1
|
Olivares-Ferretti P, Beltrán JF, Salazar LA, Fonseca-Salamanca F. Protein Modelling and Molecular Docking Analysis of Fasciola hepatica β-Tubulin's Interaction Sites, with Triclabendazole, Triclabendazole Sulphoxide and Triclabendazole Sulphone. Acta Parasitol 2023; 68:535-547. [PMID: 37330945 DOI: 10.1007/s11686-023-00692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 05/29/2023] [Indexed: 06/20/2023]
Abstract
PURPOSE Fasciola hepatica is a globally distributed trematode that causes significant economic losses. Triclabendazole is the primary pharmacological treatment for this parasite. However, the increasing resistance to triclabendazole limits its efficacy. Previous pharmacodynamics studies suggested that triclabendazole acts by interacting mainly with the β monomer of tubulin. METHODS We used a high-quality method to model the six isotypes of F. hepatica β-tubulin in the absence of three-dimensional structures. Molecular dockings were conducted to evaluate the destabilization regions in the molecule against the ligands triclabendazole, triclabendazole sulphoxide and triclabendazole sulphone. RESULTS The nucleotide binding site demonstrates higher affinity than the binding sites of colchicine, albendazole, the T7 loop and pβVII (p < 0.05). We suggest that the binding of the ligands to the polymerization site of β-tubulin can lead a microtubule disruption. Furthermore, we found that triclabendazole sulphone exhibited significantly higher binding affinity than other ligands (p < 0.05) across all isotypes of β-tubulin. CONCLUSIONS Our investigation has yielded new insight on the mechanism of action of triclabendazole and its sulphometabolites on F. hepatica β-tubulin through computational tools. These findings have significant implications for ongoing scientific research ongoing towards the discovery of novel therapeutics to treat F. hepatica infections.
Collapse
Affiliation(s)
- Pamela Olivares-Ferretti
- Laboratory of Molecular Immunoparasitology, Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Temuco, Chile
| | - Jorge F Beltrán
- Chemical Engineering Department, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, 4811230, Temuco, Chile
| | - Flery Fonseca-Salamanca
- Laboratory of Molecular Immunoparasitology, Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Temuco, Chile.
- Preclinical Sciences Department, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
2
|
Phenotypic changes of Trichinella spiralis treated by Commiphora molmol,Lepidium sativum, and Albendazole: in vitro study. Helminthologia 2022; 59:37-45. [PMID: 35601763 PMCID: PMC9075874 DOI: 10.2478/helm-2022-0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/04/2022] [Indexed: 12/05/2022] Open
Abstract
Trichinellosis is a nematode-causing disease distinguished by its continuous transmission in the carnivores and omnivores. Despite effective eradication of the enteral forms, conventional drugs fail to eliminate the migrating and muscle ones. Over the past years, researchers intensified the work on herbal medicines as alternatives or aids to albendazole, the reference drug. This research hypothesizes that the therapeutic agent absorption route could be an evidence-based carrier molecule or auxiliary drug to albendazole. Accordingly, this in vitro study was designed to investigate mainly the phenotypic changes induced by a mono-treatment of albendazole, Lipidium sativum (garden cress), and Commiphora molmol (myrrh). Incredibly, no data were reported on the morphological alterations of T. spiralis larvae treated by any of these drugs. The experimental design tested various concentrations (25, 50, 100, and 200 μg/ml) of each herbal medicine for the lethal effects on the parasite forms for a day (1, 12, and 24h). The data showed that the highest significant mortality rate of the parasite forms was in favor of the concentration 200 μg/ml of both plant extracts in a time-dependent manner. Therefore, albendazole at 200 μg/ml dose was tested in parallel, and all experimental groups were compared to non-treated muscle larvae and worms. Albendazole-treated worms accounted for the least significant (p<0.001) survival rate (2 %), followed by myrrh (5 %), and the adverse was valid for the survival rate of the muscle larvae at that time. None of the larvae/worms was alive after 24 hours of incubation with the 200μg/ml of either treatment. The scanning electron microscope investigation of the experimental groups provided a shred of evidence for different routes of taking up the candidate drugs by the parasite. In conclusion, the results of the previous work in vivo and current in vitro study recommend myrrh over garden cress as a complementary agent of albendazole.
