1
|
Shintani T, Yanai S, Kanasaki A, Iida T, Endo S. Long-term d-allose administration ameliorates age-related cognitive impairment and loss of bone strength in male mice. Exp Gerontol 2024; 196:112555. [PMID: 39179160 DOI: 10.1016/j.exger.2024.112555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Age-related physical and cognitive decline may be ameliorated by consuming functional foods. d-Allose, reported to have multiple health benefits, may temper aging phenotypes, particularly brain function. We investigated whether d-allose supplementation improves cognitive function. A standard battery of behavioral tests was administered to 18-month-old male mice after consuming diet containing 3 % d-allose for 6 months. Following a wire-hanging test, an open-field test, Morris water maze, fear-conditioning, and an analgesia test were sequentially performed. Bone density and strength were assessed afterwards. Possible mechanism(s) under-lying memory changes in hippocampus were also examined with a DNA microarray. d-Allose failed to influence muscle strength, locomotor activity and anxiety, fear memory, or pain sensitivity. However, d-allose improved hippocampus-dependent spatial learning and memory, and it may contribute to increase bone strength. d-Allose also changed the expression of some genes in hippocampus involved in cognitive functions. Long-term d-allose supplementation appears to modestly change aging phenotypes and improve spatial memory.
Collapse
Affiliation(s)
- Tomoya Shintani
- Research and Development, Matsutani Chemical Industry Co., Ltd., 5-3 Kita-Itami, Itami City, Hyogo 664-8508, Japan
| | - Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; Animal Facility, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Akane Kanasaki
- Research and Development, Matsutani Chemical Industry Co., Ltd., 5-3 Kita-Itami, Itami City, Hyogo 664-8508, Japan.
| | - Tetsuo Iida
- Research and Development, Matsutani Chemical Industry Co., Ltd., 5-3 Kita-Itami, Itami City, Hyogo 664-8508, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
2
|
Akumwami S, Rahman A, Funamoto M, Hossain A, Morishita A, Ikeda Y, Kitamura H, Kitada K, Noma T, Ogino Y, Nishiyama A. Effects of D-Allose on experimental cardiac hypertrophy. J Pharmacol Sci 2024; 156:142-148. [PMID: 39179333 DOI: 10.1016/j.jphs.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
The hallmark of pathological cardiac hypertrophy is the decline in myocardial contractility caused by an energy deficit resulting from metabolic abnormalities, particularly those related to glucose metabolism. Here, we aim to explore whether D-Allose, a rare sugar that utilizes the same transporters as glucose, may restore metabolic equilibrium and reverse cardiac hypertrophy. Isolated neonatal rat cardiomyocytes were stimulated with phenylephrine and treated with D-Allose simultaneously for 48 h. D-Allose treatment resulted in a pronounced reduction in cardiomyocyte size and cardiac remodelling markers accompanied with a dramatic reduction in the level of intracellular glucose in phenylephrine-stimulated cells. The metabolic flux analysis provided further insights revealing that D-Allose exerted a remarkable inhibition of glycolysis as well as glycolytic capacity. Furthermore, in mice subjected to a 14-day continuous infusion of isoproterenol (ISO) to induce cardiac hypertrophy, D-Allose treatment via drinking water notably reduced ISO-induced cardiac hypertrophy and remodelling markers, with minimal effects on ventricular wall thickness observed in echocardiographic analyses. These findings indicate that D-Allose has the ability to attenuate the progression of cardiomyocyte hypertrophy by decreasing intracellular glucose flux and inhibiting glycolysis.
