1
|
Chu Z, Zhu L, Zhou Y, Yang F, Hu Z, Luo Y, Li W, Luo F. Targeting Nrf2 by bioactive peptides alleviate inflammation: expanding the role of gut microbiota and metabolites. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38881345 DOI: 10.1080/10408398.2024.2367570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Inflammation is a complex process that usually refers to the general response of the body to the harmful stimuli of various pathogens, tissue damage, or exogenous pollutants. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates cellular defense against oxidative damage and toxicity by expressing genes related to oxidative stress response and drug detoxification. In addition to its antioxidant properties, Nrf2 is involved in many other important physiological processes, including inflammation and metabolism. Nrf2 can bind the promoters of antioxidant genes and upregulates their expressions, which alleviate oxidation-induced inflammation. Nrf2 has been shown to upregulate heme oxygenase-1 expression, which promotes NF-κB activation and is closely related with inflammation. Nrf2, as a key factor in antioxidant response, is closely related to the expressions of pro-inflammatory factors, NF-κB pathway and cell metabolism. Bioactive peptides come from a wide range of sources and have many biological functions. Increasing evidence indicates that bioactive peptides have potential anti-inflammatory activities. This article summarized the sources, absorption and utilization of bioactive peptides and their role in alleviating inflammation via Nrf2 pathway. Bioactive peptides can also regulate gut microbiota and alter metabolites, which regulates the Nrf2 pathway through novel pathway and supplement the anti-inflammatory mechanisms of bioactive peptides. This review provides a reference for further study on the anti-inflammatory effect of bioactive peptides and the development and utilization of functional foods.
Collapse
Affiliation(s)
- Zhongxing Chu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Lingfeng Zhu
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Yaping Zhou
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feiyan Yang
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wen Li
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
2
|
Luengo-Pérez LM, Fernández-Bueso M, Guzmán-Carmona C, López-Navia A, García-Lobato C. Morphofunctional Assessment beyond Malnutrition: Fat Mass Assessment in Adult Patients with Phenylketonuria-Systematic Review. Nutrients 2024; 16:1833. [PMID: 38931188 PMCID: PMC11206948 DOI: 10.3390/nu16121833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Morphofunctional assessment was developed to evaluate disease-related malnutrition. However, it can also be used to assess cardiometabolic risk, as excess adiposity increases this risk. Phenylketonuria (PKU) is the most prevalent inherited metabolic disease among adults, and obesity in PKU has recently gained interest, although fat mass correlates better with cardiometabolic risk than body mass index. In this systematic review, the objective was to assess whether adult patients with PKU have higher fat mass than healthy controls. Studies of adult PKU patients undergoing dietary treatment in a metabolic clinic reporting fat mass were included. The PubMed and EMBASE databases were searched. Relevance of articles, data collection, and risk of bias were evaluated by two independent reviewers. Ten articles were evaluated, six with a control group, including 310 subjects with PKU, 62 with mild hyperphenylalaninemia, and 157 controls. One study reported a significant and four a tendency towards an increased fat mass in all patients or only females with PKU. Limitations included not having a healthy control group, not reporting sex-specific results and using different techniques to assess fat mass. Evaluation of fat mass should be included in the morphofunctional assessment of cardiometabolic risk in adult patients with PKU.
Collapse
Affiliation(s)
- Luis M. Luengo-Pérez
- Medical Sciences Department, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
- Clinical Nutrition and Dietetics Unit, Endocrinology and Nutrition Section, Badajoz University Hospital, 06008 Badajoz, Spain; (M.F.-B.); (C.G.-L.)
| | - Mercedes Fernández-Bueso
- Clinical Nutrition and Dietetics Unit, Endocrinology and Nutrition Section, Badajoz University Hospital, 06008 Badajoz, Spain; (M.F.-B.); (C.G.-L.)
| | - Carlos Guzmán-Carmona
- Endocrinology and Nutrition, Don Benito-Villanueva de la Serena Hospital Complex, 06400 Don Benito, Spain; (C.G.-C.); (A.L.-N.)
