1
|
O’Connell-Rodwell CE, Berezin JL, Dharmarajan A, Ravicz ME, Hu Y, Guan X, O’Connor KN, Puria S. The impact of size on middle-ear sound transmission in elephants, the largest terrestrial mammal. PLoS One 2024; 19:e0298535. [PMID: 38598472 PMCID: PMC11006165 DOI: 10.1371/journal.pone.0298535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/25/2024] [Indexed: 04/12/2024] Open
Abstract
Elephants have a unique auditory system that is larger than any other terrestrial mammal. To quantify the impact of larger middle ear (ME) structures, we measured 3D ossicular motion and ME sound transmission in cadaveric temporal bones from both African and Asian elephants in response to air-conducted (AC) tonal pressure stimuli presented in the ear canal (PEC). Results were compared to similar measurements in humans. Velocities of the umbo (VU) and stapes (VST) were measured using a 3D laser Doppler vibrometer in the 7-13,000 Hz frequency range, stapes velocity serving as a measure of energy entering the cochlea-a proxy for hearing sensitivity. Below the elephant ME resonance frequency of about 300 Hz, the magnitude of VU/PEC was an order of magnitude greater than in human, and the magnitude of VST/PEC was 5x greater. Phase of VST/PEC above ME resonance indicated that the group delay in elephant was approximately double that of human, which may be related to the unexpectedly high magnitudes at high frequencies. A boost in sound transmission across the incus long process and stapes near 9 kHz was also observed. We discuss factors that contribute to differences in sound transmission between these two large mammals.
Collapse
Affiliation(s)
- Caitlin E. O’Connell-Rodwell
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jodie L. Berezin
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anbuselvan Dharmarajan
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael E. Ravicz
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yihan Hu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiying Guan
- School of Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Kevin N. O’Connor
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sunil Puria
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Graduate Program in Speech and Hearing and Biosciences and Technologies, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
O'Connell-Rodwell CE, Berezin JL, Dharmarajan A, Ravicz ME, Hu Y, Guan X, O'Connor KN, Puria S. The impact of size on middle-ear sound transmission in elephants, the largest terrestrial mammal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559337. [PMID: 37808830 PMCID: PMC10557572 DOI: 10.1101/2023.09.25.559337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Elephants have a unique auditory system that is larger than any other terrestrial mammal. To quantify the impact of larger middle ear (ME) structures, we measured 3D ossicular motion and ME sound transmission in cadaveric temporal bones from both African and Asian elephants in response to air-conducted (AC) tonal pressure stimuli presented in the ear canal (P EC ). Results were compared to similar measurements in humans. Velocities of the umbo (V U ) and stapes (V ST ) were measured using a 3D laser Doppler vibrometer in the 7-13,000 Hz frequency range, stapes velocity serving as a measure of energy entering the cochlea-a proxy for hearing sensitivity. Below the elephant ME resonance frequency of about 300 Hz, the magnitude of V U /P EC was an order of magnitude greater than in human, and the magnitude of V ST /P EC was 5x greater. Phase of V ST /P EC above ME resonance indicated that the group delay in elephant was approximately double that of human, which may be related to the unexpectedly high magnitudes at high frequencies. A boost in sound transmission across the incus long process and stapes near 9 kHz was also observed. We discuss factors that contribute to differences in sound transmission between these two large mammals.
Collapse
|
3
|
Capshaw G, Brown AD, Peña JL, Carr CE, Christensen-Dalsgaard J, Tollin DJ, Womack MC, McCullagh EA. The continued importance of comparative auditory research to modern scientific discovery. Hear Res 2023; 433:108766. [PMID: 37084504 PMCID: PMC10321136 DOI: 10.1016/j.heares.2023.108766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 04/23/2023]
Abstract
A rich history of comparative research in the auditory field has afforded a synthetic view of sound information processing by ears and brains. Some organisms have proven to be powerful models for human hearing due to fundamental similarities (e.g., well-matched hearing ranges), while others feature intriguing differences (e.g., atympanic ears) that invite further study. Work across diverse "non-traditional" organisms, from small mammals to avians to amphibians and beyond, continues to propel auditory science forward, netting a variety of biomedical and technological advances along the way. In this brief review, limited primarily to tetrapod vertebrates, we discuss the continued importance of comparative studies in hearing research from the periphery to central nervous system with a focus on outstanding questions such as mechanisms for sound capture, peripheral and central processing of directional/spatial information, and non-canonical auditory processing, including efferent and hormonal effects.
