1
|
Kwon D, Son SW, Kim SH, Bae JE, Lee YH, Jung YS. Effects of dietary restriction on hepatic sulfur-containing amino acid metabolism and its significance in acetaminophen-induced liver injury. J Nutr Biochem 2022; 108:109082. [PMID: 35697284 DOI: 10.1016/j.jnutbio.2022.109082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Dietary restriction (DR) has been revealed to have health benefits as it induces reduction in oxidative stress. Glutathione (GSH), an important cellular antioxidant, is increased in rodent livers owing to DR; however, the exact mechanism and clinical relevance of DR are yet to be fully understood. In this study, male C57BL/6 mice were administered a 50% restricted diet for 7 d, and the hepatic sulfur-containing amino acid (SAA) metabolism was determined to assess the biosynthesis of GSH. The hepatic methionine level was found to decrease, while the homocysteine, cysteine, and GSH levels were increased owing to decreased betaine-homocysteine methyltransferase (BHMT) and increased CβS, CγL, and glutamate cysteine ligase catalytic subunit (GCLC) proteins in the livers of mice subjected to DR. To determine the effects of DR on drug-induced oxidative liver injury, mice subjected to DR were injected with a toxic dose (300 mg/kg) of acetaminophen (APAP). DR significantly alleviated APAP-induced liver damage and oxidative stress, which might be attributed to the higher levels of GSH and related antioxidant enzyme (GPx, GSTα, and GSTµ) in the livers. The decrease in the levels of hepatic CYP1A, 2E1, and 3A, which imply the inhibition of APAP metabolic activation, could contribute to the lower hepatotoxicity in mice subjected to DR. Overall, our findings revealed that DR stimulated the hepatic transsulfuration pathway and GSH synthesis. The consequent elevation of GSH could thus serve as an important mechanism of DR-mediated liver protection against APAP intoxication.
Collapse
Affiliation(s)
- Doyoung Kwon
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea; College of Pharmacy, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, Republic of Korea
| | - Seung Won Son
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Sou Hyun Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Ji Eun Bae
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
2
|
Zarezadeh M, Saedisomeolia A, Shekarabi M, Khorshidi M, Emami MR, Müller DJ. The effect of obesity, macronutrients, fasting and nutritional status on drug-metabolizing cytochrome P450s: a systematic review of current evidence on human studies. Eur J Nutr 2020; 60:2905-2921. [PMID: 33141242 DOI: 10.1007/s00394-020-02421-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 10/19/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cytochrome P450s (CYPs) are a class of hemoproteins involved in drug metabolism. It has been reported that body composition, proportion of dietary macronutrients, fasting and nutritional status can interfere with the activity of drug-metabolizing CYPs. OBJECTIVES The present systematic review was conducted to summarize the effect of obesity, weight reduction, macronutrients, fasting and malnutrition on the CYP-mediated drug metabolism. METHODS PubMed (Medline), Scopus, Embase and Cochrane Library databases and Google Scholar were searched up to June 2020 to obtain relevant studies. The PRISMA guidelines were employed during all steps. Two reviewers independently extracted the information from the included studies. Studies investigating CYPs activity directly or indirectly through pharmacokinetics of probe drugs, were included. Increase in clearance (CL) or decrease in elimination half-life (t½) and area under the curve (AUC) of probe drugs were considered as increase in CYPs activity. RESULTS A total of 6545 articles were obtained through searching databases among which 69 studies with 126 datasets fully met the inclusion criteria. The results indicated that obesity might decrease the activity of CYP3A4/5, CYP1A2 and CYP2C9 and increase the activity of CYP2E1. The effect of obesity on CYP2D6 is controversial. Also, weight loss increased CYP3A4 activity. Moreover, CYP1A2 activity was decreased by high carbohydrate diet, increased by high protein diet and fasting and unchanged by malnutrition. The activity of CYP2C19 was less susceptible to alterations compared to other CYPs. CONCLUSION The activity of drug-metabolizing CYPs are altered by body composition, dietary intake and nutritional status. This relationship might contribute to drug toxicity or reduce treatment efficacy and influence cost-effectiveness of medical care.