| | - Ana López-Navia
- Endocrinology and Nutrition, Don Benito-Villanueva de la Serena Hospital Complex, 06400 Don Benito, Spain; (C.G.-C.); (A.L.-N.)
| | - Claudia García-Lobato
- Clinical Nutrition and Dietetics Unit, Endocrinology and Nutrition Section, Badajoz University Hospital, 06008 Badajoz, Spain; (M.F.-B.); (C.G.-L.)
| |
Collapse
|
3
|
Rackerby B, Le HNM, Haymowicz A, Dallas DC, Park SH. Potential Prebiotic Properties of Whey Protein and Glycomacropeptide in Gut Microbiome. Food Sci Anim Resour 2024; 44:299-308. [PMID: 38764509 PMCID: PMC11097032 DOI: 10.5851/kosfa.2024.e12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 05/21/2024] Open
Abstract
Proteins in whey have prebiotic and antimicrobial properties. Whey protein comprises numerous bioactive proteins and peptides, including glycomacropeptide (GMP), a hydrophilic casein peptide that separates with the whey fraction during cheese making. GMP has traditionally been used as a protein source for individuals with phenylketonuria and also has prebiotic (supporting the growth of Bifidobacterium and lactic acid bacteria) and antimicrobial activities. GMP supplementation may help positively modulate the gut microbiome, help treat dysbiosis-related gastrointestinal disorders and improve overall health in consumers.
Collapse
Affiliation(s)
- Bryna Rackerby
- Department of Food Science and Technology,
Oregon State University, Corvallis, OR 97331, USA
| | - Hoang Ngoc M. Le
- Department of Food Science and Technology,
Oregon State University, Corvallis, OR 97331, USA
| | - Avery Haymowicz
- Department of Food Science and Technology,
Oregon State University, Corvallis, OR 97331, USA
| | - David C. Dallas
- Department of Food Science and Technology,
Oregon State University, Corvallis, OR 97331, USA
- School of Biological and Population Health
Sciences, Nutrition, Oregon State University, Corvallis, OR
97331, USA
| | - Si Hong Park
- Department of Food Science and Technology,
Oregon State University, Corvallis, OR 97331, USA
- Department of Food Science and Technology,
Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
4
|
Olsen W, Liang N, Dallas DC. Macrophage-Immunomodulatory Actions of Bovine Whey Protein Isolate, Glycomacropeptide, and Their In Vitro and In Vivo Digests. Nutrients 2023; 15:4942. [PMID: 38068800 PMCID: PMC10707750 DOI: 10.3390/nu15234942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Whey protein isolate (WPI) consists of an array of proteins and peptides obtained as a byproduct of the cheesemaking process. Research suggests that WPI, along with its peptides such as glycomacropeptide (GMP), possesses immunomodulatory properties. These properties hold potential for alleviating the adverse effects of inflammatory conditions such as inflammatory bowel disease. Although promising, the immunoregulatory properties of the digested forms of WPI and GMP-those most likely to interact with the gut immune system-remain under-investigated. To address this knowledge gap, the current study examined the effects of in vitro-digested WPI and GMP, in vivo-digested WPI, and undigested WPI and GMP on the secretion of pro-inflammatory cytokines (TNF-α and IL-1β) in lipopolysaccharide-stimulated macrophage-like cells. Our results indicate that digested WPI and GMP reduced the expression of TNF-α and IL-1β, two pro-inflammatory cytokines. Whole WPI had no effect on TNF-α but reduced IL-1β levels. In contrast, in vivo-digested WPI reduced TNF-α but increased IL-1β. Undigested GMP, on the other hand, increased the secretion of both cytokines. These results demonstrate that digestion greatly modifies the effects of WPI and GMP on macrophages and suggest that digested WPI and GMP could help mitigate gastrointestinal inflammation. Further clinical studies are necessary to determine the biological relevance of WPI and GMP digestion products within the gut and their capacity to influence gut inflammation.
