracer incorporation kinetics into rat tissues following IV injection or gavage revealed that the esterified tracer preferentially incorporated into liver, adipose and heart compared to unesterified d4-13-HODE. No tracer was detected in the brain. This study demonstrates that dietary 13-HODE is absorbed, and incorporated into peripheral tissues from esterified plasma lipid pools. Understanding the chronic effects of dietary 13-HODE exposure on peripheral tissue physiology and metabolism merits future investigation.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Shiva Emami
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Marie Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Rhianna K Morgan
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Larry A Lerno
- Food Safety and Measurement Facility, University of California, Davis, CA, USA
| | - Carolyn M Slupsky
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA; Department of Nutrition, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
23
|
Riederer M, Wallner M, Schweighofer N, Fuchs-Neuhold B, Rath A, Berghold A, Eberhard K, Groselj-Strele A, Staubmann W, Peterseil M, Waldner I, Mayr JA, Rothe M, Holasek S, Maunz S, Pail E, van der Kleyn M. Distinct maternal amino acids and oxylipins predict infant fat mass and fat-free mass indices. Arch Physiol Biochem 2020; 129:563-574. [PMID: 33283558 DOI: 10.1080/13813455.2020.1846204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Interested in maternal determinants of infant fat mass index (FMI) and fat-free mass index (FFMI), considered as predictors for later development of obesity, we analysed amino acids (AA) and oxylipins in maternal serum and breast milk (BM). FMI and FFMI were calculated in 47 term infants aged 4 months (T4). Serum AA were analysed in pregnancy (T1, T2) and 6-8 weeks postpartum (T3). At T3, AA and oxylipins were analysed in BM. Biomarker-index-associations were identified by regression analysis. Infant FMI (4.1 ± 1.31 kg/m2; MW ± SD) was predicted by T2 proline (R2 adj.: 7.6%, p = .036) and T3 BM 11-hydroxy-eicosatetraenoic-acid (11-HETE) and 13-hydroxy-docosahexaenoic-acid (13-HDHA; together:35.5% R2 adj., p < .001). Maternal peripartum antibiotics (AB) emerged as confounders (+AB: 23.5% higher FMI; p = .025). Infant FFMI (12.1 ± 1.19 kg/m2; MW ± SD) was predicted by histidine (R2 adj.: 14.5%, p < .001) and 17-HDHA (BM, R2 adj.:19.3%, p < .001), determined at T3. Confirmed in a larger cohort, the parameters could elucidate connections between maternal metabolic status, nutrition, and infant body development.
Collapse
Affiliation(s)
- Monika Riederer
- Institute of Biomedical Science, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Marlies Wallner
- Institute of Dietetics and Nutrition, Health Perception Lab, University of Applied Sciences JOANNEUM, Graz, Austria
| | | | - Bianca Fuchs-Neuhold
- Institute of Dietetics and Nutrition, Health Perception Lab, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Anna Rath
- Institute of Midwifery, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria
| | - Katharina Eberhard
- Core Facility Computational Bioanalytics, Center for Medical Research (ZMF), Medical University of Graz, Graz, Austria
| | - Andrea Groselj-Strele
- Core Facility Computational Bioanalytics, Center for Medical Research (ZMF), Medical University of Graz, Graz, Austria
| | - Wolfgang Staubmann
- Institute of Dietetics and Nutrition, Health Perception Lab, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Marie Peterseil
- Institute of Dietetics and Nutrition, Health Perception Lab, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Irmgard Waldner
- Institute of Midwifery, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Johannes A Mayr
- University Clinic for Pediatrics and Adolescent Medicine Salzburg, Salzburg, Austria
| | | | - Sandra Holasek
- Department of Pathophysiology, Medical University Graz, Graz, Austria
| | - Susanne Maunz
- Institute of Dietetics and Nutrition, Health Perception Lab, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Elisabeth Pail
- Institute of Dietetics and Nutrition, Health Perception Lab, University of Applied Sciences JOANNEUM, Graz, Austria
| | | |
Collapse
|
24
|