Collapse
Affiliation(s)
- Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Andrew D Brown
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98105, USA
| | - José L Peña
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Catherine E Carr
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Daniel J Tollin
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Molly C Womack
- Department of Biology, Utah State University, Logan, UT 84322, USA.
| | - Elizabeth A McCullagh
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
4
|
Martonos CO, Gudea AI, Ratiu IA, Stan FG, Bolfă P, Little WB, Dezdrobitu CC. Anatomical, Histological, and Morphometrical Investigations of the Auditory Ossicles in Chlorocebus aethiops sabaeus from Saint Kitts Island. BIOLOGY 2023; 12:biology12040631. [PMID: 37106831 PMCID: PMC10135957 DOI: 10.3390/biology12040631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/25/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
Otological studies rely on a lot of data drawn from animal studies. A lot of pathological or evolutionary questions may find answers in studies on primates, providing insights into the morphological, pathological, and physiological aspects of systematic biological studies. Our study on auditory ossicles moves from a pure morphological (macroscopic and microscopic) investigation of auditory ossicles to the morphometrical evaluation of several individuals as well as to some interpretative data regarding some functional aspects drawn from these investigations. Particularities from this perspective blend with metric data and point toward comparative elements that might also serve as an important reference in further morphologic and comparative studies.
Collapse
Affiliation(s)
- Cristian Olimpiu Martonos
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- School of Veterinary Medicine, Ross University, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Alexandru Ion Gudea
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Ioana A Ratiu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Florin Gheorghe Stan
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Pompei Bolfă
- School of Veterinary Medicine, Ross University, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - William Brady Little
- School of Veterinary Medicine, Ross University, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | | |
Collapse
|
5
|
Human middle-ear muscle pulls change tympanic-membrane shape and low-frequency middle-ear transmission magnitudes and delays. Hear Res 2023; 430:108721. [PMID: 36821982 DOI: 10.1016/j.heares.2023.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/27/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
The three-bone flexible ossicular chain in mammals may allow independent alterations of middle-ear (ME) sound transmission via its two attached muscles, for both acoustic and non-acoustic stimuli. The tensor tympani (TT) muscle, which has its insertion on the malleus neck, is thought to increase tension of the tympanic membrane (TM). The stapedius (St) muscle, which has its insertion on the stapes posterior crus, is known to stiffen the stapes annular ligament. We produced ME changes in human cadaveric temporal bones by statically pulling on the TT and St muscles. The 3D static TM shape and sound-induced umbo motions from 20 Hz to 10 kHz were measured with optical coherence tomography (OCT); stapes motion was measured using laser-Doppler vibrometry (LDV). TT pulls made the TM shape more conical and moved the umbo medially, while St pulls moved the umbo laterally. In response to sound below about 1 kHz, stapes-velocity magnitudes generally decreased by about 10 dB due to TT pulls and 5 dB due to St pulls. In the 250 to 500 Hz region, the group delay calculated from stapes-velocity phase showed a decrease in transmission delay of about 150 µs by TT pulls and 60 µs by St pulls. Our interpretation of these results is that ME-muscle activity may provide a way of mechanically changing interaural time- and level-difference cues. These effects could help the brain align head-centered auditory and ocular-centered visual representations of the environment.
Collapse
|
6
|
Zeyl JN, Snelling EP, Joo R, Clusella-Trullas S. Scaling of ear morphology across 127 bird species and its implications for hearing performance. Hear Res 2023; 428:108679. [PMID: 36587457 DOI: 10.1016/j.heares.2022.108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The dimensions of auditory structures among animals of varying body size can have implications for hearing performance. Larger animals often have a hearing range focused on lower frequencies than smaller animals, which may be explained by several anatomical mechanisms in the ear and their scaling relationships. While the effect of size on ear morphology and hearing performance has been explored in some mammals, anurans and lizards, much less is known about the scaling relationships for the single-ossicle, internally-coupled ears of birds. Using micro- and nano-CT scans of the tympanic middle and inner ears of 127 ecologically and phylogenetically diverse bird species, spanning more than 400-fold in head mass (2.3 to 950 g), we undertook phylogenetically-informed scaling analyses to test whether 12 morphological traits, of functional importance to hearing, maintain their relative proportions with increasing head mass. We then extended our analysis by regressing these morphological traits with measures of hearing sensitivity and range to better understand morphological underpinnings of hearing performance. We find that most auditory structures scale together in equal proportions, whereas columella length increases disproportionately. We also find that the size of several auditory structures is associated with increased hearing sensitivity and frequency hearing limits, while head mass did not explain these measures. Although both birds and mammals demonstrate proportional scaling between auditory structures, the consequences for hearing in each group may diverge due to unique morphological predictors of auditory performance.
