1
|
Staats Pires A, Krishnamurthy S, Sharma S, Chow S, Klistorner S, Guillemin GJ, Klistorner A, You Y, Heng B. Dysregulation of the Kynurenine Pathway in Relapsing Remitting Multiple Sclerosis and Its Correlations With Progressive Neurodegeneration. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200372. [PMID: 39823555 DOI: 10.1212/nxi.0000000000200372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND AND OBJECTIVES Despite the absence of acute lesion activity in multiple sclerosis (MS), chronic neurodegeneration continues to progress, and a potential underlying mechanism could be the kynurenine pathway (KP). Prolonged activation of the KP from chronic inflammation is known to exacerbate the progression of neurodegenerative diseases through the production of neurotoxic metabolites. Among the 8 KP metabolites, six of them, namely kynurenine (KYN), 3-hydroxylkynurenine (3HK), anthranilic acid (AA), kynurenic acid (KYNA), and quinolinic acid (QUIN), have been associated with neurodegeneration. METHODS To gain insights into the links between the KP and neurodegeneration in MS, we investigated the KP metabolomics profile of relapsing remitting MS (RRMS) patients and their correlation with parameters of neurodegeneration in brain and retinal. Outpatients with a clinical diagnosis of RRMS (n = 98) or age-matched and sex-matched healthy controls (n = 39) were included. MS participants undertook yearly evaluation of MRI and optical coherence tomography scan to evaluate neuroaxonal loss. Blood samples were collected at the baseline from all participants for the biochemical analysis of KP metabolites. RESULTS We identified increased plasma levels of AA and 3HAA in the MS group, indicating an anti-inflammatory response alongside active neurodegeneration. By contrast, plasma levels of KYNA and 3HK were lower in the MS group than in healthy controls. Our analysis revealed a higher KYN:tryptophan (TRP) and QUIN:KYNA ratios in the MS cohort, suggesting activation of the pathway toward the production of neurotoxic QUIN. Another important finding was that KP metabolites were correlated with measures of axonal degeneration in patients with MS. Notably, central brain atrophy positively correlated with the TRP levels, but negatively correlated with KYN and level KYN:TRP ratio. Finally, the choroid plexus volume was inversely correlated with KYNA plasma levels. DISCUSSION These findings highlight changes in the biosynthesis of KP during the progression of RRMS and its correlation with axonal loss. This study underscores the potential of targeting the KP in developing novel treatments for neuroaxonal damage in MS and warrants future research in greater depth.
Collapse
Affiliation(s)
- Ananda Staats Pires
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney
| | - Shivani Krishnamurthy
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney
| | - Samridhi Sharma
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney
| | - Sharron Chow
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney
| | - Samuel Klistorner
- Save Sight Institute, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia; and
| | | | - Alexander Klistorner
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney
- Save Sight Institute, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia; and
| | - Yuyi You
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney
- Save Sight Institute, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia; and
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney
| |
Collapse
|
2
|
Brouwer A, Carhart‐Harris RL, Raison CL. Psychotomimetic compensation versus sensitization. Pharmacol Res Perspect 2024; 12:e1217. [PMID: 38923845 PMCID: PMC11194300 DOI: 10.1002/prp2.1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
It is a paradox that psychotomimetic drugs can relieve symptoms that increase risk of and cooccur with psychosis, such as attention and motivational deficits (e.g., amphetamines), pain (e.g., cannabis) and symptoms of depression (e.g., psychedelics, dissociatives). We introduce the ideas of psychotomimetic compensation and psychotomimetic sensitization to explain this paradox. Psychotomimetic compensation refers to a short-term stressor or drug-induced compensation against stress that is facilitated by engagement of neurotransmitter/modulator systems (endocannabinoid, serotonergic, glutamatergic and dopaminergic) that mediate the effects of common psychotomimetic drugs. Psychotomimetic sensitization occurs after repeated exposure to stress and/or drugs and is evidenced by the gradual intensification and increase of psychotic-like experiences over time. Theoretical and practical implications of this model are discussed.
