1
|
Li Y, Yang Q, He G, Long K, Tang X, Su Y, Wu Z. HcCnAα regulates NF-κB signaling in Hyriopsis cumingii by interacting with HcIKK and facilitating IκB phosphorylation. Int J Biol Macromol 2024; 289:138787. [PMID: 39675605 DOI: 10.1016/j.ijbiomac.2024.138787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/14/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Calcineurin (CN), a serine/threonine protein phosphatase regulated by Ca2+ and calmodulin, plays a crucial role in the immune response of bivalves. In this study, we examined the effects of gene silencing of the CN subunit (HcCnAα) in Hyriopsis cumingii on the expression of genes associated with the NF-κB signaling pathway, as well as the phosphorylation of the inhibitor of NF-κB (IκB), through RNA interference (RNAi), quantitative PCR (qPCR), and Western blot (WB) analyses. The IκB kinase (HcIKK) and B-cell CLL/lymphoma 10 (HcBcl10) genes of H. cumingii were cloned using rapid amplification of cDNA ends, and protein interactions with HcCnAα were investigated through yeast two-hybrid assays. The results demonstrated that RNAi-mediated knockdown of HcCnAα significantly reduced the expression of IKK, p65, and downstream immune-related genes in the NF-κB signaling pathway-Lys, The, Def, α2-M, TNF-α, and IL-17-all showing significant decreases (P < 0.05). Additionally, phosphorylation of IκB was inhibited. These findings suggest that HcCnAα plays a regulatory role in the NF-κB signaling pathway, influencing the expression of downstream immune response-related genes and defense proteins. Furthermore, yeast two-hybrid assay results indicated a direct protein-protein interaction between HcIKK and HcCnAα, while no interaction was observed between HcBcl10 and HcCnAα. This study elucidates the specific molecular mechanisms by which HcCnAα regulates the immune response in H. cumingii, providing a foundational basis for further exploration of immune regulation mechanisms and the development of disease prevention strategies in bivalves.
Collapse
Affiliation(s)
- Yanhong Li
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing 400715, China
| | - Qinglin Yang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing 400715, China
| | - Guihong He
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing 400715, China
| | - Kai Long
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing 400715, China
| | - Xiaoqi Tang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing 400715, China
| | - Yu Su
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing 400715, China
| | - Zhengli Wu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Zhu M, Su F, Leng J, Jian S, Yi P, Wen C, Hu B. Two NF-κB subunits are associated with antimicrobial immunity in Hyriopsis cumingii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 129:104336. [PMID: 34921862 DOI: 10.1016/j.dci.2021.104336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
The NF-κB pathway activated by bacteria and viruses produces a series of antimicrobial peptides that participate in the innate immune response. In this study, two NF-κB subunits were cloned and identified from Hyriopsis cumingii (named Hcp65 and Hcp105) using RT-PCR and RACE. The predicted Hcp65 protein possessed a N-terminal Rel homology domain (RHD) and an Ig-like/plexins/transcription factors domain (IPT); the Hcp105 contained an RHD, an IPT domain, 6 ankyrin (ANK) domain and a death domain. Quantitative reverse transcription PCR (qRT-PCR) showed that Hcp65 and Hcp105 were constitutively expressed in the detected tissues, and were significantly up-regulated in hemocytes, hepatopancreas and gill of mussels challenged with lipopolysaccharide (LPS), peptidoglycan (PGN) and polyinosinic-polycytidylic acid (poly I: C). The dsRNA-mediated silencing of Hcp65 and Hcp105 caused significant reduction of immune genes such as lysozyme (HcLyso), theromacin (Hcther), whey acid protein (HcWAP), LPS-binding protein/bactericidal permeability protein (HcLBP/BPI) 1 and 2. In addition, subcellular localization experiments showed that Hcp65 and Hcp105 proteins were expressed in both the nucleus and cytoplasm of HEK-293T cells, and Hcp50 proteins (mature peptide of Hcp105) were mainly localized in the nucleus. The recombinant Hcp65 and Hcp50 protein could form homodimer and heterodimer and bind κB site in vitro. These results provide useful information for understanding the role of NF-κB in mollusks.