Collapse
Affiliation(s)
- Meysam Zarezadeh
- Department of Clinical Nutrition, Student Research Committee, Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Ahmad Saedisomeolia
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran. .,School of Medicine, Western Sydney University, Sydney, NSW, 2560, Australia.
| | - Mahoor Shekarabi
- Faculty of Medical Sciences and Technologies, Science and Research Branch, Azad University, Tehran, Iran
| | - Masoud Khorshidi
- Student's Research Committee, Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Emami
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Daniel J Müller
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Pharmacogenetic Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
3
|
Ma J, Karlsen MC, Chung M, Jacques PF, Saltzman E, Smith CE, Fox CS, McKeown NM. Potential link between excess added sugar intake and ectopic fat: a systematic review of randomized controlled trials. Nutr Rev 2016; 74:18-32. [PMID: 26518034 PMCID: PMC4859325 DOI: 10.1093/nutrit/nuv047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 03/19/2015] [Accepted: 05/05/2015] [Indexed: 12/14/2022] Open
Abstract
CONTEXT The effect of added sugar intake on ectopic fat accumulation is a subject of debate. OBJECTIVE A systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to examine the potential effect of added sugar intake on ectopic fat depots. DATA SOURCES MEDLINE, CAB Abstracts, CAB Global Health, and EBM (Evidence-Based Medicine) Reviews - Cochrane Central Register of Controlled Trials databases were searched for studies published from 1973 to September 2014. DATA EXTRACTION RCTs with a minimum of 6 days' duration of added sugar exposure in the intervention group were selected. The dosage of added sugar intake as a percentage of total energy was extracted or calculated. Means and standard deviations of pre- and post-test measurements or changes in ectopic fat depots were collected. DATA SYNTHESIS Fourteen RCTs were included. Most of the studies had a medium to high risk of bias. Meta-analysis showed that, compared with eucaloric controls, subjects who consumed added sugar under hypercaloric conditions likely increased ectopic fat, particularly in the liver (pooled standardized mean difference = 0.9 [95%CI, 0.6-1.2], n = 6) and muscles (pooled SMD = 0.6 [95%CI, 0.2-1.0], n = 4). No significant difference was observed in liver fat, visceral adipose tissue, or muscle fat when isocaloric intakes of different sources of added sugars were compared. CONCLUSIONS Data from a limited number of RCTs suggest that excess added sugar intake under hypercaloric diet conditions likely increases ectopic fat depots, particularly in the liver and in muscle fat. There are insufficient data to compare the effect of different sources of added sugars on ectopic fat deposition or to compare intake of added sugar with intakes of other macronutrients. Future well-designed RCTs with sufficient power and duration are needed to address the role of sugars on ectopic fat deposition.
Collapse
Affiliation(s)
- Jiantao Ma
- J. Ma, M.C. Karlsen, P.F. Jacques, E. Saltzman, C.E. Smith, and N.M. McKeown are with the Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts, USA. M. Chung is with the Nutrition/Infection Unit, Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, Massachusetts, USA. C.S. Fox is with the NHLBI's Framingham Heart Study, Framingham, Massachusetts, USA. C.S. Fox is with Harvard Medical School, Boston, Massachusetts, USA
| | - Micaela C Karlsen
- J. Ma, M.C. Karlsen, P.F. Jacques, E. Saltzman, C.E. Smith, and N.M. McKeown are with the Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts, USA. M. Chung is with the Nutrition/Infection Unit, Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, Massachusetts, USA. C.S. Fox is with the NHLBI's Framingham Heart Study, Framingham, Massachusetts, USA. C.S. Fox is with Harvard Medical School, Boston, Massachusetts, USA
| | - Mei Chung