Collapse
Affiliation(s)
- Jeffrey N Zeyl
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa.
| | - Edward P Snelling
- Department of Anatomy and Physiology, and Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Rocío Joo
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Davie, FL, USA; Global Fishing Watch, Washington, DC 20036, USA
| | | |
Collapse
|
7
|
Martonos C, Gudea A, D’Amico G, Stan F, Stroe T. Morphological and morphometrical anatomy of the auditory ossicles in roe deer ( Capreolus capreolus). THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2113158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Affiliation(s)
- C. Martonos
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - A. Gudea
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - G. D’Amico
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - F. Stan
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - T. Stroe
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Morphological and Morphometrical Aspects of the Auditory Ossicles in the European Badger (Meles Meles). Vet Sci 2022; 9:vetsci9090483. [PMID: 36136699 PMCID: PMC9504775 DOI: 10.3390/vetsci9090483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The little-described morphology of the ear ossicles in the badger provides some interesting morphological features alongside some metrical data. For the malleus, we notice the standard framing into the known shape, with the mentioned presence at the level of the column of all three processes (lateral, rostral and medial), from which the rostral one is the most developed. The malleal manubrium is long and triangularly shaped on a cross-section. For the incus we notice the overall shape of a biradicular molar with the existence of the two crura in acute angulation, while the long crus is continuing with the lenticular process. The presence of a bony blade that links to the lenticular process is also noted. For the stapes, the almost equal two crura and the quite round intercrural foramen is described. Abstract Given the scarce morphological data regarding the middle ear anatomy of this species, the paper attempts to describe the morphological and morphometrical data of the auditory ossicles in the badger. The study was performed using the standard morphological investigations and provides a complete morphological description of the ossicular assembly (malleus, incus and stapes) with some comparative features and attempts to provide a complete set of standardized metrical data for each ossicle. A more-detailed attempt to compare some functional aspects in the light of combined metrical ratios is also implied.
Collapse
|
9
|
Brister EY, Withnell RH, Shevchenko P, Richter CP. Are suspensory ligaments important for middle ear reconstruction? PLoS One 2021; 16:e0255821. [PMID: 34428235 PMCID: PMC8384183 DOI: 10.1371/journal.pone.0255821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/25/2021] [Indexed: 11/18/2022] Open
Abstract
As the resolution of 3D printing techniques improves, the possibility of individualized, 3-ossicle constructions adds a new dimension to middle ear prostheses. In order to optimize these designs, it is essential to understand how the ossicles and ligaments work together to transmit sound, and thus how ligaments should be replicated in a middle ear reconstruction. The middle ear ligaments are thought to play a significant role in maintaining the position of the ossicles and constraining axis of rotation. Paradoxically, investigations of the role of ligaments to date have shown very little impact on middle ear sound transmission. We explored the role of the two attachments in the gerbil middle ear analogous to human ligaments, the posterior incudal ligament and the anterior mallear process, severing both attachments and measuring change in hearing sensitivity. The impact of severing the attachments on the position of the ossicular chain was visualized using synchrotron microtomography imaging of the middle ear. In contrast to previous studies, a threshold change on the order of 20 dB across a wide range of frequencies was found when both ligaments were severed. Concomitantly, a shift in position of the ossicles was observed from the x-ray imaging and 3D renderings of the ossicular chain. These findings contrast with previous studies, demonstrating that these ligaments play a significant role in the transmission of sound through the middle ear. It appears that both mallear and incudal ligaments must be severed in order to impair sound transmission. The results of this study have significance for middle ear reconstructive surgery and the design of 3D-printed three-ossicle biocompatible prostheses.
Collapse
Affiliation(s)
- Eileen Y. Brister
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Department of Speech, Language, and Hearing Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Robert H. Withnell
- Department of Speech, Language, and Hearing Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Pavel Shevchenko
- Advanced Photon Source, Argonne National Lab, Lemont, Illinois, United States of America
| | - Claus-Peter Richter
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
- The Hugh Knowles Center, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
10
|
Sánchez-Martínez PM, Daza JD, Hoyos JM. Comparative anatomy of the middle ear in some lizard species with comments on the evolutionary changes within Squamata. PeerJ 2021; 9:e11722. [PMID: 34327053 PMCID: PMC8310623 DOI: 10.7717/peerj.11722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022] Open
Abstract
The skeleton of the middle ear of lizards is composed of three anatomical elements: columella, extracolumella, and tympanic membrane, with some exceptions that show modifications of this anatomy. The main function of the middle ear is transforming sound waves into vibrations and transmitting these to the inner ear. Most middle ear studies mainly focus on its functional aspects, while few describe the anatomy in detail. In lizards, the morphology of the columella is highly conservative, while the extracolumella shows variation in its presence/absence, size, and the number of processes present on the structure. In this work, we used diaphanized and double-stained specimens of 38 species of lizards belonging to 24 genera to study the middle ear’s morphology in a comparative framework. Results presented here indicate more variation in the morphology of the extracolumella than previously known. This variation in the extracolumella is found mainly in the pars superior and anterior processes, while the pars inferior and the posterior process are more constant in morphology. We also provide new information about the shape of gekkotan extracolumella, including traits that are diagnostic for the iguanid and gekkonid middle ear types. The data collected in this study were combined with information from published descriptive works. The new data included here refers to the length of the columella relative to the extracolumella central axis length, the general structure of the extracolumella, and the presence of the internal process. These characters were included in ancestral reconstruction analysis using Bayesian and parsimony approaches. The results indicate high levels of homoplasy in the variation of the columella-extracolumella ratio, providing a better understanding of the ratio variation among lizards. Additionally, the presence of four processes in the extracolumella is the ancestral state for Gekkota, Pleurodonta, and Xantusiidae, and the absence of the internal processes is the ancestral state for Gekkota, Gymnophthalmidae, and Scincidae; despite the fact that these groups convergently develop these character states, they could be used in combination with other characters to diagnose these clades. The posterior extension in the pars superior and an anterior process with some small and sharp projections is also a diagnostic trait for Gekkota. A more accurate description of each process of the extracolumella and its variation needs to be evaluated in a comprehensive analysis, including a greater number of species. Although the number of taxa sampled in this study is small considering the vast diversity of lizards, the results provide an overall idea of the amount of variation of the middle ear while helping to infer the evolutionary history of the lizard middle ear.