Collapse
Affiliation(s)
- Steeve Akumwami
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa, Japan; Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Asadur Rahman
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Masafumi Funamoto
- Department of Pharmacology, Tokushima University Graduate School of Biomedical Science, Tokushima, Japan
| | - Akram Hossain
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, Tokushima University Graduate School of Biomedical Science, Tokushima, Japan
| | - Hiroaki Kitamura
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takahisa Noma
- Department of Cardiorenal Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yuichi Ogino
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
3
|
McCallum N, Najlah M. The Anticancer Activity of Monosaccharides: Perspectives and Outlooks. Cancers (Basel) 2024; 16:2775. [PMID: 39199548 PMCID: PMC11353049 DOI: 10.3390/cancers16162775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
A major hallmark of cancer is the reprogramming of cellular metabolism from oxidative phosphorylation (OXPHOS) to glycolysis, a phenomenon known as the Warburg effect. To sustain high rates of glycolysis, cancer cells overexpress GLUT transporters and glycolytic enzymes, allowing for the enhanced uptake and consumption of glucose. The Warburg effect may be exploited in the treatment of cancer; certain epimers and derivatives of glucose can enter cancer cells and inhibit glycolytic enzymes, stunting metabolism and causing cell death. These include common dietary monosaccharides (ᴅ-mannose, ᴅ-galactose, ᴅ-glucosamine, ʟ-fucose), as well as some rare monosaccharides (xylitol, ᴅ-allose, ʟ-sorbose, ʟ-rhamnose). This article reviews the literature on these sugars in in vitro and in vivo models of cancer, discussing their mechanisms of cytotoxicity. In addition to this, the anticancer potential of some synthetically modified monosaccharides, such as 2-deoxy-ᴅ-glucose and its acetylated and halogenated derivatives, is reviewed. Further, this article reviews how certain monosaccharides can be used in combination with anticancer drugs to potentiate conventional chemotherapies and to help overcome chemoresistance. Finally, the limitations of administering two separate agents, a sugar and a chemotherapeutic drug, are discussed. The potential of the glycoconjugation of classical or repurposed chemotherapy drugs as a solution to these limitations is reviewed.
Collapse
Affiliation(s)
| | - Mohammad Najlah
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Bishops Hall Lane, Chelmsford CM1 1SQ, UK;
| |
Collapse
|
4
|
Hammond L, Wurtele M, de Almeida R, Silva C, DeBlasi J, Lu Y, Bellissimo N. The Effect of Allulose on the Attenuation of Glucose Release from Rice in a Static In Vitro Digestion Model. Foods 2024; 13:2308. [PMID: 39123501 PMCID: PMC11312296 DOI: 10.3390/foods13152308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Allulose is a rare sugar that provides <10% of the energy but 70% of the sweetness of sucrose. Allulose has been shown to attenuate glycemic responses to carbohydrate-containing foods in vivo. This study aimed to determine the optimal allulose dose for minimizing in vitro glucose release from rice compared to a rice control and fructose. A triphasic static in vitro digestion method was used to evaluate the in vitro digestion of a rice control compared to the co-digestion of rice with allulose (10 g, 20 g, and 40 g) and fructose (40 g). In vitro glucose release was affected by treatment (p < 0.001), time (p < 0.001), and treatment-by-time interaction (p = 0.002). Allulose (40 g) resulted in a reduction in in vitro glucose release from rice alone and rice digested with allulose (10 g), allulose (20 g), and fructose. The incremental area under the curve (iAUC) for in vitro glucose release was lower after allulose (40 g) (p = 0.005) compared to rice control and allulose (10 g) but did not differ from allulose (20 g) or fructose. This study demonstrates that allulose reduces glucose release from carbohydrates, particularly at higher doses, underscoring its potential as a food ingredient with functional benefits.