- J. Ma, M.C. Karlsen, P.F. Jacques, E. Saltzman, C.E. Smith, and N.M. McKeown are with the Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts, USA. M. Chung is with the Nutrition/Infection Unit, Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, Massachusetts, USA. C.S. Fox is with the NHLBI's Framingham Heart Study, Framingham, Massachusetts, USA. C.S. Fox is with Harvard Medical School, Boston, Massachusetts, USA
| | - Paul F Jacques
- J. Ma, M.C. Karlsen, P.F. Jacques, E. Saltzman, C.E. Smith, and N.M. McKeown are with the Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts, USA. M. Chung is with the Nutrition/Infection Unit, Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, Massachusetts, USA. C.S. Fox is with the NHLBI's Framingham Heart Study, Framingham, Massachusetts, USA. C.S. Fox is with Harvard Medical School, Boston, Massachusetts, USA
| | - Edward Saltzman
- J. Ma, M.C. Karlsen, P.F. Jacques, E. Saltzman, C.E. Smith, and N.M. McKeown are with the Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts, USA. M. Chung is with the Nutrition/Infection Unit, Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, Massachusetts, USA. C.S. Fox is with the NHLBI's Framingham Heart Study, Framingham, Massachusetts, USA. C.S. Fox is with Harvard Medical School, Boston, Massachusetts, USA
| | - Caren E Smith
- J. Ma, M.C. Karlsen, P.F. Jacques, E. Saltzman, C.E. Smith, and N.M. McKeown are with the Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts, USA. M. Chung is with the Nutrition/Infection Unit, Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, Massachusetts, USA. C.S. Fox is with the NHLBI's Framingham Heart Study, Framingham, Massachusetts, USA. C.S. Fox is with Harvard Medical School, Boston, Massachusetts, USA
| | - Caroline S Fox
- J. Ma, M.C. Karlsen, P.F. Jacques, E. Saltzman, C.E. Smith, and N.M. McKeown are with the Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts, USA. M. Chung is with the Nutrition/Infection Unit, Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, Massachusetts, USA. C.S. Fox is with the NHLBI's Framingham Heart Study, Framingham, Massachusetts, USA. C.S. Fox is with Harvard Medical School, Boston, Massachusetts, USA
| | - Nicola M McKeown
- J. Ma, M.C. Karlsen, P.F. Jacques, E. Saltzman, C.E. Smith, and N.M. McKeown are with the Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, Massachusetts, USA. M. Chung is with the Nutrition/Infection Unit, Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, Massachusetts, USA. C.S. Fox is with the NHLBI's Framingham Heart Study, Framingham, Massachusetts, USA. C.S. Fox is with Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
4
|
Puccinelli E, Gervasi PG, Pelosi G, Puntoni M, Longo V. Modulation of cytochrome P450 enzymes in response to continuous or intermittent high-fat diet in pigs. Xenobiotica 2013; 43:686-98. [PMID: 23360109 DOI: 10.3109/00498254.2012.756558] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1. To date, no information has been available on the modulation of cytochrome P450 enzymes (CYPs) following the administration of a hyperlipidemic diet in pigs. 2. We investigated the potential modulation of xenobiotic-metabolizing CYPs in liver, heart and duodenum of pigs subjected to a high-fat/high-cholesterol diet for 2 months continuously (C-HFD) or on alternate weeks (A-HFD). 3. The administration of the high-fat diet resulted in considerably increased plasma cholesterol levels although the animals were still able to manage the lipid overload efficiently, and no sign of effective tissue inflammation occurred in livers. Plasma lipid profile and liver histology indicated a better adaptive response of the A-HFD pigs compared to the C-HFD group. We showed a post-transcriptional induction of hepatic CYP2E1 activity in C-HFD pigs and a transcriptional induction of hepatic CYP3As - especially in the A-HFD group. No further CYP modulation was observed in either liver or extra-hepatic tissues. 4. In conclusion, the administration of a high-fat diet in pigs resulted in limited effects on the drug metabolism system. The better adaptive response of A-HFD pigs compared to C-HFD pigs is a very interesting observation since the intermittent administration of the diet reflects the mode of human behavior more closely.