Collapse
Affiliation(s)
- Wyatt Olsen
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA;
| | - Ningjian Liang
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR 97331, USA;
| | - David C. Dallas
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA;
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
5
|
Qu Y, Park SH, Dallas DC. Evaluating the Potential of Casein Glycomacropeptide in Adult Irritable Bowel Syndrome Management: A Pilot Study. Nutrients 2023; 15:4174. [PMID: 37836457 PMCID: PMC10574033 DOI: 10.3390/nu15194174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that affects 10-15% of the global population and presents symptoms such as abdominal discomfort, bloating and altered bowel habits. IBS is believed to be influenced by gut microbiota alterations and low-grade inflammation. Bovine kappa-casein glycomacropeptide (GMP), a bioactive dairy-derived peptide, possesses anti-adhesive, prebiotic and immunomodulatory properties that could potentially benefit IBS patients. This pilot study investigated the effects of daily supplementation with 30 g of GMP for three weeks on gut health in five people with IBS. We assessed alterations in gut microbiota composition, fecal and blood inflammatory makers, and gut-related symptoms before, during and after the GMP feeding period. The results revealed no changes in fecal microbiota, subtle effects on systemic and intestinal immune makers, and no changes in gut-related symptoms during and after the GMP supplementation. Further research is needed to assess the potential benefits of GMP in IBS patients, including the examination of dosage and form of GMP supplementation.
Collapse
Affiliation(s)
- Yunyao Qu
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA;
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR 97331, USA
| | - Si Hong Park
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA;
| | - David C. Dallas
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
6
|
Qu Y, Park SH, Dallas DC. The Role of Bovine Kappa-Casein Glycomacropeptide in Modulating the Microbiome and Inflammatory Responses of Irritable Bowel Syndrome. Nutrients 2023; 15:3991. [PMID: 37764775 PMCID: PMC10538225 DOI: 10.3390/nu15183991] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder marked by chronic abdominal pain, bloating, and irregular bowel habits. Effective treatments are still actively sought. Kappa-casein glycomacropeptide (GMP), a milk-derived peptide, holds promise because it can modulate the gut microbiome, immune responses, gut motility, and barrier functions, as well as binding toxins. These properties align with the recognized pathophysiological aspects of IBS, including gut microbiota imbalances, immune system dysregulation, and altered gut barrier functions. This review delves into GMP's role in regulating the gut microbiome, accentuating its influence on bacterial populations and its potential to promote beneficial bacteria while inhibiting pathogenic varieties. It further investigates the gut microbial shifts observed in IBS patients and contemplates GMP's potential for restoring microbial equilibrium and overall gut health. The anti-inflammatory attributes of GMP, especially its impact on vital inflammatory markers and capacity to temper the low-grade inflammation present in IBS are also discussed. In addition, this review delves into current research on GMP's effects on gut motility and barrier integrity and examines the changes in gut motility and barrier function observed in IBS sufferers. The overarching goal is to assess the potential clinical utility of GMP in IBS management.
Collapse
Affiliation(s)
- Yunyao Qu
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (Y.Q.); (S.H.P.)
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR 97331, USA
| | - Si Hong Park
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (Y.Q.); (S.H.P.)
| | - David C. Dallas
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (Y.Q.); (S.H.P.)