Collapse
Affiliation(s)
- Leila Hammond
- School of Nutrition, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Megan Wurtele
- School of Nutrition, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Ricardo de Almeida
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Constança Silva
- School of Nutrition, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Janine DeBlasi
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Yan Lu
- Heilongjiang Green Food Science Research Institute, Harbin 150086, China
| | - Nick Bellissimo
- School of Nutrition, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
5
|
Ortiz ADC, Fideles SOM, Reis CHB, Pagani BT, Bueno LMM, Moscatel MBM, Buchaim RL, Buchaim DV. D-Tagatose: A Rare Sugar with Functional Properties and Antimicrobial Potential against Oral Species. Nutrients 2024; 16:1943. [PMID: 38931297 PMCID: PMC11206312 DOI: 10.3390/nu16121943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Carbohydrates have a dietary role, but excessive consumption of high-calorie sugars can contribute to an increased incidence of metabolic diseases and dental caries. Recently, carbohydrates with sweetening properties and low caloric value, such as D-tagatose, have been investigated as alternative sugars. D-tagatose is a rare sugar that has nutritional and functional properties of great interest for health. This literature review presents an approach to the biological effects of D-tagatose, emphasizing its benefits for oral health. Studies report that D-tagatose has antioxidant and prebiotic effects, low digestibility, reduced glycemic and insulinemic responses, and the potential to improve the lipid profile, constituting an alternative for diabetes mellitus and obesity. It can also be observed that D-tagatose has an antioxidant action, favoring the elimination of free radicals and, consequently, causing a reduction in cellular oxidative stress. Furthermore, it also has antibacterial potential against oral species. Regarding oral health, studies have shown that D-tagatose efficiently reversed bacterial coaggregations, including periodontopathogenic species, and impaired the activity and growth of cariogenic bacteria, such as S. mutans. D-tagatose significantly inhibited biofilm formation, pH decrease and insoluble glucan synthesis in S. mutans cultures. Salivary S. mutans counts were also significantly reduced by the consumption of chewing gum containing D-tagatose and xylitol. In addition, there is evidence that tagatose is effective as an air-polishing powder for biofilm decontamination. The literature indicates that D-tagatose can contribute to the prevention of systemic diseases, also constituting a promising agent to improve oral health.
Collapse
Affiliation(s)
- Adriana de Cássia Ortiz
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.); (C.H.B.R.); (B.T.P.); (M.B.M.M.)
| | - Simone Ortiz Moura Fideles
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.); (C.H.B.R.); (B.T.P.); (M.B.M.M.)
| | - Carlos Henrique Bertoni Reis
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.); (C.H.B.R.); (B.T.P.); (M.B.M.M.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
| | - Bruna Trazzi Pagani
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.); (C.H.B.R.); (B.T.P.); (M.B.M.M.)
- Dentistry School, University of Marilia (UNIMAR), Marília 17525-902, Brazil
| | | | - Matheus Bento Medeiros Moscatel
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.); (C.H.B.R.); (B.T.P.); (M.B.M.M.)
- Dentistry School, University of Marilia (UNIMAR), Marília 17525-902, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.); (C.H.B.R.); (B.T.P.); (M.B.M.M.)
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science (FMVZ), University of Sao Paulo (USP), Sao Paulo 05508-270, Brazil
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science (FMVZ), University of Sao Paulo (USP), Sao Paulo 05508-270, Brazil
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| |
Collapse
|
6
|
Li M, Li J, Qin X, Cai J, Peng R, Zhang M, Zhang L, Zhao W, Chen M, Han D, Gong J. The effects of dextran in residual impurity on trehalose crystallization and formula in food preservation. Food Chem 2024; 442:138326. [PMID: 38219563 DOI: 10.1016/j.foodchem.2023.138326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
The residual dextran impurities in the upstream process significantly impact the crystallization of starch-based functional sugar and the related food properties. This study intends to reveal the mechanism of dextran's influence on trehalose crystallization, and build a relationship among the dextran in syrup and the physicochemical and functional properties of trehalose. Instead of incorporating into the crystal lattice, dextran changes the assembly rate of trehalose molecules on crystal surface. The different sensitivity and adsorption capacity of the crystal surface to the chain length of dextran determines the growth rate of crystal surfaces, resulting in different crystal morphology. The bulk trehalose crystals, which were obtained from syrups with short chain dextran, have excellent powder properties, including best flowability (35◦), highest crystal strength (2.7 N), lowest caking rate (62.22 %), and the most uniform mixing with other sweeteners (sucrose/xylitol) in food formulations, achieving more stable starch preservation.