Collapse
|
5
|
Merrell MD, Cherrington NJ. Drug metabolism alterations in nonalcoholic fatty liver disease. Drug Metab Rev 2011; 43:317-34. [PMID: 21612324 DOI: 10.3109/03602532.2011.577781] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-metabolizing enzymes play a vital role in the elimination of the majority of therapeutic drugs. The major organ involved in drug metabolism is the liver. Chronic liver diseases have been identified as a potential source of significant interindividual variation in metabolism. Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the United States, affecting between 60 and 90 million Americans, yet the vast majority of NAFLD patients are undiagnosed. NAFLD encompasses a spectrum of pathologies, ranging from steatosis to nonalcoholic steatohepatitis and fibrosis. Numerous animal studies have investigated the effects of NAFLD on hepatic gene expression, observing significant alterations in mRNA, protein, and activity levels. Information on the effects of NAFLD in human patients is limited, though several significant investigations have recently been published. Significant alterations in the activity of drug-metabolizing enzymes may affect the clearance of therapeutic drugs, with the potential to result in adverse drug reactions. With the enormous prevalence of NAFLD, it is conceivable that every drug currently on the market is being given to patients with NAFLD. The current review is intended to present the results from both animal models and human patients, summarizing the observed alterations in the expression and activity of the phase I and II drug-metabolizing enzymes.
Collapse
Affiliation(s)
- Matthew D Merrell
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, USA
| | | |
Collapse
|
6
|
Leclercq IA, Horsmans Y. Nonalcoholic fatty liver disease: the potential role of nutritional management. Curr Opin Clin Nutr Metab Care 2008; 11:766-73. [PMID: 18827582 DOI: 10.1097/mco.0b013e328312c353] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW To review available data pertaining to dietary imbalances and metabolic alterations leading to the development of fatty liver disease and nutritional managements. RECENT FINDINGS The importance of treating fatty liver disease is now firmly recognized not only because of the risk of progression toward a more aggressive liver disease but also because the fatty liver is an important provider of cardiovascular risks. The ideal diet for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis patients should reduce fat mass and inflammation in the adipose tissue, restore insulin sensitivity, and provide low amounts of substrates for de-novo lipogenesis, but scientific evidence to recommend specific diets is currently lacking. Moderate weight loss, low-calorie diets, reduction in saturated fatty acids intake, together with an increase in monosaturated and n-3 polyunsaturated fatty acids appear to be beneficial. Excessive consumption of high glycemic index carbohydrates appears deleterious, as it favors hyperglycemia and hyperinsulinemia and stimulates de-novo lipogenesis. Physical exercise is an important component of the approach, as it improves insulin sensitivity. Behavioral therapy promotes long-term compliance to lifestyle modifications. SUMMARY One panacea is unlikely to be found, the more useful approach is probably multimodal and includes tailored lifestyle modifications. Randomized controlled trials are needed to establish dietary recommendations. While awaiting such trials, reduced consumption of simple sugar, especially sweetened beverages, and incremental increase in physical activity must be encouraged.
Collapse
Affiliation(s)
- Isabelle A Leclercq
- Laboratory of Gastroenterology, Université Catholique de Louvain (UCL), Brussels, Belgium.
| | | |
Collapse
|
7
|
Wheelock CE, Forshed J, Goto S, Hammock BD, Newman JW. Effects of pyridine exposure upon structural lipid metabolism in Swiss Webster mice. Chem Res Toxicol 2008; 21:583-90. [PMID: 18251509 DOI: 10.1021/tx7002454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pyridine is a prototypical inducer of cytochrome P450 (CYP) 2E1, an enzyme associated with cellular oxidative stress and membrane damage. To better understand the effect of this treatment on cellular lipids, the influence of pyridine exposure (100 mg/kg/day i.p. for 5 days) on fatty acids, fatty esters, and fatty alcohol ethers in brain, heart, liver, and adipose tissue from male Swiss Webster mice was investigated. Lipid levels in cholesterol esters, triglycerides, free fatty acids, cardiolipin, sphingomyelin, and glycerylphospholipids were quantified. Pyridine altered the level and composition of lipids involved in membrane structure (i.e., sphingomyelin, phosphatidylethanolamines, and plasmalogens), energy metabolism (i.e., free fatty acids), and long-chain fatty acid transport (i.e., cholesterol esters) in a tissue-specific manner. Subtle changes in cholesterol esters were observed in all tissues. Sphingomyelin in the brain and heart were depleted in monounsaturated fatty acids (1.4- and 1.5-fold, respectively), while the liver sphingomyelin concentrations increased (1.5-fold). Pyridine exposure also increased heart free fatty acids by 1.3-fold, enriched cardiac phosphatidylethanolamine in long-chain polyunsaturated fatty acids by 1.3-fold, and depleted cardiolipin-associated plasmalogens by 3.8-fold. Phosphatidylethanolamines in the brain were also enriched in both saturated fatty acids (1.2-fold) and polyunsaturated fatty acids (1.3-fold) but were depleted in plasmalogens (2.9-fold). In particular, the levels of phosphatidylethanolamine-associated arachidonic (AA) and docosahexaenoic acid (DHA) in both brain and cardiac tissues significantly decreased following pyridine exposure. Considering the hypothetical role of plasmalogens as membrane-bound reactive oxygen scavengers, the current findings suggest that the brain and heart should be the focus of future studies on the toxicity of pyridine, as well as other CYP 2E1 inducers.