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
7
|
Bouzid YY, Chin EL, Spearman SS, Alkan Z, Stephensen CB, Lemay DG. No Associations between Dairy Intake and Markers of Gastrointestinal Inflammation in Healthy Adult Cohort. Nutrients 2023; 15:3504. [PMID: 37630694 PMCID: PMC10459578 DOI: 10.3390/nu15163504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Dairy products are a good source of essential nutrients and past reviews have shown associations of dairy consumption with decreased systemic inflammation. Links between dairy intake and gastrointestinal (GI) inflammation are under-investigated. Therefore, we examined associations between reported dairy intake and markers of GI inflammation in healthy adults in a cross-sectional observational study, hypothesizing a negative association with yogurt intake, suggesting a protective effect, and no associations with total dairy, fluid milk, and cheese intake. Participants completed 24-h dietary recalls and a food frequency questionnaire (FFQ) to assess recent and habitual intake, respectively. Those who also provided a stool sample (n = 295), and plasma sample (n = 348) were included in analysis. Inflammation markers from stool, including calprotectin, neopterin, and myeloperoxidase, were measured along with LPS-binding protein (LBP) from plasma. Regression models tested associations between dairy intake variables and inflammation markers with covariates: age, sex, and body mass index (BMI). As yogurt is episodically consumed, we examined differences in inflammation levels between consumers (>0 cup equivalents/day reported in recalls) and non-consumers. We found no significant associations between dairy intake and markers of GI inflammation. In this cohort of healthy adults, dairy intake was not associated with GI inflammation.
Collapse
Affiliation(s)
- Yasmine Y. Bouzid
- USDA ARS Western Human Nutrition Research Center, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Elizabeth L. Chin
- USDA ARS Western Human Nutrition Research Center, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Sarah S. Spearman
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Zeynep Alkan
- USDA ARS Western Human Nutrition Research Center, Davis, CA 95616, USA
| | - Charles B. Stephensen
- USDA ARS Western Human Nutrition Research Center, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Danielle G. Lemay
- USDA ARS Western Human Nutrition Research Center, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| |
Collapse
|
8
|
Hansen KE, Murali S, Chaves IZ, Suen G, Ney DM. Glycomacropeptide Impacts Amylin-Mediated Satiety, Postprandial Markers of Glucose Homeostasis, and the Fecal Microbiome in Obese Postmenopausal Women. J Nutr 2023; 153:1915-1929. [PMID: 37116657 DOI: 10.1016/j.tjnut.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/08/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Obesity with metabolic syndrome is highly prevalent and shortens lifespan. OBJECTIVES In a dose-finding crossover study, we evaluated the effect of glycomacropeptide (GMP) on satiety, glucose homeostasis, amino acid concentrations, inflammation, and the fecal microbiome in 13 obese women. METHODS Eligible women were ≤10 yr past menopause with a body mass index [BMI (in kg/m2)] of 28 to 35 and no underlying inflammatory condition affecting study outcomes. Participants consumed GMP supplements (15 g GMP + 10 g whey protein) twice daily for 1 wk and thrice daily for 1 wk, with a washout period between the 2 wk. Women completed a meal tolerance test (MTT) on day 1 (soy MTT) and day 7 (GMP MTT) of each week. During each test, subjects underwent measures of glucose homeostasis, satiety, cytokines, and the fecal microbiome compared with that of usual diet, and rated the acceptability of consuming GMP supplements. RESULTS The mean ± SE age of the 13 women was 57 ± 1 yr, with a median of 8 yr (range: 3-9 yr) past menopause and a BMI of 30 (IQR: 29-32). GMP was highly acceptable to participants, permitting high adherence. Metabolic effects were similar for twice or thrice daily GMP supplementation. Glucose, insulin, and cytokine concentrations were no different. The postprandial area under the curve (AUC) for glucagon concentrations was significantly lower, and the insulin-glucagon ratio was significantly higher with GMP than that with the soy MTT. Postprandial AUC amylin concentration was significantly higher with GMP than that with the soy MTT and correlated with C-peptide (P < 0.001; R2 = 0.52) and greater satiety. Ingestion of GMP supplements twice daily reduced members of the genus Streptococcus (P = 0.009) and thrice daily consumption reduced overall α diversity. CONCLUSIONS GMP is shown to increase amylin concentrations, improve glucose homeostasis, and alter the fecal microbiome. GMP can be a helpful nutritional supplement in obese postmenopausal women at risk for metabolic syndrome. Further investigation is warranted. This trial was registered at clinicaltrials.gov as NCT05551091.