Collapse
Affiliation(s)
- Mingxuan Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jiahui Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xueyou Qin
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jingwei Cai
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ronghua Peng
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mengdi Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Leida Zhang
- Shandong Fuyang Biotechnology Co., Ltd., Shandong 253100, China
| | - Wei Zhao
- Shandong Fuyang Biotechnology Co., Ltd., Shandong 253100, China
| | - Mingyang Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| | - Dandan Han
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
7
|
Sano K, Ishiwata A, Takamori H, Kikuma T, Tanaka K, Ito Y, Takeda Y. Synthesis of Sucrose-Mimicking Disaccharide by Intramolecular Aglycone Delivery. Molecules 2024; 29:1771. [PMID: 38675593 PMCID: PMC11051705 DOI: 10.3390/molecules29081771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Rare sugars are known for their ability to suppress postprandial blood glucose levels. Therefore, oligosaccharides and disaccharides derived from rare sugars could potentially serve as functional sweeteners. A disaccharide [α-d-allopyranosyl-(1→2)-β-d-psicofuranoside] mimicking sucrose was synthesized from rare monosaccharides D-allose and D-psicose. Glycosylation using the intermolecular aglycon delivery (IAD) method was employed to selectively form 1,2-cis α-glycosidic linkages of the allopyranose residues. Moreover, β-selective psicofuranosylation was performed using a psicofuranosyl acceptor with 1,3,4,6-tetra-O-benzoyl groups. This is the first report on the synthesis of non-reducing disaccharides comprising only rare d-sugars by IAD using protected ketose as a unique acceptor; additionally, this approach is expected to be applicable to the synthesis of functional sweeteners.
Collapse
Affiliation(s)
- Kanae Sano
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (K.S.); (T.K.)
| | - Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
| | - Hiroto Takamori
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (K.S.); (T.K.)
| | - Takashi Kikuma
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (K.S.); (T.K.)
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Yoichi Takeda
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (K.S.); (T.K.)
| |
Collapse
|
8
|
Molonia MS, Salamone FL, Speciale A, Saija A, Cimino F. D-Allulose Reduces Hypertrophy and Endoplasmic Reticulum Stress Induced by Palmitic Acid in Murine 3T3-L1 Adipocytes. Int J Mol Sci 2024; 25:4059. [PMID: 38612868 PMCID: PMC11012259 DOI: 10.3390/ijms25074059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Natural rare sugars are an alternative category of sweeteners with positive physiologic and metabolic effects both in in vitro and animal models. D-allulose is a D-fructose epimer that combines 70% sucrose sweetness with the advantage of an extremely low energy content. However, there are no data about the effect of D-allulose against adipose dysfunction; thus, it remains to be confirmed whether D-allulose is useful in the prevention and in treatment of adipose tissue alterations. With this aim, we evaluated D-allulose's preventive effects on lipid accumulation in 3T3-L1 murine adipocytes exposed to palmitic acid (PA), a trigger for hypertrophic adipocytes. D-allulose in place of glucose prevented adipocyte hypertrophy and the activation of adipogenic markers C/EBP-β and PPARγ induced by high PA concentrations. Additionally, D-allulose pretreatment inhibited the NF-κB pathway and endoplasmic reticulum stress caused by PA, through activation of the Nrf2 pathway. Interestingly, these effects were also observed as D-allulose post PA treatment. Although our data need to be confirmed through in vivo models, our findings suggest that incorporating D-allulose as a glucose substitute in the diet might have a protective role in adipocyte function and support a unique mechanism of action in this sugar as a preventive or therapeutic compound against PA lipotoxicity through the modulation of pathways connected to lipid transport and metabolism.