Collapse
Affiliation(s)
- Ari Brouwer
- Department of Human Development and Family Studies, School of Human EcologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Robin L. Carhart‐Harris
- Department of Neurology and PsychiatryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Charles L. Raison
- Department of Psychiatry, School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Vail Health Behavioral Health Innovation CenterVailColoradoUSA
- Center for the Study of Human HealthEmory UniversityAtlantaGeorgiaUSA
- Department of Spiritual HealthEmory University Woodruff Health Sciences CenterAtlantaGeorgiaUSA
| |
Collapse
|
3
|
Louvrou V, Solianik R, Brazaitis M, Erhardt S. Exploring the effect of prolonged fasting on kynurenine pathway metabolites and stress markers in healthy male individuals. Eur J Clin Nutr 2024; 78:677-683. [PMID: 38789718 PMCID: PMC11300305 DOI: 10.1038/s41430-024-01451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND/OBJECTIVES Prolonged fasting triggers a stress response within the human body. Our objective was to investigate the impact of prolonged fasting, in conjunction with stress, on kynurenine pathway metabolites. SUBJECTS/METHODS Healthy males were divided into fasting group (zero-calorie-restriction) for 6 days (FAST, n = 14), and control group (CON, n = 10). Blood and saliva samples were collected at baseline, Day 2, Day 4, Day 6 during fasting period, and 1 week after resuming regular diet. Plasma levels of kynurenine pathway metabolites were measured using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). Plasma and salivary samples were analyzed for stress markers. RESULTS A pronounced activation of the kynurenine pathway in individuals on FAST trial was revealed. Concentrations of picolinic acid (PIC), kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK) were significantly increased, with peak levels observed on Day 6 (P < 0.0001). Conversely, concentrations of tryptophan (TRP) and quinolinic acid (QUIN) decreased (P < 0.0001), while kynurenine (KYN) and nicotinamide (NAM) levels remained stable. Cortisol and noradrenaline concentrations remained unchanged. However, adrenaline levels significantly increased on Day 4 within FAST compared to CON (P = 0.005). Notably, all deviations in kynurenine pathway metabolite levels returned to baseline values upon resuming regular diet following the 6-day fasting regimen, even when weight and BMI parameters were not restored. CONCLUSIONS Extended fasting over 6 days induces the kynurenine pathway and has minimal effects on stress markers. Restoration of metabolite concentrations upon regular feeding implies rapid adaptation of the kynurenine pathway synthetic enzymes to maintain homeostasis when faced with perturbations.
Collapse
Affiliation(s)
- Varvara Louvrou
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Rima Solianik
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Sophie Erhardt
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Juhas U, Reczkowicz J, Kortas JA, Żychowska M, Pilis K, Ziemann E, Cytrych I, Antosiewicz J, Borkowska A. Eight-day fasting modulates serum kynurenines in healthy men at rest and after exercise. Front Endocrinol (Lausanne) 2024; 15:1403491. [PMID: 38933822 PMCID: PMC11199767 DOI: 10.3389/fendo.2024.1403491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Tryptophan's (Trp) metabolites are undervalued markers of human health. Their serum concentrations are modified by physical exercise and other factors, among which fasting has a well-documented role. Although this mechanism is hardly explored, thus, the study aimed to determine the effect of the 8-day fasting period and the impact of such a procedure on a single bout of an endurance exercise on the concentration of kynurenine pathway (KP) metabolites. Methods 10 participants fasted for 8 days, and 10 as a control group participated in the study. The exercise was performed at baseline after an overnight fast and repeated post 8 days. Results The 8 days of fasting increased the resting 3-hydroxy-L-kynurenine (3HK), picolinic acid (PA), kynurenic acid (KYNA), and xanthurenic acid (XA) serum concentration. Also elevated phenylalanine (Phe) and tyrosine (Tyr) levels were recorded, suggesting expanded proteolysis of muscle proteins. In turn, physical activity caused a decrease in the concentration of 3-hydroxyanthranilic acid (3HAA) and PA after fasting. The obtained results were not recorded in controls. Conclusion The results of this study show that the health-promoting effects of fasting are associated with changes in the KYN pathway. The increase in the concentration of PA and XA metabolites following fasting is capable of penetrating the blood-brain barrier, and KYNA, which initiates several beneficial changes, supports this assumption.
Collapse
Affiliation(s)
- Ulana Juhas
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Reczkowicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Jakub Antoni Kortas
- Department of Health and Life Sciences, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | - Małgorzata Żychowska
- Department of Biological Foundations of Physical Culture, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Karol Pilis
- Department of Health Sciences, Jan Długosz University in Częstochowa, Częstochowa, Poland
| | - Ewa Ziemann
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, Poznań, Poland
| | | | - Jędrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Andżelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
5
|
Hosseini E, Ammar A, Josephson JK, Gibson DL, Askari G, Bragazzi NL, Trabelsi K, Schöllhorn WI, Mokhtari Z. Fasting diets: what are the impacts on eating behaviors, sleep, mood, and well-being? Front Nutr 2024; 10:1256101. [PMID: 38264193 PMCID: PMC10803520 DOI: 10.3389/fnut.2023.1256101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Fasting diets (FDs) have drawn great attention concerning their contribution to health and disease over the last decade. Despite considerable interest in FDs, the effect of fasting diets on eating behaviors, sleep, and mood-essential components of diet satisfaction and mental health- has not been addressed comprehensively. Understanding the critical role that fasting plays in these elements will open up potential treatment avenues that have not yet been explored. The aim of the present paper was to conduct a comprehensive critical review exploring the effects of fasting on eating behaviors, sleep, and mood. There is currently a lack of clarity regarding which fasting option yields the most advantageous effects, and there is also a scarcity of consistent trials that assess the effects of FDs in a comparable manner. Similarly, the effects and/or treatment options for utilizing FDs to modify eating and sleep behaviors and enhance mood are still poorly understood. Further researches aiming at understanding the impacts of various fasting regimes, providing new insights into the gut-brain axis and offering new treatment avenues for those with resistant anxiety and depression, are warranted. Alteration of eating behaviors can have lasting effects on various physiological parameters. The use of fasting cures can underpin ancient knowledge with scientific evidence to form a new approach to the prevention and treatment of problems associated with co-morbidities or challenges pertaining to eating behaviors. Therefore, a thorough examination of the various fasting regimens and how they impact disease patterns is also warranted.