Collapse
Affiliation(s)
- Karen E Hansen
- Department of Medicine, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
| | - Sangita Murali
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Ibrahim Z Chaves
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Denise M Ney
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
9
|
Gallegos-Alcalá P, Jiménez M, Cervantes-García D, Córdova-Dávalos LE, Gonzalez-Curiel I, Salinas E. Glycomacropeptide Protects against Inflammation and Oxidative Stress, and Promotes Wound Healing in an Atopic Dermatitis Model of Human Keratinocytes. Foods 2023; 12:foods12101932. [PMID: 37238750 DOI: 10.3390/foods12101932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Keratinocytes are actively implicated in the physiopathology of atopic dermatitis (AD), a skin allergy condition widely distributed worldwide. Glycomacropeptide (GMP) is a milk-derived bioactive peptide generated during cheese making processes or gastric digestion. It has antiallergic and skin barrier restoring properties when it is orally administered in experimental AD. This study aimed to evaluate the effect of GMP on the inflammatory, oxidative, proliferative, and migratory responses of HaCaT keratinocytes in an in vitro AD model. GMP protected keratinocytes from death and apoptosis in a dose dependent manner. GMP at 6.3 and 25 mg/mL, respectively, reduced nitric oxide by 50% and 83.2% as well as lipid hydroperoxides by 27.5% and 45.18% in activated HaCaT cells. The gene expression of TSLP, IL33, TARC, MDC, and NGF was significantly downregulated comparably to control by GMP treatment in activated keratinocytes, while that of cGRP was enhanced. Finally, in an AD microenvironment, GMP at 25 mg/mL stimulated HaCaT cell proliferation, while concentrations of 0.01 and 0.1 mg/mL promoted the HaCaT cell migration. Therefore, we demonstrate that GMP has anti-inflammatory and antioxidative properties and stimulates wound closure on an AD model of keratinocytes, which could support its reported bioactivity in vivo.
Collapse
Affiliation(s)
- Pamela Gallegos-Alcalá
- Laboratory of Immunology, Department of Microbiology, Center of Basic Science, Universidad Autónoma de Aguascalientes, Av. Universidad # 940, Aguascalientes 20100, Mexico
| | - Mariela Jiménez
- Laboratory of Immunology, Department of Microbiology, Center of Basic Science, Universidad Autónoma de Aguascalientes, Av. Universidad # 940, Aguascalientes 20100, Mexico
| | - Daniel Cervantes-García
- Laboratory of Immunology, Department of Microbiology, Center of Basic Science, Universidad Autónoma de Aguascalientes, Av. Universidad # 940, Aguascalientes 20100, Mexico
- National Council of Science and Technology, Av. de los Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, Ciudad de México 03940, Mexico
| | - Laura Elena Córdova-Dávalos
- Laboratory of Immunology, Department of Microbiology, Center of Basic Science, Universidad Autónoma de Aguascalientes, Av. Universidad # 940, Aguascalientes 20100, Mexico
| | - Irma Gonzalez-Curiel
- Laboratory of Immunotoxicology and Experimental Therapeutics, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Carr. Zac.-Gdl. Km 6, Zacatecas 98160, Mexico
| | - Eva Salinas
- Laboratory of Immunology, Department of Microbiology, Center of Basic Science, Universidad Autónoma de Aguascalientes, Av. Universidad # 940, Aguascalientes 20100, Mexico
| |
Collapse
|
10
|
Montanari C, Ceccarani C, Corsello A, Zuvadelli J, Ottaviano E, Dei Cas M, Banderali G, Zuccotti G, Borghi E, Verduci E. Glycomacropeptide Safety and Its Effect on Gut Microbiota in Patients with Phenylketonuria: A Pilot Study. Nutrients 2022; 14:nu14091883. [PMID: 35565850 PMCID: PMC9104775 DOI: 10.3390/nu14091883] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 12/07/2022] Open
Abstract
Glycomacropeptide (GMP) represents a good alternative protein source in Phenylketonuria (PKU). In a mouse model, it has been suggested to exert a prebiotic role on beneficial gut bacteria. In this study, we performed the 16S rRNA sequencing to evaluate the effect of 6 months of GMP supplementation on the gut microbiota of nine PKU patients, comparing their bacterial composition and clinical parameters before and after the intervention. GMP seems to be safe from both the microbiological and the clinical point of view. Indeed, we did not observe dramatic changes in the gut microbiota but a specific prebiotic effect on the butyrate-producer Agathobacter spp. and, to a lesser extent, of Subdoligranulum. Clinically, GMP intake did not show a significant impact on both metabolic control, as phenylalanine values were kept below the age target and nutritional parameters. On the other hand, an amelioration of calcium phosphate homeostasis was observed, with an increase in plasmatic vitamin D and a decrease in alkaline phosphatase. Our results suggest GMP as a safe alternative in the PKU diet and its possible prebiotic role on specific taxa without causing dramatic changes in the commensal microbiota.