Liu Y, Xiong L, Kontopodi E, Boeren S, Zhang L, Zhou P, Hettinga K. Changes in the milk serum proteome after thermal and non-thermal treatment. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Samarra I, Masdevall C, Foguet-Romero E, Guirro M, Riu M, Herrero P, Canela N, Delpino-Rius A. Analysis of oxylipins to differentiate between organic and conventional UHT milks. Food Chem 2020; 343:128477. [PMID: 33160765 DOI: 10.1016/j.foodchem.2020.128477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
Nowadays, there is a strong interest in analytical approaches for assessing organic farming practices. Here, we propose that oxylipins, a group of oxidised metabolites derived from various polyunsaturated fatty acids, could be promising biomarkers for organic milk assessment because their biosynthesis is modulated by both precursor fatty acid availability and physiological or pathological status. Thus, we determined 31 fatty acids, 53 triacylglycerols and 37 oxylipins in one hundred commercial UHT milks by chromatographic methods coupled to mass spectrometry. Of these, 52 milks were conventional (34 whole milk, 11 semi-skimmed milk and 7 skimmed milk) and 48 were organic (31 whole milk, 11 semi-skimmed milk and 6 skimmed milk). Several oxylipins (8-HEPE, 5-HEPE, 11-HEPE, 9-HEPE, 18-HEPE, 9-HOTrE, 13-HOTrE, 12,13-DiHODE and 15,16-DiHODE) could distinguish between organic and conventional milks. Within these oxylipins, arachidonic and linoleic acid derived do not correlate with their fatty acid precursors; therefore these oxylipins could be promising as not only diet-dependent biomarkers for organic milk assessment.
Collapse
Affiliation(s)
- Iris Samarra
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (Joint Unit Eurecat - Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Reus, Spain
| | - Clara Masdevall
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (Joint Unit Eurecat - Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Reus, Spain
| | - Elisabet Foguet-Romero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (Joint Unit Eurecat - Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Reus, Spain
| | - Maria Guirro
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (Joint Unit Eurecat - Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Reus, Spain
| | - Marc Riu
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (Joint Unit Eurecat - Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Reus, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (Joint Unit Eurecat - Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Reus, Spain
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (Joint Unit Eurecat - Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Reus, Spain.
| | - Antoni Delpino-Rius
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (Joint Unit Eurecat - Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Reus, Spain
| |
Collapse
|
26
|
Gan J, Zhang Z, Kurudimov K, German JB, Taha AY. Distribution of Free and Esterified Oxylipins in Cream, Cell, and Skim Fractions of Human Milk. Lipids 2020; 55:661-670. [PMID: 32725684 DOI: 10.1002/lipd.12268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/23/2022]
Abstract
Human milk contains oxylipins involved in infant development. Although oxylipins have been identified in whole or skim milk, their localization within human milk cream, cell, and skim fractions is not known. This study determined the distribution of free and esterified oxylipins in cream, cell, and skim fractions of human milk. Out of 72 oxylipins probed by mass-spectrometry, 42, 29, and 41 oxylipins (free or bound) were detected in cream, cell, and skim fractions, respectively. Over 90% of free and bound oxylipins were derived from linoleic acid in all milk fractions. Other oxylipins were derived from n-6 arachidonic acid and dihomo-gamma-linolenic acid, and n-3 alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid. Free oxylipins were more abundant in skim milk (59.9% of total oxylipins) compared to cream and cell pellet, whereas esterified oxylipins were most abundant in milk cream and cell pellets (74.9-76.9%). The heterogenous distribution of oxylipins in different fractions of human milk may regulate the guided release of these bioactive signaling molecules within infants.