Collapse
Affiliation(s)
- Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (M.S.M.); (F.L.S.); (A.S.); (F.C.)
- “Prof. Antonio Imbesi” Foundation, University of Messina, 98100 Messina, Italy
| | - Federica Lina Salamone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (M.S.M.); (F.L.S.); (A.S.); (F.C.)
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (M.S.M.); (F.L.S.); (A.S.); (F.C.)
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (M.S.M.); (F.L.S.); (A.S.); (F.C.)
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (M.S.M.); (F.L.S.); (A.S.); (F.C.)
| |
Collapse
|
9
|
Kato K, Miura M, Tachibana H, Tsukamoto I. Effects of monosaccharides including rare sugars on proliferation of Entamoeba histolytica trophozoites in vitro. Front Mol Biosci 2023; 10:1288470. [PMID: 38143801 PMCID: PMC10739481 DOI: 10.3389/fmolb.2023.1288470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Entamoeba histolytica is a parasitic protozoan with roles in pathogenicity of intestinal amoebiasis. E. histolytica trophozoites lack functional mitochondria and their energy production depends mostly on glycolysis. D-Glucose has a pivotal role in this process and trophozoites store this sugar as glycogen in glycogen granules. Rare sugars, which are defined as sugars present in nature in limited amounts, are of interest as natural low-calorie sweeteners for improving physical conditions of humans. One such rare sugar, D-allose, can be absorbed by a sodium-dependent glucose cotransporter as a substitute for D-glucose, and some rare sugars are known to inhibit growth of cancer cells, Caenorhabditis elegans and Tritrichomonas foetus. Based on these observations, we examined the effects of rare sugars on growth of E. histolytica trophozoites, together with those of D-galactose and D-fructose. The results indicate that treatment with D-allose or D-psicose (D-allulose) alone inhibits proliferation of E. histolytica trophozoites, but that these sugars enhance proliferation of trophozoites in the presence of D-glucose or D-galactose. The trophozoites could take up D-glucose and D-galactose, but not D-fructose, D-allose or D-psicose. Cell sizes of the trophozoites also differed depending on the culture medium.
Collapse
Affiliation(s)
- Kentaro Kato
- Department of Eco-epidemiology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Mitsumasa Miura
- Department of Eco-epidemiology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Hiroshi Tachibana
- Department of Parasitology, Tokai University School of Medicine, Isehara, Japan
| | - Ikuko Tsukamoto
- Department of Pharmaco-bio-informatics, Faculty of Medicine, Kagawa University, Kita-gun, Japan
| |
Collapse
|
10
|
Huerta M, Cornejo F, Illanes A, Vera C, Guerrero C. Enzymatic production of rare sugars with a new mutant of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. BIORESOURCE TECHNOLOGY 2023; 391:129936. [PMID: 39491117 DOI: 10.1016/j.biortech.2023.129936] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE) can epimerize and isomerize lactose into epilactose and lactulose respectively. Competition between these reactions reactions has prompted the search for new enzymes to drive the reaction in one direction or the other. The isomerization and epimerization capacity of a novel mutant CsCE (CsCE H356N) was evaluated, obtaining a maximum lactulose yield of 64.3 % and a lactulose selectivity of 9.9. A Michaelis-Menten constant of 551.93 mM and a catalytic efficiency of 0,058 s-1 mM-1 were obtained for lactose epimerization. The ability of CsCE H356N to recognize other substrates was evaluated using lactulose, glucose, mannose, fructose, galactose, talose and tagatose as substrates, assessing the reversibility of such reactions. Yields of 14.8 % mannose and 4.8 % of fructose were obtained from glucose, while talose and tagatose yields of 9.2 % and 5.2 % were obtained from galactose respectively. No significant reaction occurred with lactulose, fructose or tagatose as substrates.