Collapse
Affiliation(s)
- Paola María Sánchez-Martínez
- Laboratorio de Sistemática Morfológica y Biogeografía de Vertebrados, Departamento de Biología Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Cundinamarca, Colombia
| | - Juan D Daza
- Department of Biological Sciences, Sam Houston State University, Huntsville, Texas, United States
| | - Julio Mario Hoyos
- Laboratorio de Sistemática Morfológica y Biogeografía de Vertebrados, Departamento de Biología Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Cundinamarca, Colombia.,Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Cundinamarca, Colombia
| |
Collapse
|
11
|
A comparative study of avian middle ear mechanics. Hear Res 2020; 395:108043. [DOI: 10.1016/j.heares.2020.108043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 11/20/2022]
|
12
|
Péus D, Dobrev I, Pfiffner F, Sim JH. Comparison of sheep and human middle-ear ossicles: anatomy and inertial properties. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:683-700. [PMID: 32564138 PMCID: PMC7392934 DOI: 10.1007/s00359-020-01430-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/30/2022]
Abstract
The sheep middle ear has been used in training to prepare physicians to perform surgeries and to test new ways of surgical access. This study aimed to (1) collect anatomical data and inertial properties of the sheep middle-ear ossicles and (2) explore effects of these features on sound transmission, in comparison to those of the human. Characteristic dimensions and inertial properties of the middle-ear ossicles of White-Alpine sheep (n = 11) were measured from high-resolution micro-CT data, and were assessed in comparison with the corresponding values of the human middle ear. The sheep middle-ear ossicles differed from those of human in several ways: anteroinferior orientation of the malleus handle, relatively small size of the incus with a relatively short distance to the lenticular process, a large area of the articular surfaces at the incudostapedial joint, and a relatively small moment of inertia along the anterior-posterior axis. Analysis in this study suggests that structure and orientation of the middle-ear ossicles in the sheep are conducive to an increase in the hinge-like ossicular-lever-action around the anterior-posterior axis. Considering the substantial anatomical differences, outcomes of middle-ear surgeries would presumably be difficult to assess from experiments using the sheep middle ear.
Collapse
Affiliation(s)
| | - Ivo Dobrev
- Department of Otorhinolaryngology, Head and Neck, Surgery University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Flurin Pfiffner
- Department of Otorhinolaryngology, Head and Neck, Surgery University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Jae Hoon Sim
- Department of Otorhinolaryngology, Head and Neck, Surgery University Hospital Zurich, Zurich, Switzerland. .,University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Peacock J, Spellman GM, Greene NT, Tollin DJ. Scaling of the avian middle ear. Hear Res 2020; 395:108017. [PMID: 32709398 DOI: 10.1016/j.heares.2020.108017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022]
Abstract
This article presents a comparative study of morphology of the avian middle ear. The general morphology of the columella shows considerable variation across species, yet few studies have attempted to provide quantitative comparisons, and basic anatomical data has not been thoroughly reported. In this study, we examined the middle ear in 49 taxonomically diverse species of bird. We found significant correlations between measurements of several features (columellar length, mass, tympanic membrane area, footplate area) and interaural diameter. While scaling of columellar length with interaural diameter is consistent with isometry, masses and areas showed negative allometry, or a non-proportional scaling with interaural diameter. These observations remained true even for species with unusual middle ear morphology, such as Alcedinidae (Kingfishers) in which the basal struts of the columella form a structure almost resembling a mammalian stapes, or Tytonidae (Barn Owls) which have a highly bulbous footplate. It therefore appears that allometry cannot help explain the morphological variation in the columella.