Collapse
Affiliation(s)
- Elham Hosseini
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Achraf Ammar
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
- High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | | | - Deanna L. Gibson
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
- Faculty of Medicine, University of British Columbia, Kelowna, BC, Canada
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nicola L. Bragazzi
- Human Nutrition Unit (HNU), Department of Food and Drugs, University of Parma, Parma, Italy
| | - Khaled Trabelsi
- High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Wolfgang I. Schöllhorn
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Zeinab Mokhtari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Heng B, Pires AS, Chow S, Krishnamurthy S, Bonnell B, Bustamante S, Guillemin GJ. Stability Studies of Kynurenine Pathway Metabolites in Blood Components Define Optimal Blood Processing Conditions. Int J Tryptophan Res 2023; 16:11786469231213521. [PMID: 38106464 PMCID: PMC10725091 DOI: 10.1177/11786469231213521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/25/2023] [Indexed: 12/19/2023] Open
Abstract
The kynurenine pathway (KP) is the main pathway of tryptophan (TRP) metabolism that generates energy for multiple cellular processes. The activity of this pathway has been shown to be dysregulated in multiple human diseases. The resultant modulation of metabolites has been suggested to comprise biomarkers to track disease progression or could identify new therapeutic targets. While metabolite changes can be measured readily in blood, there is limited knowledge on the effect of blood matrices and sample processing time may have on the stability of KP metabolites. Understanding the stability of KP metabolites in blood is integral to obtaining accurate KP data to correlate with clinical pathology. Hence, the aim of this study was to assess the concentration of KP metabolites in matched whole blood, plasma and serum. The impact of pre-analytical sample processing time in the various blood matrices was also analysed. Serum and plasma had the higher concentration of KP metabolites compared to whole blood. Furthermore, concentrations of KP metabolites declined when the collected blood was processed after 24 hours storage at 4°C. Our study shows that that type of blood matrix and the time to processing have an impact on the stability of the KP metabolites. Serum or plasma are the preferred choice of matrix and the isolation of these matrices from whole blood is best performed immediately after collection for optimal analytical KP data.
Collapse
Affiliation(s)
- Benjamin Heng
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ananda Staats Pires
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sharron Chow
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Shivani Krishnamurthy
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Brooke Bonnell
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, Australia
| | - Gilles J Guillemin
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
7
|
Solianik R, Židonienė K, Brazaitis M. Short-duration cold exposure decreases fasting-induced glucose intolerance but has no effect on resting energy expenditure. Cryobiology 2023; 113:104564. [PMID: 37541564 DOI: 10.1016/j.cryobiol.2023.104564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/19/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
The aim of the present study was to investigate whether brief cold exposure can reverse fasting-induced glucose intolerance and insulin resistance, and improve resting energy expenditure (REE). Twelve young non-obese women were randomly assigned to undergo the following conditions: 2 days of fasting with two 10-min whole-body cold-water immersions on separate days (FAST-COLD), 2 days of fasting without cold-water immersions (FAST), 2 days of usual diet with two 10-min whole-body cold-water immersions on separate days (COLD), or 2 days of usual diet without cold-water immersions (CON) in a randomised crossover fashion. Changes in REE and substrate utilisation, and glucose tolerance and insulin sensitivity from the oral glucose tolerance test were examined. The results showed that FAST-COLD and FAST trials increased (P < 0.05) REE and decreased (P < 0.05) respiratory quotient, but these variables did not differ significantly between the FAST-COLD and FAST trials. The glucose and insulin area under the curves (AUCs) were higher (P < 0.05) in the FAST-COLD and FAST trials than in the CON and COLD trials, and these AUCs were lower (P < 0.05) in the FAST-COLD than in the FAST trial. Matsuda index was lower in the FAST trial than in the CON trial (P < 0.05), and tended to be greater after the FAST-COLD trial than after the FAST trial (P = 0.060). In conclusion, cold exposure had no effect on REE but decreased fasting-induced glucose intolerance which was accompanied by a maintained insulin sensitivity.
Collapse
Affiliation(s)
- Rima Solianik
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.
| | - Katerina Židonienė
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|