Collapse
|
3
|
Morawietz CM, Houhou H, Puckelwaldt O, Hehr L, Dreisbach D, Mokosch A, Roeb E, Roderfeld M, Spengler B, Haeberlein S. Targeting Kinases in Fasciola hepatica: Anthelminthic Effects and Tissue Distribution of Selected Kinase Inhibitors. Front Vet Sci 2020; 7:611270. [PMID: 33409299 PMCID: PMC7779637 DOI: 10.3389/fvets.2020.611270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
Protein kinases have been discussed as promising druggable targets in various parasitic helminths. New drugs are also needed for control of fascioliasis, a food-borne trematode infection and worldwide spread zoonosis, caused by the liver fluke Fasciola hepatica and related species. In this study, we intended to move protein kinases more into the spotlight of Fasciola drug research and characterized the fasciolicidal activity of two small-molecule inhibitors from human cancer research: the Abelson tyrosine kinase (ABL-TK) inhibitor imatinib and the polo-like 1 (PLK1) inhibitor BI2536. BI2536 reduced viability of 4-week-old immature flukes in vitro, while adult worms showed a blockade of egg production. Together with a significantly higher transcriptional expression of PLK1 in adult compared to immature worms, this argues for a role of PLK1 in fluke reproduction. Both fluke stages expressed ABL1-TK transcripts at similar high levels and were affected by imatinib. To study the uptake kinetic and tissue distribution of imatinib in F. hepatica, we applied matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) for the first time in this parasite. Drug imaging revealed the accumulation of imatinib in different fluke tissues from 20 min to 12 h of exposure. Furthermore, we show that imatinib is metabolized to N-desmethyl imatinib by F. hepatica, a bioactive metabolite also found in humans. Besides the vitellarium, gastrodermal tissue showed strong signal intensities. In situ hybridization demonstrated the gastrodermal presence of abl1 transcripts. Finally, we assessed transcriptional changes of physiologically important genes in imatinib-treated flukes. Moderately increased transcript levels of a gene encoding a multidrug resistance protein were detected, which may reflect an attempt to defend against imatinib. Increased expression levels of the cell cycle dependently expressed histone h2b and of two genes encoding superoxide dismutases (SODs) were also observed. In summary, our pilot study demonstrated cross-stage activity of imatinib but not BI2536 against immature and adult F. hepatica in vitro; a fast incorporation of imatinib within minutes, probably via the oral route; and imatinib-induced expression changes of physiologically relevant genes. We conclude that kinases are worth analyzing in more detail to evaluate the potential as therapeutic targets in F. hepatica.