Collapse
Affiliation(s)
- John Peacock
- Department of Physiology & Biophysics, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| | - Garth M Spellman
- Department of Zoology, Denver Museum of Nature & Science, Denver, CO, 80205, USA
| | - Nathaniel T Greene
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Daniel J Tollin
- Department of Physiology & Biophysics, University of Colorado School of Medicine, Aurora, CO, 80045, USA; Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| |
Collapse
|
14
|
Livens P, Gladiné K, Dirckx JJJ. Eardrum displacement and strain in the Tokay gecko (Gekko gecko) under quasi-static pressure loads. Hear Res 2020; 387:107877. [PMID: 31958745 DOI: 10.1016/j.heares.2019.107877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/27/2019] [Accepted: 12/25/2019] [Indexed: 11/18/2022]
Abstract
The eardrum is the primary component of the middle ear and has been extensively investigated in humans. Measuring the displacement and deformation of the eardrum under different quasi-static loading conditions gives insight in its mechanical behavior and is fundamental in determining the material properties of the eardrum. Currently, little is known about the behavior and material properties of eardrums in non-mammals. To explore the mechanical properties of the eardrum in non-mammalian ears, we investigated the quasi-static response of the eardrum of a common lizard: the Tokay gecko (Gekko gecko). The middle ear cavity was pressurized using repetitive linear pressure cycles ranging from -1.5 to 1.5 kPa with pressure change rates of 0.05, 0.1 and 0.2 kPa/s. The resulting shape, displacement and in-plane strain of the eardrum surface were measured using 3D digital image correlation. When middle-ear pressure is negative, the medial displacement of the eardrum is much larger than the displacement observed in mammals; when middle-ear pressure is positive, the lateral displacement is much larger than in mammals, which is not observed in bird single-ossicle ears. Peak-to-peak displacements are about 2.8 mm, which is larger than in any other species measured up to date. The peak-to-peak displacements are at least five times larger than observed in mammals. The pressure-displacement curves show hysteresis, and the energy loss within one pressure cycle increases with increasing pressure rate, contrary to what is observed in rabbit eardrums. The energy lost during a pressure cycle is not constant over the eardrum. Most energy is lost at the region where the eardrum connects to the hearing ossicle. Around this eardrum-ossicle region, a 5% increase in energy loss was observed when pressure change rate was increased from 0.05 kPa/s to 0.2 kPa/s. Other parts of the eardrum showed little increase in the energy loss. The orientation of the in-plane strain on the eardrum was mainly circumferential with strain amplitudes of about +1.5%. The periphery of the measured eardrum surface showed compression instead of stretching and had a different strain orientation. The TM of Gekko gecko shows the highest displacements of all species measured up till now. Our data show the first shape, displacement and deformation measurements on the surface of the eardrum of the gecko and indicate that there could exist a different hysteresis behavior in different species.
Collapse
Affiliation(s)
- Pieter Livens
- University of Antwerp, Laboratory of Biophysics and Biomedical Physics, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Kilian Gladiné
- University of Antwerp, Laboratory of Biophysics and Biomedical Physics, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Joris J J Dirckx
- University of Antwerp, Laboratory of Biophysics and Biomedical Physics, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
15
|
Muyshondt PGG, Dirckx JJJ. How flexibility and eardrum cone shape affect sound conduction in single-ossicle ears: a dynamic model study of the chicken middle ear. Biomech Model Mechanobiol 2019; 19:233-249. [PMID: 31372910 DOI: 10.1007/s10237-019-01207-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022]
Abstract
It is believed that non-mammals have poor hearing at high frequencies because the sound-conduction performance of their single-ossicle middle ears declines above a certain frequency. To better understand this behavior, a dynamic three-dimensional finite-element model of the chicken middle ear was constructed. The effect of changing the flexibility of the cartilaginous extracolumella on middle-ear sound conduction was simulated from 0.125 to 8 kHz, and the influence of the outward-bulging cone shape of the eardrum was studied by altering the depth and orientation of the eardrum cone in the model. It was found that extracolumella flexibility increases the middle-ear pressure gain at low frequencies due to an enhancement of eardrum motion, but it decreases the pressure gain at high frequencies as the bony columella becomes more resistant to extracolumella movement. Similar to the inward-pointing cone shape of the mammalian eardrum, it was shown that the outward-pointing cone shape of the chicken eardrum enhances the middle-ear pressure gain compared to a flat eardrum shape. When the outward-pointing eardrum was replaced by an inward-pointing eardrum, the pressure gain decreased slightly over the entire frequency range. This decrease was assigned to an increase in bending behavior of the extracolumella and a reduction in piston-like columella motion in the model with an inward-pointing eardrum. Possibly, the single-ossicle middle ear of birds favors an outward-pointing eardrum over an inward-pointing one as it preserves a straight angle between the columella and extrastapedius and a right angle between the columella and suprastapedius, which provides the optimal transmission.