Collapse
Affiliation(s)
- Craig E Wheelock
- Department of Entomology and Cancer Research Center, University of California, Davis, California 95616, USA.
| | | | | | | | | |
Collapse
|
8
|
Davis GL. Thoughts on Nutrition and Liver Disease. Nutr Clin Pract 2006; 21:243-4. [PMID: 16772541 DOI: 10.1177/0115426506021003243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Gary L Davis
- Division of Hepatology and Transplant Medicine, Baylor University Medical Center, 3500 Gaston Avenue, Dallas, TX 75246, USA.
| |
Collapse
|
9
|
Aguilera AA, Díaz GH, Barcelata ML, Guerrero OA, Ros RMO. Effects of fish oil on hypertension, plasma lipids, and tumor necrosis factor-α in rats with sucrose-induced metabolic syndrome. J Nutr Biochem 2004; 15:350-7. [PMID: 15157941 DOI: 10.1016/j.jnutbio.2003.12.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Revised: 11/18/2003] [Accepted: 12/23/2003] [Indexed: 11/30/2022]
Abstract
Dietary fish oil rich in (n-3) fatty acids plays an important role in reducing abnormalities associated with the metabolic syndrome and mortality from coronary heart disease. We investigated the effects of dietary fish oil on the metabolic syndrome in a high-sucrose-fed rat model. The model was achieved by the administration of 30% sucrose in drinking water in male Wistar rats during 21 weeks. After the metabolic syndrome rat model was established, fish oil was administered during 6 weeks. The metabolic syndrome rats showed significant increases in body weight, systolic blood pressure, serum insulin, total lipids, triacylglycerols, cholesterol, free fatty acids, LDL, total proteins, albumin, and serum tumor necrosis factor-alpha (TNF-alpha). They also presented abdominal and epididymal fat accumulation and fatty liver. After fish oil diet administration, metabolic syndrome rats had a significant reduction in blood pressure, serum insulin, triacylglycerols, cholesterol, free fatty acids, and total lipids, but no change was observed in TNF-alpha concentration or fat accumulation. In conclusion, fish oil reversed the alterations on metabolic parameters and blood pressure exerted by sucrose administration, although it had no effect on TNF-alpha production and adiposity. This confirms the theory that the molecular etiology of the metabolic syndrome is multifactorial, as is the effect of n-3 polyunsaturated fatty acids (PUFAs) upon it, having complex and multifaceted actions.