Collapse
Affiliation(s)
- Chiara Montanari
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (A.C.); (G.Z.); (E.V.)
| | - Camilla Ceccarani
- Institute of Biomedical Technologies, National Research Council, 20090 Segrate, Italy;
| | - Antonio Corsello
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (A.C.); (G.Z.); (E.V.)
| | - Juri Zuvadelli
- Clinical Department of Pediatrics, ASST Santi Paolo e Carlo, San Paolo Hospital, University of Milan, 20142 Milan, Italy; (J.Z.); (G.B.)
| | - Emerenziana Ottaviano
- Department of Health Science, University of Milan, 20142 Milan, Italy; (E.O.); (M.D.C.)
| | - Michele Dei Cas
- Department of Health Science, University of Milan, 20142 Milan, Italy; (E.O.); (M.D.C.)
| | - Giuseppe Banderali
- Clinical Department of Pediatrics, ASST Santi Paolo e Carlo, San Paolo Hospital, University of Milan, 20142 Milan, Italy; (J.Z.); (G.B.)
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (A.C.); (G.Z.); (E.V.)
| | - Elisa Borghi
- Department of Health Science, University of Milan, 20142 Milan, Italy; (E.O.); (M.D.C.)
- Correspondence: ; Tel.: +39-0250323240
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (A.C.); (G.Z.); (E.V.)
- Department of Health Science, University of Milan, 20142 Milan, Italy; (E.O.); (M.D.C.)
| |
Collapse
|
11
|
Pena MJ, Costa R, Rodrigues I, Martins S, Guimarães JT, Faria A, Calhau C, Rocha JC, Borges N. Unveiling the Metabolic Effects of Glycomacropeptide. Int J Mol Sci 2021; 22:ijms22189731. [PMID: 34575895 PMCID: PMC8470927 DOI: 10.3390/ijms22189731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
For many years, the main nitrogen source for patients with phenylketonuria (PKU) was phenylalanine-free amino acid supplements. Recently, casein glycomacropeptide (GMP) supplements have been prescribed due to its functional and sensorial properties. Nevertheless, many doubts still persist about the metabolic effects of GMP compared to free amino acids (fAA) and intact proteins such as casein (CAS). We endeavour to compare, in rats, the metabolic effects of different nitrogen sources. Twenty-four male Wistar rats were fed equal energy density diets plus CAS (control, n = 8), fAA (n = 8) or GMP (n = 8) for 8 weeks. Food, liquid intake and body weight were measured weekly. Blood biochemical parameters and markers of glycidic metabolism were assessed. Glucagon-like peptide-1 (GLP-1) was analysed by ELISA and immunohistochemistry. Food intake was higher in rats fed CAS compared to fAA or GMP throughout the treatment period. Fluid intake was similar between rats fed fAA and GMP. Body weight was systematically lower in rats fed fAA and GMP compared to those fed CAS, and still, from week 4 onwards, there were differences between fAA and GMP. None of the treatments appeared to induce consistent changes in glycaemia, while insulin levels were significantly higher in GMP. Likewise, the production of GLP-1 was higher in rats fed GMP when compared to fAA. Decreased urea, total protein and triglycerides were seen both in fAA and GMP related to CAS. GMP also reduced albumin and triglycerides in comparison to CAS and fAA, respectively. The chronic consumption of the diets triggers different metabolic responses which may provide clues to further study potential underlying mechanisms.