Collapse
Affiliation(s)
- Pieter G G Muyshondt
- Biophysics and Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Joris J J Dirckx
- Biophysics and Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
16
|
Muyshondt PG, Aerts P, Dirckx JJ. The effect of single-ossicle ear flexibility and eardrum cone orientation on quasi-static behavior of the chicken middle ear. Hear Res 2019; 378:13-22. [DOI: 10.1016/j.heares.2018.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 11/16/2022]
|
17
|
Gottlieb PK, Vaisbuch Y, Puria S. Human ossicular-joint flexibility transforms the peak amplitude and width of impulsive acoustic stimuli. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:3418. [PMID: 29960477 PMCID: PMC5991968 DOI: 10.1121/1.5039845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 05/23/2023]
Abstract
The role of the ossicular joints in the mammalian middle ear is still debated. This work tests the hypothesis that the two synovial joints filter potentially damaging impulsive stimuli by transforming both the peak amplitude and width of these impulses before they reach the cochlea. The three-dimensional (3D) velocity along the ossicular chain in unaltered cadaveric human temporal bones (N = 9), stimulated with acoustic impulses, is measured in the time domain using a Polytec (Waldbronn, Germany) CLV-3D laser Doppler vibrometer. The measurements are repeated after fusing one or both of the ossicular joints with dental cement. Sound transmission is characterized by measuring the amplitude, width, and delay of the impulsive velocity profile as it travels from the eardrum to the cochlea. On average, fusing both ossicular joints causes the stapes velocity amplitude and width to change by a factor of 1.77 (p = 0.0057) and 0.78 (p = 0.011), respectively. Fusing just the incudomalleolar joint has a larger effect on amplitude (a factor of 2.37), while fusing just the incudostapedial joint decreases the stapes velocity on average. The 3D motion of the ossicles is altered by fusing the joints. Finally, the ability of current computational models to predict this behavior is also evaluated.
Collapse
Affiliation(s)
- Peter K Gottlieb
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - Yona Vaisbuch
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California 94305, USA
| | - Sunil Puria
- Department of Otolaryngology, Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, Massachusetts 02114, USA
| |
Collapse
|
18
|
Koyabu D, Hosojima M, Endo H. Into the dark: patterns of middle ear adaptations in subterranean eulipotyphlan mammals. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170608. [PMID: 28989763 PMCID: PMC5627103 DOI: 10.1098/rsos.170608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/21/2017] [Indexed: 05/06/2023]
Abstract
Evolution of the middle ear ossicles was a key innovation for mammals, enhancing the transmission of airborne sound. Radiation into various habitats from a terrestrial environment resulted in diversification of the auditory mechanisms among mammals. However, due to the paucity of phylogenetically controlled investigations, how middle ear traits have diversified with functional specialization remains unclear. In order to identify the respective patterns for various lifestyles and to gain insights into fossil forms, we employed a high-resolution tomography technique and compared the middle ear morphology of eulipotyphlan species (moles, shrews and hedgehogs), a group that has radiated into various environments, such as terrestrial, aquatic and subterranean habitats. Three-dimensional geometric morphometric analysis was conducted within a phylogenetically controlled framework. Quantitative shapes were found to strongly reflect the degree of subterranean lifestyle and weakly involve phylogeny. Our analyses demonstrate that subterranean adaptation should include a relatively shorter anterior process of the malleus, an enlarged incus, an enlarged stapes footplate and a reduction of the orbicular apophysis. These traits arguably allow improving low-frequency sound transmission at low frequencies and inhibiting the low-frequency noise which disturbs the subterranean animals in hearing airborne sounds.
Collapse
Affiliation(s)
- Daisuke Koyabu
- The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-0033 Tokyo, Japan
| | | | | |
Collapse
|
19
|
Ravicz ME, Rosowski JJ. Chinchilla middle ear transmission matrix model and middle-ear flexibility. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:3274. [PMID: 28599566 PMCID: PMC5435550 DOI: 10.1121/1.4982925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
The function of the middle ear (ME) in transforming ME acoustic inputs and outputs (sound pressures and volume velocities) can be described with an acoustic two-port transmission matrix. This description is independent of the load on the ME (cochlea or ear canal) and holds in either direction: forward (from ear canal to cochlea) or reverse (from cochlea to ear canal). A transmission matrix describing ME function in chinchilla, an animal commonly used in auditory research, is presented, computed from measurements of forward ME function: input admittance YTM, ME pressure gain GMEP, ME velocity transfer function HV, and cochlear input admittance YC, in the same set of ears [Ravicz and Rosowski (2012b). J. Acoust. Soc. Am. 132, 2437-2454; (2013a). J. Acoust. Soc. Am. 133, 2208-2223; (2013b). J. Acoust. Soc. Am. 134, 2852-2865]. Unlike previous estimates, these computations require no assumptions about the state of the inner ear, effectiveness of ME manipulations, or measurements of sound transmission in the reverse direction. These element values are generally consistent with physical constraints and the anatomical ME "transformer ratio." Differences from a previous estimate in chinchilla [Songer and Rosowski (2007). J. Acoust. Soc. Am. 122, 932-942] may be due to a difference in ME flexibility between the two subject groups.