Collapse
|
10
|
Abstract
Metabolic food-drug interactions occur when the consumption of a particular food modulates the activity of a drug-metabolising enzyme system, resulting in an alteration of the pharmacokinetics of drugs metabolised by that system. A number of these interactions have been reported. Foods that contain complex mixtures of phytochemicals, such as fruits, vegetables, herbs, spices and teas, have the greatest potential to induce or inhibit the activity of drug-metabolising enzymes, although dietary macroconstituents (i.e. total protein, fat and carbohydrate ratios, and total energy intake) can also have effects. Particularly large interactions may result from the consumption of herbal dietary supplements. Cytochrome P450 (CYP) 3A4 appears to be especially sensitive to dietary effects, as demonstrated by reports of potentially clinically important interactions involving orally administered drugs that are substrates of this enzyme. For example, interactions of grapefruit juice with cyclosporin and felodipine, St John's wort with cyclosporin and indinavir, and red wine with cyclosporin, have the potential to require dosage adjustment to maintain drug concentrations within their therapeutic windows. The susceptibility of CYP3A4 to modulation by food constituents may be related to its high level of expression in the intestine, as well as its broad substrate specificity. Reported ethnic differences in the activity of this enzyme may be partly due to dietary factors. Food-drug interactions involving CYP1A2, CYP2E1, glucuronosyltransferases and glutathione S-transferases have also been documented, although most of these interactions are modest in magnitude and clinically relevant only for drugs that have a narrow therapeutic range. Recently, interactions involving drug transporters, including P-glycoprotein and the organic anion transporting polypeptide, have also been identified. Further research is needed to determine the scope, magnitude and clinical importance of food effects on drug metabolism and transport.
Collapse
Affiliation(s)
- Robert Z Harris
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, Thousand Oaks, California 91320-1799, USA.
| | | | | |
Collapse
|
11
|
Wang Z, Hall SD, Maya JF, Li L, Asghar A, Gorski JC. Diabetes mellitus increases the in vivo activity of cytochrome P450 2E1 in humans. Br J Clin Pharmacol 2003; 55:77-85. [PMID: 12534643 PMCID: PMC1884181 DOI: 10.1046/j.1365-2125.2003.01731.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIMS Cytochrome P450 2E1 (CYP2E1) is thought to activate a number of protoxins, and has been implicated in the development of liver disease. Increased hepatic expression of CYP2E1 occurs in rat models of diabetes but it is unclear whether human diabetics display a similar up-regulation. This study was designed to test the hypothesis that human diabetics experience enhanced CYP2E1 expression. METHODS The pharmacokinetics of a single dose of chlorzoxazone (500 mg), used as an index of hepatic CYP2E1 activity, was determined in healthy subjects (n = 10), volunteers with Type I (n = 13), and Type II (n = 8) diabetes mellitus. Chlorzoxazone and 6-hydroxychlorzoxazone in serum and urine were analysed by high-performance liquid chromatography. The expression of CYP2E1 mRNA in peripheral blood mononuclear cells was quantified by reverse transcriptase-polymerase chain reaction. RESULTS The mean +/- s.d. (90% confidence interval of the difference) chlorzoxazone area under the plasma concentration-time curve was significantly (P </= 0.05) reduced in obese Type II diabetics (15.7 +/- 11.3 micro g h ml-1; 9, 22) compared with healthy subjects (43.5 +/- 16.9 micro g h ml-1; 16, 40) and Type I diabetics (32.8 +/- 9.2 micro g h ml-1; 9, 25). There was a significant two-fold increase in the oral clearance of chlorzoxazone in obese Type II diabetics compared with healthy volunteers and Type I diabetics. The protein binding of chlorzoxazone was not significantly different between the three groups. In contrast, Type 1 diabetics and healthy volunteers demonstrated no difference in the oral clearance of chlorzoxazone. The urinary recovery of 6-hydroxychlorzoxazone as a percentage of the administered dose was not different between healthy, Type I and obese Type II diabetics. The elimination half-life of chlorzoxazone did not differ between the three groups. CYP2E1 mRNA was significantly elevated in Type I and obese Type II diabetics compared with healthy volunteers. The oral clearance of chlorzoxazone, elimination half-life, Tmax, and Cmax were not significantly influenced by weight, body mass index, serum glucose, serum cholesterol, or glycosylated haemoglobin. CONCLUSIONS There was a marked increase in hepatic CYP2E1 activity in obese Type II diabetics as assessed by chlorzoxazone disposition. Increased expression of CYP2E1 mRNA in peripheral blood mononuclear cells was found in both types of diabetes mellitus. Adverse hepatic events associated with Type II diabetes may be in part a result of enhanced CYP2E1 expression and activity.
Collapse
Affiliation(s)
- Zaiqi Wang
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Wishard Memorial Hospital, OPW 320, Indianapolis IN, USA
| | | | | | | | | | | |
Collapse
|