Collapse
Affiliation(s)
- Carolin M Morawietz
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Hicham Houhou
- Biomedical Research Center Seltersberg (BFS), Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Oliver Puckelwaldt
- Biomedical Research Center Seltersberg (BFS), Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Laura Hehr
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Domenic Dreisbach
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Annika Mokosch
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Elke Roeb
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Roderfeld
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Simone Haeberlein
- Biomedical Research Center Seltersberg (BFS), Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
4
|
Ezeta-Miranda A, Vera-Montenegro Y, Avila-Acevedo JG, García-Bores AM, Estrella-Parra EA, Francisco-Marquez G, Ibarra-Velarde F. Efficacy of purified fractions of Artemisia ludoviciana Nutt. mexicana and ultraestructural damage to newly excysted juveniles of Fasciola hepatica in vitro. Vet Parasitol 2020; 285:109184. [DOI: 10.1016/j.vetpar.2020.109184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/09/2020] [Accepted: 07/07/2020] [Indexed: 11/26/2022]
|
5
|
Fairweather I, Brennan GP, Hanna REB, Robinson MW, Skuce PJ. Drug resistance in liver flukes. Int J Parasitol Drugs Drug Resist 2020; 12:39-59. [PMID: 32179499 PMCID: PMC7078123 DOI: 10.1016/j.ijpddr.2019.11.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
Liver flukes include Fasciola hepatica, Fasciola gigantica, Clonorchis sinensis, Opisthorchis spp., Fascioloides magna, Gigantocotyle explanatum and Dicrocoelium spp. The two main species, F. hepatica and F. gigantica, are major parasites of livestock and infections result in huge economic losses. As with C. sinensis, Opisthorchis spp. and Dicrocoelium spp., they affect millions of people worldwide, causing severe health problems. Collectively, the group is referred to as the Food-Borne Trematodes and their true significance is now being more widely recognised. However, reports of resistance to triclabendazole (TCBZ), the most widely used anti-Fasciola drug, and to other current drugs are increasing. This is a worrying scenario. In this review, progress in understanding the mechanism(s) of resistance to TCBZ is discussed, focusing on tubulin mutations, altered drug uptake and changes in drug metabolism. There is much interest in the development of new drugs and drug combinations, the re-purposing of non-flukicidal drugs, and the development of new drug formulations and delivery systems; all this work will be reviewed. Sound farm management practices also need to be put in place, with effective treatment programmes, so that drugs can be used wisely and their efficacy conserved as much as is possible. This depends on reliable advice being given by veterinarians and other advisors. Accurate diagnosis and identification of drug-resistant fluke populations is central to effective control: to determine the actual extent of the problem and to determine how well or otherwise a treatment has worked; for research on establishing the mechanism of resistance (and identifying molecular markers of resistance); for informing treatment options; and for testing the efficacy of new drug candidates. Several diagnostic methods are available, but there are no recommended guidelines or standardised protocols in place and this is an issue that needs to be addressed.
Collapse
Affiliation(s)
- I Fairweather
- School of Biological Sciences, The Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
| | - G P Brennan
- School of Biological Sciences, The Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - R E B Hanna
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stormont, Belfast, BT4 3SD, UK
| | - M W Robinson
- School of Biological Sciences, The Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - P J Skuce
- Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, EH26 0PZ, UK
| |
Collapse
|
6
|
Eurytrema coelomaticum: updated morphology of adult worms using advanced microscopy experiments. J Helminthol 2020; 94:e122. [PMID: 31964430 DOI: 10.1017/s0022149x19001135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Eurytrema coelomaticum is a digenean flatworm of ruminants that is the causative agent of eurytrematosis, a disease of veterinary health concern. Although modern techniques of morphological analysis have provided new insights about the morphology and anatomy of parasitic helminths, most studies on E. coelomaticum adults are based on conventional light microscopy. In the present study, a combined approach using brightfield, fluorescence, confocal and scanning electron microscopies (SEMs), together with the cryofracture technique, have updated morphological data on E. coelomaticum recovered from cattle in Rio de Janeiro State, Brazil. Light microscopy confirmed the presence of several structures present in the current description, such as suckers, pharynx, oesophagus, intestinal bifurcation and the cirrus-sac. Fluorescence stereomicroscopy revealed for the first time the cubic crystal protein inclusions in the forebody, which were further detailed by confocal and SEMs. Confocal microscopy provided detailed information of the muscular architecture associated with the attachment structures (suckers), digestive system (pharynx and oesophagus), egg-forming complex (ovary, Mehlis' gland and Laurer's canal) and male reproductive system, which are similar to those found in other digenean flukes. SEM images of cryofractured parasites showed mucus and developing eggs within uterine loops. It was demonstrated that the combination of advanced tools generated complementary information, confirming the importance of experimental morphology in parasitology. Therefore, the knowledge of the adult structural organization of E. coelomaticum was improved and this work has contributed to propose new morphological criteria to evaluate the effects of antiparasitic drugs on flukes of medical and veterinary importance.
Collapse
|