Collapse
Affiliation(s)
- Maria João Pena
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (M.J.P.); (R.C.); (I.R.); (J.T.G.)
| | - Raquel Costa
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (M.J.P.); (R.C.); (I.R.); (J.T.G.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ilda Rodrigues
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (M.J.P.); (R.C.); (I.R.); (J.T.G.)
| | - Sandra Martins
- Department of Clinical Pathology, São João Hospital Centre, 4200-319 Porto, Portugal;
- Instituto de Saúde Pública, Universidade do Porto, 4050-091 Porto, Portugal
| | - João Tiago Guimarães
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (M.J.P.); (R.C.); (I.R.); (J.T.G.)
- Department of Clinical Pathology, São João Hospital Centre, 4200-319 Porto, Portugal;
- Instituto de Saúde Pública, Universidade do Porto, 4050-091 Porto, Portugal
| | - Ana Faria
- Nutrition & Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (A.F.); (C.C.); (J.C.R.)
- CINTESIS—Centre for Health Technology and Services Research, 4200-450 Porto, Portugal
- CHRC—Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Conceição Calhau
- Nutrition & Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (A.F.); (C.C.); (J.C.R.)
- CINTESIS—Centre for Health Technology and Services Research, 4200-450 Porto, Portugal
- Unidade Universitária Lifestyle Medicine da José de Mello Saúde by NOVA Medical School, 1169-056 Lisboa, Portugal
| | - Júlio César Rocha
- Nutrition & Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (A.F.); (C.C.); (J.C.R.)
- CINTESIS—Centre for Health Technology and Services Research, 4200-450 Porto, Portugal
- Reference Centre of Inherited Metabolic Diseases, Centro Hospitalar Universitário de Lisboa Central, 1169-045 Lisboa, Portugal
| | - Nuno Borges
- CINTESIS—Centre for Health Technology and Services Research, 4200-450 Porto, Portugal
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, 4150-180 Porto, Portugal
- Correspondence:
| |
Collapse
|
12
|
Tulipano G. Role of Bioactive Peptide Sequences in the Potential Impact of Dairy Protein Intake on Metabolic Health. Int J Mol Sci 2020; 21:E8881. [PMID: 33238654 PMCID: PMC7700308 DOI: 10.3390/ijms21228881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
For years, there has been an increasing move towards elucidating the complexities of how food can interplay with the signalling networks underlying energy homeostasis and glycaemic control. Dairy foods can be regarded as the greatest source of proteins and peptides with various health benefits and are a well-recognized source of bioactive compounds. A number of dairy protein-derived peptide sequences with the ability to modulate functions related to the control of food intake, body weight gain and glucose homeostasis have been isolated and characterized. Their being active in vivo may be questionable mainly due to expected low bioavailability after ingestion, and hence their real contribution to the metabolic impact of dairy protein intake needs to be discussed. Some reports suggest that the differential effects of dairy proteins-in particular whey proteins-on mechanisms underlying energy balance and glucose-homeostasis may be attributed to their unique amino acid composition and hence the release of free amino acid mixtures enriched in essential amino acids (i.e., branched-chain-amino acids) upon digestion. Actually, the research reports reviewed in this article suggest that, among a number of dairy protein-derived peptides isolated and characterized as bioactive compounds in vitro, some peptides can be active in vivo post-oral administration through a local action in the gut, or, alternatively, a systemic action on specific molecular targets after entering the systemic circulation. Moreover, these studies highlight the importance of the enteroendocrine system in the cross talk between food proteins and the neuroendocrine network regulating energy balance.
Collapse
Affiliation(s)
- Giovanni Tulipano
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|