Collapse
Affiliation(s)
- Macarena Huerta
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Fabian Cornejo
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile.
| |
Collapse
|
11
|
van Laar A, Grootaert C, Rajkovic A, Desmet T, Beerens K, Van Camp J. Rare Sugar Metabolism and Impact on Insulin Sensitivity along the Gut-Liver-Muscle Axis In Vitro. Nutrients 2023; 15:1593. [PMID: 37049441 PMCID: PMC10096767 DOI: 10.3390/nu15071593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Rare sugars have recently attracted attention as potential sugar replacers. Understanding the biochemical and biological behavior of these sugars is of importance in (novel) food formulations and prevention of type 2 diabetes. In this study, we investigated whether rare sugars may positively affect intestinal and liver metabolism, as well as muscle insulin sensitivity, compared to conventional sugars. Rare disaccharide digestibility, hepatic metabolism of monosaccharides (respirometry) and the effects of sugars on skeletal muscle insulin sensitivity (impaired glucose uptake) were investigated in, respectively, Caco-2, HepG2 and L6 cells or a triple coculture model with these cells. Glucose and fructose, but not l-arabinose, acutely increased extracellular acidification rate (ECAR) responses in HepG2 cells and impaired glucose uptake in L6 cells following a 24 h exposure at 28 mM. Cellular bioenergetics and digestion experiments with Caco-2 cells indicate that especially trehalose (α1-1α), D-Glc-α1,2-D-Gal, D-Glc-α1,2-D-Rib and D-Glc-α1,3-L-Ara experience delayed digestion and reduced cellular impact compared to maltose (α1-4), without differences on insulin-stimulated glucose uptake in a short-term setup with a Caco-2/HepG2/L6 triple coculture. These results suggest a potential for l-arabinose and specific rare disaccharides to improve metabolic health; however, additional in vivo research with longer sugar exposures should confirm their beneficial impact on insulin sensitivity in humans.
Collapse
Affiliation(s)
- Amar van Laar
- NutriFOODChem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Charlotte Grootaert
- NutriFOODChem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Andreja Rajkovic
- NutriFOODChem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Koen Beerens
- Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - John Van Camp
- NutriFOODChem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
12
|
Campos V, Tappy L, Bally L, Sievenpiper JL, Lê KA. Importance of Carbohydrate Quality: What Does It Mean and How to Measure It? J Nutr 2022; 152:1200-1206. [PMID: 35179211 PMCID: PMC9071307 DOI: 10.1093/jn/nxac039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary carbohydrates are our main source of energy. Traditionally, they are classified based on the polymer length between simple and complex carbohydrates, which does not necessarily reflect their impact on health. Simple sugars, such as fructose, glucose, and lactose, despite having a similar energy efficiency and caloric content, have very distinct metabolic effects, leading to increased risk for various chronic diseases when consumed in excess. In addition, beyond the absolute amount of carbohydrate consumed, recent data point out that the food form or processing level can modulate both the energy efficiency and the cardiometabolic risk associated with specific carbohydrates. To account for both of these aspects-the quality of carbohydrates as well as its food form-several metrics can be proposed to help identifying carbohydrate-rich food sources and distinguish between those that would favor the development of chronic diseases and those that may contribute to prevent these. This review summarizes the findings presented during the American Society of Nutrition Satellite symposium on carbohydrate quality, in which these different aspects were presented.
Collapse
Affiliation(s)
- Vanessa Campos
- Department of Nutrition Sciences, Nestlé Research, 1000 Lausanne 26, Switzerland
| | - Luc Tappy
- Department of Diabetology, Endocrinology, Nutrition & Metabolism, Inselspital, Bern, Switzerland
| | - Lia Bally
- Department of Diabetology, Endocrinology, Nutrition & Metabolism, Inselspital, Bern, Switzerland
| | - John L Sievenpiper
- Departments of Nutritional Sciences and Medicine, University of Toronto, Toronto, Ontario, Canada,Division of Endocrinology & Metabolism, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada,Toronto 3D Knowledge Synthesis & Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|