Collapse
Affiliation(s)
- Junai Gan
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Zhichao Zhang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Karina Kurudimov
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - J Bruce German
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, CA, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| |
Collapse
|
27
|
Gao C, Liu G, McPhee AJ, Miller J, Gibson RA. A simple system for measuring the level of free fatty acids in human milk collected as dried milk spot. Prostaglandins Leukot Essent Fatty Acids 2020; 158:102035. [PMID: 31757711 DOI: 10.1016/j.plefa.2019.102035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 01/01/2023]
Abstract
Breast milk dried on filter paper is a useful collection device for the study of breast milk because it avoids the costs associated with cold-chain storage and transportation. Although the fatty acid profile of breast milks as dried spots is stable, changes to the composition of lipid classes of breast milk due to lipase activity have been reported and are best reflected by its free fatty acid (FFA) concentration. This study aimed to develop a robust dried milk spot (DMS) system where fats in the breast milk are stable at room temperature, and the FFA concentration of the milk can be accurately measured without interference by the high level of triglyceride, which normally constitutes around 98% of the fats in fresh milk. Our system involves applying a small amount breast milk (20 µL) on silica gel impregnated filter paper and microwaving at high power to denature lipases. At the time of analysis, the milk fats are eluted with acetone, re-constituted in heptane and injected directly into a gas chromatograph equipped with an acid modified polyethylene glycol column. This DMS method was validated against the conventional TLC method across a range of FFA concentrations. The breast milk fats collected using this DMS system are stable at room temperature for at least eight weeks which allows for transportation by post and has the potential for use in multi-centred international clinical trials.
Collapse
Affiliation(s)
- Chang Gao
- School of Agriculture, Food and Wine, University of Adelaide, SA 5065, Australia; Women and Kids, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5001, Australia
| | - Ge Liu
- Women and Kids, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5001, Australia
| | - Andrew J McPhee
- Women and Kids, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5001, Australia; Neonatal Medicine, Women's and Children's Hospital, Adelaide, SA 5006, Australia
| | - Jaqueline Miller
- Women and Kids, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5001, Australia; Nutrition and Dietetics, Flinders University, Adelaide, SA 5001, Australia
| | - Robert A Gibson
- School of Agriculture, Food and Wine, University of Adelaide, SA 5065, Australia; Women and Kids, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5001, Australia.
| |
Collapse
|
28
|
Dias FFG, Augusto-Obara TR, Hennebelle M, Chantieng S, Ozturk G, Taha AY, Vieira TMFDS, Leite Nobrega de Moura Bell JM. Effects of industrial heat treatments on bovine milk oxylipins and conventional markers of lipid oxidation. Prostaglandins Leukot Essent Fatty Acids 2020; 152:102040. [PMID: 31809946 DOI: 10.1016/j.plefa.2019.102040] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 01/18/2023]
Abstract
The effects of industrial heat treatments of raw bovine milk subjected to Batch Pasteurization (BP), High Temperature Short Time (HTST) and Ultra High Temperature (UHT) on the formation of primary (hydroperoxide content and oxylipins) and secondary lipid oxidation products (thiobarbituric acid reactive species -TBARS) were evaluated. Total fatty acid content, percent of free fatty acids (FFA), and total antioxidant capacity (TAC) were also measured. Except for a 30% reduction in capric acid (C10:0) after UHT compared to BP, no significant differences in total fatty acid concentrations were detected amongst the heat treatments. Compared to raw bovine milk, no statistically significant effects of heat treatment were observed on percent FFA (0.29-0.31%), hydroperoxide concentration (0.0558-0.0624 mmol L-1), and TBARS values (13.4-18.9 µg MDA kg-1). HTST and UHT led to significant reductions (50-65%) in linoleic and alpha-linolenic acid oxidized metabolites compared with raw milk and batch pasteurized milk. Compared to raw milk (2943.7 μmol of TEAC L-1), TAC was significantly reduced by all heat treatments (2245 - 2393 μmol of TEAC L-1), although no statistically significant differences were observed amongst the treatments. The results demonstrate that heat processing reduces milk oxylipin content and antioxidant capacity and that oxylipin and TAC measurements provide a new sensitive approach to assess the impact of milk processing on lipid oxidation. The nutritional, shelf life and sensory implications of reduced oxylipins in HTST and UHT processed bovine milk merit further investigation.