Collapse
Affiliation(s)
- Michael E Ravicz
- Eaton-Peabody Laboratory, Massachusetts Eye & Ear Infirmary, 243 Charles Street, Boston, Massachusetts 02114, USA
| | - John J Rosowski
- Eaton-Peabody Laboratory, Massachusetts Eye & Ear Infirmary, 243 Charles Street, Boston, Massachusetts 02114, USA
| |
Collapse
|
20
|
Ear Structures of the Naked Mole-Rat, Heterocephalus glaber, and Its Relatives (Rodentia: Bathyergidae). PLoS One 2016; 11:e0167079. [PMID: 27926945 PMCID: PMC5142786 DOI: 10.1371/journal.pone.0167079] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/08/2016] [Indexed: 11/21/2022] Open
Abstract
Although increasingly popular as a laboratory species, very little is known about the peripheral auditory system of the naked mole-rat, Heterocephalus glaber. In this study, middle and inner ears of naked mole-rats of a range of ages were examined using micro-computed tomography and dissection. The ears of five other bathyergid species (Bathyergus suillus, Cryptomys hottentotus, Fukomys micklemi, Georychus capensis and Heliophobius argenteocinereus) were examined for comparative purposes. The middle ears of bathyergids show features commonly found in other members of the Ctenohystrica rodent clade, including a fused malleus and incus, a synovial stapedio-vestibular articulation and the loss of the stapedius muscle. Heterocephalus deviates morphologically from the other bathyergids examined in that it has a more complex mastoid cavity structure, poorly-ossified processes of the malleus and incus, a ‘columelliform’ stapes and fewer cochlear turns. Bathyergids have semicircular canals with unusually wide diameters relative to their radii of curvature. How the lateral semicircular canal reaches the vestibule differs between species. Heterocephalus has much more limited high-frequency hearing than would be predicted from its small ear structures. The spongy bone forming its ossicular processes, the weak incudo-stapedial articulation, the columelliform stapes and (compared to other bathyergids) reduced cochlear coiling are all potentially degenerate features which might reflect a lack of selective pressure on its peripheral auditory system. Substantial intraspecific differences were found in certain middle and inner ear structures, which might also result from relaxed selective pressures. However, such interpretations must be treated with caution in the absence of experimental evidence.
Collapse
|
21
|
Montefeltro FC, Andrade DV, Larsson HCE. The evolution of the meatal chamber in crocodyliforms. J Anat 2016; 228:838-63. [PMID: 26843096 DOI: 10.1111/joa.12439] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 11/27/2022] Open
Abstract
The unique outer ear of crocodylians consists of a large meatal chamber (MC) concealed by a pair of muscular earlids that shape a large part of the animal's head. This chamber is limited medially by the enlarged tympanic membrane. Yet, the anatomy of this distinctive and complex region is underexplored and its evolutionary history untraced. The osteology and soft tissues of the MC in extant crocodylians was analysed to describe it and establish osteological correlates within this region. A broad survey of the osteological correlates was conducted in major clades of fossil crocodyliforms to estimate evolutionary trends of the MC. The reorganization of the MC at the origin of crocodyliforms includes characters also present in more basal taxa such as 'sphenosuchians' as well as unique traits of crocodyliforms. Three major patterns are recognized in the MC of basal mesoeucrocodylians. The distinct 'thalattosuchian pattern' indicates that extensive modifications occurred in this clade of aquatic fossil crocodyliforms, even when multiple alternative phylogenetic positions are taken into account. Some traits already established in putative closely related clades are absent or modified in this group. The 'basal notosuchian/sebecian pattern' is widespread among basal metasuchians, and establishes for the first time characters maintained later in neosuchians and extant forms. The 'advanced notosuchian pattern' includes modifications of the MC possibly related to a terrestrial lifestyle and potentially a structure analogous to the mammalian pinna. The main variation in the MC of neosuchians is associated with the homoplastic secondary opening of the cranioquadrate passage. The inferred phylogenetic trends in the crocodyliform MC suggest the great anatomical disparity in this region followed a complex evolutionary pattern, and tympanic hearing played an important role in the origin and diversification of Crocodyliformes.