Collapse
Affiliation(s)
- Mingxing Zhu
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Feixiang Su
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Jianghe Leng
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Shaoqing Jian
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Peipei Yi
- Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang Province, 321001, China
| | - Chungen Wen
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Baoqing Hu
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China.
| |
Collapse
|
3
|
Kykalová B, Tichá L, Volf P, Loza Telleria E. Phlebotomus papatasi Antimicrobial Peptides in Larvae and Females and a Gut-Specific Defensin Upregulated by Leishmania major Infection. Microorganisms 2021; 9:microorganisms9112307. [PMID: 34835433 PMCID: PMC8625375 DOI: 10.3390/microorganisms9112307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
Phlebotomus papatasi is the vector of Leishmania major, causing cutaneous leishmaniasis in the Old World. We investigated whether P. papatasi immunity genes were expressed toward L. major, commensal gut microbes, or a combination of both. We focused on sand fly transcription factors dorsal and relish and antimicrobial peptides (AMPs) attacin and defensin and assessed their relative gene expression by qPCR. Sand fly larvae were fed food with different bacterial loads. Relish and AMPs gene expressions were higher in L3 and early L4 larval instars, while bacteria 16S rRNA increased in late L4 larval instar, all fed rich-microbe food compared to the control group fed autoclaved food. Sand fly females were treated with an antibiotic cocktail to deplete gut bacteria and were experimentally infected by Leishmania. Compared to non-infected females, dorsal and defensin were upregulated at early and late infection stages, respectively. An earlier increase of defensin was observed in infected females when bacteria recolonized the gut after the removal of antibiotics. Interestingly, this defensin gene expression occurred specifically in midguts but not in other tissues of females and larvae. A gut-specific defensin gene upregulated by L. major infection, in combination with gut-bacteria, is a promising molecular target for parasite control strategies.
Collapse
|
4
|
Vaz F, Kounatidis I, Covas G, Parton RM, Harkiolaki M, Davis I, Filipe SR, Ligoxygakis P. Accessibility to Peptidoglycan Is Important for the Recognition of Gram-Positive Bacteria in Drosophila. Cell Rep 2020; 27:2480-2492.e6. [PMID: 31116990 PMCID: PMC6533200 DOI: 10.1016/j.celrep.2019.04.103] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 03/19/2019] [Accepted: 04/23/2019] [Indexed: 11/16/2022] Open
Abstract
In Drosophila, it is thought that peptidoglycan recognition proteins (PGRPs) SA and LC structurally discriminate between bacterial peptidoglycans with lysine (Lys) or diaminopimelic (DAP) acid, respectively, thus inducing differential antimicrobial transcription response. Here, we find that accessibility to PG at the cell wall plays a central role in immunity to infection. When wall teichoic acids (WTAs) are genetically removed from S. aureus (Lys type) and Bacillus subtilis (DAP type), thus increasing accessibility, the binding of both PGRPs to either bacterium is increased. PGRP-SA and -LC double mutant flies are more susceptible to infection with both WTA-less bacteria. In addition, WTA-less bacteria grow better in PGRP-SA/-LC double mutant flies. Finally, infection with WTA-less bacteria abolishes any differential activation of downstream antimicrobial transcription. Our results indicate that accessibility to cell wall PG is a major factor in PGRP-mediated immunity and may be the cause for discrimination between classes of pathogens.
Collapse
Affiliation(s)
- Filipa Vaz
- Department of Biochemistry, University of Oxford, South Parks Rd., OX1 3QU Oxford, UK; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Ilias Kounatidis
- Department of Biochemistry, University of Oxford, South Parks Rd., OX1 3QU Oxford, UK; Diamond Light Source, Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
| | - Gonçalo Covas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Richard M Parton
- Department of Biochemistry, University of Oxford, South Parks Rd., OX1 3QU Oxford, UK
| | - Maria Harkiolaki
- Diamond Light Source, Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Rd., OX1 3QU Oxford, UK
| | - Sergio Raposo Filipe
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Petros Ligoxygakis
- Department of Biochemistry, University of Oxford, South Parks Rd., OX1 3QU Oxford, UK.
| |
Collapse
|
5
|
Xiao R, Wang X, Xie E, Ji T, Li X, Muhammad A, Yin X, Hou Y, Shi Z. An IMD-like pathway mediates the intestinal immunity to modulate the homeostasis of gut microbiota in Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 97:20-27. [PMID: 30914318 DOI: 10.1016/j.dci.2019.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Most animals have established the mutualistic interactions with their intestinal microbes which provide multiple benefits to their host physiology. However, the mechanisms behind hosts determine the load and composition of gut microbiota are still poorly understood outside dipteran insects. Here, the gene, encoding the NF-κB-like transcription factor Relish, being designated as RfRelish, was identified and analyzed in red palm weevil (RPW), Rhynchophorus ferrugineus Olivier. We revealed that the abundance of RfRelish transcripts in the fat body, hemolymph and gut are significantly higher than that in non-immunity-related tissues, and its expression level can be markedly induced by bacterial challenges. When RfRelish was silenced, the ability of individuals to clear the pathogenic bacteria in body cavity and gut was significantly compromised, suggesting that both the systemic and gut local immunity were impaired dramatically by RfRelish knockdown. Additionally, the silenced insects exhibited increased gut bacterial load, and the relative abundance of some gut bacteria was changed as compared to controls. Collectively, our findings demonstrate that the IMD-like pathway restricts the proliferation of gut bacteria and shapes the commensal community structure in the intestine of R. ferrugineus by mediating the secretion of antimicrobial peptides. We provide a striking example on how an insect pest maintains the homeostasis of gut microbiota via a conserved immune pathway without compromising the advantages of the mutualistic relationships.