Collapse
Affiliation(s)
| | - Thalita Riquelme Augusto-Obara
- ESALQ Food, College of Agriculture 'Luiz de Queiroz', University of São Paulo, Pádua Dias Avenue, Piracicaba, SP 13418-900, Brazil
| | - Marie Hennebelle
- Department of Food Science and Technology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Siriyakorn Chantieng
- Department of Food Science and Technology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Gulustan Ozturk
- Department of Food Science and Technology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | | | - Juliana Maria Leite Nobrega de Moura Bell
- Department of Food Science and Technology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA; Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
29
|
Lipid Profile, Lipase Bioactivity, and Lipophilic Antioxidant Content in High Pressure Processed Donor Human Milk. Nutrients 2019; 11:nu11091972. [PMID: 31438647 PMCID: PMC6770840 DOI: 10.3390/nu11091972] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/31/2022] Open
Abstract
Human milk fat plays an essential role as the source of energy and cell function regulator; therefore, the preservation of unique human milk donors’ lipid composition is of fundamental importance. To compare the effects of high pressure processing (HPP) and holder pasteurization on lipidome, human milk was processed at 62.5 °C for 30 min and at five variants of HPP from 450 MPa to 600 MPa, respectively. Lipase activity was estimated with QuantiChrom™ assay. Fatty acid composition was determined with the gas chromatographic technique, and free fatty acids content by titration with 0.1 M KOH. The positional distribution of fatty acid in triacylglycerols was performed. The oxidative induction time was obtained from the pressure differential scanning calorimetry. Carotenoids in human milk were measured by liquid chromatography. Bile salt stimulated lipase was completely eliminated by holder pasteurization, decreased at 600 MPa, and remained intact at 200 + 400 MPa; 450 MPa. The fatty acid composition and structure of human milk fat triacylglycerols were unchanged. The lipids of human milk after holder pasteurization had the lowest content of free fatty acids and the shortest induction time compared with samples after HPP. HPP slightly changed the β-carotene and lycopene levels, whereas the lutein level was decreased by 40.0% up to 60.2%, compared with 15.8% after the holder pasteurization.
Collapse
|
30
|
Gao C, Miller J, Middleton PF, Huang YC, McPhee AJ, Gibson RA. Changes to breast milk fatty acid composition during storage, handling and processing: A systematic review. Prostaglandins Leukot Essent Fatty Acids 2019; 146:1-10. [PMID: 31186148 DOI: 10.1016/j.plefa.2019.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 11/23/2022]
Abstract
This review evaluated the effect of various storage and handling conditions on the fat composition of expressed breast milk (EBM). Three databases PubMed, Embase and Scopus were searched in April 2019 with words from the three key components: human milk, handling process (i.e. storage and/or pasteurization), and fatty acid composition. The comparisons were EBM subjected to handling processes versus fresh EBM or versus EBM subjected to another handling processes. Both intervention and observational studies were included, and the outcomes measured included total fat and lipid classes of the EBM. We included 42 studies (43 reports), 41 of which were assessed to be of good quality. Relative changes to the fat composition of EBM subjected to handling processes were calculated based on the data provided in the included studies, and the results were synthesized narratively. The total fat content and total fatty acid composition of EBM was not generally influenced by storage and handling process, with most changes less than 10%, which is likely a result of methodological variation. A reduction in EBM triglyceride concentration and concomitant increase in free fatty acid concentration were seen after exposing to various conditions, probably due to endogenous lipase.
Collapse
Affiliation(s)
- Chang Gao
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5065, Australia; Women and Kids theme, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, SA 5006, Australia
| | - Jacqueline Miller
- Women and Kids theme, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, SA 5006, Australia; Nutrition and Dietetics, Flinders University, Adelaide, SA 5001, Australia
| | - Philippa F Middleton
- Women and Kids theme, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, SA 5006, Australia; Adelaide Medical School, Discipline of Paediatrics, University of Adelaide, Adelaide, SA 5006, Australia
| | - Yi-Chao Huang
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5065, Australia; Women and Kids theme, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, SA 5006, Australia; School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Andrew J McPhee
- Women and Kids theme, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, SA 5006, Australia; Neonatal Medicine, Women's and Children's Hospital, Adelaide, SA 5006, Australia
| | - Robert A Gibson
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5065, Australia; Women and Kids theme, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, SA 5006, Australia.
| |
Collapse
|