Collapse
Affiliation(s)
- Felipe C Montefeltro
- Departamento de Biologia e Zootecnia, FEIS-UNESP, Ilha Solteira, São Paulo, Brazil
| | - Denis V Andrade
- Departamento de Zoologia, UNESP, Rio Claro, São Paulo, Brazil
| | | |
Collapse
|
22
|
Mason MJ. Structure and function of the mammalian middle ear. I: Large middle ears in small desert mammals. J Anat 2015; 228:284-99. [PMID: 26104342 DOI: 10.1111/joa.12313] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2015] [Indexed: 11/26/2022] Open
Abstract
Many species of small desert mammals are known to have expanded auditory bullae. The ears of gerbils and heteromyids have been well described, but much less is known about the middle ear anatomy of other desert mammals. In this study, the middle ears of three gerbils (Meriones, Desmodillus and Gerbillurus), two jerboas (Jaculus) and two sengis (elephant-shrews: Macroscelides and Elephantulus) were examined and compared, using micro-computed tomography and light microscopy. Middle ear cavity expansion has occurred in members of all three groups, apparently in association with an essentially 'freely mobile' ossicular morphology and the development of bony tubes for the middle ear arteries. Cavity expansion can occur in different ways, resulting in different subcavity patterns even between different species of gerbils. Having enlarged middle ear cavities aids low-frequency audition, and several adaptive advantages of low-frequency hearing to small desert mammals have been proposed. However, while Macroscelides was found here to have middle ear cavities so large that together they exceed brain volume, the bullae of Elephantulus are considerably smaller. Why middle ear cavities are enlarged in some desert species but not others remains unclear, but it may relate to microhabitat.
Collapse
Affiliation(s)
- Matthew J Mason
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Vocal development during postnatal growth and ear morphology in a shrew that generates seismic vibrations, Diplomesodon pulchellum. Behav Processes 2015; 118:130-41. [PMID: 26112702 DOI: 10.1016/j.beproc.2015.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 06/10/2015] [Accepted: 06/18/2015] [Indexed: 11/23/2022]
Abstract
The ability of adult and subadult piebald shrews (Diplomesodon pulchellum) to produce 160Hz seismic waves is potentially reflected in their vocal ontogeny and ear morphology. In this study, the ontogeny of call variables and body traits was examined in 11 litters of piebald shrews, in two-day intervals from birth to 22 days (subadult), and ear structure was investigated in two specimens using micro-computed tomography (micro-CT). Across ages, the call fundamental frequency (f0) was stable in squeaks and clicks and increased steadily in screeches, representing an unusual, non-descending ontogenetic pathway of f0. The rate of the deep sinusoidal modulation (pulse rate) of screeches increased from 75Hz at 3-4 days to 138Hz at 21-22 days, probably relating to ontogenetic changes in contraction rates of the same muscles which are responsible for generating seismic vibrations. The ear reconstructions revealed that the morphologies of the middle and inner ears of the piebald shrew are very similar to those of the common shrew (Sorex araneus) and the lesser white-toothed shrew (Crocidura suaveolens), which are not known to produce seismic signals. These results suggest that piebald shrews use a mechanism other than hearing for perceiving seismic vibrations.
Collapse
|
24
|
Mason MJ. Structure and function of the mammalian middle ear. II: Inferring function from structure. J Anat 2015; 228:300-12. [PMID: 26100915 DOI: 10.1111/joa.12316] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2015] [Indexed: 11/28/2022] Open
Abstract
Anatomists and zoologists who study middle ear morphology are often interested to know what the structure of an ear can reveal about the auditory acuity and hearing range of the animal in question. This paper represents an introduction to middle ear function targetted towards biological scientists with little experience in the field of auditory acoustics. Simple models of impedance matching are first described, based on the familiar concepts of the area and lever ratios of the middle ear. However, using the Mongolian gerbil Meriones unguiculatus as a test case, it is shown that the predictions made by such 'ideal transformer' models are generally not consistent with measurements derived from recent experimental studies. Electrical analogue models represent a better way to understand some of the complex, frequency-dependent responses of the middle ear: these have been used to model the effects of middle ear subcavities, and the possible function of the auditory ossicles as a transmission line. The concepts behind such models are explained here, again aimed at those with little background knowledge. Functional inferences based on middle ear anatomy are more likely to be valid at low frequencies. Acoustic impedance at low frequencies is dominated by compliance; expanded middle ear cavities, found in small desert mammals including gerbils, jerboas and the sengi Macroscelides, are expected to improve low-frequency sound transmission, as long as the ossicular system is not too stiff.
Collapse
Affiliation(s)
- Matthew J Mason
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|