Collapse
Affiliation(s)
- Rong Xiao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinghong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Erming Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianliang Ji
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiongwei Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Abrar Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianyuan Yin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhanghong Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Dawadi B, Wang X, Xiao R, Muhammad A, Hou Y, Shi Z. PGRP-LB homolog acts as a negative modulator of immunity in maintaining the gut-microbe symbiosis of red palm weevil, Rhynchophorus ferrugineus Olivier. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:65-77. [PMID: 29715482 DOI: 10.1016/j.dci.2018.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 05/08/2023]
Abstract
Many notorious insect pests live in the symbiotic associations with gut microbiota. However, the mechanisms underlying how they host their gut microbiota are unknown. Most gut bacteria can release peptidoglycan (PGN) which is an important antigen to activate the immune response. Therefore, how to keep the appropriate gut immune intensity to host commensals while to efficiently remove enteropathogens is vital for insect health. This study is aimed at elucidating the roles of an amidase PGRP, Rf PGRP-LB, in maintaining the gut-microbe symbiosis of Red palm weevil (RPW), Rhynchophorus ferrugineus Olivier. RfPGRP-LB is a secreted protein containing a typical PGRP domain. The existence of five conservative amino acid residues, being required for amidase activity, showed that RfPGRP-LB is a catalytic protein. Expression analysis revealed abundance of RfPGRP-LB transcripts in gut was dramatically higher than those in other tissues. RfPGRP-LB could be significantly induced against the infection of Escherichia coli. In vitro assays revealed that rRfPGRP-LB impaired the growth of E. coli and agglutinated bacteria cells obviously, suggesting RfPGRP-LB is a pathogen recognition receptor and bactericidal molecule. RfPGRP-LB knockdown reduced the persistence of E. coli in gut and load of indigenous gut microbiota significantly. Furthermore, the community structure of indigenous gut microbiota was also intensively altered by RfPGRP-LB silence. Higher levels of the antimicrobial peptide, attacin, were detected in guts of RfPGRP-LB silenced larvae than controls. Collectively, RfPGRP-LB plays multiple roles in modulating the homeostasis of RPW gut microbiota not only by acting as a negative regulator of mucosal immunity through PGN degradation but also as a bactericidal effector to prevent overgrowth of commensals and persistence of noncommensals.
Collapse
Affiliation(s)
- Bishnu Dawadi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinghong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rong Xiao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Abrar Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhanghong Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
7
|
Mura ME, Ruiu L. Sex-Specific Sub-Lethal Effects and Immune Response in Ceratitis capitata Wied. (Diptera: Tephritidae) Challenged with Spinosad. INSECTS 2018; 9:insects9030073. [PMID: 29933642 PMCID: PMC6163605 DOI: 10.3390/insects9030073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022]
Abstract
The main objective of this study was to investigate the effects of the insecticidal compound spinosad on the survival, reproduction, and immune functions of the Mediterranean fruit fly. The lethal and sub-lethal effects were determined on Ceratitis capitata Wied. (Diptera: Tephritidae) challenged with different concentrations of spinosad. A median lethal concentration of 0.28 ppm was observed on flies feeding for 5 days on a treated diet. A significant and concentration-dependent decrease in fecundity, egg hatch rate, and lifespan was also detected in treated compared with control flies. Gene expression analyses conducted on treated insects by RT-qPCR revealed an immunomodulatory action of sub-lethal concentrations of spinosad. Target transcripts included several genes involved in medfly immunity and male or female reproductive functions. While a significant upregulation was detected in treated males a short time after spinosad ingestion, most target genes were downregulated in treated females. Our study confirmed the high toxicity of spinosad to C. capitata, highlighting an indirect effect on insect lifespan and reproductive performance at sub-lethal doses. In addition to defining the acute and sub-lethal toxicity of spinosad against the fly, this study provides new insights on the interaction of this compound with insect physiology.
Collapse
Affiliation(s)
- Maria Elena Mura
- Dipartimento di Agraria, University of Sassari, 07100 Sassari, Italy.
| | - Luca Ruiu
- Dipartimento di Agraria, University of Sassari, 07100 Sassari, Italy.
| |
Collapse
|